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ABSTRACT Virus capsids and crystalline surfactant vesicles are two examples of self-assembled shells in the nano- to
micrometer size range. Virus capsids are particularly interesting since they have to sustain large internal pressures while
encapsulating and protecting the viral DNA. We therefore study the mechanical properties of crystalline shells of icosahedral
symmetry on a substrate under a uniaxial applied force by computer simulations. We predict the elastic response for small
deformations, and the buckling transitions at large deformations. Both are found to depend strongly on the number of elementary
building blocks N (the capsomers in the case of viral shells), the Föppl-von Kármán number g (which characterizes the relative
importance of shear and bending elasticity), and the confining geometry. In particular, we show that whereas large shells are well
described by continuum elasticity-theory, small shells of the size of typical viral capsids behave differently already for small
deformations. Our results are essential to extract quantitative information about the elastic properties of viruses and vesicles from
deformation experiments.

INTRODUCTION

The formation of regular polyhedra is a frequently encoun-

tered strategy of nature to optimize self-assembled struc-

tures. Microscopic boron clusters (1), mesoscopic surfactant

vesicles (2), vesicles formed from wheel-shaped molybde-

num clusters (3), as well as about half of all known spherical

virus particles (4) are all small self-assembled structures that

have an underlying icosahedral symmetry. It is interesting

that the overall three-dimensional structure of many viruses

is so similar whereas they are built from different protein

subunits. Two illustrative examples of well-known viruses

are the tomato bushy stunt virus and the bacteriophage f29.

Tomato bushy stunt virus was the first virus for which the

icosahedral structure was predicted (5) and later confirmed

by virus crystallography (6). This virus consists of 180 pro-

tein subunits that aggregate into a virus shell of ;34-nm

diameter that encapsulates the viral genome. The typical con-

tact energy between the different subunits is in the range of

100–400 kJ/mol, which corresponds to several tens of kBT
per bond. The bacteriophage f29 is a small bacteria-in-

fecting virus consisting of a head of 235 gp8 protein

subunits—forming two icosahedral end caps and a cylindri-

cal equatorial region—and a long flexible tail (7). It has been

demonstrated by DNA packaging experiments using optical

tweezers (8) that the genome of this virus is very tightly

packed into the capsid by a molecular motor, leading to an

internal pressure of ;50 atm (9). This high pressure results

in a formidable injection force when the virus infects a host

cell. Therefore, virus capsids must be mechanically very

strong.

Different types of protein subunits aggregate under the

appropriate conditions (ionic strength, pH, temperature) into

stable virus capsids. However, the mechanically coherent

shell often consists of only a single kind of protein subunit.

This process of spontaneous aggregation is very similar to

micellization in surfactant solutions and can be largely

understood using self-assembly theory (10–12). Recently,

several groups studied the formation of these icosahedral

particles by computer simulation (13–15). More complex

shapes can be obtained by introducing a spontaneous cur-

vature that competes with the ratio of bending and stretching

energy (13,16). The origin of the stability of the icosahedral

shape as an approximation to a sphere lies in the fact that any

regular triangulation of a smooth sphere requires an excess of

at least 12 fivefold disclinations (17). Caspar and Klug (18)

first showed that the organization of proteins in the viral shell

is such that a few proteins each form hexavalent and pen-

tavalent morphological units, the capsomers. Furthermore,

the icosadeltahedral structure of a virus shell can then be

characterized by two integers p and q such that the number of

vertices (i.e., of the morphological units) is N¼ 10T1 2, the

number of triangles is NT ¼ 20T, and the number of subunits

is NS ¼ 3NT, where T ¼ p2 1 pq 1 q2, the so-called

T-number of the virus. For many virus particles, relatively

few subunits are involved so that T and NT are small.

Given the intrinsic strength of the virus capsids that fol-

lows from experiments (8) as well as from calculations of

protein-protein interactions (19), it is important to probe the

mechanical properties of viruses directly by means of single-

particle experiments. The main question is then how to relate

the experimentally accessible observable to the elastic con-

stants of the virus capsid. Recently, controlled experiments

using scanning-force microscopy have been used to mea-

sure the mechanical properties of (empty) bacteriophage

f29 capsids (20). Similar measurements on hollow spherical

Submitted January 17, 2006, and accepted for publication April 26, 2006.

Address reprint requests to G. A. Vliegenthart, Institut für Festkörper-
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polyelectrolyte capsules (21) were reported in Lulevich et al.

(22) and Fery et al. (23).

In this article, we investigate how the elastic parameters,

the size of the shell, and the confining geometry lead to par-

ticular mechanical responses, and reveal the underlying de-

formation pathways. Furthermore, we show how the elastic

constants can be extracted from deformation experiments in

combination with the relaxed shape of the virus. Therefore,

we performed molecular dynamics computer simulations

on shells of icosahedral symmetry, which were modeled as

triangulated surfaces with well-defined elastic properties. In

a coarse-grained description, the elastic deformation energy

of the shell has two contributions, the in-plane stretching

energy and the bending energy. Triangulated surfaces with

a small number of vertices resemble virus particles (14) if

a triangular facet is identified with three protein subunits (as

suggested by Caspar and Klug (18)), whereas triangulated

surfaces with a large number of vertices (24) are highly

simplified models for large viruses and spherical surfactant

vesicles with crystalline order.

MODEL

Triangulated surfaces

We performed molecular dynamics computer simulations on triangulated

icosahedral vesicles with stretching and bending energy. Such a vesicle is

created by starting from a perfect icosahedron. A planar hexagonal network

with an adjustable lattice constant is attached to one of its faces, such that the

three corners of the icosahedron coincide with three lattice points. The

number of steps p from one corner along one row of nearest-neighbor bonds,

followed by q steps after a 60� rotation to reach another corner defines the

pair of integers in the Caspar-and-Klug classification. The other faces are

decorated accordingly, such that the lattice orientations of neighboring faces

match perfectly. This procedure generates vesicles of T-numbers {1, 3, 4, 7,

9, . . ..}. The vertices in this network correspond to the viral capsomers. In

our model, the vertices are connected irreversibly by harmonic springs,

which implies the stretching energy,

Vs ¼
k

2
+
Æi;jæ
ðjri � rjj � r0Þ2; (1)

with equilibrium distance r0 and spring constant k, which determines the two-

dimensional Young modulusK0 ¼ 2k=
ffiffiffi
3

p
(25). The sum in Eq. 1 runs over all

bonds that connect the nearest-neighbor pairs of vertices i and j. The bending
energy,

Vb ¼ l+
a;b

ð1� na � nbÞ; (2)

is determined by the scalar product of the normal vectors of adjacent

triangles, two of which are indicated by the black arrows in Fig. 1 B. The

bending rigidity k is related to the elastic constant l via k ¼
ffiffiffi
3

p
l=2. The

sum runs over all pairs of triangles.

The balance between the stretching and bending energies is characterized

by the dimensionless Föppl-von Kármán number g ¼ K0R
2
v=k, where Rv is

the (average) radius of the virus in the relaxed state. It has been shown that

g determines the equilibrium shape of icosahedral vesicles with zero

spontaneous curvature (24,26,27). To be more precise, for g , 130 a

fivefold disclination is stable in a locally flat environment and vesicles are

dominated by rounded shapes, whereas for larger values of g the disclination

becomes unstable and induces buckling of the surface, resulting in a faceted

vesicle with smooth ridges. With further increasing g, the ridges become

sharper and enter an asymptotic regime characterized by universal power

laws for g . 107. Moreover, Lidmar et al. (24) demonstrated by comparing

numerical results and data of virus shapes for bacteriophage HK97 and the

yeast L-A virus that for viruses the Föppl-von Kármán number is typically in

the range 100 , g , 2000.

Mechanical deformation

In the simulations, a deformation experiment is carried out as follows. A

vesicle of radius Rv in the relaxed state is confined between a planar substrate

and a sphere of radius Rs. This sphere should be compared to a sphere on the

tip of an atomic force microscope. The substrate is fixed while the sphere

moves downward (in the z-direction) at a constant rate. This mimics the

standard procedure employed in single-molecule experiments, e.g., on

stretching DNA (28) or compressing viruses (20). When the sphere moves

downward, the vesicle deforms to fit in the remaining space. The elastic

force of the vesicle can be measured directly from the force on the sphere in

the z-direction.
The interaction between the vertices of the vesicle and the confining

sphere or the bottom plate is described by a Lennard-Jones potential which is

truncated at its minimum and shifted. Since we focus on the purely elastic

effects, plasticity and fracture are not taken into account. Furthermore,

for the range of compressions up to 50%, different parts of the shell do not

touch; therefore, self-avoidance effects are not relevant and are not taken

into account.

The simulations were performed by using molecular dynamics, including

noise and friction terms, in the underdamped regime. We employ a velocity

Verlet implementation of the algorithm described in van Gunsteren and

Berendsen (29). In addition, velocities were rescaled periodically. This

molecular dynamics scheme guarantees that under the applied external force

the temperature remains constant and that angular momentum is zero on aver-

age. We chose a temperature such that k/kBT $ 102 and K0r
2
0=kBT$ 103,

so that the mechanical energy dominates over thermal contributions.

The vesicles were compressed at a constant rate to;50% of their original

size. We chose a compression rate small enough that the energies and forces

involved were essentially independent of it. This can be estimated by

comparing the thermal velocity, vth ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3kBT=m

p
; of the vertices and the

transverse sound velocity, cs ¼
ffiffiffiffiffiffiffiffiffi
m=r

p
(where m ¼

ffiffiffi
3

p
k=4 is the shear

modulus, r ¼ 2m=
ffiffiffi
3

p
r20 is the mass density, and m is the mass of a single

membrane vertex), with the compression velocity vcomp. Since for all values

of the spring constants in our simulations, cs � vth, we use the thermal

velocity to estimate vcomp/vth � 0.015. Thus, the deformations propagate

almost instantaneously through the material. On the other hand, the

FIGURE 1 Icosahedron of radius Rv confined between a sphere of radius

Rs and a plate. (A) A vesicle lying on one of its faces and compressed by

a large sphere (left), a vesicle lying on one of its faces and compressed by

a small sphere (middle), and a vesicle standing on one of its tips and

compressed by a small sphere (right). (B) Detail of triangulated surface with

local normal vectors na and nb and harmonic springs indicated by gray

dashed lines.
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compression is fast enough that thermal fluctuations play a minor role in

assisting buckling transitions.

Simulations were usually performed for the three geometries illustrated in

Fig. 1 A, a vesicle lying on a face deformed by a large sphere with Rs¼ 50Rv,

indicated by FL; a vesicle lying on a face deformed by a small sphere with

Rs ¼ 3r0, denoted by FS; and a vesicle standing on a tip deformed by a

small sphere with Rs ¼ 3r0, indicated by TS. The calculations were done

for triangulation (T) numbers 1 # T # 1024, with elastic constants such

that 10�1 , g , 106. Therefore, the whole range from the spherical (g , 130)

to the asymptotic "stretching-ridge" (g . 107) regime was covered.

In all simulations, the total force parallel to the substrate was set to zero to

prevent the vesicles from jumping out sideways. Furthermore, to prevent the

tip-standing vesicle (TS) from falling over, we fixed the location of both the

vertex on which the vesicle was standing and the top vertex on the line along

which the force is applied. For the vesicles lying on a face initially, we

observe a rotation for sufficiently large deformations. Whereas for a com-

pression with a large sphere such a behavior should be observable ex-

perimentally (in particular if a soft potential is employed in addition to

constrain the horizontal motion of the vesicle), it is certainly unrealistic for

compression with a small sphere. Therefore, in both the FS and FL

geometries, we also investigated the case where the vesicle is glued to the

substrate with its bottom face.

RESULTS

Relaxed virus shapes

Let us first consider the energy of vesicles in the absence of

an external force. In the continuum limit and for g , 104,

this energy is approximated very well by (24)

E

k
’ 6Bg=gb 1D g, gb

6B½11 lnðg=gbÞ�1D g. gb

;

�
(3)

with B ’ p=3 and D ¼ 8p/3, and where gb � 130 locates

the transition between spherical and weakly faceted vesicles.

In Fig. 2, we show the energy as a function of vesicle size for

three g-values. To obtain the elastic energy without thermal

contributions, the simulated shapes were cooled to zero tem-

perature in this case.

For small g, the energy converges rapidly to the contin-

uum limit, whereas for large g, substantially larger networks

are required. This indicates that for small g-values, contin-

uum theory can be applied with sufficient accuracy even

to relatively small viruses, whereas for larger viruses and

vesicles, finite-size effects become important.

Force-compression relations

Next we investigate the elastic response of vesicles for a

broad range of elastic parameters and vesicle sizes. Force-

compression curves were calculated varying either the ves-

icle size, the size of the compressing sphere, or g. The results

can be classified in two ‘‘families’’ of qualitatively different

force-compression dependencies, as illustrated in Fig. 3 for

two g values in the FL-geometry. For a small Föppl-von

Kármán number, g ¼ 50, the force-compression data for

FIGURE 2 Ratio of the elastic energy of a vesicle from simulations and

the theoretical prediction (see Eq. 3) as a function of the vesicle size and

for three g-values.

FIGURE 3 Force-compression curves for a vesicle on its face compressed

with a large sphere (FL). Data are presented for six different vesicle sizes

with (A) g ¼ 50 and (B) g ¼ 1500. The solid line in A indicates the linear

force-compression relation given by Eq. 4 with Ca ¼ 5; the solid line in B

represents the same relation with Cb ¼ 19.4.
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different vesicle sizes quickly converge with increasing

T-number orN to an almost linear master curve—after scaling

the compression with Rv and the force with
ffiffiffiffiffiffiffiffi
K0k

p
. This

limiting behavior is achieved for T. 5. In the case of a larger

Föppl-von Kármán number, g ¼ 1500, the data are char-

acterized by discontinuous jumps at larger compressions.

These jumps correspond to buckling events; a sudden rear-

rangement in the vesicle results in an almost instantaneous

decrease of the force on the sphere.

The linear force-compression curves for small g (Fig. 3 A)
can be well described by the universal Hookean scaling

relation,

FRv

k
ffiffiffi
g

p ¼ C 1� Dz

2Rv

� �
; (4)

where F is the force the vesicle exerts on the sphere and Dz¼
zsphere – zplate – Rs is the vertical deformation. The scaling

factor, Rv=k
ffiffiffi
g

p ¼ 1=
ffiffiffiffiffiffiffiffi
K0k

p
; is the same as was found for the

scaling of the buckling force of spherical shells (30) and of

stretching ridges in thin elastic sheets (31,32). For large g,

the initial slope of the buckling curve can be described by

the same scaling relation (i.e., with the same value of C),
whereas for larger compressions a second linear regime is

observed with a different (larger) effective spring constant

(compare Fig. 3 B). The origin of these two regimes in the FL

geometry is that first the confining sphere touches and

deforms the top face of the icosahedron; then, when the de-

formation is large enough that the sphere touches the three

top corners of the icosahedron, the vertical ridges start to be

deformed, which requires a larger force.

To distinguish the two linear regimes, we denote the

prefactor in Eq. 4 by Ca for the initial compression and Cb

for the more advanced compression. In Fig. 4, we show

force-compression curves for a range of radii of the com-

pressing sphere and as a function of g. From the data in

Fig. 4, we find that Ca is a function of Rs/Rv alone, whereas

Cb is a function of both Rs/Rv and g. Both curves saturate in

the limit of large Rs/Rv, which corresponds to the compression

of a virus particle between two planar walls. The prefactors

Ca and Cb are increasing functions of Rs/Rv, since the

confinement becomes more severe at larger Rs. For increas-

ing sphere radius the scaled buckling force increases, since

the vertical ridges are progressively more involved in the

deformation process. Moreover, the buckling compression

shifts to lower values as the deformation changes from local

for small spheres to global for large spheres.

Our results for Ca for large N should be compared with

Ca ¼ 7.35, derived in Ivanovska et al. (20), for an elastic

sphere compressed by equal and opposite point forces applied

at the poles. We find in the FL geometry for both g ¼ 50 and

g ¼ 1500 that Ca � 5 (Fig. 3); for g ¼ 7700, Ca increases

from 3.5 for small Rs/Rv to 6.2 for large Rs/Rv (Fig. 4).

FIGURE 4 Force-compression curves for a vesicle on its face. (A)

Compression by spheres of different sizes for g ¼ 7700 and N ¼ 642.

(B) Dependence of Ca and Cb on the size ratio Rs/Rv for g ¼ 7700 and

N ¼ 642. (Inset) The g-dependence of Cb for Rs/Rv ¼ 50 and N ¼ 2562.

FIGURE 5 Effective spring constant Cb in the FL geometry as a function

of the number of vertices N for different values of the Föppl-von Kármán

number g.
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Our model treats the shell as a two-dimensional mathe-

matical surface. This neglects the local deformation of the

protein layer (Hertz contact) (20). The Hertz model for the

elastic deformation of solid homogeneous bodies predicts the

measured force on the cantilever tip to scales like F ; Dz2/3

(30,33). Such a behavior is expected for very small inden-

tations on the scale of the thickness of the protein layer,

before the linear dependence due to shell deformation sets in.

Finite-size effects

It is already evident from Fig. 3 that the force-compression

relations for small N and large g display pronounced finite-

size effects. This is important for the investigation of viruses,

which fall mostly into the range of small T-numbers. The

dependence of the effective spring constant Cb on the vesicle

size N, shown in Fig. 5, demonstrates that finite-size effects

become more important with increasing g. For large N, all
curves reach a plateau, which we identify as the continuum

limit. Typically, small vesicles are apparently less flexible

than predicted by continuum theory, which results in a larger

force at the same compression for small N. It is important

to take these effects into account when elastic parameters are

to be extracted from force-compression experiments of small

viral capsids.

Buckling

We have analyzed the data from our force-compression

curves further by measuring both the buckling force and the

buckling compression as a function of g. Here the buckling

force for a given system is defined as the smallest force for

which a buckling event is found. Similarly, the buckling com-

pression is defined as the compression at which buckling first

occurs.

The results are presented in Fig. 6 for all three geometries.

The scaled buckling force, shown in Fig. 6 A, is found to

FIGURE 6 Buckling of virus under compression in three different

geometries. (A) Scaled buckling force and (B) buckling compression as a

function of the Föppl-von Kármán number g. Red symbols indicate results

for the FL geometry, green symbols for the FS geometry, and blue symbols

for the TS geometry. Shown are results for N ¼ 642 (d), N ¼ 2562 (h),

and N ¼ 10242 (n). The solid black circles indicate simulations for a shell

that was glued to the substrate. Solid lines are guides to the eye. The red and

blue lines in B indicate scaling with g�1/3.

FIGURE 7 Sequence of configurations for N ¼ 2562 and g ¼ 1500. The

top row is for the TS, the middle row for the FS, and the bottom row for the

FL geometry. For clarity, instead of the full virus surface, only the lines

connecting the fivefold coordinated vertices (yellow) are shown. The green

sphere exerts the external force, the blue spheres connect the fivefold

coordinated vertices. The substrate (support) is indicated by the gray line and

the images are taken slightly from below. The images of each row show

configurations (1) at a moderate compression, (2) at the maximum force of

the first buckling event, (3) at the force minimum just after buckling, and (4)
at the final state of 50% compression.
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depend very weakly on g. This indicates that the buckling

force is essentially proportional to
ffiffiffiffiffiffiffiffi
K0k

p
over the whole

g-range, in agreement with results for spherical shells (30)

and stretching ridges (31). However, qualitative and quanti-

tative differences between the different compression geom-

etries can clearly be seen in Fig. 6 A, in particular a

pronounced maximum in the FL geometry. The qualitative

different behaviors in the different compression geometries

appear even more pronounced in the buckling compression,

see Fig. 6 B. Although the buckling compression in the FS

geometry is nearly independent of g, for the TS and FL

geometries a distinct reduction of the buckling compression

with increasing g is observed, which follows roughly a

(1 – Dz/2Rv) ; g�1/3 power-law dependence. The latter

scaling behavior has been predicted for the buckling transi-

tion of stretching ridges in thin elastic sheets for a com-

pressive force along the ridge direction (31,32). We believe

that the reason such a power-law behavior is not seen in the

FS geometry is that the force is mainly perpendicular to the

ridge direction in this case. The scatter in the data presented

in Fig. 6 is due to the fact that we performed the calculations

for different combinations of K0 and k. The standard de-

viation of the data for a single parameter set is ,2%.

The geometry dependence of the buckling pathways was

analyzed by considering the local rearrangements, as well as

by the global reorientation of the vesicles during deforma-

tion. For vesicles standing on the tip (the TS geometry), the

scaled buckling force is virtually independent of g, as shown

in Fig. 6 A. The buckling event for this geometry is illus-

trated by the sequence of images in the top row of Fig. 7. The

fivefold rotational symmetry of the shape with respect to the

force axis is approximately preserved during the whole

deformation process—with larger deviations for large g. The

overall deformation associated with the first buckling event

is rather small. The top tip folds in only partially (compare

Fig. 7). The final state involves buckling of the lower tip

also, so that the top-down symmetry is restored. Further

compression leads to deformation of the ‘‘vertical’’ faces

and involves a large force. For g . 105, the characteristic

large jumps in the buckling curves disappear. Instead, the

data look very noisy. The origin for this behavior is that the

vesicle crumples—as happens when an icosahedron made of

paper is subjected to a point force at its tip. The ‘‘noise’’,

therefore, corresponds to a large number of small buckling

events.

In the case of the vesicle lying on the face compressed by a

small sphere (the FS geometry; see Fig. 7,middle row), the top
face of the icosahedron is deformed as long as the compres-

sion is small. At some point one of the top corners buckles in,

accompanied by a rotation of the vesicle and buckling of the

diagonally opposite bottom corner (not shown). The buckling

force decreases weakly with g, whereas the buckling com-

pression is almost constant over the whole g-range (Fig. 6).

The behavior for compressions after rotation is the same as in

the TS geometry.

For a vesicle lying on its face compressed by a large sphere

(the FL geometry), shown in the bottom row of Fig. 7, the

progressive confinement involves a global deformation of the

vesicle even for small compressions. In this case the contact

area between vesicle and sphere is much larger than for the

other two geometries. Moreover, compression directly results

in deformation of all the ‘‘vertical’’ ridges. For g , 130, the

vesicles rotate upon compression but no buckling is observed

for compressions up to 50%. For 150, g , 53 103, we find

simultaneous rotation and buckling of the upper and lower tip,

as illustrated in the bottom row of Fig. 7 and shown in

Supplementary Material, Movie S1. For 5 3 103 , g , 105,

the buckling transition occurs between two asymmetrically

deformed states, but a rotation occurs only at larger compres-

sions. Finally, for g. 105, buckling is replaced by crumpling,

as discussed above for the TS geometry.

For the FL and FS geometries, we also performed sim-

ulations for vesicles that were ‘‘glued’’ with one face to the

substrate to prevent rotation. In these cases, we found qual-

itatively similar buckling behavior. The deformation process

for a glued shell of T ¼ 48 and g ¼ 1000 is shown in Movie

S2. The main difference with the rotating shells is that the

threefold rotational symmetry of the deformed state before

and after the buckling transition is now clearly broken. In the

FS geometry, the vesicle deforms asymmetrically in such a

way that one of the corners of the top face touches the con-

fining sphere, see middle row of Fig. 7. In the FL geometry,

the buckling behavior for small g is different, as the buckling

force is now almost independent of g for g , 5 3 103

(compare Fig. 6), whereas the large-g behavior remains un-

changed.

Measuring elastic parameters

The simulation results presented here show that a rough esti-

mate of the product K0k of elastic constants can be obtained

straightforwardly from force-compression measurements.

The next question is how to determine K0 and k separately.

In a study by Ivanovska et al. (20), the elastic parameters of

viral capsids were estimated by employing elasticity theory

for a thin shell of a homogeneous material with three-

dimensional Youngmodulus Y and thickness equal to the size
of the protein subunits.

We propose instead to fit the experimental virus shape to

the theoretical predictions in the relaxed state to determine g,

as done in Lidmar et al. (24). This gives information on the

ratio K0/k. With this information, K0k can be extracted

precisely from force-compression measurements.

Alternatively, force-compression experiments alone can

be used to extract K0 and k. This can be done either in the

FL- or the TS-geometry. Since it may be difficult experi-

mentally to balance a virus or vesicle on its tip, we focus on

the FL-geometry. In this case, the g-value can be determined

from the curve of buckling compressions shown in Fig. 6 B.
From the experimentally measured buckling compression
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between two plates,Dz/2Rv can be calculated and used to read

off the value of g in Fig. 6 B. With this information, the curve

of the buckling force in Fig. 6 A can be used to obtain K0k.

SUMMARY AND DISCUSSION

We have employed a discrete bead-spring model to study the

elastic deformation of viral capsids and crystalline vesicles.

Simulations indicate that there are two globally different

force-deformation scenarios for confined vesicles with ico-

sahedral symmetry. In the first case, for small g, there is a

linear dependence of the force on the compression. In the

second case the vesicle undergoes a buckling transition in

which one or two of the tips of the icosahedron buckle in-

ward. The detailed buckling pathway depends on the con-

fining geometry.

A linear force-deflection dependence has been measured

experimentally for the bacteriophage f29 by Ivanovska et al.

(20) to a maximum compression between 15 and 20%. For

the T¼ 3 shell we do find a large linear regime for either g,

100 with a slope 5, Ca, 9 depending on the exact value of

g, or for small sphere radii Rs/Rv , 0.5. In all cases,

the buckling compression is ;25%. For a triangulation with

a larger T-number of T ¼ 192, a linear regime up to 20%

compression with a slope 5.5, Ca, 6.5 exists for g# 250.

It should be noticed, however, that f29 is not an icosahedral

virus (as discussed in the Introduction), so a detailed quan-

titative comparison is not possible. We conclude that f29 is

characterized by a small Föppl-von Kármán number, in

agreement with the results for other small viruses like the

yeast L-A virus (24).

Our data indicate that there are strong finite-size effects in

our model for small viruses. This raises the question about

the correspondence of the mesh points of the triangulated

surface model with the protein structure of viral capsids.

In Zandi et al. (14), self-assembly has been described

successfully by a model, which is equivalent to identifying

capsomers with vertices, i.e., a T ¼ 3 virus is modeled by a

T ¼ 3 triangulated surface. On the other hand, a continuum

description has been shown in Lidmar et al. (24) to reproduce

very well the shape of viral capsids. This corresponds to the

assumption that the protein subunits are themselves flexible,

and interact sufficiently strongly that the capsid behaves

like a thin shell of a uniform isotropic elastic material. We

believe that the correct description must lie somewhere be-

tween these two limiting cases. Atomistic simulations might

be able to provide the required information about the elas-

ticity of protein subunits and their interactions.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.

The authors thank Paul van der Schoot, Willem Kegel and Alex Evilevitch

for inspirational discussions.
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