
PHYSICAL REVIEW C 73, 064001 (2006)

Cross sections and tensor analyzing powers A yy of the reaction 1H(�d, pp)n in
“symmetric constant relative energy” geometries at Ed = 19 MeV
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We measured the cross sections and tensor analyzing powers of the 1H(�d ,pp)n breakup reaction at Ed =
19 MeV in four symmetric constant relative energy (SCRE) configurations. The data are compared with theoretical
predictions from four different approaches: the first based on high-precision (semi)phenomenological potentials
alone or, the second, combined with model three-nucleon forces, and the third based on chiral forces up to
next-to-next-to-leading order (NNLO) in the chiral expansion. In these cases the Coulomb interaction is not
included. In addition, a fourth approach consists in a comparison with predictions based on CD Bonn including
the � excitation and the Coulomb force. In all cases the measured cross sections are significantly below the
theoretical values, whereas the magnitudes of the tensor analyzing powers agree within the error bars in three
of the four cases. The apparent discrepancies in the breakup cross sections are similar to the known differences
for the space-star breakup. This adds to the data base of unsolved low-energy discrepancies (puzzles).
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I. INTRODUCTION

The three-nucleon system has for a long time been the test-
ing ground for nucleon-nucleon forces as they act in the lightest
systems composed of nucleons. State of the art calculations—
using Faddeev techniques in momentum space—of the three-
nucleon scattering allow the comparison of numerically exact
theoretical predictions with a wide range of observables
such as elastic or breakup cross sections and polarization
data. Though the overall agreement between theory and
experiment is rather good, there remain certain discrepancies
[1]. The most prominent one is the drastic underprediction

∗Corresponding author: Email: schieck@ikp.uni-koeln.de

of the nucleon-deuteron (Nd) vector analyzing power Ay

at energies below ≈25 MeV by all modern NN potentials
[1]. In both the proton-deuteron (pd) and neutron-deuteron
(nd) elastic scattering, the theoretical prediction is about 30%
below the data in the angular region of the analyzing power
maximum [2–4]. For the same reaction, but for energies above
≈60 MeV, the minima of the differential cross section are also
underpredicted if only two-nucleon (2N ) forces are used [5, 6].
Although this discrepancy can be removed once three-nucleon
forces (3NF s) are also taken into account, the low-energy Ay

problem has not been resolved yet.
For the breakup process the low-energy nd space-star (SST)

configuration in which all three nucleons are emerging in the
c.m. system with equal magnitudes of momenta in a plane
perpendicular to the incoming beam direction still presents
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FIG. 1. Schematic of the ORTEC 2800 scattering chamber and the 3He(d ,p)4He deuteron vector and tensor polarimeter together with its
beam-defining apertures B0 to B3.

a puzzle. Modern NN forces give too small nd space-star
cross sections at low energies [7–11]. However, in this energy
region the pd breakup data are systematically below the
theoretical nd predictions and therefore substantially below
the corresponding nd data, thus pointing to the importance
of Coulomb effects in this configuration [12–15]. Recent
momentum-space calculations of the three-nucleon breakup
including the Coulomb interaction have shown, however, that
the Coulomb effect is far too small to reproduce the difference
between pd and nd space-star data [16].

These discrepancies point to the necessity of including
new ingredients in addition to the standard two-body input
into the 3N continuum calculations, such as 3NF s. However,
present-day 3NF s show only small effects on the low-energy
elastic scattering vector analyzing power [17]. However,
adding the 2π -exchange Tucson-Melbourne (TM) 3NF [18,
19], adjusted to reproduce the experimental triton binding

FIG. 2. Calibrated E3–E4 energy coincidence matrix for the
α = 56

◦
situation before background subtraction. The coincident

true events along the kinematical curve are weakly visible.

energy [20], or adding the � isobar, mediating an effective
3NF , fills in the Nd elastic scattering cross-section minima at
higher energies [5, 6].

The present work with tensor-polarized deuterons was moti-
vated mainly by discrepancies between theoretical predictions
and data found in the observable Ayy at incoming deuteron
energies 94.5 [21] and 52.1 MeV [22]. Besides, breakup
tensor analyzing powers have been measured only rarely and

FIG. 3. Time-difference matrix for the α = 56
◦

situation,
showing the area of the (true+random) events C(tr+r) marked in
white as well as the area of the randomly distributed events C(r)
marked in black. The event density is plotted as a function of
time-of-flight differences as measured directly, in arbitrary units, and
those calculated from measured energies and distances, assuming
particle masses to be the nucleon masses. The two horizontal bands are
due to coincidences produced by two-particle reactions with random
background. For details see, e.g., Ref. [53] and references therein.
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FIG. 4. (Color online) Results of the SCRE breakup cross section d3σ/d�3d�4dS for α = 0
◦
, 17.7

◦
, 36.0

◦
, 56.0

◦
(see Table I). Experimental

data are compared with the results of Faddeev calculations using the Nijmegen1, Nijmegen2, CD Bonn, and AV18 potentials. The gray bands
show the range of variation with all four two-body potentials.

therefore are interesting observables. The systematic study of
a symmetric constant relative energy (SCRE) geometry, in
which the c.m. plane of the space-star configuration is rotated
to form some angle with the incoming beam direction, provides
noncoplanar breakup situations and thus explores wider areas
of the breakup phase space. One of the more classic situations
has been the symmetric space star (SST, a special SCRE case)
for which good systematic studies exist, at least for cross
sections; see e.g. Ref. [23].

In Sec. II we briefly describe the underlying theory. In
Secs. III and IV the details of the kinematics, of the experiment,
and of the data analysis are given. The resulting data are
compared with the theory in Sec. V. We summarize in
Sec. VI.

II. THEORY

In this work we present three sets of theoretical predictions.
The first set is based on solutions of 3N Faddeev equations
in momentum space, whereas in the second, besides including
the �, the Coulomb force is fully taken into account. Finally,
predictions by the effective field theory are presented.

A. Classical nd approach

In the classical calculations with realistic NN interactions
(Argonne AV18 [24], CD Bonn [25], Nijmegen 1 (Nijm1), and
Nijmegen 2 (Nijm2) [26]) alone or combined with the Tucson-
Melbourne [18, 19] or Urbana IX [27] 3NF s, the long-range
Coulomb force acting between two protons is totally neglected.
In the following we give a short overview of the underlying
formalism and of the numerical performance. For more detail
we refer to Refs. [1, 28–31], and references therein.

The description of the 3N scattering is provided by the
operator T̃ , which sums up all multiple scattering contributions
originating from the interactions of three nucleons via 2N and
3N forces. This operator fulfills the integral equation [31]

T̃ = tP + (1 + tG0)V (1)
4 (1 + P ) + tPG0T̃

+ (1 + tG0)V (1)
4 (1 + P )G0T̃ . (1)

Here t is the NN t matrix, G0 is the free 3N propagator, and P

is the sum of a cyclical and anticyclical permutations of three
nucleons. The 3NF is split into three parts,

V4 =
3∑

i=1

V
(i)

4 , (2)
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FIG. 5. Results of the SCRE breakup cross section d3σ/d�3d�4dS for α = 0
◦
, 17.7

◦
, 36.0

◦
, 56.0

◦
. Experimental data are compared

with the results of Faddeev calculations using the Nijmegen1, Nijmegen2, CD Bonn, and AV18 potentials including the TM99’ 3NF , and,
in addition, AV18 with the Urbana IX 3NF (black curves) and AV18 without 3NF for comparison (dashed curves). The barely discernible
gray bands show the overall variation of the results with all four two-body potentials including the TM99’ 3NF and signify their very close
agreement.

where each one is symmetrical under the exchange of two
particles. For instance, in the case of π–π exchange 3NF

[18, 19], such a decomposition corresponds to the three
possible choices of the nucleon undergoing off-shell π–N

scattering.
The transition operator for the breakup process U0 can be

expressed in terms of a T̃ operator as [1, 31]

U0 = (1 + P )T̃ . (3)

We solved Eq. (1) in a partial-wave projected momentum-
space basis at the nucleon laboratory energy Elab

N =
9.5 MeV by using the AV18, CD Bonn, Nijm1, and Nijm2
potentials. These interactions reproduce the NN data set with
high accuracy as measured by a χ2/datum ratio very close
to 1. In the calculations all partial-wave states with total angular
momenta in the two-nucleon subsystem up to jmax = 5 were
taken into account. In the state 1S0 the neutron-proton force
component has been used. For other isospin t = 1 states the
charge-independence breaking (CIB) of the NN interaction
was taken into account by the 2/3 - 1/3 rule [32].

To check the magnitude of 3NF effects we combined the
NN potentials with the updated version of the TM 3NF

(TM99’) [33, 34], adjusting its cutoff for a particular NN

potential to match the value of the 3H binding energy [20]
(in units of the pion mass mπ , cutoff values are 4.764,
4.469, 4.690, and 4.704 for AV18, CD Bonn, Nijm1, and
Nijm2, respectively). In addition, the AV18 potential was also
combined with the Urbana IX 3NF [27].

B. Effects of �-isobar excitation and Coulomb force

Another set of theoretical predictions is based on a realistic
coupled-channel potential CD Bonn + � [35], allowing for
a single virtual �-isobar excitation and thereby yielding an
effective 3NF consistent with the two-nucleon force and
including exchanges of π, ρ, ω, and σ mesons. The Coulomb
interaction between charged baryons is fully included by using
screening and the renormalization approach; CIB in the nuclear
force is fully taken into account as well. For three particles
interacting via hadronic and screened Coulomb potentials
we solve the symmetrized Alt-Grassberger-Sandhas equations
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FIG. 6. Results of the SCRE breakup cross section d3σ/d�3d�4dS. Experimental data are compared with the results of Faddeev calculations
using the CD Bonn potential (solid), the CD Bonn potential + the � (dots), and the CD Bonn +�+ Coulomb force (dashes).

[36] in momentum-space,

U (R)(Z) = PG−1
0 (Z) + PT (R)(Z)G0(Z)U (R)(Z), (4)

U
(R)
0 (Z) = (1 + P )G−1

0 (Z)

+ (1 + P )T (R)(Z)G0(Z)U (R)(Z), (5)

using the standard partial-wave basis. In Eqs. (4) and (5) G0(Z)
is the free resolvent, P the sum of the two cyclic permutation
operators, T (R)(Z) the two-particle transition matrix derived
from nuclear plus screened Coulomb potentials, and U (R)(Z)
and U

(R)
0 (Z) the three-particle transition matrices for elastic

and breakup scattering; their dependence on the screening
radius R is notationally indicated. Finally, the renormalization
procedure of Refs. [37, 38] is applied to obtain the scattering
amplitudes in the unscreened limit. Further details can be found
in Refs. [16, 39, 40]. The present results are well converged
with respect to screening and with respect to the partial-wave
expansion.

C. Chiral effective-field approach

We have also performed calculations within the chiral
effective field theory (EFT) framework. This approach is
based upon the approximate and spontaneously broken chiral
symmetry of quantum chromodynamics. In the pion and
single-nucleon sectors, it allows the S-matrix elements to

be determined via the chiral expansion, i.e., the perturbative
expansion in powers of the low external momenta and about
the chiral limit; see e.g., Refs. [41–43]. In the case of few
nucleons, this method needs to be modified to account for the
nonperturbative phenomena that are, e.g., responsible for the
appearance of the shallow bound states. In the present work we
follow the approach suggested by Weinberg in the early 1990’s
[44]. In this scheme, one applies the chiral expansion to derive
nuclear forces from the most general effective Lagrangian,
which are then used as input in few-body calculations; see
Ref. [45] and references therein. The most advanced studies
of the two-nucleon system in this framework have been carried
out in Refs. [46,47], where the NN forces were applied
up to next-to-next-to-next-to-leading order (NNNLO) in the
chiral expansion. In the three- and more-nucleon sectors, the
calculations have so far been performed up to NNLO [48,
49]. While the four-nucleon force at NNNLO has already
been worked out [50], the derivation of the corresponding
three-nucleon forces is yet in progress. In the present study,
we, therefore, restrict ourselves to NNLO and perform the
calculations by using the latest generation of the chiral NN

forces based on the spectral-function regularization [45, 51,
52]. Notice that while in our earlier studies [48, 49] only np

forces were worked out, we now also incorporate the leading
isospin-breaking effects. We further emphasize that in contrast
to our previous work [53], where incomplete results at NNLO
and NNNLO were presented, we are now able to perform
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FIG. 7. (Color online) Results of the SCRE breakup cross section d3σ/d�3d�4dS. Experimental data are compared with the results of
calculations in the framework of the chiral EFT at NLO (gray band) and NNLO (black). The bands result from the cutoff variation; see
Ref. [45] for more details.

the complete NNLO calculation including the corresponding
chiral 3NF . Finally, we refrain from giving the incomplete
NNNLO results in the present study.

III. EXPERIMENT

The measurements were performed at the Cologne FN
tandem Van de Graaff accelerator facility. The purely tensor-
polarized deuterons were produced by the Cologne Lambshift
source LASCO, equipped with a newly designed spin filter
[54] with an improved figure of merit P 2

yy × I , and accelerated
to a laboratory energy of 19.0 MeV. The beam with typical
currents of 90 nA (on target) was focused into a beam
spot of 2 mm diameter inside an Ortec 2800 scattering
chamber. The pure tensor polarization Pyy was achieved by
selecting the mI = 0 metastable (2S1/2) deuteron substate
in the spinfilter on LASCO and precessing the polarization
in a subsequent Wien filter into the vertical (laboratory)
y axis. The beam polarization was measured by a five-detector
polarimeter, based on the 3He(�d ,p)4He reaction, mounted
inside the Faraday cup behind the scattering chamber. Pyy

values of −1.37 (about 69% of the theoretical value) were
achieved. Figure 1 shows the experimental setup including the
polarimeter.

The target foils used in our measurement consisted of solid
polyethylene (CH2)n with a thickness of 600–700 µg/cm2 and
a carbon backing layer of ∼40−50 µg/cm2 on each side and
were mounted in a triple target holder. Rotation of the targets
with about 700 rpm provided for a greatly (up to a factor 10)
increased target lifetime.

For the detection of protons of the dp breakup reaction and
the elastic and inelastic deuteron scattering from carbon and
1H, we used 2000-µm-thick room-temperature silicon surface
barrier detectors with an energy resolution of better than ∼50
keV (FWHM). SCRE situations are characterized by the re-
quirement that all three outgoing particles have equal absolute
momenta and be emitted under 120

◦
relative to one another,

thus forming a planar star. In our case the two protons are
emitted symmetrically to a plane formed by the beam (z axis)
and the vertical y axis (the alignment direction of the beam
polarization). The orientation of this plane is determined by the
angle α between the negative z axis and the momentum vector
of the outgoing neutron. Four SCRE situations are measured
simultaneously, including a coplanar star situation (α = 0

◦
).

The detectors were positioned with an accuracy of ±0.1
◦

and ±1 mm in the scattering chamber in a left-right symmetric
arrangement for four coincidences. Table I shows the scattering
angles for all coincidence detectors.
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FIG. 8. (Color online) Same as in Fig. 4 for the breakup tensor analyzing power Ayy .

Two additional detectors at laboratory angles of θ =
28.5

◦
, φ = 0

◦
, 180

◦
served as monitors for the absolute

normalization of the breakup cross section. Each detector
had a total counting rate of less than 8 kHz and therefore no
significant dead time or pileup effects occurred. The signals
from all detectors were processed simultaneously by our new
coincidence electronics and recorded in list mode on magnetic
tape.

The main features of this new setup are the use of
QDCs (charge-to-digital converters) and an MLU (memory
look-up unit), which allows free programming of arbitrary
coincidences between as many as 16 detectors in very short
time.

TABLE I. SCRE angle α and corresponding laboratory angles
of coincidence and monitor detectors (deg), detector distances from
target (mm), and solid angles (msr).

α θ3,4 φ3 φ4 r3,4 ��3,4

0.00 21.01 0.00 180.00 291.2 0.588
17.70 21.51 9.96 170.04 290.1 0.597
36.00 22.95 18.75 161.25 290.1 0.597
56.00 25.26 25.58 154.42 291.2 0.588
Monitor 28.5 0.00 180.00 263.0 0.045

Each coincidence event consisted of at least three logical
status words followed by data words containing the kine-
matical configuration, the energies, and the time-of-flight
differences of the particles detected. From the eight or
more list-mode words, energy and time-difference data
triplets were created. To control the experiment online,
the software package PAW (Physics Analyzing Workstation)
[55] was used. The coincidence events were checked by
incrementing and displaying two-dimensional energy spectra,
background-corrected S-curve projections, and distance-
parameter spectra.

IV. DATA ANALYSIS

The coincidence events were stored as triplets (E3, E4,�t),
event by event, on magnetic tape together with a status word.
At vanishing angular and energy resolutions in a kinematically
complete measurement the breakup events appear on ideal
point-geometry kinematical loci in the E3, E4 plane. The
measured events scatter around these ideal (point-geometry)
kinematical loci mainly because of finite detector apertures.

For the projection of the breakup events onto the kinemat-
ical curve (S curve) we assumed a two-dimensional Gaussian
distribution of the data around this curve. Therefore the correct
projection of a true (E3, E4) event was done by assigning it
the proper location on the point-geometry kinematical curve
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FIG. 9. Same as in Fig. 5 for the breakup tensor analyzing power Ayy .

by using reference matrices. For every event in the calibrated
E3–E4 plane the reference matrices contain the numerically
calculated information about the shortest distance to the
S curve.

A. Time-difference spectra and background subtraction

Shown in Fig. 2 is a typical E3–E4 event matrix with true
coincident events along the kinematical locus and background
from accidental coincidences. This background consisted
mainly of random coincidences due to elastic scattering
and reactions with the target nuclei 2H and 12C and truly
random coincidences from various sources. The background-
correction procedure is based on methods similar to those
described in [14, 56, 57] and is therefore summarized briefly.
First, time-of-flight differences are calculated from the known
distances of the detectors to the target and under the assumption
that the particle masses were those of the detected nucleons of
the pd breakup. Thus a linear relation between the calculated
and measured time-of-flight differences is expected. When
two-dimensional time-difference matrices are built by sorting
the events according to their calculated time-of-flight dif-
ferences and the directly measured time-of-flight differences
(Fig. 3), the true breakup events therefore produce a straight
ridge above the uniformly distributed random coincidence
events. The smaller enclosed region C(tr+r) on the right in

Fig. 3 encompasses this peak but also contains a contribution
from random coincidences that has to be subtracted. The larger
polygon C(r) on the left contains only random events. It has
the area of the “true + random” polygon C(tr+r), suitably
enlarged by a factor V in the �texp direction (with V as large as
possible). The error from the random-background subtraction
enters only with this reduction factor V .

B. Distance-parameter spectra

To subtract the accidental background properly, all events in
the two time-difference windows at a given distance from the
kinematical locus are summed up along the kinematical curve.
The “true” distance-parameter spectrum is obtained by sub-
tracting the “accidental” from the “true+accidental” spectrum.
Only the remaining true events are used for projections onto the
S curve.

C. S-curve projection

Thus, after application of our projection procedure to both
regions C(tr+r) and C(r), the number of true pd breakup events
is given by

Ntr(�Sµ) = Ntr+r(�Sµ) − 1

V
Nr(�Sµ) (6)
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FIG. 10. Same as in Fig. 6 for the tensor analyzing power Ayy .

with a statistical error of

�SNtr(�Sµ) =
√

Ntr+r(�Sµ) + 1

V 2
Nr(�Sµ), (7)

where �Sµ refers to discrete bins with this width on the
S curve.

As discussed in Ref. [57], the choice of the binning width
�Sµ is—within certain limits—somewhat arbitrary but should
be governed by the criterion that narrow structures should not
be distorted. Here, for the cross sections, bin widths of between
0.25 and 1.0 MeV, for the analyzing powers with their much
less pronounced structure, of 2.0 MeV were chosen.

The yields of our S-curve spectra were normalized by using
the relation

d3σ

d�3d�4dS
= N34

��3 · ��4 · �Sµ

��mon

Nmon
(

dσ
d�

)lab

mon

, (8)

where (dσ/d�)lab
mon denotes the differential cross section of

the monitor reaction, ��mon is the solid angle of the monitor
detector, and Nmon is the background and dead-time corrected
monitor peak intensity. N34 is the true (i.e., background and
dead-time corrected) pd breakup intensity over an interval
�Sµ of the arc length S. ��3 and ��4 are the solid
angles of the coincidence detectors. The monitor reaction was
1H(d,d)1H, for which the elastic scattering cross section and
analyzing power data have been published [58]. Of the two

possible laboratory cross sections we chose the higher one,
which also corresponds to the higher-energy deuteron peak
with lower background. Explicitly we used the laboratory
elastic scattering cross section values at 19.0 MeV and θlab =
28.5

◦
calculated from c.m. cross sections of Ref. [58], which

are in good agreement with the values of Ref. [59]:
(

dσ

d�

)c.m.

mon

= (32.25 ± 0.14) mb/sr. (9)

The analyzing powers were calculated by taking ratios of
yields from polarized over unpolarized runs for each bin at
S (with width Sµ) according to

Ayy(S,�Sµ) = 2

(Pyy)mI
= 0

(
Npol(S,�Sµ)

Nunpol(S,�Sµ)
− 1

)
. (10)

The errors of the results for the breakup cross section
are of different origins. The main systematic error is due
to the normalization cross section and the errors of the
solid angles. Additionally, we have another systematic error
from the projection procedure due to the distribution of the
breakup events around the kinematical point-geometry loci and
uncertainties of their assignment to the correct location there.
Therefore we had to choose a maximum distance from the
S curve within which the true breakup events were expected.
We took a distance of typically 0.8 MeV.
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FIG. 11. (Color online) Same as in Fig. 7 for the tensor analyzing power Ayy .

The possible loss of breakup events due to these cuts was
checked by varying the maximum distance from the S curve.
For the true breakup events this loss is less than 1%. Statistical
errors were assumed to originate from the absolute breakup
yield and the background subtraction. These errors depend on
the bin width chosen; in our case typical relative cross-section
errors between 1% and 3% and typical absolute errors of the
tensor analyzing powers Ayy of ≈0.1 resulted. The relatively
large errors �Ayy despite small statistical errors result from the
error propagation in Eq. (10). A previous study of the effects of
averaging over the finite target-detector geometry in the case
of the relatively narrow structures of the final-state interaction
situation and only at the FSI peaks proper had shown that the
cross section is lowered by at most 1.2%. Therefore, here the
comparison is made with point-geometry calculations only.

V. RESULTS AND DISCUSSION

We compare our data with theoretical predictions from clas-
sical Faddeev calculations, using the modern high-precision
NN potentials alone or combined with the present 3NF s.
Also, a comparison with chiral forces up to NNLO is made.
To see the importance of effects due to the Coulomb force, we
also present theoretical predictions based on CD Bonn with
and without the � excitation and with the � excitation +
Coulomb force included.

A. Cross sections

In Figs. 4 and 5 we present our dp breakup cross sections
for the four SCRE configurations and compare them with
point-geometry theoretical predictions based on modern NN

potentials, alone or combined with 3NF s. With shapes of
the data quite similar to the predictions for all four SCRE
geometries there is a significant overestimation (up to about
40%) of the data by the theory. The effect is even larger than
what has been observed in previous investigations for the SST
configuration. The different theoretical predictions based on
NN forces alone are very close together, reflecting nearly
on-shell equivalence of these high-precision interactions.
Including the TM99’ 3NF changes the predictions only
slightly. The cross sections almost do not depend on the choice
of the NN potential with which the TM99’ 3NF is combined.
Replacing the TM99’ by the Urbana IX 3NF in the case of
the AV18 potential leads to practically the same cross sections.
The largest 3NF effects are in a region of central S values.
They move the theory in the direction of the data by ≈8% at
α = 0

◦
. They decrease with increasing α and reach ≈5% at

α = 56
◦
.

Since in these calculations the Coulomb force between
protons has been omitted, we show the CD Bonn and CD
Bonn + � as well as the CD Bonn + � + Coulomb force
predictions in Fig. 6. It is seen that inclusion of the Coulomb
force moves the theory in the direction of the data. However,

064001-10



CROSS SECTIONS AND TENSOR ANALYZING POWERS . . . PHYSICAL REVIEW C 73, 064001 (2006)

only ≈30% of the discrepancy is explained in this way. The
inclusion of the � has very little effect.

As shown in Fig. 7, the calculations in the framework of
chiral EFT yield results for the cross sections very similar to
the ones obtained from the conventional nuclear-force models
(cf. Figs. 4, 5, and 6) and strongly overestimate the data. We
further notice that the theoretical uncertainty resulting from
the cutoff variation is rather small and significantly reduced at
NNLO as compared with at NLO.

B. Analyzing powers Ayy

In the case of the tensor analyzing powers Ayy shown
in Figs. 8 and 9 the agreement between data and theory in
the three out-of plane cases is much better than for the cross
sections. Only in the coplanar case (α = 0

◦
) does a significant

deviation along the kinematical locus exist. Also, here different
potentials provide practically the same Ayy values (see Fig. 8),
and inclusion of TM99’ or Urbana IX 3NF s has negligible
effects (see Fig. 9). Again, combining 3NF s with different
NN potentials results in practically the same Ayy values.
Similarily, the effect of the virtual �-isobar excitation is
small (see Fig. 10). However, the inclusion of the Coulomb
force significantly changes Ayy , especially in the region of the
kinematical locus around the minimum of Ayy , thus leading to
an improved description of the data, especially for α = 36

◦
.

Similar to the case of cross sections, chiral predictions
shown in Fig. 11 are very close to the results based on
high-precision NN potentials. Small but visible differences
may be observed for the configuration with α = 36

◦
.

VI. SUMMARY

We present new deuteron breakup cross-section and tensor
analyzing-power data for four SCRE breakup situations of

the 1H(�d,pp)n reaction. The comparison with the theoretical
predictions based on different high-precision NN potentials
reveals a serious overestimation of the cross section data by the
theory. This overestimation is not removed when the TM99’
or Urbana IX 3NF s are included. Their effects are small.
Chiral EFT results at NLO and NNLO are consistent with
those based on the conventional nuclear force models and show
the same deviations from the data. The uncertainty due to the
cutoff variation is rather small at both orders. Also, the effects
of virtual �-isobar excitations on the cross sections are very
small. Inclusion of the Coulomb force removes some part of the
discrepancy for the cross section. A similar picture exists for
the tensor analyzing power Ayy . In the coplanar-geometry case
none of the theories reproduces the data. For the out-of-plane
geometries 3NF effects are small. The Coulomb force leads
to a better agreement between data and theory, and its effect
is larger than any differences between predictions of various
NN and 3N interaction models. This indicates that rigorous
theoretical studies of pd data necessitate the inclusion of the
Coulomb interaction.
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[47] E. Epelbaum, W. Glöckle, and U.-G. Meißner, Nucl. Phys. A747,

362 (2005).
[48] E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, U.-G.
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U.-G. Meißner, Phys. Rev. Lett. 86, 4787 (2001).
[50] E. Epelbaum, arXiv.org:nucl-th/0511025.
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[53] C. Düweke, R. Emmerich, A. Imig, J. Ley, G. Tenckhoff,

H. Paetz gen. Schieck, J. Golak, H. Witała, E. Epelbaum,
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