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Abstract—A model of interatomic potentials of interaction is suggested for static simulation of the processes
of elastic scattering of atomic particles by atoms of gas, plasma, and solid. In the developed model, the atomic
particle radii, whose magnitude depends on the energy of their relative motion, are internal parameters. The sug-
gested quasihard-sphere model enables one to simulate elastic processes of scattering of atomic particles, using
different interatomic potentials of interaction with relatively high rates of statistical simulation characteristic of
simulation within the hard-sphere model. The Born–Mayer potential is selected as the interatomic potential of
interaction and modified for a wide class of partners in atomic collisions. It is demonstrated that the suggested
mathematical model of quasihard spheres describes fairly correctly the processes of elastic scattering of atoms
in a gas medium and of displaced atoms in a solid with an almost constant rate of static simulation. © 2000
MAIK “Nauka/Interperiodica”.
INTRODUCTION

In order to perform numerical simulation of the pro-
cesses of interaction of atomic particles in a gas and in
a solid by the Monte Carlo method, one must determine
a number of basic stochastic variables which describe
adequately the processes of particle scattering. In
describing the processes of elastic interaction of atomic
particles, the main characteristic is provided by the
scattering angle which defines the energy loss and the
subsequent behavior of their motion. The scattering
angle relates to each other the impact parameter b, the
interatomic potential of interaction U(r), and the energy
of relative motion of particles Ec. Given a spherically
symmetric potential of interaction, the scattering angle
Θ in a center-of-mass-system is described by the
expression [1]

(1)

where r is the interatomic distance; Ec is the kinetic
energy of relative motion of atomic particles in the cen-
ter-of-mass system for r  ∞; and rmin is the shortest
distance within which the particles come closer
together, which is the root of the radicand in the denom-
inator.

Expression (1) in the analytical form may be inte-
grated only for the hard-sphere potential and for a num-
ber of power potentials and their linear combinations.
In describing the processes of elastic scattering of
atomic particles for more real interatomic potentials of
interaction, one restricts oneself to the use of various
approximate methods within both classical and quan-
tum-mechanical description [2, 3].
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The complexity of the computational procedure
during numerical simulation of the processes of particle
scattering by the Monte Carlo method is largely defined
by the choice of the interatomic potential of interaction.
In so doing, one must make a sound compromise
between the real physical description of the interaction
processes and relative simplicity of the computational
procedure during their mathematical simulation. The
use of the interatomic potential of hard spheres results
in a significant simplification of the calculation proce-
dure, first of all, during statistical simulation of the pro-
cess of elastic scattering of atomic particles in a gas and
in a solid. However, an important disadvantage of this
interaction potential is the absence of correlation
between the interaction cross section and the energy of
relative motion of colliding particles.

In the case of particle interaction in a gas medium in
the range of low energy values which do not exceed the
respective ionization potentials, the elastic-scattering
cross section is of the order of gas-kinetic and little
depends on the energy of colliding particles. In this
case, the classical hard-sphere scattering is a good
approximation; in this energy range, the particle scat-
tering (except for the case of small values of scattering
angles) is assumed to be spherically symmetric, and the
interaction between colliding particles is defined by
their outer electron shells and must be determined for
each pair of colliding particles. When the energy of rel-
ative motion of colliding particles increases, significant
scattering occurs under conditions of considerable
overlapping of their electron shells, and the interaction
potential is largely defined by the inner electrons whose
velocities are much higher than the collision rates of
atomic particles. The excitation of outer electrons
occurring in the process causes little variation in the
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scattering potential the effective range of whose action
corresponds to smaller interatomic distances.

In describing the interaction of atomic particles in a
solid, an empirical rule exists according to which the
collisions leading to an appreciable scatter occur at dis-
tances of the order of half the equilibrium distance
between neighboring atoms. In the case of such small
distances, one can ignore the long-range attractive
forces which define the bonding forces in solids. By the
order of magnitude, this range of distances corresponds
to the sizes of colliding atomic particles. Based on the
same principle is the method of determining, to a first
approximation, ionic and atomic radii [4]. Therefore, in
a fairly wide range of energies of colliding atomic par-
ticles, the classical hard-sphere scattering is a good
approximation from the practical standpoint.

In the hard-sphere model, the shortest distance
within which two colliding particles come closer
together, rmin, for any values of the impact parameter b
is always equal to the sum of radii of atomic particles
and does not depend on the energy of their relative
motion. This results in a considerable limitation, within
the hard-sphere model, of the possibility of static sim-
ulation in a wide range of energy of colliding particles.
Attempts were made previously [5–7] at describing the
process of elastic scattering of atomic particles using
the procedure of fitting the approximate potential of
interaction to the real one for some distance between
the atomic particles which makes the most contribution
to the particle scattering. However, almost all of the
derived approximate potentials of interaction are little
valid for high impact parameters which lead to overes-
timated values of transmitted energy under conditions
of elastic collision of atomic particles. The procedure
of simulation of the processes of elastic scattering of
atomic particles, suggested by us, restricts the range of
high impact parameters at thermal energies of atomic
particles by their gas-kinetic sizes. For high values of
the energy of collision of atomic particles, the range of
high impact parameters corresponds only to very small
values of scattering angles and transmitted energy and
plays no important part.

APPROXIMATION OF INTERATOMIC 
INTERACTION POTENTIAL

A combination of the simplicity of computational
procedure in using the hard-sphere potential with the
correctness of physical description of the processes of
interaction of atomic particles may be accomplished by
using the interatomic potential of quasihard spheres
(QHS). We will treat in more detail the form and proce-
dure of using the interatomic potential of interaction of
QHS. A number of test potentials applicable to atoms
of various elements and containing fitting parameters
may be used as real interatomic potentials of interac-
tion. Most convenient from the standpoint of mathe-
TECHNICAL PHYSICS      Vol. 45      No. 3      2000
matical application is the Born–Mayer interatomic
potential [8]

(2)

where Z1 and Z2 are ordinal (atomic) numbers of collid-
ing atomic particles, and AB – M and bB – M are constants
determined for each pair of colliding atomic particles.
This purely exponential interatomic potential of inter-
action enables one to analytically express the shortest
distance rmin within which two colliding atomic parti-
cles come closer together from the equation

(3)

where Ec is the energy of relative motion in the center-
of-mass system of two colliding atomic particles; the
solution of this latter equation has the form

(4)

and, in the case of central collision (b = 0), defines the
minimum distance between two atomic particles at the
point of stopping during infinite motion of the incident
particle. The use of other, more complex real inter-
atomic potentials, whose solution relative to rmin does
not permit an analytical solution for different values of
the collision energy, is possible; however, it compli-
cates the computational procedure of simulation and
renders it less flexible as regards the adaptation to vari-
ations of conditions of real physical experiment.

If the value of the shortest distance rmin within which
the atomic particles come closer together is identified
with the sum of the radii of hard spheres at the point of
contact (Fig. 1), one can use the hard-sphere model to
determine the microscopic cross section for elastic
scattering and the free path. In so doing, the sum of the
hard-sphere radii is a variable quantity and varies as a
function of the energy of relative motion of colliding
atomic particles; from this standpoint, colliding atomic
particles may be regarded as quasihard spheres.

The interatomic potential of quasihard spheres may
be determined in the form

(5)

where rmin(Ec) is the solution of equation (3) and, for
the Born–Mayer interatomic potential (2), is defined by
expression (4).

The criterion of validity of interatomic potential of
interaction of quasihard spheres Uqhs(r) may be formu-
lated as follows:

(6)

where  is the coordinate of intersection of the tan-
gent (derivative of the real interatomic potential of
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interaction) drawn from the point Uqhs(r) = Ec with the
axis of interatomic distance r (Fig. 1).

The use of the interatomic potential of interaction of
quasihard spheres Uqhs(r) will be correct in case condi-
tions (6) is valid or the equivalent relation depending on
the collision energy Ec,

(7)

If this criterion is generalized to the region of off-
center (b ≠ 0) collisions, it will take the form

(8)

If this criterion of interatomic potential of interac-
tion of quasihard spheres (7) is applied to the real
Born–Mayer interaction potential (2), we will derive
the range of validity of the respective of quasihard-
sphere interaction potential,

(9)

One can see from condition (9) that the potential of
interaction of quasihard spheres with the Born–Mayer
interatomic potential is well valid in the range of great
interatomic distances to which correspond both low
values of the collision energy and high values of the
impact parameter in a wide range of the collision
energy of atomic particles. For the exponential Born–
Mayer interaction potential (2), this is associated with
the fact that, as the interatomic distance r increases

(Fig. 1), the quantity ∆r =  – rhs increases slower
than the quantity rhs = rmin(Ec), and their correlation
ever better satisfies the criterion of validity (6) of the
quasihard-sphere interaction potential.
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Fig. 1. Quasihard-sphere approximation for the potential
UB – M(r) (central collision, b = 0).
In order to use the Born–Mayer interatomic poten-
tial in the quasihard-sphere model, we modified it using
the results of Abrahamson [9] for a wide class of colli-
sion partners with the ordinal numbers Z1, 2 = 2…80. In
so doing, the constants AB – M and bB – M in the Born–
Mayer interatomic potential (2) were represented as the
functions AB – M(Z1, Z2) and bB – M(Z1, Z2) and approxi-
mated using the results of [9, 10] with the power func-
tions by the method of least squares. The approxima-
tion results are given in Fig. 2. The obtained coeffi-
cients of the modified Born–Mayer interatomic
potential (2) have the form

(10)

The maximum relative error of approximation of the

coefficients (Z1, Z2) and (Z1, Z2), corre-
sponding to the collision of the lightest atomic parti-
cles, does not exceed 8% and, in the case of heavy
atomic particles, decreases to 3%. In so doing, the mod-
ified Born–Mayer interatomic potential of interaction
of atomic particles with the ordinal numbers Z1 and Z2
assumes the form

(11)

where  and r are in eV and Å, respectively.

The solution of equation (3) for this modified Born–
Mayer interatomic potential (11) has the form

(12)

The criterion of validity (7) of the potential of inter-
action of quasihard spheres with the derived modified
Born–Mayer potential (11) takes the form

(13)

Within the obtained quasihard-sphere model, the
microscopic cross section for elastic interaction of
atomic particles depends on the energy EC of their rel-
ative motion,

(14)

and, accordingly, the free path λqhs of atomic particles
in a gas medium or in a solid is

(15)
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where N is the concentration of atomic particles in a
scattering medium.

If, in statistical simulation, the ratio between b2 and

the quantity (Ec) is equated to a random number ξ,
the expression for the scattering angle ϑ  in the labora-
tory coordinate system assumes the form

(16)

In determining the impact parameter b in the form

(17)

we take into account the increase in the probability of
high (in absolute magnitude) values of the impact
parameter b, which is due to the fact that an incident
atomic particle arrives by chance at different points of
the area of the microscopic cross section for scattering.

Given in Fig. 3 by way of example are the results of
calculations of free path (15) of Cu atoms under condi-
tions of elastic scattering from Ar atoms, obtained
within the quasihard-sphere model with the modified
Born–Mayer interatomic potential (11) and normalized
to the respective value of free path in the hard-sphere
model, as a function of the energy of their relative
motion.

The calculation results indicate that the microscopic
cross section of elastic scattering of atomic particles
σqhs ~ 1/λqhs increases, as the energy of their relative
motion decreases, to reach the value of gas-kinetic
cross section at thermal collision energies. As the colli-
sion energy increases, the elastic scattering cross sec-
tion decreases to a value restricted by the criterion of
validity (7) of the quasihard-sphere model. The maxi-
mum collision energy corresponding to the limit of the
criterion of validity of the quasihard-sphere model (13)
using the modified Born–Mayer interatomic potential
(11), under conditions of elastic scattering of Cu atoms
from Ar atoms is restricted to ~5 keV. This energy range
of interaction of atomic particles is of interest from the
standpoint of numerous applied problems of the phys-
ics of plasma, gas discharge, and solid.

DISCUSSION

Previous attempts have been made [11–14] to intro-
duce into the hard-sphere model the dependence of the
interaction cross section on the energy of colliding par-
ticles. However, as is seen in Fig. 3 (curve 3), the most
rigorous energy dependence of the elastic-scattering
cross section, proposed in [13], which includes the
Maxwellian velocity distribution of gas atoms, is little
valid in the entire range of energy of colliding particles
and reaches the value of gas-kinetic interaction cross
section at high energies of colliding particles, which is
incorrect.

rmin
2

ϑ 2 ξ 1 ξ–( )[ ] 1/2

2ξ 1– M1/M2+
--------------------------------------.arctan=

b rmin Ec( )ξ1/2
,=
TECHNICAL PHYSICS      Vol. 45      No. 3      2000
The application of more real interatomic potentials
of interaction results in the necessity of using mathe-
matical procedures which introduce some determinism
into the random process of scattering. For example, the
use in [14] of the scattering “6–12” Lennard–Jones
potential by the procedure of linearization of the scat-
tering angle Θ in the center-of-mass from the impact
parameter b enabled one to estimate the maximum
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interaction cross section from the condition Θ = 0 at
b = bmax. However, the linear approximation in this case
implies that the scattering angle Θ is estimated with
inadequate accuracy with the value of the impact
parameter b close to maximum. This results in a consid-
erable underestimation of the contribution of scattering
in the case of glancing collision and, accordingly, the
value of the interaction cross section.

In order to check the degree of the fit of the quasi-
hard-sphere model to the description of processes of
elastic scattering of atomic particles involving the use
of real interatomic potentials, the results of simulation
of processes of transport of atomic particles in a gas
were compared to those in a solid. The real interatomic
potential of interaction was provided by the modified
Firsov potential [15],

(18)

where af = 0.8853a0/(  + )2/3 is Firsov’s screen-
ing parameter (a0 is the Bohr radius) with Nikulin’s
screening function [16] obtained by approximate solu-
tion of the Thomas–Fermi equation using the variation
principle,

(19)

where a = 0.7111, b = 0.2889, α = 0.175, and β =
1.6625.

In order to perform numerical integration in expres-
sion (1) when determining the scattering angle Θ with
interaction potential (18), we developed a mathemati-
cal procedure according to which the integration inter-
val [rmin, ∞] in expression (1) is divided into three
regions.

In the first region rmin < r < (rmin + δ), the integrand
in the denominator of expression (1) f(r) = 1 – U(r)/Ec –
b2/r2 is expanded by its Taylor series expansion,

(20)

The relative error of these transformations is esti-
mated at

At δ = 0.01 (r = rmin + 0.01), the value of ∆ does not
exceed ~10-4.

The upper limit Q of the second region (rmin + δ) ≤
r ≤ Q. This is the value of r at which the second term
U(r)/Ec of the function f(r) becomes small and, in what
follows, may be ignored. We took U(r)/Ec < 10–6 as the
smallness criterion.
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, the integral in expres-
sion (1) has an analytical solution in the form

(21)

It is almost impossible to perform numerical inte-
gration in expression (1) directly in the process of sim-
ulation, because this extends considerably the time of
static simulation. Therefore, the values of scattering
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 in each collision event.
In order to compare the results of statistical simula-

tions involving the interatomic quasihard-sphere poten-
tial (5), the modified Born–Mayer interaction potential
(11), and the real potential of interaction (18), the pro-
cesses of transport of Cu, Y, and Ba atoms in a medium
of Ar and O

 

2

 

 were calculated.

An analysis of results of statistical simulation
reveals that both models agree in the low-energy region
and differ slightly when the collision energy increases.
This may be due to the fact that modified Firsov’s
potential (18) with Nikulin’s screening function (19) in
the case of in the case of large internuclear distances
decreases slower than the true interaction potential.
Moreover, the modified Born–Mayer interaction poten-
tial (11), employed by us in the quasihard-sphere
model, is more valid in the case of large internuclear
distances which are characterized by interactions
between the outer electron shells of colliding atomic
particles. The quasihard-sphere model with modified
Born–Mayer interaction potential adapts itself better to
various combinations of collision partners, because it
contains parameters characteristic of concrete pairs of
colliding atomic particles.

It is almost impossible to derive the universal inter-
atomic potential of interaction in an analytical form,
which could be used in application to a wide class of
problems in statistical simulation: even in describing
the processes of scattering of particles in a gas medium
due to the differences in the electron structure of collid-
ing atoms the real interatomic potential of interaction is
not monotonic, and oscillations due to the shell struc-
ture of colliding atoms must show up in elastic-scatter-
ing cross sections. In addition, the assumptions made in
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deriving almost all of the known interatomic potentials
of interaction used to describe the processes of scatter-
ing of particles in a solid were obtained within the sta-
tistical theory of scattering and based on the principles
of binarity and independence of collisions characteris-
tic of a gas medium, which is incorrect.

Within the obtained quasihard-sphere model (5)
using the modified Born–Mayer interatomic potential
(11), calculations were performed of the transport coef-
ficients of atoms in a gas medium at different values of
gas pressure up to pressures at which the diffusion
motion of atoms being scattered is predominating. Also
calculated were the values of ion sputtering in describ-
ing the processes of displacement of atoms in a solid
and their motion toward the surface. The calculation
results obtained for a wide class of collision partners
have demonstrated that the suggested model of quasi-
hard-sphere model using the modified Born–Mayer
interatomic potential enables one to fairly correctly
simulate the processes of elastic scattering of atomic
particles at high rates of statistical simulation.
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