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We investigate the complexation of long thin polyelectrolyte (PE) chains with oppositely charged
spheres. In the limit of strong adsorption, when strongly charged PE chains adapt a definite wrapped
conformation on the sphere surface, we analytically solve the linear Poisson-Boltzmann equation
and calculate the electrostatic potential and the energy of the complex. We discuss some biological
applications of the obtained results. For weak adsorption, when a flexible weakly charged PE chain
is localized next to the sphere in solution, we solve the Edwards equation for PE conformations in
the Hulthén potential, which is used as an approximation for the screened Debye-Hiickel potential
of the sphere. We predict the critical conditions for PE adsorption. We find that the critical sphere
charge density exhibits a distinctively different dependence on the Debye screening length than for
PE adsorption onto a flat surface. We compare our findings with experimental measurements on
complexation of various PEs with oppositely charged colloidal particles. We also present some
numerical results of the coupled Poisson-Boltzmann and self-consistent field equation for PE

adsorption in an assembly of oppositely charged spheres. © 2006 American Institute of Physics.

[DOI: 10.1063/1.2229205]

I. INTRODUCTION

The complexation of a polyelectrolyte (PE) chain with
oppositely charged spherical objects has important applica-
tions in physics and biology. Nature uses such complexes of
DNA with histone proteins as fundamental building blocks
for compactification of genetic material in chromatin.'* The
complexes of DNA with oppositely charged species are also
extensively used in vitro, in particular, for the purposes of
gene therapy. The electrostatic coupling between the oppo-
sitely charged species within a complex influences its struc-
tural and dynamic properties. The properties of complexes of
spherical macroions with adsorbed PE chains of different
lengths and flexibilities have been studied theoretically}f13
experimentally,mf21 and by computer simulations.””?’ An
important aspect of such complexes is overcharging, for
which several mechanisms have been proposed and
explored.3’7’11 Still a number of features of complexation,
such as critical conditions for PE adsorption, the charge of
the complex, the thickness of the polymer layer, etc., are not
yet completely understood, neither for the strong nor for the
weak adsorption limit.

In the limit of strong adsorption (highly charged PEs or
low temperatures), when PE adsorption energy to the sphere
is large compared to thermal fluctuations of the chain, the
adsorbed PE forms well-defined patterns on the sphere sur-
face (rosettes, tennis-ballpattern, solenoids, etc.), which have
been predicted theoreticadly,3’6’7’25 observed in computer
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simulations, and in experiments.” The arrangement of

the PE chains on the sphere is dictated to a large extent by
maximization of PE-sphere electrostatic attraction and mini-
mization of PE-PE electrostatic repulsion. To determine the
interplay between various energies, usually the superposition
of the electrostatic potentials is used, because the calculation
of the exact solution for the electrostatic potential and energy
created by a nonuniform charge distribution on the sphere
can be complicated. The latter problem has been solved for
some charge patterns within the Poisson-Boltzmann
theory.zg_3 0

In the limit of weak adsorption, a crowding of fluctuating
PE chains occurs adjacent to the oppositely charged surfaces
that may or may not result in PE adsorption. In the limit of
zero curvature, the theory of PE adsorption onto planar sur-
faces has been developed in a number of works,*' ™ includ-
ing the treatments of nonhomogeneous surface charge
distributions.”®** The PE adsorption onto charged surfaces
that create a screened Coulomb potential has been studied, in
particular, on the basis of the Green function approach using
the Edwards path integral equation in the ground state domi-
nance approximation.“’44 These theories predict the exis-
tence of critical adsorption conditions for the polymer bind-
ing. For curved surfaces such as cylinders and spheres, the
PE adsorption has also been studied; although no exact so-
Iution of the Edwards equation exists in these cases, some
variational approaches have been suggested.‘"46 The proper-
ties of PE-surfactant complexes have also been studied for
different PE flexibilities. The general tendency is that the
critical adsorption temperature is reduced by a positive sur-
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FIG. 1. Two possible wrapping scenarios for a PE chain wrapped around an
oppositely charged sphere in the strong adsorption limit. For (a) N.=14.

face curvature, since curved surfaces decrease the number of
PE-surface attractive contacts and increase the number of
possible chain conformations.”

In this paper, we study various scenarios of PE adsorp-
tion onto oppositely charged spheres. In Sec. II, we consider
the limit of strong PE adsorption. We solve the linear
Poisson-Boltzmann equation for nonhomogeneously charged
PE-sphere complexes and calculate the electrostatic potential
and electrostatic energy of the complex. We calculate the
optimal charge of the complex and show that it is always
undercharged by wrapped PE. This part is the continuation to
spherical geometry of the problem of PE-cylinder complex-
ation considered by the authors in Ref. 50. In Sec. III the
limit of weak adsorption is discussed. The Edwards equation
for a PE chain near an oppositely charged sphere is solved in
some approximate potential (Hulthén potential) that repre-
sents the Debye-Hiickel sphere potential in electrolyte solu-
tion. The conditions of the onset on PE-sphere complexation
are analyzed, including their dependence on the Debye
screening length and sphere radius. Similar to PE adsorption
onto planar surfaces, there exists a critical sphere charge
density below which no PE adsorption takes place. In Secs.
II C and III C, we discuss the relation of our results to ex-
perimental findings.

Il. STRONG PE-SPHERE ADSORPTION

We present a calculation of the energy of infinitely thin
uniformly charged PE strings wrapped around an oppositely
charged sphere of radius a and of uniform surface charge
density o. The chains assume a definite conformation on the
sphere surface (cf. Fig. 1). No chain fluctuations (either low
temperatures or highly charged or rigid PE chains) and no
charge distribution inside the sphere are considered.

A. Basic equations

The electrostatic potential ¢(p,p,) created by the
spherical complex outside®® the sphere satisfies the linear
Poisson-Boltzmann equation

Ay= iy, (1)

where k=\8lgn, is the reciprocal Debye screening length
of the 1:1 salt solution and A is the Laplace operator in
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spherical coordinates. The charge density of the sphere with
the wrapped PE string is

o(p,e, ) =8p-a)o(e, D), (2)

where &(x) is the Dirac delta function. The electrostatic en-
ergy of the complex follows from the expression

2 2w T
E, = % f do f 49 sin 9, 0, 9) (0, 9). (3)
0 0

In the following considerations, we restrict ourselves to the
wrapping scenario (a) of Fig. 1. For scenario (b) the calcu-
lations are similar but more cumbersome due to a lower sym-
metry of the problem, see Ref. 52.

We expand the electrostatic potential in terms of the
spherical harmonics

Y (@, ®) =A™ ?P](cos ) 4)

and of spherical Bessel functions,

o ]

K
Wp.@.0) =2 2 Cp¥ile, a)%(”’). (5)
i=0 m=-I \ Kp

Here P}'(cos ) are the associated Legendre polynomials and
A= \,/(21+ 1)(I-m)!/[47(I+m)!]. [The radial component of
the potential satisfies the equation p~2d(p*dR,(p)/dp)/dp
—[l(l+1)/p2+K2]Rl(;£O and has the solution in the form
R(p)=Al 1 12(kp) I Nkp+B K 10(kp)/Np; for k=0 the ra-
dial eigenfunctions are p' and p~*".] This yields the sepa-
ration of variables in the Poisson-Boltzmann equation. The
coefficients C,,, depend on o(¢, ) and can be found from
the Gauss theorem applied at p=a; using the orthogonality of
Y, one finds

T 2
Cin=- 47T8_1kl_lj d¥ sin 1‘)‘f d9o(e,0)Y,,(¢,9).
0 0

(6)

Here k(a)=[2kaK],,,(ka)— Ky, 1;2(xa)]/ (2a\ka) [note that
ki(a)<0], K], ,(x) is the derivative of K,,(x) and Y, is
the complex conjugate of Y.

The potential of the uniformly charged sphere ¢(p) with
the charge density o depends on the separation from the
sphere p only, i.e., only ﬁ term Wﬂl I=m=0 survives in Eq.
(5). Since K;,(kp)=v\m/2¢ P/ \kp, one obtains the well-
known Debye-Hiickel expression for the potential

to(p) = 4ma’oe™ " [ep(1 + Ka)] (7)
and
Eo=87"a’o*[e(1 + ka)] (8)

for the sphere electrostatic energy.

B. Results and discussion

For a negatively charged sphere covered by N, equally
spaced positively charged semicircles, which cross at the
sphere poles like meridians on a globe [cf. Fig. 1(a)], the
charge density is given by
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N1 >
s
U((p,19)=0'—2770'N;lo92 5(@——]\7 ), 9)
s=0 c

where the azimuthal angle of sth semicircle is @=2ms/N,
(the PE is negatively charged). The ratio of the total charge
of adsorbed PE to the sphere charge is 6. The charge density
(9) yields the following converging series for the electro-
static potential:

Hp.@,9) = ho(p)(1 - 6)
o 1
+ 16700, ' SN A k7!

=0 m=0
K K
X P}'(cos ﬁ)cos[mgo]w (10)
VKp

and energy of the complex

Eel = E()(1 - 0)2
® 1
K
—l6md* ey, D, SN Al i kT zwz_(Ka)'

/

1=0 m=0 Vka
(11)

The prime of the second sum indicates that the terms
with m=0 have to be multiplied by 1/2 and the term with
m=1[=0 is not counted in the sum because it is included in
the uniform part of the potential and the energy, respectively.
In the sums only the terms with m=jN., where j is an inte-
ger, survive. The integral in Eq. (6) can be expressed by
gamma functions (I') and the generalized hypergeometric
(5F,) functions as>

1
Jlm=f P}'(x)dx
-1

=(1+(=D")m(= 1)"272" T+ m+1)
X Fy({m/2 + 112+ 1/2,m12 = 1/2,m/2 + 1},
{m+1,m/2+ 325, )/[T(1/2 + m/2)
XT(1=m+ DT (m/2 +3/2)]. (12)

The electrostatic potential in Eq. (10) is the sum of the
bare potential ¢4, and corrections due to the discreteness of
the charge pattern. The dependence of the dimensionless po-
tential W=e,iy/ (kgT) on the angles ¢ and ¥ is depicted in
Fig. 2. The magnitude of the potential variation decreases in
the regions close to the “poles,” i.e., when — 0. The poten-
tial W(¢p) rapidly decreases as we move away from the
sphere and decreases with increasing number of circles, as
shown in Fig. 2(b). Note that although W can be larger than
unity for large values of |o|, we expect our linear electro-
static model to grasp the potential variation qualitatively cor-
rectly.

Similarly, the energy of the complex consists of two
terms. The first term is the energy of the sphere and of the
uniformly smeared charge of the wrapped PE; this term fa-
vors electrically neutral complexes. The positive energy cor-
rections in the sums originate from the electrostatic energy of
adsorbed PE circles. These corrections decrease in magni-
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FIG. 2. The “latitude” variation of the electrostatic potential around the
spherical complex depicted in Fig. 1(a). Parameters: a=20 A, 6=1,
o=€y/300 A2, k'=7 A; (a) p=25 A, N,=2, 9=7/2, 7/5, and 7/10; and
(b) N,=3, 9=/2, p=22, 25, and 30 A.

tude when the number of circles increases (provided that the
total charge of the wrapped polymer is kept constant).
Hence, within this model the adsorbed PE cannot overcharge
the sphere. This result is similar to that of helically wrapping
PEs on an oppositely charged cylinder considered in Ref. 50.

Let us consider the elastic energy of PE bending. For a
semiflexible PE with a finite persistence length /,, the inevi-
table chain bending upon adsorption onto a sphere disfavors
PE wrapping and shifts the equilibrium towards under-
charged complexes. We calculate for the scenario of Fig. 1(a)
the optimal number of adsorbed PE circles N, that corre-
spond to the minimum of the electrostatic energy of the
complex (11) and PE mechanical bending energy
E,=kgTl,mN./(2a). We take the linear charge density of the
wrapped PE to be ey/b, where b is the PE charge-charge
separation. As one could expect, the neutralization fraction
of the sphere by the PE,

0=N,|ey/al/(4ab), (13)

decreases as the adsorbed PE becomes stiffer, see Fig. 3.
With increasing number of circles the energy corrections due
to discreteness decrease in magnitude, i.e., the uniform en-
ergy term proportional to (1-#)? dominates, resulting in
values close to unity. In Fig. 3, the optimal number of
wrapped PE circles follow the dependence of #(1,); for pa-
rameters of Fig. 3 the maximal values of N, (at [,—0) are 13
and 26, respectively, for dashed and solid curves. As N, is an
integer number by definition, a staircase like behavior for
optimal 6 is observed. At some critical value of /, the PE
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FIG. 3. The dependence of the neutralization fraction for the complex of
Fig. 1(a) on the PE persistence length [, Parameters: o=ey/30 A2,
a=20 A; for the dashed curve: b=5 A, K1=7 A; and for the solid curves:
b=10 A and «™'=3, 7, and 20 A.

bending penalty exceeds the energy of PE electrostaticattrac-
tion to the sphere, and the value of @ drops abruptly to zero.
This corresponds to PE desorption transition.

In general, the adsorption of a PE directly onto a sphere
surface occurs only if lp is smaller than a critical value,
namely, when the energy gain upon adsorption exceeds the
elastic energy cost of chain bending around the sphere. This
condition is based on chain persistence and it results in two
simple predictions for the adsorption-desorption equilibrium.
For ka>1 adsorption occurs for [,<2Zlz/(bk), where
Z=4ma?|o/ey| is the number of the sphere charges. Thus, the
sphere charge density scales like 0. « in this regime. In the
limit of small «, one has to account for the electrostatic con-
tribution to the PE persistence length54 that leads to the in-
equality Z.>1/(8abk?), i.e., we get .= k2. These scaling
regimes were obtained in Ref. 25 after numerical minimiza-
tion of the Debye-Hiickel PE-sphere and the PE-PE interac-
tions. Such simple consideration can, however, result in (un-
realistically) high degree of sphere overcharging by wrapped
PE (for instance, up to ~30 times overcharging for com-
plexes mimicking DNA-histone complexes has been re-
ported in Ref. 25). One of the other ideas of overcharging of
weakly charged spheres was suggested in Ref. 3 for the situ-
ation when PE chains are in access in the solution.

Also, a strong overcharging of spherical particles cov-
ered by adsorbed strongly oppositely charged PEs was pre-
dicted by Shklovskii and co-workers, treating the problem by
an approach reaching beyond the mean-field theory. Their
analysis is based on the image-charge attraction of additional
PEs to the adsorbing surface and on the picture of a strongly
correlated liquid of PEs on the substrate (Wigner
crystal).m)’45 The charge inversion, driven by repulsive cor-
relations of PEs on the macroion surface, was shown to be-
come more pronounced with increasing salt concentration in
the solution; it can reach up to 200%—-300% for solenoidlike
complexes depicted in Fig. 1(b).” Although in our model the
pattern of adsorbed PEs also reveals strong correlations, they
are treated within the mean-field Poisson-Boltzmann theory
and thus the isoelectric complexes are always favored ener-
getically (in the next subsection see also the discussion of
experiments on isoelectric PE complexation). Note also that
for PEs of finite thickness an asymmetric charge neutraliza-
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tion upon adsorption onto the sphere can result in overcharg-
ing of the complex even in the mean-field description that
might have a relevance to overcharging of histone proteins
by DNA in nucleosome core particles, see Ref. 11.

By using the general expansion (5), the potential and
energy for an arbitrary static PE charge distribution on the
sphere surface can be calculated. However, we neither con-
sider a more complicated situation with, for example par-
tially adsorbed polymers, nor do we compare the complex
energy with the energy of the PE and the sphere in their free
state in solution. Also, we do not calculate which of the two
“zero-temperature” wrapping scenarios of Fig. 1 is favored
electrostatically for a given charge density and length of the
PE chain.

Other scenarios, such as tennis-ball-like,7 rosettelike,
and equator-wrapping21 structures, are also possible candi-
dates of ordered (Wigner-crystal-like) structures that mini-
mize the electrostatic energy. For all these structures, in the
strong adsorption limit, we expect to see nearly neutral or
undercharged complexes within our model. At finite tem-
peratures, the chain fluctuations are expected to diminish the
amount of adsorbed PEs. Inherently, the adsorption of a neu-
tral fluctuating semiflexible polymer onto a spherical surface
is a nontrivial problem,lz’55 and the presence of charges fur-
ther complicates the behavior of the adsorbed polymer chain.
However, we would like to point out that for uncharged poly-
mers with large persistence lengths (4/,> a) the optimal con-
formation was obtained in Ref. 12 to be similar to that of
Fig. 1(a).

6,12

C. Experiments on PE wrapping and interaction
of complexes: DNA and nucleosome

The wrapping scenarios on Fig. 1 considered above can
mimic some properties of DNA-histone complexes in the nu-
cleosome core particles (NCP), although many important de-
tails are neglected in the present analysis. However, the exact
calculation of electrostatic interactions within (as well as be-
tween) the NCPs—if realistic charge pattern on the DNA, on
the basic histone proteins, as well as on the highly charged
histone tails are considered—is a complicated task (which is
likely to be solvable numerically only).

Our results can also be applied to complexation of DNA
with man-made colloidal oppositely charged nanoparticles,
reminiscent of DNA-histone complexation in chromatin. For
instance, DNA complexed with silica polylysine-coated
nanospheres of charge density ~e,/nm? and with a diameter
of 10—100 nm has been studied recently in Ref. 21. DNA
was shown to wrap around the nanoparticle making from a
couple to about 40 turns (depending on the sphere size and
charge density): for a small number of turns the DNA is
wrapped on the sphere equator, where the curvature is the
smallest. The formation of large aggregates of DNA-
nanoparticle complexes with 5-50 spheres per T4-phage
DNA was then detected.”’ As the nanoparticle concentration
in solution increases, the aggregate becomes more and more
compact. In the fully compacted state, the ratio between
the total charge of nanoparticles to DNA charge depends on
particle size. The aggregates of small nanoparticles are
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strongly undercharged by wrapped DNA, whereas for the
largest nanospheres at intermediate ionic strengths a small
overcharging of the aggregates has been detected. The com-
paction was shown to be maximal at nearly physiological
ionic strength, reminiscent of DNA-histone complexation in
nucleosomes:>® for no>1.5M, when the electrostatics is well
screened, no DNA-nanospheres compaction could be
achieved, whereas for small n,, when the electrostatic con-
tribution to the DNA persistence length grows, the compac-
tification is suppressed. One can suggest that the overcharg-
ing (possibly) observed in Ref. 21 for largest particles
studied should decrease if enough nanoparticles will be pro-
vided in solution to neutralize DNA charge and large equi-
librium aggregates will be formed. Note that typically elec-
troneutral aggregates are also observed in other dense self-
assembled DNA nanostructures e.g., DNA sandwichlike
lamella complexes with cationic lipids,57 where complex-
ation was suggested to be driven by the release of condensed
counterions of DNA and of lipid head groups.

Let us discuss some aspects of electrostatic interaction
of the studied spherical complexes. In general, for arbitrary
PE wrapping pattern and for arbitrary orientations of the
complexes in space, this is a complicated mathematical prob-
lem. One can suggest that the modulations of the electro-
static potential emerging in solution near the complexes due
to the nonhomogeneous charge distributions (see Fig. 1)
modify DLVO-like pure repulsion between effective likely
charged spheres. Correlation-induced electrostatic attraction
between the complexes can occur when these potential
modulations on the complexes are in phase: the potential
patches of different sign face each other near the contact of
the two complexes, forming an electrostatic zipper. The ef-
fective screening length of this electrostatic attraction,
~1/\k*+(2m/P)?, is a combination of x and of a typical
period P of alternating positive-negative patches on the sur-
faces. It is shorter than the decay length of repulsive interac-
tions between uniformly charged spheres, 1/«. Thus, in or-
der to overcome the net charge repulsion, the complexes
should be neutralized to a large extent by the adsorbed PEs (
6 should be close to 1) and have to be separated by surface-
to-surface distances <P.

Note that such zipperlike electrostatic attraction can be
one of the reasons for condensation of DNA molecules,sg’59
and of nucleosome core particlesm’61 in solutions in the pres-
ence of some multivalent counterions (see Refs. 59 and 62
for the theory of DNA-DNA electrostatic interaction when
the molecules are considered as charged spirals mimicking
DNA phosphates and adsorbed cations in the grooves). Such
correlation-induced attractive interactions between PE com-
plexes, which consist of PE chains wrapped about two times
around oppositely charged spherical colloid, have been re-
ported recently in Ref. 63 at intermediate salt concentrations
on the basis of numerical computation. It was suggested that
this attraction has a relevance to the internucleosomal attrac-
tion observed experimentally at similar ionic conditions.** In
these experiments, the second virial coefficient of solution of
NCPs has been shown to become negative when the concen-
tration of salt becomes larger than ~50 mM for NCP, 45 and
larger than ~150 mM for NCP,¢5 (the latter has 40 addi-
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FIG. 4. Weak adsorption limit: (a) crowding of PE around the oppositely
charged sphere and (b) PE-induced bridging in an assembly of spheres in the
spherical cell model.

tional DNA phosphate charges). Note, however, that the hy-
pothesis of histone-tails-included NCP-NCP bridging inter-
actions, which will be discussed in Sec. III B, cannot be
completely ruled out as an explanation of NCP-NCP attrac-
tion (see also Ref. 60).

lll. WEAK PE-SPHERE ADSORPTION
A. Edwards equation and Hulthén potential

In this section, we consider the weak adsorption of
flexible fluctuating PEs onto an oppositely charged sphere
[see Fig. 4(a)] within a self-consistent field approximation.
The PE is considered to be weakly charged in this limit and
Gaussian statistics of its fluctuations is assumed to be only
slightly perturbed by electrostatic interactions with the
sphere. In general, upon polymer adsorption onto surfaces
with a positive curvature, the polymer configurations are less
perturbed as compared to adsorption onto a flat surface. On
the other hand, the contact area with the attractive surface is
decreased by the positive curvature.

The polymer distribution near the sphere as well as the
critical adsorption conditions for PE adsorption have been
calculated on the basis of the variational approach in Ref. 4
using the Edwards equation in the ground state dominance
approximation. We adopt the same polymer model and also
exploit the Edwards equation. In particular, we do not take
into account both PE-PE electrostatic (see Ref. 65) and PE
excluded volume interactions explicitly; both contributions
can be captured via an effective Kuhn length, as it was sug-
gested in Ref. 4.

The PE-sphere interaction is given by the Debye-Hiickel
potential (7). Unfortunately, no analytical solution of the
Edwards equation for this potential has been found so far. In
order to arrive at an analytical solution of the adsorption-
desorption transition, we approximate the sphere potential
o(p) by the Hulthén potential, ™

daac(e™ —1) e "

u(p) = . (14)

e(l+ka) 1-e*

This approximation works well close to the sphere surface
(Fig. 5). Moreover, the difference between the two potentials
is small for ka>1, since p in the denominator is slowly
varying and can be replaced by a and e™*?<<1. Using the
properties of the bound states of the Edwards equation, we
analyze the critical conditions for PE adsorption onto the
sphere.
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Ko

FIG. 5. The ratio of the Hulthén potential and the Debye-Hiickel potential as
a function of «p for ka=0, 0.2, and 0.5 (from left to right).

We expand Green’s function of a PE chain of length L in
terms of eigenfunctions ¢,(p) (Refs. 4, 31, and 44) and the
spherical harmonics Y/,

Glp, @, %:N|p', ¢, 9";0) = X, du(p)bn(p))Y (@, D)

n,l,m

X Y;km(<p', 0" )e il (15)

For a spherically symmetric potential in the ground state
. . . . 45
approximation, i.e., n=/=m=0, ¢, obeys the equation

bdlpdup) Amaloelien-1) e
6 pdp’ ekgT(1 + ka) 1-e "

=Noo(p), (16)

where b is the Kuhn length and @ is the PE linear charge
density (not to be mixed with p). Below, no counterion con-
densation on PEs is taken into account for the calculation of
the real value of 9. As a— < the sphere potential turns into
the potential of a planar surface and Eq. (16) describes the
PE adsorption onto a flat surface studied in Ref. 43. The
eigenvalue A\ has to be determined from the boundary con-
ditions ¢y(a)= ¢y()=0.

By introducing dimensionless variables according to x
=«kp, Eq. (16) turns into

¢0(P)

1dxp(x) 1 e~ )

2 g T s _E_XXO(X)=00X0(X) (17)
for the function xp(x)=x¢o(x)/k, the eigenvalue
No=—bK’a3/6, and with

bekpT 1+
K DEKp Ka (18)

- 12ma|op| e —1"

Now aq is determined from the boundary conditions. After
the substitution y,(x)=e “*®(x) and change of the variable
to y:l—e"‘,66 the eigenfunction equation turns into the
hypergeometric differential equation

d*®y(y)
—02 —y(1 +2ag)
dy dy

4oy | 25(1)0(y) =0. (19)

y(1-y)

The solution, which satisfies the boundary condition for

p—°, is
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O(y) =yF(a,Ba+ B-1;1~-y), (20)
where  a=ag+1-\2/8+a}, B=ag+1+V2/8+al, and

F(a,B,y;y) is the Gaussian hypergeometric function ,F 1.67
The adsorption transition occurs for Ay=0, i.e., when A\,
switches from positive to negative values. Hence, the param-
eter J assumes a particular value &, for a given ka, which is
determined from the condition of zero PE concentration on
the sphere surface

F(1=~2/8,,1+2/8,,1;¢7%) =0. (21)
For ka<<1, the critical & follows from the condition
5.=<2, (22)

which yields the critical adsorption temperature 7.

Our model predicts that no adsorption occurs on
the sphere at 7>T,.. The eigenfunction ¢, decays like
¢o~ (1—e™)/x for large x, because the hypergeometric func-
tion approaches the limiting value F=1. In general, &, de-
creases as a function of ka starting from =2 for small «a.
For large ka, &, decays exponentially as &.=(8/j,)%e™",
where j, is the first positive root of the Bessel function of the
first kind, J,. A more detailed discussion is presented in Ref.
5. For parameters of the system where << J,, PE adsorption
takes place and the PE concentration is a function of ay,.

Using the definition of & (18) and the critical condition
(22), we find that for the spheres with ka<<1 the critical
adsorption temperature is

kpT, =~ 24| oela*/(exb). (23)

This condition couples the sphere and PE charge densities,
the screening length of the solution, and temperature. The
critical temperature is proportional to o, and T, decays as
1/k. That is, as attractive PE-sphere interactions become
more screened, the chains remain free at lower temperatures.
The critical temperature predicted from the variational ap-
proach in Ref. 4 is

ksT" = 247|oolal (e Kb) (24)

in the limit of small ka, i.e., it exhibits a quadratic depen-
dence on the screening length. For PE adsorption onto a
planar surface, i.e., ka— c°, with the same charge density o,
the critical adsorption temperature jst4

kgTY = 96m|oel/(jlek’b), (25)

i.e., it reveals even stronger dependence on k.

The solution of Eq. (21) shows that the exponent of
increases monotonically from unity at small xa to the third
power in k for large xa, see Fig. 6 and also Ref. 5. As we
will show below, the linear dependence of the critical sphere
charge density o, on «, predicted by our model for small xa,
is closer to a number of experimental observations on com-
plexation of various PEs with oppositely charged spherical
particles (see Sec. III C) than the dependence o, «k® ob-
tained for the PE adsorption onto a planar surface [Eq. (25)].
Hence, by using the Hulthén potential, we have described PE
adsorption onto a sphere for all radii, including the correct
transition to the planar case.
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FIG. 6. The critical adsorption temperature as a function of ka as obtained
from the analysis of Eq. (19).

The segments of the PE molecule which are in close
proximity to the sphere surface effectively renormalize its
charge. Hence, the surface charge seen by chain monomers
far apart from the sphere is smaller than that for the mono-
mers that are close to the surface. Eventually, upon PE ag-
gregation onto the sphere the effective sphere charge density
can become smaller than o, which prevents the overcharg-
ing of the complex. This is similar to the conclusion of the
previous section for the strong adsorption limit. Note that if a
low-dielectric sphere core would exist, it would lead to a
depletion of PE monomers close to the sphere9 and thus ef-
fectively decrease the value of T..

We will now analyze the thickness of the PE adsorbed
layer near an oppositely charged plane and around an oppo-
sitely charged sphere. For the plane, the ground state solution
corresponds to the maximum value v, which is found from
the equation43

J:(N967|ao|/(ekyThi?)) = 0. (26)

The first solution with 7=0 yields 96|00/ (ekzThi?)
=jo.1- This corresponds to the adsorption-desorption transi-
tion and leads to Eq. (25) for the critical adsorption charac-
teristics. At larger values of the argument several solutions of
Eq. (26) may exist, which then describe the excited states.
When the argument of the Bessel functions is larger than j ;,
the order ¥ also increases (see Fig. 7). In the ground state, the
width w of the PE density distribution as measured at 1/2 of
the height is OcJ,—,(V/967'r|a'g|/(skBTbK3)e"“/2)2, where s is the
separation from the plane, and it decreases as the plane

15

10+

0

0 o1 10 20 30
V967 [00 |/ ckn ToR)

FIG. 7. The order of the Bessel functions describing the ground and excited
states of the PE onto an oppositely charged planar surface, see Ref. 43.
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FIG. 8. The dependence of a, on &, following from Eq. (27).

charge density o increases. Close to the critical adsorption
point, the width of the layer diverges, whereas far from this
point, the scaling relation of we o~""4 is observed (Fig. 9).
The width of the PE layer grows with increasing ionic
strength of solution and the width diverges as « approaches
the critical value, above which no PE adsorption takes place
anymore, similar to PE adsorption onto a planar surface.

For the sphere, to obtain the solutions for & at nonzero aj
we numerically solve the equation

Flay+1- V2/85+ a(z),a0+ 1+V2/6+ a%,Za0+ 1;e7%) =0.
(27)

At small 6 there are multiple solutions. Similar to the planar
case, for a given value of &, the solution with the smallest
eigenvalue 7\=—a3K2b/ 6, i.e., with the maximum value for
ag, corresponds to the ground_state of the system. Figure 8
displays a, as a function of \8/8e*““>—the latter turns into
\/967T| 00|/ (ekgThk?) in the limit ka— co—for two different
values of ka.

In addition, we calculate the thickness of the adsorbed
PE layer—using the value of 6—as a function of system
parameters [Eq. (18)]. Similar to the planar situation, the
adsorbed PE layer becomes more compact with increase of
|o|. We find that the adsorption layer for a sphere with ka
~ 1 is of comparable thickness to that of the planar surface
with the same o, whereas spheres with small xa exhibit more
extended PE layers (Fig. 9). Small spheres require larger o
values for PE adsorption to take place. As o grows at a fixed
value of sphere radius, the value of & decreases and thus the
value of a, grows. We observe that as o decreases the posi-
tion of the peak of PE density distribution from the sphere
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FIG. 9. The thickness of PE density distribution for different sphere radii
and screening lengths at b=1 A.

surface does not change considerably, whereas the thickness
of the adsorbed layer increases dramatically because of a
long tail of the distribution function ¢*(r).

It was suggested that PEs get trapped in the vicinity of a
sphere when the attraction energy of a PE monomer exceeds
the penalty of its entropic confinement in the region close to
the sphere, ~kBT.14’16 This region of high potential around
the sphere (the region of a strong PE binding) should become
thinner as « increases (electrostatic potential decays faster
away from the sphere) and this region becomes larger with
increasing sphere charge density. Thus, larger |o| values
would be required to form PE-sphere complexes at higher
salt concentrations, although this intuitive argument does not
give an explanation why the o(x) dependence should be lin-
ear as it is observed in many experimentally studied
systems.m’16 Our model, however, predicts that the thickness
of PE adsorbed layer increases at larger salt concentration
and the PE layer becomes more compact with increasing |o].

B. Generalized mean-field theory

In this section we consider a generalization of the self-
consistent field approach presented above for a weak adsorp-
tion of PEs onto a sphere that includes a coupling to the
polymer concentration field ¢?(p) and electrostatic potential
W(p). Our approach is based on the Poisson-Boltzmann
equation for the distribution of mobile ions and polymer
monomers, which is coupled to the self-consistent field equa-
tion in the ground state dominance approximation for poly-
mer distribution.”” The model neglects any correlations,
counterion condensation, and PE stiffening; the PE is treated
as a Gaussian chain.

J. Chem. Phys. 125, 064904 (2006)

We consider an aggregate of charged spheres in the pres-
ence of oppositely charged PE chains. In spherical geometry
one can write

#Y(p) L2V _

«* sinh W(p) — 4migp((p)*

ap* p dp
_ ¢36‘P(p))’
i (28)
b 24
i%ﬁ + —‘f;—(p)) — 0P - &)

+pd(p)¥(p).

Here, p is the fractional monomer charge, v ~p3 is the ex-
cluded volume parameter, and (]5% is the bulk PE concentra-
tion (not to be mixed with the eigenfunctions from the pre-
vious subsection). These equations have been studied in a
number of theoretical works'>**~7 and have been applied to
flexible PEs confined between oppositely charged planar
surfaces,” ™’ as well as to aggregates of PEs with oppositely
charged spherical palrticles.]3

Typically, the PE chains are crowded around localized
oppositely charged spheres. When two such spheres are po-
sitioned at intermediate separations, the attractive contribu-
tion generated by the overlap of PE clouds can overcome the
net sphere-sphere electrostatic repulsion, giving rise to a
negative pressure in the system.3 7 At small surface-to-surface
separation, the polymer is excluded from the region between
the spheres and the latter repel each other. At large sphere-
to-sphere distances, PE adsorption occurs on each sphere in-
dividually; there is no polyelectrolyte bridging and no attrac-
tion. PE adsorption is weaker and a weaker attraction is
generated at higher « and at smaller PE linear charge
densities.””**

We use the spherical cell model to study the attraction in
an assembly of spheres with flexible oppositely charged PEs
in the presence of salt [Fig. 4(b)]. We solve Egs. (28) nu-
merically with the following boundary conditions: on the
sphere  surface W (p)/dp|,-,=4m|oQ|/ekyTh>0 and

d(p)! dp| ,=,=0; and on the cell boundary ¥ (p)/dp| Pk,
=0 and Jdo(p)/ &p|p=Rs:O. We start solving the equations
from the sphere surface and choose the starting value of the
electrostatic potential and the polymer concentration such
that the boundary conditions on the cell boundary are satis-
fied. We obtain that the electrostatic potential can be positive
on the cell boundary, see Fig. 10. Similar results were ob-
tained for the planar geometry in Ref. 37. Integration of the
profiles of mobile ions and PE monomers over the cell re-
sults in complete neutralization of the sphere charge, as one

1000

v
(=)
o

B(p)*bo*

FIG. 10. The variation of electrostatic
potential and PE monomer density
within the unit spherical cell. Param-
eters: b=5 A, p=0.1, a=20 /°\,
R=35A, $=10"°/A% and o: (1)
e0/500 A2, (2) €,/1000 A2, and (3)

2,/4000 A2,

25
oA

30 35
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064904-9 Adsorption of polyelectrolyte chains onto spheres

could expect. Here we solve Egs. (28) for v=0 and use the
condition that  d¢(p)/dp|,-,=0; for real polymers with ex-
cluded volume interactions, one has to apply rather the con-
dition of zero PE concentration at p=a.

The pressure in the cell model can be expressed by the
free energy at the cell boundary.37 This pressure contains the
pressure of the neutral polymer, —kzTv((R,)>~¢p)*/2;
the attractive electrostatic polymer-bridging pressure,
—kzTpW(R,)p(R,)*; and the repulsive osmotic pressure of
the mobile salt ions, 2npkzT{cosh W(R,)—1], where n is the
ion density. The attraction in the system is governed by the
interplay of the last two terms and it typically occurs when
the electrostatic potentials on the sphere surface and on the
cell boundary have opposite signs. Typically, the attraction
increases with increasing o, while for a fixed o, it increases
with decreasing n,. These findings are in agreement with
Figs. 10 and 14 of Ref. 37 obtained for planar surfaces. We
observe that at larger cell radii R, the PE-induced attraction
is typically weaker. Also, for large R, as well as for large ny,
the solutions of (28) become quite sensitive to the boundary
conditions we impose on the sphere surface. The typical pro-
files of electrostatic potential and PE monomer density when
the total pressure in the system is attractive are presented in
Fig. 10. The detailed analysis of the solutions of (28) as well
as the attraction-repulsion behavior in the assembly of
spheres with the oppositely charged PEs are beyond the
scope of the present paper and will be considered elsewhere.

C. Experiments on PE-micelle complexation

The complex formation between flexible and semiflex-
ible, both biological and synthetic, PEs with oppositely
charged spherical colloidal particles, cationic/nonionic mi-
celles, and dendrimers has been systematically studied ex-
perimentally by Dubin and co-workers.'®'® The cationic mi-
celles possess a quite homogeneously charged surface with a
charge density o, which can be tuned continuously by addi-
tion of charged and uncharged groups up to several e, per
1000 A? (e, is the proton charge). Typically, the sphere di-
ameter is =20—40 A, however, considerably larger particles
have also been studied. The PE persistence length L, is of the
order of the sphere radius or smaller [=30 A for NaPSS,
AMPS/AAm copolymers, and PDADMAC; =40 A for
hyaluronic acid (HA); and =12 A for PAAL;"™ more flex-
ible and more rigid PEs have been considered. The consid-
ered PEs were in the intermediate charge density regime,
typically below the threshold for the Manning counterion
condensation,68 ie., €<I.

Experiments have shown that no PE-micelle complex-
ation occurs when the micelle surface charge density is be-
low the critical charge density |o,|. Above this density the
turbidimetric titration curves reveal a dramatic increase in
turbidity that indicates complexation, because the average
molecular mass of the complexes is much larger than that of
PE alone. The complexes may consist of many PE chains
and many colloidal spheres. Total charge close to zero of this
PE-colloidal assembly is a necessary condition for higher-
order aggregation and phase separation in PE-colloidal mix-
ture. The critical density was shown to be nearly independent
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of PE molecular weight and PE concentration in solution. It
was observed that, as the salt concentration in solution in-
creases, the value of o, grows and scales for spherical col-
loidal particles as' 410

o, k” withv=1-1.8. (29)

The exponent v was shown to depend also on the PE linear
charge density ¢ and on the PE stiffness,'® which make it a
nonuniversal characteristic for the used PEs. Typically, PEs
with smaller ¢ reveal a stronger dependence of o,. on . The
PE-sphere binding affinity was shown to decrease with PE
persistence length and to increase with PE linear charge den-
sity. Note that for complexation of PEs with different & with
the spherical dimethyl dodecylamine oxide (DMDAO) mi-
celles a modified dependence for the critical micelle charge
density has been suggested, o, > k'8¢ 06 14

The size of some micelles (DMDAO, for instance) as
well as their shape can change with «: at large salt content,
rather cylindrical than spherical micelle shapes are observed.
For cylindrical micelles, usually larger scaling exponents
have been measured [from v=1.4 for PVAS-DMDAO to
y=25 for P(AMPS/AAm)-DMDAO complexes.'*] The
DMDAO micelles form complexes also with quite persistent
PEs such as double-stranded DNA, providing the exponent
v=1.6."" Moreover, although the micelle surface charge
density is proportional to the micelle protonation degree,
which is controlled in experiments via changing the pH
value, the exact relation for every micelle type is not known.
The surface charge density has therefore been obtained for
some systems from the pH titration data via calculation of
the surface potential of the micelle by using the Debye-
Hiickel solution (7) on the sphere surface.

Experimental values of o.(x) extracted from several
studies on PE-sphere complexation performed by Dubin and
co-workers are presented in Fig. 11. In this figure, the Kuhn
length for every PE was set to the separation between the
nearest PE charges and no dependence of this length on «
was taken into account. We did this purposely because the
persistence length /, has not been measured under the same
experimental conditions for all the PEs analyzed and, in ad-
dition, the lp can change in a different manner with the
amount of salt in solution for every PE considered. One can
see that the values of o, observed in experiments are very
different for the PEs considered in this figure. Naturally, the
presented values of o. are higher than those theoretically
predicted, simply because the charge separation is usually
much smaller than the Kuhn segment length. This particu-
larly applies to the double-stranded DNA: when we set the
Kuhn length equal to the DNA persistence length of 50 nm,
the experimental data for DNA are very close to the theoret-
ical prediction.

One can see that the slope of experimental curves is
1-1.5 smaller than the theoretical prediction, which in the
considered region of «a is already quite close to o, k>.
However, the electrostatic part of the PE persistence length
decreases with «, the scaling relation lf)loc k! is observed
experimentally ~ for  some  PEs  [polyacrylamides
P(AMPS/AAm)].”*> Theoretical calculations** and computer
simulations® ™" predict I8 k¥ — 755, whereas the Odijk-
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FIG. 11. The dependence of the critical sphere charge density on the screen-
ing parameter xa for the complexation of various PEs with oppositely
charged spherical colloidal particles. Colors and parameters: dark-blue
curves (1) are for PVAS-DMDAO complexation (Ref. 14) with v=1 (lower
curve b=10 A, middle curve b=4.43 A, and upper curve b=3.18 A); red
curve (2) is for PDADMAC-CAE/C,Eq (Ref. 18) with b=6.5 A, v=1.4;
green curves (3) are for PAMPS-DMDAO (Ref. 16) with h=2.55 A, v=1
(upper curve: o, is calculated from micelle degree of protonation data; lower
curve: o, is obtained from the Gouy-Chapman equation); magenta curve (4)
is for PDMDAAC-SDS/C),E, (Ref. 16) with b=3 A, v=1, yellow curve
(5) is for NaPSS-DMDAO (Ref. 18) with b=2.38 A, v~ 1.4; brown curve
(6) is for DNA-DMDAO (Ref. 17) with »=1.6, b=1.7 A; and blue curves
(7) are for AMPS/AAm-DMDAO (Ref. 14) with v=1.8 (lower curve:
AMPS10/AAm90-DMDAO with 5=25.5 A, middle curve: AMPS25/
AAm75-DMDAO with b=10.2 A, and upper curve: AMPS50/AAm50-
DMDAO with b=5.1 A).

Skolnick-Fixman correction in near-the-rod limit scales™
like O<§2K‘2 (see also Ref. 73, where the k™2 dependence of
lf,l has been reexamined in detail theoretically). This salt-
dependent renormalization of the /, can decrease the slope of
the o.(k) predicted theoretically (see Fig. 11) at high salt
concentrations, thus providing slopes closer to those ob-
served experimentally of about 1-1.8. The absolute values of
o, will also be renormalized after using real PE persistence
lengths and, if our model is relevant to the underlying phys-
ics of the problem, the experimental curves should tend then
to follow a single curve. We do not pretend here, however,
on a quantitative comparison with the experimental data be-
cause our model of a single sphere complexed by a flexible
PE is too simple for these purposes and it neglects some
important structural features of colloids and PEs. Instead, the
complexation of semiflexible PEs with the spheres needs to
be considered, which is, however, a separate complicated
problem and is beyond the scope of this paper.

Complex formation of PEs with some globular proteins
(serum albumin, lysozyme) which possess quite nonhomoge-
neous charge distributions has also been studied in
experiments.mﬁ76 Some additional interesting effects were
detected. For instance, it was shown that PE-protein binding
can occur on the wrong side of the isoelectric point; also, the
negatively charged PEs were shown to bind to net negatively
charged proteins due to PE electrostatic attraction to charge
patches on the protein surface.”* In some cases, the strength
of PE-protein binding was shown to have a maximum or a
plateau at ~10-30 mM of simple salt in solution. It was
suggested that the corresponding Debye screening lengths
are on the order of protein size or of the typical separation of
negatively and positively charged domains on the protein

J. Chem. Phys. 125, 064904 (2006)

surface. Then, at such values of « the electrostatic attraction
of PEs to positively charged protein domains is substantial,
whereas the PE repulsion from negatively charged regions is
already screened.” Further theoretical studies are required to
include this charge patchiness in the model of electrostatic
complexation of PEs with oppositely charged objects. More-
over, in order to clarify the appearance of PE-induced bridg-
ing attraction, the influence of the length of a PE and its
charge density on the properties of the (onset of) aggregation
process and the structure of the resulting coacervates can be
studied in experiments.

IV. SUMMARY

We have studied the adsorption of polyelectrolytes onto
oppositely charge spheres. In the limit of strong adsorption,
we have solved the linearized Poisson-Boltzmann equation
for a particular charge pattern of the adsorbed PE. In the
limit of weak adsorption, we have determined the critical
adsorption temperature and the critical sphere charge density
using the Edwards equation for polymer conformations. In
both cases, we do not find an overcharging of the complexes
as often predicted in the literature, particularly for strong PE
adsorption. Our general procedure for the calculation of the
electrostatic potential and energy in the strong adsorption
limit allows us to calculate these quantities for a wide spec-
trum of charge distributions.

The solution of the Edwards equation for small sphere
radii and weak adsorption strengths yields a dependence of
the critical surface charge density on the Debye screening
length, which is quite different from that for the planar ge-
ometry. The exponent of the « dependence is close to that
determined experimentally. Since in experiments typically
the sphere radius is on the order of the PE persistence length,
it is desirable to determine the critical quantities for adsorp-
tion of a semiflexible polymer. The dependence of critical
adsorption characteristics on PE persistence length and
screening length might differ from that found for adsorption
of flexible PE chains studied in the present paper.
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