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Mechanisms for the production of 1S0 diproton pairs, {pp}s, in the pd → {pp}sn reaction are
studied at proton beam energies 0.5 – 2GeV in kinematics similar to those of backward elastic pd

scattering. This reaction provides valuable information on the short-range NN and pd interactions
that is complementary to that investigated in the well known pd → dp and dp → p(0◦)X processes.
The pd → {pp}sn reaction is related to the subprocesses π0d → pn and pN → {pp}sπ using two
different one–pion–exchange (OPE) diagrams. Within both these models a reasonable agreement
could be obtained with the data below 1GeV. The similar energy dependence of the pd → {pp}sn
and pd → dp cross sections and the small ratio of about 1.5% in the production of {pp}s to deuteron
final states follow naturally within the OPE models.
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I. INTRODUCTION

There is a long standing problem connected with un-
derstanding the mechanism of proton–deuteron back-
ward elastic scattering at energies above 0.5GeV. This
can be formulated as follows. Except in the ∆–isobar
region of 0.4− 0.6GeV, the unpolarized differential cross
section dσ/dΩ(pd → dp)θcm=180◦ can be explained qual-
itatively within the impulse approximation (IA) up to
large nucleon momenta in the deuteron k ≈ 1 GeV/c,
whereas the experimental values of the tensor analyzing
power T20 are in strong contradiction to the IA calcula-
tions already for k > 0.3 GeV/c [1, 2, 3]. Here IA means
the one–nucleon–exchange (ONE) mechanism of Fig. 1a
which, if it dominated the unpolarized cross section,
would allow one to probe directly the high–momentum
components in the deuteron wave functions.

A very similar problem arises in the analysis of the in-
clusive disintegration of the deuteron on nuclear targets,
dA → p(0◦)X , when the ONE mechanism of Fig. 1b
is used to describe the process [4, 5, 6]. In contrast,
the tensor polarization t20 of the recoil deuteron in elas-
tic electron–deuteron scattering follows very well the
IA predictions [7] up to very high transferred momenta
Q = 1.3 GeV/c, i.e. up to k ∼ Q/2 = 0.65 GeV/c, if
realistic phenomenological NN potentials [8, 9, 10] are
used to describe the deuteron. Corrections from meson–
exchange currents are sizable, but do not change the
picture qualitatively [11]. We must conclude that in
exclusive and inclusive pd collisions at high transferred
momenta we are dealing, not only with the short-range
structure of the deuteron, but also with the specific dy-
namics of the pd interaction and that these dynamics are
entirely different from those in the ed→ ed process.

The above contradictions, referred to as the T20-puzzle,
can be ascribed, in part, to contributions from the ex-
citation of nucleon isobars (∆, N∗) in the intermedi-
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FIG. 1: The one nucleon exchange (ONE) mechanisms of the
reactions (a) pd → dp, (b) dA → p(0◦)X, and (c) pd →
{pp}sn.

ate state, which were neglected within the IA analy-
sis [1, 2, 3, 4, 5, 6]. For example, the ∆–mechanism
seems to dominate the large angle unpolarized pd → dp
cross section in the 0.4–0.6 GeV interval [12, 13, 14].
However, the spin structure of the three–body forces re-
lated to the ∆-isobar is far from well established [15].
This therefore leads to ambiguities in any explanation
of T20 when the ∆–isobar is included in the transition
amplitude [12, 13, 14]. It was suggested that, in order
to clarify the role of the ∆−isobar, the pd → {pp}sn
reaction should be studied [16, 17, 18]. Due to isospin
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invariance, the ∆-mechanism is diminished by a factor
of nine in the pd→ {pp}sn cross section as compared to
that of pd − dp, whereas the ONE mechanism does not
suffer a similar suppression [19]. Therefore, the compar-
ison of the two reactions might allow one to get a clearer
picture of the relative importance of the ONE and ∆-
contributions.

The unpolarized pd→ {pp}sn differential cross section
has been measured for large neutron c.m. angles with
respect to an incident proton beam which had labora-
tory kinetic energies in the range 0.6−1.9GeV [20]. The
predominance of the 1S0 state was guaranteed by select-
ing diproton events with excitation energy Epp < 3MeV.
An analysis of these data was performed within a model,
originally suggested to describe the pd→ dp reaction [12],
that included one–nucleon exchange (ONE) (Fig. 1c), sin-
gle pN scattering, and double scattering with the excita-
tion of the ∆–isobar [21]. This showed that the contri-
bution of the ONE mechanism in Born approximation is
actually quite small for a wide range of commonly used
NN potentials. Only for a softNN potential, such as the
CD Bonn [10], and with absorptions taken into account
in the initial and final states, can a qualitative agreement
with data be achieved [21]. In the other extreme, harder
NN -potentials, e.g. the Paris [22] or especially the Reid
soft core [23], generate intense high–momentum compo-
nents in the NN wave functions and therefore lead to
very large ONE contributions that are in strong disagree-
ment with the pd → {pp}sn data [20]. This is the most
interesting observation resulting from the pd → {pp}sn
analysis of Ref. [21].

On the experimental side, the next step towards unrav-
eling the dynamics of the pd → {pp}sn reaction will be
the measurement of the deuteron tensor analyzing power
T20 [24]. On the theoretical front, an important task is
to study other mechanisms that are less sensitive to high
NN momentum components than the ONE mechanism.
A new and independent analysis of the pd→ {pp}sn dy-
namics has been made possible through the recent pub-
lication of data on the pp→ {pp}sπ0 reaction [25].

In this paper we analyze the mechanisms of the pd→
{pp}sn reaction that are connected with two–step pro-
cesses involving the creation and absorption of pions in
the intermediate state. The one–pion–exchange (OPE)
triangle diagram depicted in Fig. 2a, and here denoted
as OPE-I, was initially invoked to describe the large an-
gle pd→ dp reaction [26]. Here the pd→ dp cross section
was connected to that for the pp → dπ+ sub process at
the same beam energy. The predictions of the model
were found to be in qualitative agreement with the data
on the energy dependence of the pd backward elastic scat-
tering around 0.5–1.0GeV. An important role of the OPE
mechanism, through the p{NN} → 3Heπ sub processes,
was also found in the reaction p 3He → 3Hep at 0.5–
1GeV [27]. To apply the analogous mechanism of Fig. 2b
to the pd → {pp}sn reaction we need to know the am-
plitudes for both pp → {pp}sπ0 and pn → {pp}sπ−. At
present, however, only the unpolarized cross section for
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FIG. 2: The one–pion–exchange (OPE) mechanisms consid-
ered for the reactions pd → dp (a,c) and pd → {pp}sn (b,d,e):
OPE-I – a,b; OPE-II – c,d,e.

pp → {pp}sπ0 was measured at 0.8GeV [25]. In the ab-
sence of data on π− production, we have to make assump-
tions about the pN → {pp}sπ mechanism in order to add
coherently the contributions from the pp→ {pp}sπ0 and
pn → {pp}sπ− sub processes. The mechanisms used in
the present analysis are depicted in Fig. 3. We show in
Sec. II that the results of the calculation within OPE-I
depend strongly on the mechanism assumed.

Such an ambiguity does not, however, appear for mech-
anisms with the π0d → pn sub process (Fig. 2d and
e), which we refer to as OPE-II and discuss in Sec.
III. Due to time-reversal invariance, the predictions of
OPE-I and OPE-II would be the same for the unpolar-
ized pd → dp cross section, though this identity does
not extend to the analyzing powers. However, to avoid
double–counting, one should never consider together the
diagrams in Fig. 2a and c, since they may be but dif-
ferent approximations to the same underlying physics.
We finally consider in Sec. IV the role of baryon (or
Reggeon) exchange in these reactions, that is motivated
in part by the results of the recent measurement of the
pp → {pp}sπ0 reaction [25]. Numerical results for the
different models and the comparison with experiment are
presented in Sec. V and our conclusions in Sec. VI.
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II. THE OPE-I MECHANISM

In the OPE-I approach to the pd → {pp}sn reaction,
the sub process pN → {pp}sπ is invoked but, as shown in
Fig. 2b, there are contributions with either a π0 (A0) or
a π− meson (A−) in the intermediate state. The coher-

ent sum of these diagrams depends on the contribution
of T = 1/2 exchange in the pion–production amplitude.
Using the mechanisms depicted in Fig. 3, and assuming
isospin invariance, we obtain the following results for the
deuteron breakup amplitude:

A0(pd→ {pp}sn) +A−(pd→ {pp}sn) =











2A0(pd→ {pp}sn), ∆ in πN -rescattering, Fig. 3a

−A0(pd→ {pp}sn), N or N∗ in πN rescattering, Fig. 3b

3A0(pd→ {pp}sn), T = 1
2 baryon exchange in t–channel, Fig. 3c

(1)

∆

RN

c)

b)a)

pp(1S0) pp(1S0)

pp(1S0)

p

p

p

p

p

p

N,N* 

π0

π0 π0

FIG. 3: Possible mechanisms for the pp → {pp}sπ
0 reaction:

(a) ∆-isobar excitation in πN-rescattering, (b) πN- rescatter-
ing in the T = 1

2
state (nucleon or N∗ in the s–channel), (c)

T = 1

2
baryon (N, N∗) or Reggeon exchange (BRE) in the

t–channel.

The evaluation of the A(pd→ {pp}sn) amplitude of
Fig. 2b can be performed using a similar treatment to
that of Ref. [28] for the OPE diagram in pd → dp
(Fig. 2a). The resulting c.m. differential cross section
has the form

dσ

dΩ

OPE−I

(pd→ {pp}sn) =

Cj

pf

pi

qpp

qπ{pp}

spp

spd

f2
πNN

m2
π

En +m

E2
n

4m2F 2
π (k2

π)

×
{

|Z0|2 + |Z2|2
} dσ

dΩ
(pp→ {pp}sπ0), (2)

where fπNN is the πNN coupling constant, with
f2

πNN/4π = 0.0796, mπ and m are the masses of the pion
and the nucleon, respectively, kπ is the four–momentum
of the virtual pion, FπNN (k2

π) = (Λ2 −m2
π)/(Λ2 − k2

π) is
the πNN form factor, En is the total energy of the fi-
nal neutron in the laboratory system, pi and pf are c.m.
momenta in the initial and final states of the reaction
pd → {pp}sn, respectively, sij is the squared invariant
mass, and qij is the relative momentum in the system
j + i. It is assumed that the cross sections on the left
and right hand sides of Eq. (2) are to be taken at the
same beam energy and the c.m. production angle of the
neutron and π0 are both equal to 180◦. The beam en-
ergy for the reaction pp → {pp}sπ determines uniquely
the values spp, qpp and qπ{pp}.

The coefficient Cj (j = a, b, c) depends on the isospin
dependence of the NN → {pp}sπ reaction. Using Eq. (1)
we find for the mechanisms depicted in Fig. 3a, b and c,
respectively, Ca = 1, Cb = 4 and Cc = 9. The transition
form factors ZL are defined through

Z0 = κ|pn|F0(pI) − iΦ10(pI , δI), (3)

Z2 = κ|pn|F2(pI) −
i√
5

[√
3Φ32(pI , δI) −

√
2Φ12(pI , δI)

]

,

where

FL(pI) = iL
∫ ∞

0

jL(pIr)uL(r) exp (−δIr) r dr,

ΦlL(pI , δI) = il
∫ ∞

0

jl(pIr)uL(r)(1 + δIr) exp (−δIr) dr,

(4)

and u0(r) and u2(r) are the S– and D–state components
of the deuteron wave function, respectively, normalized
as

4π

∫ ∞

0

[u2
0(r) + u2

2(r)] r
2dr = 1. (5)
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In Eqs. (4), jl(pr) is the spherical Bessel function. Kine-
matical variables are defined as

δ2I =
T 2

n

(En/m)2
+

m2
π

En/m
,

κ = − m

En

Tn

En +m
,pI =

pn

En/m
, (6)

where En, pn and Tn = En − m are the total energy,
three–momentum, and kinetic energy of the final neutron
in the rest frame of the initial deuteron.

For the pd → dp reaction, the sum of the OPE-I am-
plitudes with the π0 and π+ mesons in the intermediate

state is Aπ0

pd→dp + Aπ+

pd→dp = 3Aπ0

pd→dp, independent of

the model for pion production, as found also in Ref. [29].
Using this result with Eq. (1), and neglecting the differ-
ence between the masses of the deuteron and diproton,
there is a relation between the c.m. cross sections of the
pd → {pp}sn and pd → dp reactions within the OPE-I
model:

dσ

dΩ

OPE−I

(pd→ {pp}sn) = RI × dσ

dΩ

OPE−I

(pd→ dp).

(7)
The factor RI depends on the mechanism of pion pro-
duction depicted in Fig. 3 through

RI =











4
9r, Fig. 3a,
1
9r, Fig. 3b,

r, Fig. 3c,

(8)

where r is the ratio

r =
dσ

dΩ
(pp→ {pp}sπ0)

/

dσ

dΩ
(pn→ dπ0). (9)

The cross sections in Eq. (9) are to be taken at the same
beam energy and scattering angle.

III. THE OPE-II MECHANISM

In the OPE-II approach, the deuteron breakup is
driven by the πd→ pN sub process. The contribution of
the diagram of Fig. 2c to pd backward elastic scattering,
as well as to the pd → {pp}sn reaction, were not con-
sidered in Refs. [26, 28, 29]. We therefore analyze these
amplitudes in somewhat greater detail.

A. The pd → {pp}sn reaction

For the deuteron breakup reaction pd → {pp}sn, we
consider the sum of the two diagrams shown in Fig. 2d
and 2e. The ppπ0 vertex function is

Aν1

νp
(p→ π0p1) =

fπNN

mπ

< χν1
|σ ·Q|χνp

>

×(τ · φπ)2mFπNN (k2
π). (1)

Here σ and τ are the Pauli matrices for spin and isospin,
respectively, χνi

is the Pauli spinor with νi being the
z-projection of the spin of the i ’th proton (i = 1, p),
φπ is the isospin state of the pion, and Q is the three–
momentum defined as

Q =

√

Ep +m

Ep1
+m

p1 −
√

Ep1
+m

Ep +m
pp

≈
√

Ep +m

Ep1
+m

(p1 −
2m

Ep +m
pp), (2)

with pi and Ei being the momentum and total energy of
the i ’th proton. The half–off–shell pp scattering ampli-
tude is (see, for example, Ref. [17])

Aν1ν2
(pp→ {pp}s) = Npp 4m2 < ψ

(−)
k

|V (1S0)|q >=

−4m2Npp(
1
2ν1

1
2ν2|00)4π

∫ ∞

0

j0(qr)Vs(r)ψ
(−)
k

(r) r2dr,

(3)

where ν1 and ν2 are the projections of the initial pro-

ton spins. In Eq. (3), ψ
(−)
k

(r) is the pp scattering wave
function that is the solution of the Schrödinger equation
with the interaction potential V (1S0) for a c.m. momen-
tum |k|. It satisfies the following asymptotic boundary
condition:

ψ
(−)
k

(r) → sin(kr + δ)

kr
, (4)

where δ is the 1S0 phase shift. For simplicity of presenta-
tion, we omit here the Coulomb interaction, though this
is taken into account in the actual numerical calculations.
The combinatorial factor Npp = 2 takes into account the
identity of the two protons.

The amplitude for the triangle diagram in Fig. 2d is
given by the following four–dimensional integral

Atriangle(pd→ {pp}sn) =

∫

d3p1dT1

i(2π)4

∑

ν1ν2

Aν1
νp

(p→ π0p1)A
ν2νn

λ (π0d→ pn)Aν1ν2
(pp→ {pp}s)

(2m)2(m2
π − k2

π − iε)(p2
1/2m− T1 − iε)(p2

2/2m− T2 − iε)
, (5)

where Ti, pi, νi are the kinetic energy, three–momentum and projection of the spin of the intermediate i ’th proton
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(i = 1, 2), respectively. Closing the contour of integration
in the lower–half T1 plane, and taking into account the
residue at the point T1 = p2

1/2m − iε, one finds from
Eq. (5) that

Atriangle(pd→ {pp}sn) = −Npp

∑

ν1ν2

(1
2ν1

1
2ν2|00)

×
∫

d3p1

(2π)3
Aν2νn

λ (π0d→ pn) < ψ
(−)
k

|V (1S0)|q > m

(m2
π − k2

π − iε)(q2 − k2 − iε)

×Aν1

νp
(p→ π0p1). (6)

The pole diagram with an intermediate π0 meson de-

picted in Fig. 2e leads to the following amplitude

Apole(pd→ {pp}sn) =
A

νp1
νp (p→ π0p1)A

νp2
νn

λ (π0d→ pn)

m2
π − k2

π − iε
,

(7)
where νp1

and νp2
are the projections of the spins of the

two final protons that are in the 1S0 state. There is
another pole diagram with an intermediate π+ meson
but this can be safely neglected here because it does not
lead to low energy pp pairs.

Making the coherent sum of the triangle and the prop-
erly antisymmetrized pole amplitudes, given respectively
by Eq. (6) and Eq. (7), we find

Aνn

νpλ(pd→ {pp}sn) = Atriangle +Apole =

Npp

fπNN

mπ

2mFπNN (k2
π)

∑

ν1ν2

(1
2ν1

1
2ν2|00)A

νp2
νn

λ (π0d→ pn)

∫

d3p1

(2π)3
< χν1

|(σ ·Q)|χνp
> Ψ

(−)∗

k
(q)

m2
π − k2

π − iε
· (8)

We have here used the Lippmann–Schwinger equation

ψ
(−)∗

k
(q) = (2π)3δ(3)(q − k) − m < ψ

(−)
k

|V (1S0)|q >
q2 − k2 − iε

·
(9)

The integral over p1 in Eq. (8) can be evaluated in the
rest frame of the final diproton, where p1 = q, as was
done for the pd → dp reaction [28]. With this in mind,
the kinematic variables Q and the pion propagator are
rewritten as:

Q =

√

Ep +m

2m
{(p1 − pII) + R} ,

pII =
pp

Ep/m
, R = − m

Ep

Tp

Ep +m
pp,

k2 −m2
π = −Ep

m

{

(p1 − pII)
2 + δ2II

}

, (10)

δ2II =
T 2

p

(Ep/m)2
+

m2
π

Ep/m
,

where Ep, pp and Tp = Ep − m are the total energy,
three–momentum and kinetic energy of the initial proton
in the rest frame of the final diproton.

Values of the pd→ {pp}sn cross section were presented
in Ref. [20] with a cut–off in the pp excitation energy of
Emax

pp = 3 MeV. Defining the corresponding maximum

relative momentum through kmax =
√

mEmax
pp , the c.m.

differential cross section becomes [17]

dσ

dΩn

(pd→ {pp}sn) =
1

(4π)5
pf

pi

∫ kmax

0

dk
k2

spd

√
m2 + k2

× 1

2

∫

dΩk |A(pd→ {pp}sn)|2. (11)

The factor of 1/2 in front of the angular integration in
Eq. (11) takes into account the identity of two final pro-
tons.

We choose the reference frame where the final diproton
is at rest and let the quantization axis OZ lie along the
direction of the initial proton pp. In this frame only
the longitudinal components (µ = 0) of the vectors pII

and R are non–zero. Thus the spin–averaged–squared
amplitude of the pd→ {pp}sn reaction can be written in
the following factorized form:

|Atriangle +Apole|2 =
1

4
|Npp

fπNN

mπ

2mFπNN(k2
π)|2

×
∣

∣

∣

∫

d3q

(2π)3
Qµ=0

k2
π −m2

π + iε
ψ

(−)∗

k (q)
∣

∣

∣

2

|A(π0d→ pn)|2,

(12)

where |A(π0d→ pn)|2 is the spin–averaged–squared am-
plitude of the π0d→ pn reaction. This factorization is a
consequence of the simple spin structure of the diproton
vertex pp→ {pp}s.

For the 1S0 final state, |A(pd→ {pp}sn)|2 does not de-
pend upon the direction of the proton momentum k in
the diproton rest frame, so that the integration over dΩk

merely gives a 4π factor. The cross section can be finally
written as:

dσ

dΩn

OPE−II

(pd→ {pp}sn) =

1

3π2

pf

pi

qpn

qπd

spn

spd

[fπNN

mπ

2mFπNN (k2
π)

]2 dσ

dΩ
(pn→ dπ0)

×
∫ kmax

0

dk
k2

√
m2 + k2

|Jµ=0
pp (pII , δII)|2. (13)
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The form factor Jpp is defined through

Jpp(pII , δII) =

∫

d3q

(2π)3
Q

k2
π −m2

π + iε
ψ

(−)∗

k (q)

=

√

Ep +m

2m

m

Ep

{RF0(pII , δII) − ip̂p Φpp
k (pII , δII)} ,

(14)

F0 =

∫ ∞

0

dr r j0(pII r) exp (−δIIr)ψ
(−)∗

k
(r), (15)

Φpp
k = i

∫ ∞

0

dr(δIIr + 1)j1(pIIr) exp{−δIIr}ψ(−)∗

k
(r),

(16)

where the kinematic variables R, pII , δII are determined
by Eq. (10).

B. The pd → dp reaction

The OPE-II diagram for the reaction pd → dp, de-
picted in Fig. 2c, includes two contributions correspond-
ing to a π+ (A+) and a π0 (A0) in the intermediate state.
Using isospin invariance, the coherent sum of these di-
agrams is equivalent to that with π0 multiplied by an
isospin factor of 3: A+ +A0 = 3A0.

For the pn→ d vertex one has

Aλ′

νpνn
(pn→ d) = −4m

√
m

(

ε+
q2

m

)

ϕ
νpνn

∗

λ′ (q), (17)

where ϕ
νpνn

λ′ (q) is the deuteron wave function in momen-
tum space

ϕ
νpνn

λ′ (q) =
∑

L,ML,MS

(1
2νp

1
2νn|1MS)

×(LML1MS|1λ)YLML
(q̂)uL(q), (18)

with Clebsch–Gordan coefficients and spherical harmon-
ics in standard notation and u0(q) and u2(q) being re-
spectively the S– and D–state components. The wave
function is normalized as

1

3

∑

νp νn λ

∫

d3q

(2π)3
|ϕνpνn

λ (q)|2

=

∫ ∞

0

[

u2
0(q) + u2

2(q)
]

q2
dq

(2π)3
= 1. (19)

The total pd→ dp transition amplitude becomes

A
ν′

pλ′

νpλ (pd→ dp) = 3
fπNN

mπ

FπNN (k2
π)2

√
m

×
∑

ν1,ν2,µ

√
3(1µ 1

2νp| 12ν1)
∫

d3q

(2π)3
Q̃µ

k2 −m2
π + iε

×ϕν1ν2

λ′ (q)A
ν2ν′

p

λ (π0d→ pn), (20)

where νp (ν′p) andλ (λ′) are the spin projections of the
initial (final) proton and deuteron.

The integral over the three–momentum q of the inter-
mediate nucleon is evaluated in the rest frame of the final
deuteron. There it takes the form

Jµ
L(p̃, δ) =

∫

d3q

(2π)3
Q̃µ ϕν1ν2

λ (q)

k2 −m2
π + iε

=

√

Ep +m

2m

m

Ep

{

RµFL(p̃, δ) − ip̂µ
pΦ1L(p̃, δ̃)

}

, (21)

where the quantization axis is chosen to lie along pp. The

kinematical variables Q̃, p̃ and δ̃ come from Eqs. (10) for
the variables Q, pII and δII , with Ep, pp and Tp being re-

placed respectively by the total energy Ẽp =
√

m2 + p̃2
p,

three–momentum p̃p, and kinetic energy T̃p = Ẽp −m of
the initial proton in the rest frame of the final deuteron.
The form factors FL and ΦlL are defined by Eqs. (4).

Finally, the c.m. pd → dp differential cross section is
predicted to be:

dσ

dΩ

OPE−II

(pd→ dp) = 9
[fπNN

mπ

2
√
mFπNN (k2

π)
]2 spn

spd

×qpn

qπd

{

|Jµ=0
0 (p̃, δ̃)|2 + |Jµ=0

2 (p̃, δ̃)|2
} dσ

dΩ
(pn→ dπ0).

(22)

For backward proton–deuteron elastic scattering, the
pp → dπ+ cross section is also to be taken for a sim-
ilar forward–going deuteron. Since Eq. (22) coincides
with Eq. (1) of Ref. [29], the OPE-II and OPE-I models
give the same formula for the unpolarized pd→ dp cross
section, as required.

On the basis of Eqs. (13) and (22), we can find the fol-
lowing factor relating the pd→ {pp}sn and pd→ dp dif-
ferential cross sections to be compared to that in Eq. (7):

RII =

m

27π2

∫ kmax

0

dk
k2

√
m2 + k2

|Φpp
k (pII , δII)|2

/

|Φd
10(p̃, δ̃)|2,

(23)

where the integrals Φd
10(p̃, δ̃) and Φpp

k (pII , δII) are deter-
mined by Eqs. (4) and (16), respectively. Approximating
the integral in Eq. (23) by using the value of the inte-
grand at Epp = Emax

pp /2, one can rewrite the equation
as

RII ≈ 2

27

k3
max

6π2m

|Φpp

k
(pII , δII)|2

|Φd
10(p̃, δ̃)|2

, (24)

where k =
√

2mEpp. In the derivation of RII we have

neglected the contribution of the deuteron D–state com-
ponent and the form factor FL, which are, however, in-
cluded in the numerical evaluations.
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The origins of the different terms in Eq. (24) are
easy to understand. To obtain Eq. (22) from (13) one

needs to make the following replacements: (i) ψ
(−)
k

(r) →
ϕd(r)/

√
m; (ii) multiply by the ratio of the isospin and

combinatorial factors 9/
(

N2
pp/2

)

= 9/2; (iii) multiply by

the spin factor of three; (iv) multiply by the factor 4π2,
which arises from the difference between three– and two–
body phase spaces; (v) divide by the factor

∫ kmax

0

k2

√
m2 + k2

dk ≈ k3
max

3m
. (25)

IV. THE EXCHANGE OF BARYONS WITH

T = 1

2
IN THE t–CHANNEL

The baryon exchange (BE) amplitude for pd→ {pp}sn
of Fig. 4c can be written as:

ABE(pd→ {pp}sn) =
∑

νN

AνN νn

λ (d→ pN∗)AνpνN
(pN∗ → {pp}s)

m2
N∗ − t− iε

, (1)

where mN∗ is the mass of the exchanged baryon, νN its
spin projection, t = (pd−pn)2 the four–momentum trans-
fer, and AνpνN

(pN∗ → {pp}s) and AνN νn

λ (d → pN∗) the
amplitudes of the sub processes pN∗ → {pp}s and the
vertex d → pN∗ respectively. While the case of one–
nucleon–exchange can be found in Refs. [17, 18, 21],
the formalism for N∗ with higher spins was studied in
Ref. [30], where a good fit to the cross section data on
the pd → dp and pp → dπ+ reactions was obtained for
beam energies Tp > 1GeV.

For our present purposes, the main features of the BE
mechanism are (i) its isospin structure with T = 1

2 in
the t–channel, and (ii) the factorized residue of the am-
plitude. The same features are present in the Reggeon
mechanism, where the transition amplitude is given by

A(s, t) = F (t)
( s

s0

)αN (t)

exp
[

−iπ
2

(

αN (t) − 1
2

)

]

, (2)

where αN (t) is the nucleon Regge trajectory. The
residues of the Regge amplitudes F (t) can be factor-
ized into products of terms coming from the upper and
lower vertices of Fig. 4. Therefore, within the baryon or
Reggeon exchange (BRE) model, one obtains the follow-
ing relation between the c.m. cross sections:

dσ

dΩ

BRE

(pd→ {pp}sn) =

dσ

dΩ
(pp→ {pp}sπ0)

dσ

dΩ
(pn→ dπ0)

× dσ

dΩ

BRE

(pd→ dp). (3)

Here the cross sections, within the BRE model of Fig. 4,
are taken at the same four–momentum transfer t for all
reactions and at s = spp ≈ spn for the pn → dπ0 and

RN

a)
π0

RN

π0

dp

p

p

n

b)

pp(1S0)

RN

p

d

d

p

d)

RN

d n

p

c)

pp(1S0)

FIG. 4: The exchange of baryons with isospin T = 1

2
(N, N∗,

and Reggeon) in the t–channel of the pp → {pp}sπ
0, pn →

dπ0, pd → {pp}sn and pd → dp reactions.

pp → {pp}sπ0, and s = spd for the pd → {pp}sn and
pd → dp reactions. In deriving this relation we assume
that the t-dependence of the vertices is smooth. Formally
Eq. (3) coincides with Eq. (7) with RI = 1.

V. RESULTS AND DISCUSSION

A. The OPE-II model

The results of our calculations are shown in Figs. 5 and
6. For the pd → dp differential cross section, the OPE-I
and OPE-II approaches give identical results and they re-
produce the observed shoulder in the energy dependence
in the Tp = 0.5− 0.7GeV region, which is caused by vir-
tual ∆ excitation [12, 13, 14, 21, 26]. At higher energies,
Tp > 1 GeV, the OPE cross section falls faster than the
data. The calculated cross sections varies very weakly
with increasing cut-off parameter Λ in the πNN vertex.

The OPE-II model for pd → {pp}sn is in reasonable
agreement with the experimental data below 1GeV, be-
ing best at about 0.8GeV. It is interesting to note that
at this energy and θcm = 180◦ the ONE mechanism van-
ishes due to a repulsive core in the NN -interaction, as
illustrated in Fig. 6 [21]. As a result, double scatter-
ing with the excitation of the ∆(1232)-isobar was found
to be dominant in this region. Since pn → dπ0 is also
∆–dominated in this region, the agreement between the
OPE-II model and the pd → {pp}sn data seems largely
to confirm the results of Ref. [21]. Furthermore, at this
kinematic point the ONE amplitude changes sign, as does
the ONE–OPE interference.
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FIG. 5: The differential cross sections for pd → dp at θc.m. =
180o and pd → {pp}sn averaged over θc.m. = 166◦ − 180◦ ver-
sus the proton beam energy compared with the predictions of
the OPE-II model for different values of the cut-off parame-
ter: Λ = 1GeV/c (full line), 0.8 (dashed-dotted), 0.65 GeV/c
(dashed). The cross section of the pn → dπ0 reaction is taken
from the SAID SP96 solution [31]. Data for pd → {pp}sn and
pd → dp are those of Ref. [20] and [32, 33, 34] respectively.

Outside this region, the ONE mechanism gives a siz-
able contribution [18, 21], which suggests that the dis-
agreement between the data and the OPE-II model away
from Tp ≈ 0.8GeV may be connected with the ONE
contribution. In Fig. 6 we show the ONE (DWBA) con-
tribution taken from Ref. [21] and its coherent sum with
the OPE contribution, with the relative sign being cho-
sen to get the best agreement with the data [20]. We are
here implicitly assuming that ONE is negligible in the
physical π0d→ pn amplitude.

Above 1GeV, the cross section for the pd → {pp}sn
reaction calculated in the OPE-II model falls faster than
the data with increasing energy. In this model the en-
ergy slope for both this and the pd → dp reaction is de-
termined mainly by the energy dependence of the cross
section of the pn→ dπ0 reaction; other kinematic factors
and form factors are very smooth functions of the beam
energy. As a result, the ratio of diproton to deuteron
formation is practically independent of Tp.

As explained in Sec. III B, the strong preference for
deuteron formation within the OPE-II mechanism is the
result of several considerations, including spin–isospin,
combinatorial, phase space factors as well as the ratio
of form factors in Eq. (23). For a maximum diproton

excitation energy of Emax
pp = 3MeV and beam energy in

the interval 0.6−1.9GeV, Eqs. (23, 24) predict a ratio of
RII ≈ 0.016 − 0.013, which is in qualitative agreement
with the experimental value Rexp = 0.010 − 0.011 [20].

In contrast to the OPE-II model, within the OPE-I
formalism of Eq. (8) the small magnitude of the ratio RI

follows mainly from the small ratio of the cross sections
of the pp → {pp}sπ0 and pn → dπ0 reactions, as seen
from Ref. [25] at 0.8GeV. Results within this approach
will remain ambiguous until there is more information on
the pn→ {pp}sπ− amplitude.

FIG. 6: Differential cross section for the pd → {pp}sn re-
action [20]. The full thick curve shows the OPE-II results
for Λ = 1GeV/c. The predictions [21] of the ONE(DWBA)
mechanism with the CD Bonn potential are shown by
the dashed (Born approximation) and dotted (with distor-
tions) curves. The coherent sum of the OPE-II and the
ONE(DWBA) is shown by the thin full line.

B. The OPE-I and BRE models

At present the OPE-I approach can only be compared
with the pd → {pp}sn data at 0.8GeV, where results
on the pp → {pp}sπ0 have recently appeared [25]. As-
suming that the BRE mechanism of Fig. 3c dominates
the pN → {pp}sπ amplitude at this energy, we find from
Eq. (7) a value of the pd→ {pp}sn differential cross sec-
tion of 0.7µb/sr, which is in a good agreement with the
data [20]. On the other hand, if the ∆−isobar mech-
anism dominates pion production at 0.8GeV [35], then
the OPE-I approach falls too low by a factor two. Graphs
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with an intermediate N∗, as in Fig. 3b, would make the
underestimate a factor of nine.

If the BRE mechanism is indeed important for the
pp→ {pp}sπ0 reaction at 0.8GeV, one should analyze the
role of this mechanism also in the pn→ dπ0, pd→ {pp}sn
and pd→ dp reactions. Using the pp→ {pp}sπ0 data [25]
and the SAID SP96 solution [31] for the pn → dπ0 re-
action, we find from Eq. (3) that the BRE model also
predicts the same value of 0.7µb/sr for the pd→ {pp}sn
cross section. Within the Reggeon model, the small mag-
nitude of the pd→ {pp}sn cross section, as compared to
the pd → dp, should be considered to be consequence of
the relative sizes of the residue functions at the pRN{pp}
and pRNd vertices.

In order to get more insight into the dynamics of the
pd→ {pp}sn and pp→ {pp}sπ0 reactions one has to dis-
criminate between the BRE and the ∆-isobar mechanism
of the reaction pp→ {pp}sπ0 at 0.8GeV (and higher en-
ergies). For this purpose it is important to measure the
unpolarized cross section of the pn → {pp}sπ− reaction
since

dσ

dΩ
(π0)/

dσ

dΩ
(π−) =

{

2, ∆−mechanism,
1
2 , T = 1

2 t–channel exchange.

(1)

C. The Reggeon mechanism and

constituent–quark counting rules

We have shown that the OPE-II model can explain the
similarity in the energy dependence of the pd → dp and
pd → {pp}sn cross sections but underestimates both of
their overall values at Tp = 1 − 2GeV. It was argued
that this discrepancy might be due to contributions from
ONE or baryon (Reggeon) exchanges. If this is true, it
would mean that the effective degrees of freedom in these
reactions are non–nucleonic. In this connection it is inter-
esting to check whether the constituent-quark counting
rules (CCR) [36, 37] can be applied to these reactions. A
scaling behavior related to the CCR was observed in the
γd → pn reaction at photon beam energy 1–4 GeV (see
Refs. [38, 39] and references therein). Recently the CCR
behavior was found also in the pd → dp and dd → 3Hp
reactions in the GeV energy region at large scattering an-
gles [40]. This suggests that one might usefully search for
a similar CCR behavior in the pd→ dp and pd→ {pp}sn
reactions, at least in the region between the ∆(1232) and
∆(1920) resonances, say between 1 and 2GeV.

According to the CCR hypothesis, the energy depen-
dence of the invariant cross sections can be parameterized
as

dσ

dt
=

π

pipf

dσ

dΩcm

=
1

sn
f(θcm), (2)

where the function f(θcm) does not depend on energy
and n+ 2 is the sum of all active point-like constituents
in the initial and final states. Our fit to the data shown

in Fig. 7 gives n = 12.9 for both the pd → {pp}sn and
pd → dp reactions, whereas CCR would suggest that
n = 3 + 6 + 3 + 6 − 2 = 16. One would therefore require
significant diquark configurations in order to get better
numerical agreement.

FIG. 7: Differential cross sections for the pd → dp and pd →
{pp}sn reactions as shown in Fig. 5. The dashed–dotted lines
give the results of fitting the data within the CCR approach

of Eq. (2), where the invariant cross section behaves as dσ

dt
=

const × s−12.9.

VI. CONCLUSIONS

The present analysis shows that there are close connec-
tions between the different reactions which lead to dipro-
ton formation in the final state in pd and pN -collisions.
However, the actual relations depend on the reactions
mechanisms. We found that the predictions of the OPE-
II model, which is based on the π0d → pn sub process,
are quite close to the pp → {pp}sn deuteron breakup
data. This model allows us to explain the absolute value
of the pd → {pp}sn cross section at θcm ≈ 180◦ in the
∆–isobar region 0.6 – 0.9GeV as well as its energy de-
pendence. It also describes the small value of the ratio
R = dσ(pd→ {pp}sn)/dσ(pd→ dp) in the whole interval
0.6 – 1.9GeV of measurement reported in Ref. [20].

The agreement points to an important contribution
coming from the ∆−isobar below 1 GeV, which enters
via the π0d → pn sub process but, on the other hand,
suggests that the ONE mechanism is relatively unimpor-
tant. To a large extent, these conclusions are compatible
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with the results of the previous analysis of this reaction,
performed on the basis of a different model [21]. The
minor role found for the ONE contribution sheds some
light on the T20 puzzle, discussed in the introduction,
which is entirely based on the assumption that the ONE
mechanism dominates the large momentum–transfer pd
reactions.

There is as yet insufficient information to describe
the pd → {pp}sn data unambiguously within the OPE-I
model. However, if we assume the dominance of T = 1

2
exchange in the pN → {pp}sπ amplitude, as given for
example by baryon or Reggeon exchange, then a satis-
factory description can be achieved. Much of this am-
biguity will be removed once data are available from

the forthcoming measurements of the cross sections for
pp → {pp}sπ0 and pp → {pp}sπ− at θcm ≈ 0◦ in the 1 –
2GeV region [41].
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