
John von Neumann Institute for Computing

Parallel Linear Algebra Methods

Bernd Körfgen and Inge Gutheil

published in

Computational Nanoscience: Do It Yourself!,
J. Grotendorst, S. Blügel, D. Marx (Eds.),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 31, ISBN 3-00-017350-1, pp. 507-522, 2006.

c
�

2006 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume31

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources

https://core.ac.uk/display/34931818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Parallel Linear Algebra Methods

Bernd Körfgen and Inge Gutheil

John von Neumann Institute for Computing
Central Institute for Applied Mathematics

Forschungszentrum Jülich
52425 Jülich, Germany

E-mail: �b.koerfgen, i.gutheil�@fz-juelich.de

This contribution presents two examples for the numerical treatment of partial differential equa-
tions using parallel algorithms / computers. The first example solves the Poisson equation in
two dimensions; the second partial differential equation describes the physical process of vibra-
tion of a membrane. Both problems are tackled with differentstrategies: The Poisson equation
is solved by means of the simple Jacobi algorithm and a suitable parallelization scheme is dis-
cussed; in the second case the parallel calculation is performed with the help of the ScaLAPACK
library and the issue of data distribution is addressed.

1 Introduction

Numerical linear algebra is an active field of research whichprovided over the years many
methods / algorithms for the treatment of standard problemslike the solution of systems of
linear equations, the factorization of matrices, the calculation of eigenvalues / eigenvectors
etc.1. The most suitable algorithm for a given linear algebra problem, e.g. arising in a
scientific application, has to be determined depending on the properties of the system /
matrix (see for instance Ref. 2) like:

� symmetry

� definiteness(positive, negative,� � �)

� non-zero structure (dense, sparse, banded)

� real or complexcoefficients

and so on. Furthermore the scientist has to decide whether touse adirect solver, leading to
a transformation of the original matrix and thus (for large problems) generating a need for
hugemain memory, or to use aniterative solver which works with the original matrix.

The same rationale holds for the more specialized field ofparallel linear algebra
methods. There the additional aspects originating from theparallelcomputer architec-
ture have to be taken into account in order to choose a suitable algorithm. Several topics
influencing the choice and even more the consequent implementation of these algorithms
are3, 4:

� memory architecture (shared-memoryvs. distributed memory)

� amount ofmemory per process/processor

� implementedcachestructures

1

It is far beyond the scope of this contribution to give an overview of the available
algorithms. Instead we refer to review articles like Refs. 5–7.

From a practical point of view another important decision iswhether the user imple-
ments the linear algebra algorithmhimself or relies onavailable software / libraries.
A variety of well-known, robust packages providing high computational performance are
on the market, which can be used as building blocks for an application software. Some
freely-available libraries are:

� Basic Linear Algebra Subprograms(BLAS)8

� Linear Algebra Package(LAPACK) 9

� Scalable LAPACK(ScaLAPACK)10

� (P)ARPACK - a (parallel) package for the solution of large eigenvalue problems11

� Portable, Extensible Toolkit for Scientific computation(PETSc)12

Some of them like BLAS or LAPACK areserial software, which help to gain good sin-
gle processor performance, but leave the task ofparallelization of the high-level linear
algebra computations, e.g. solution of the coupled linear equations, to the user; others,
e.g. ScaLAPACK or PARPACK, contain implementations ofparallel solvers. Thus these
packages relieve the user of the parallelization, but stillthey rely on special data distri-
bution schemes13 which require a specific organization of the application program. As a
consequence the user has to handle the corresponding data distribution on his own, i.e. he
has to parallelize his program at least partly. Nevertheless this might be a lot easier than to
implement the full parallel linear algebra algorithm.

Since both strategies are preferable under certain circumstances, we will present in the
following two simple physical problems where theparallel numerical solution will be
demonstrated paradigmatically along the two different approaches:

In Section 2 the Poisson equation will be treated using aparallel Jacobi solverfor the
evolving system of linear equations.

In Section 3 the eigenvalue problem arising from the calculation of the vibration of a
membrane is solved using aScaLAPACK routine .

Of course, one would not use these solutions in real applications. Neither is the Jacobi
algorithm a state-of-the-art method for the solution of a system of linear equations, nor
is the eigensolver from ScaLAPACK the optimal choice for thegiven problem. Both ex-
amples result in a sparse matrix as will be shown in the following. ScaLAPACK contains
solvers for full and banded systems, whereas (P)ARACK is a library based on the Arnoldi
method which is very suitable for the calculation of afew eigenvalues for largesparse
systems; thus (P)ARPACK would be the natural choice for thiskind of problem.

Nevertheless due to the importance of ScaLAPACK for many application fields, e.g.
nanoscience, and the simplicity of the Jacobi algorithm we present them as illustrative
examples.

2 The Poisson Problem

In this section we discuss the numerical solution of the Poisson equation as an example
for the approximate treatment of partial differential equations. We give a short outline of

2

the steps necessary to obtain a serial and later on parallel implementation of the numerical
solver. Similar but more elaborate material on this topic can be found in the Refs. 14–16.

In a first step we discuss the discretization of the Poisson equation and introduce one
simple solver for the evolving system of linear equations. Afterwards we focus on the
parallelization of this algorithm.

2.1 Discretization of the Poisson Equation

ThePoisson equationin two dimensions is given by

� � � � ��
� ��

� � ��
� � �

� � 	�
 � �
 	�
 � � � � �� (1)

where is a domain in�� . For simplicity
� 	�
 � � shall be given on the boundary� by a

Dirichlet boundary condition
� 	�
 � � � � 	�
 � �
 	�
 � � � � (2)

The functions
� 	�
 � � and

� 	�
 � � are given and
� 	�
 � � is to be calculated.

Since the analytic solution of such a partial differential equation might not be feasible
depending on the shape of the domain, the functions

�
 � etc., one often has to resort to the
numerical solution of such a differential equation.

In the following we will develop a simple scheme how to calculate
�

approximately.
For this we assume that the domain has a simple form: is a rectangle (Figure 1).

x

y

Ω

x x

y

y

A E

E

A

Figure 1. Rectangular domain in� �

In order to determine the approximate solution of the Poisson equation,
�

is calculated
at certain points of the rectangle. We impose � 	��
 �� � � 	��
 �� � with an equidistant
mesh (Figure 2), where

	��
 �� � is divided into
	� � � �� sub-intervals and

	��
 �� � into	� � � �� sub-intervals,
	� �
 � � � � �. The mesh width� is then given by

3

x

y

xA xE

yA

yE

x x x x x x x

y

y

y

y

y0

0 1

2

3 4 5

1

2

3

4

6

Figure 2. Mesh for� � � � and� � � �

� � 	�� � �� �	� � � ��
� 	�� � �� �	� � � �� (3)

With this choice for the mesh the approximate solution will be calculated at the
� � � � �

inner points of the domain (The outer points don’t have to be calculated, because they are
given by the Dirichlet boundary condition!).

As a next step the second derivatives are replaced by finite differences. For this purpose
we use the following Taylor expansions of

�
at a point

	�
 � �:
� 	� � �
 � � � � 	�
 � � � ��� 	�
 � � � ��	
 ��� 	�
 � � � ���
 ���� 	�
 � � � � � (4)

� 	� � �
 � � � � 	�
 � � � ��� 	�
 � � � ��	
 ��� 	�
 � � � ���
 ���� 	�
 � � � � � (5)

Addition of both equations and division by�� gives� 	� � �
 � � � 	� 	�
 � � � � 	� � �
 � �
��

� ��� 	�
 � � � � 	�� � (6)

The result of the analogous procedure for the�-direction is� 	�
 � � �� � 	� 	�
 � � � � 	�
 � � ��
��

� ��� 	�
 � � � � 	�� � (7)

Using these finite differences the Poisson equation for the
� � � � �

inner mesh points of
the domain is given by��� 	� �
 �� � � ��� 	� �
 �� � � � 	� �
 �� �

	� � �
 � � �
 � � � � � � � �
 � � �
 � � � ��
(8)

By neglecting the discretization error
� 	�� � Eqs. (8) can be written as:

� � �� �� � � ����� � �� � �� � � � �� � � � � �� ��� � �� � � �� (9)

for
� � �
 � � �
 � � � � � � � �
 � � �
 � � � �

. The unknowns
� � �� �� � 	� �
 �� � (10)

4

have to be calculated from the
� � � � �

coupled linear equations (9).
The approximation used here for

��� � ���
is called5-point stencil (Figure 3). The

name describes the numerical dependency between the pointsof the mesh. The lexico-

(x,y-h)

(x-h,y) (x,y)

(x+h,y)

(x,y+h)

Figure 3. 5-point stencil

graphical numbering (Figure 4) of the mesh points

� � � � � � � � � � � � � �
 � � �
 � � � � � � � �
 � � �
 � � � �
(11)

and

� � �� � � �� (12)

allows a compact representation of the system of linear equations by means of a matrix.
The coefficient matrix� is a block tridiagonal matrix:

x

y

1 2 3

4

7

5 6

8 9

i

j

Figure 4. Lexicographical numbering of a� � � mesh (with� � � inner points)

5

� �

�
������

� � �
� � �

�
. . .

. . .
. . .� �� � �� �
� �� �

�
������
� � �� 	
� � � ��� 	
� � � (13)

with � �
 � � �� 	 �� 	 ; here
�

is the unit matrix and

� � �

�
������

�� �
� �� �

. . .
. . .

. . .� �� �
� ��

�
������

� � �
 � � �
 � �
(14)

This means the task to solve the Poisson equation numerically leads us to the problem to
find the solution of a system of linear equations:

� � � � (15)

with

� � � �� 	
� � � ��� 	
� � � and �
 � � � �� 	
� � � (16)

The right hand side� contains the
� � �� of the differential equations as well as the Dirichlet

boundary condition.
For the solution of these coupled linear equations many well-known numerical algo-

rithms are available. We will focus here on the classic but very simple Jacobi algorithm.

2.2 The Jacobi Algorithm for Systems of Linear Equations

Suppose

� � � � � � � (17)

is a decomposition of the matrix� , where
�

is the diagonal sub-matrix,�� is the strict
lower triangular part and�� the strict upper triangular part. Then for the system of linear
equations holds

� � � � � 	� � � � � � � � � � � � � 	� � � � � � � �
(18)

� � � �� 	� � � � � � � �� � if
� ��

exists � (19)

From Eq. (19) follows the iteration rule (for
�

non-singular)

� ��� � � �� 	� � � � � ����� � � �� � with � � �
 	
 � � � (20)

This iterative procedure is known asJacobi or total-step method. The second name is
motivated by the fact that the next iteration is calculatedonly from the values of the un-
knowns of the last iteration. There are other schemes, e.g. Gauß-Seidel algorithm, which
depend on oldand the current iteration of the unknowns!

6

The corresponding pseudo code for the serial Jacobi algorithm is given here:

Jacobi algorithm

Choose an initial vector � �� � � ��
For � � �
 	
 � � �

For
� � �
 	
 � � �
�
� ���� � �� ��

�
���
� � �

��
�� �� �� �

� �� � ������

�
���

The Poisson equation (9) discretized with the5-point stencil results in the following iter-
ation procedure
�
��������

� �
...
...
...��

�
��������

���

� �
�
�

�
������

� �� ��
�� � �� ��

. . .
. . .

. . .
�� � �� � �� ��

�� � �� �

�
������

�
��������

� �
...
...
...��

�
��������

�����

�
�
�

�
��������

��
...
...
...��

�
��������

(21)
with

� � � � � � �
and

� �� �
�
������

� � �
� � � � �

. . .
. . .

. . .
� � � � �

� � �

�
������

� � �
 � � �
 � �
(22)

This can be seen easily by application of the Jacobi matrix decomposition on the coeffi-
cient matrix given by Eqs. (13) and (14). The pseudo code for this special case is shown
here

Jacobi algorithm for the Poisson equation

Choose initial vector � �� � � ��
For � � �
 	
 � � �

For
� � �
 �
 � � �
 � � � ��	
 � � �
 �
 � � �
 � � � �

� ���� �� � �
�

�� ������ �� �� � � ���������� � � ������ �� � � � � ������� ��� � ��� � �� �

7

2.3 Parallelization of the Jacobi Algorithm

The numerical treatment of the Poisson equation led us to thetask to solve a system of
linear equations. We introduced the Jacobi algorithm as a simple method to calculate
this solution and presented the corresponding serial pseudo code. Now the next step is to
discuss strategieshow to implement the Jacobi algorithm on a parallel computer.

The important point about the Jacobi (total-step) algorithm one has to remember is that
the calculation of the new iteration only depends on the values of the unknowns from the
last iteration as can be seen for instance from Eq. (21). As a consequence theprocessors
of a parallel computer can calculate the new iteration of theunknowns simultaneously,
supposed each unknown is assigned to its own processor. Thismakes the parallelization of
the Jacobi algorithm quite easy compared to other methods with more complicated depen-
dencies between different iterations.

Usually the number of unknowns is much larger than the numberof available pro-
cessors. Thus some / many unknowns have to be assigned to one processor, i.e. for our
example: the inner points of (Figure 1) are distributed to the available processors. With
other words thedomain is decomposedaccording to a suitable strategy.
The criteria for a “suitable” strategy are

� load balance, i.e. same / similar number of unknowns for each processor

� minimization of thecommunicationbetween the processors, i.e. the dependency on
unknowns stored on other processors (within one iteration step!) is reduced

For our example, the Poisson equation in two dimensions, a reasonable domain decompo-
sition is shown in Figure 5: Each processor “owns” a domain ofthe same size, i.e. each

P P P P

P

P

P

P

P

P

P

P

P

P

P

P

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 5. Domain decomposition of a square� with 16 processors

� � “owns” the same number of points. Furthermore the ratio areato edges of each square
and consequently the ratio between the number of inner points (no dependency on points
“owned” by other processors) to the number of points near theboundary is rather good.
This point can been seen even better from Figure6.

8

Figure 6. Dependency of the unknowns of processor�� (red) on values stored on the neighbors (blue)

In Fig. 6 the points / corresponding unknowns of processor
� � are represented byred

circles, whereas thebluesquares depict theghost points, i.e. points stored on other pro-
cessors which are required for the calculation of the next iteration of the unknowns on
processor

� �.
The dependencies / ghost points shown in Fig. 6 are a result ofthe 5-point stencil (see

Fig. 3) originating from the Laplace operator in Eq. (1). Thus the domain decomposition
of choice might differ for other differential equations or other discretization schemes, e.g.
finite elements.

Due to the dependencies between the unknowns “owned” by different processors it
is clear that the parallelization of the Jacobi algorithm has to introduce statements which
will take care of the communication between the processors.One portable way to handle
the communication is the widely usedMessage Passing Interface (MPI)17 library.
The pseudo code of the parallel Jacobi algorithm is given here:

Parallel Jacobi algorithm

Choose initial values for the own mesh pointsand the ghost points

Choose initial Precision
	
e.g. Precision

� ���� �
While Precision � �

	
e.g. �

� ���� �
1. Calculate next iteration for the own domain

2. Send the new iteration on boundary of domain

to neighboring processors

3. Receive the new iteration for the ghost points

4. Calculate Precision
� �� � ��� � � �

End While

9

The steps 2 and 3 show the extension of the serial Jacobi algorithm by Send andReceive
statements. This is of course only one very simple way to implement such a communication
with the four neighboring processors. In real applicationsone will look for more efficient
communication patterns.

Step 4 requires implicitlyglobal communication, because the vector� ��� holding the
approximate solution of the system of linear equations is distributed over all processors.
As soon as the required precision of the solution is achievedthe iteration stops.

3 Vibration of a Membrane

The vibration of a homogeneous membrane is governed by the time-dependent partial dif-
ferential equation18

� ��
� ��

� � � (23)

In order to solve this equation we make a separation ansatz for the time and spatial vari-
ables:

� 	�
 �
 �� � � 	�
 � � � 	�� (24)

By insertion of Eq. (24) into Eq. (23) one immediately obtains� 	�� � � 	�
 � � � � 	�
 � � � �� 	�� �
(25)

� � 	�
 � �� 	�
 � �
� � �� 	��� 	�� (26)

The left side of Eq. (26) is independent of�, the right side of�
 � . Therefore both sides
must be equal to a constant��� � 	�
 � �� 	�
 � �

� � �� 	��� 	��
� �� �

(27)

� � 	�
 � � � �� � 	�
 � � and
� �� 	�� � �� � 	�� (28)

The differential equation for
� 	�� can be solved easily with the usual ansatz (a linear com-

bination of trigonometric functions).
In the following we want to solve the spatial partial differential equation� � 	�
 � � � �� � 	�
 � � (29)

numerically. In section 2.1 we presented the discretization of the Poisson equation in two
dimensions. In order to allow a re-use of the results derivedthere, we will calculate the
solution of Eq. (29) for arectangular membrane / domain.

Furthermore we choose for simplicity the Dirichlet boundary condition� 	�
 � � � �
for

	�
 � � � � (30)

Using the same discretization for the Laplace operator and lexicographical numbering
of the mesh points / unknowns as in section 2.1 one can see easily that Eq. (29) leads to the
eigenvalue problem

� � � �� � (31)

10

where the matrix� is given by Eqs. (13) and (14).
In section 2 we presented a simple algorithm for the solutionof the system of lin-

ear equations and discussed the parallelization by hand. For the eigenvalue problem we
choose a different strategy: We make use of a widely used parallel library, namely the
ScaLAPACK library.

3.1 Parallel Solution Using the ScaLAPACK Library

The largest and most flexible public domain library with linear algebra routines for dis-
tributed memory parallel systems up to now is ScaLAPACK10. Within the ScaLAPACK
project many LAPACK routines were ported to distributed memory computers using MPI.

The basic routines of ScaLAPACK are thePBLAS (Parallel Basic Linear Algebra
Subroutines)19. They contain parallel versions of the BLAS which are parallelized us-
ing BLACS (Basic Linear Algebra Communication Subprograms)20 for communication
and sequential BLAS for computation. Thus the PBLAS deliververy good performance
on most parallel computers.

ScaLAPACK contains direct parallel solvers for dense linear systems (LU and
Cholesky decomposition), linear systems with band matrices as well as parallel routines
for the solution of linear least squares problems and for singular value decomposition.

Furthermore there are several different routines for the solution of the full symmetric
eigenproblem. We will focus in the following on asimple driver routine using the QR-
algorithm, which computes all eigenvalues and optionally all eigenvectors of the matrix.

Besides this there are other eigensolvers available which are implementations of other
algorithms, e.g. a divide-and-conquer routine; an additional expert driver allows to choose
a range of eigenvalues and optionally eigenvectors to be computed.

For performance and load balancing reasons ScaLAPACK uses atwo-dimensional
block cyclic distribution for full matrices (see ScaLAPACK Users’ Guide)13:
First the matrix is divided into blocks of size MB� NB, where MB and NB are the number
of rows and columns per block, respectively. These blocks are then uniformly distributed
across the MP� NP rectangular processor grid in a cyclic manner. As a result, each
process owns a collection of blocks. Figure 7 shows the distribution of a

	� � � � matrix
subdivided into blocks of size

	� � 	� distributed across a
		 � 	� processor grid.

0 1 0 1 0� �� � �� � �� � �� � �� � �� � �� � �� � ��
0 ��� ��� ��� ��� ��� ��� ��� ��� ����

��
�
�� �

��
�
��

�
��

�
��

�
��

�
��

�
����� ��� ��� ��� ��� ��� ��� ��� ���

1 ��� ��� ��� ��� ��� ��� ��� ��� ������ ��� ��� ��� ��� ��� ��� ��� ������ ��� ��� ��� ��� ��� ��� ��� ���
0 ��� ��� ��� ��� ��� ��� ��� ��� ������ ��� ��� ��� ��� ��� ��� ��� ���

Figure 7. Block cyclic 2D distribution of a�� � �� matrix subdivided into�� � 	� blocks on a�	 � 	� processor
grid. The numbers outside the matrix indicate processor rowand column indices, respectively.

11

ScaLAPACK as a parallel successor of LAPACK attempts to leave the calling sequence
of the subroutines unchanged as much as possible in comparison to the corresponding se-
quential subroutine from LAPACK. The user should have to change only a few parameters
in the calling sequence to use ScaLAPACK routines instead ofLAPACK routines.

Therefore ScaLAPACK uses so-calleddescriptors, which are integer arrays containing
all necessary information about thedistribution of the matrix . This descriptor appears in
the calling sequence of the parallel routine instead of the leading dimension of the matrix
in the sequential one.

For example the sequential simple driverDSYEV from LAPACK for the computation
of all eigenvaluesand (optionally) eigenvectors of areal symmetric (N�N) matrix A has
the following calling sequence21:
...
CALL DSYEV(JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO)
...
where JOBZ and UPLO are characters indicating whether to compute eigenvectors, and
whether the lower or the upper triangular part of the matrix Ais provided. LDA is the
leading dimension of A and W is the array of eigenvalues of A. The other variables are
used as workspace and for error report.

The corresponding ScaLAPACK routinePDSYEV is called as follows13:
...

CALL PDSYEV (JOBZ, UPLO, N, A, IA, JA, DESCA,
$ W, Z, IZ, JZ, DESCZ, WORK, LWORK, INFO)

...
As one can see the leading dimension LDA of the LAPACK call is substituted by the
indices IA and JA and the descriptor DESCA. IA and JA indicatethe start position of the
global matrix (usually IA, JA = 1, but in cases where the global matrix is a sub-matrix of a
larger matrix IA, JA �� 1 might occur) , whereas DESCA contains all information regarding
the distribution of the global matrix. The parameters IZ, JZ, and DESCZ provide the same
information for Z, the matrix of the eigenvectors calculated by PDSYEV.

In order to use the ScaLAPACK routine the user has to distribute his system matrix
in the way required by ScaLAPACK. Thus the user has to setup the processor grid by
initializing MP, the number of processor rows, and NP, the number of processor columns.
Furthermore one has to choose a suitable blocking of the matrix, i.e. MB and NB. For many
routines, especially for the eigenvalue solvers and the Cholesky decomposition, MB=NB
is mandatory. (Since MB and NB are cruical for the performance of the solver, one has
to use these parameters with care.22) Further details on the two-dimensional block cyclic
distribution of the matrix A given by Eqs. (13) and (14) can befound in the appendix.

Once the matrix has been distributed to the processors, the calculation of the eigen-
values and corresponding eigenvectors for the vibration ofthe rectangular membrane
(Eq. (31)) can be calculated easily by one call of the routinePDSYEV. Please note that
the matrix of the eigenvectors Z, is distributed to the processors; thus if necessary, e.g. for
output, it is again the task of the user to collect the different local data and to generate the
global matrix.

12

4 Conclusion

In this contribution we presented two examples for the numerical treatment of partial dif-
ferential equations using parallel algorithms / computers. Both problems were tackled with
different strategies: The first example has been solved by means of the simple Jacobi algo-
rithm and a suitable parallelization scheme was discussed.In the second case the parallel
calculation has been performed with the help of the ScaLAPACK library.

The pros and cons of the different strategies are obvious. Ifa suitable parallel library
is available and a reorganization of the application software according to the complex data
distribution schemes of the libraries is possible, the parallel routines from the library will
provide a robust numerical solution with fair or even good performance.

Otherwise the user has to choose a parallelization scheme which best fits his specific
application problem and he has to implement the necessary algorithms himself; in order
to improve the single processor performance it is still recommendable to use serial library
routines, e.g. from BLAS or LAPACK, wherever possible!

Appendix

In section 3.1 some information on thetwo-dimensional block cyclic distribution of the
data used byScaLAPACK has been given. In this appendix we will discuss this issue in
greater detail.

In Fig. 8 a code fragment is shown which distributes the N� N matrix given by
Eqs. (13) and (14) according to the ScaLAPACK data scheme with block sizes NB=MB
to an MP� NP processor grid. Inclusion of this fragment into a parallel program allows
the calculation of the eigenvalues and eigenvectors using the routinePDSYEV:
...

CALL PDSYEV (JOBZ, UPLO, N, A, IA, JA, DESCA,
$ W, Z, IZ, JZ, DESCZ, WORK, LWORK, INFO)

...
Notice that in the sequential as well as in the parallel routine the matrix A is destroyed.

The difference is that in the sequential case if the eigenvectors are requested A is overwrit-
ten by the eigenvectors whereas in the parallel case the eigenvectors are stored to a separate
matrix Z.

The matrix Z has to be allocated with the same local sizes as A and DESCZ is filled
with the same values as DESCA. The size LWORK of the local workspace WORK can be
found in the ScaLAPACK Users’ Guide.

The four nested loops in Fig. 8 show how local and global indices can be computed
from block sizes, the number of rows and columns in the processor grid and the processor
coordinates. The conversion of global to local indices and vice versa is supported by some
auxiliary routines in theTOOLS sub-library of ScaLAPACK. Here the routine NUMROC
is used to calculate the number of rows / columns stored on thecorresponding processor.

There is also a sub-libraryREDIST of ScaLAPACK which allows the redistribution
of any two-dimensional block cyclically distributed matrix to any other block cyclic two-
dimensional distribution. Thus if A was column cyclically distributed or if the eigenvectors
have to be column cyclically distributed for further computations they can be redistributed

13

! Crea te t h e MP � NP p r o c e s s o r g r i d
CALL BLACS GRIDINIT (ICTXT , ’Row�major ’ ,MP, NP)
! Find my p r o c e s s o r c o o r d i n a t e s MYROW and MYCOL
! NPROW r e t u r n s t h e same v a l u e as MP,
! NPCOL r e t u r n s t h e same v a l u e as NP
CALL BLACS GRIDINFO (ICTXT ,NPROW,NPCOL,MYROW,MYCOL)
! Compute l o c a l d i m e n s i o n s w i t h r o u t i n e NUMROC from TOOLS
! N i s d i m e n s i o n o f t h e m a t r i x
! NB i s b l o c k s i z e
MYNUMROWS = NUMROC(N,NB,MYROW, 0 ,NPROW)
MYNUMCOLS = NUMROC(N,NB,MYCOL, 0 ,NPCOL)
! Lo ca l l e a d i n g d i m e n s i o n o f A ,
! Number o f l o c a l rows o f A
MXLLDA = MYNUMROWS
! A l l o c a t e o n l y t h e l o c a l p a r t o f A
ALLOCATE (A(MXLLDA,MYNUMCOLS))
! F i l l t h e d e s c r i p t o r s , P0 and Q0 a re p r o c e s s o r c o o r d i n a t e s
! o f t h e p r o c e s s o r h o l d i n g g l o b a l e l e m e n t A (1 , 1)
CALL DESCINIT (DESCA,N,N,NB,NB, P0 , Q0 , ICTXT ,MXLLDA, INFO)
! F i l l t h e l o c a l p a r t o f t h e m a t r i x w i t h d a ta
do j = 1 , MYNUMCOLS, NB ! F i l l t h e l o c a l column b l o c k s

do j j =1 , min (NB,MYNUMCOLS� j + 1) ! a l l co lumns o f one b l o c k
j l o c = j �1 + j j ! l o c a l column i n d e x
j g l o b = (j �1)�NPCOL + MYCOL�NB + j j ! g l o b a l column i n d e x
do i = 1 , MYNUMROWS, NB ! l o c a l row b l o c k s i n column

do i i =1 , min (NB,MYNUMROWS� i + 1) ! rows i n row b l o c k
i l o c = i �1 + i i ! l o c a l row i n d e x
i g l o b = (i �1)�NPROW + MYROW�NB+ i i ! g l o b a l row i n d e x
A(i l o c , j l o c) = 0
I f (i g l o b == j g l o b) A(i l o c , j l o c)=�4
I f (i g l o b == j g l o b +1 . and . mod (jg lob , NI) / = 0) &

A(i l o c , j l o c)=1
I f (j g l o b == i g l o b +1 . and . mod (ig lob , NI) / = 0) &

A(i l o c , j l o c)=1
I f (i g l o b == j g l o b +NI) A(i l o c , j l o c)=1
I f (j g l o b == i g l o b +NI) A(i l o c , j l o c)=1

enddo
enddo

enddo
enddo

Figure 8. Code fragment which distributes the matrix given by Eqs. (13) and (14) according to ScaLAPACK (It
is assumed that MB=NB=NI and N=NI�NJ).

14

by such a routine, as a column cyclic distribution is nothingelse but a block cyclic two-
dimensional distribution to a 1� NPR (with NPR = number of processors) grid with block
size 1.

References

1. J. J. Dongarra, I. S. Duff, D. .C. Sorensen, and H. A. van derVorst,Numerical Linear
Algebra for High-Performance Computers, SIAM, Philadelphia (1998).

2. http://gams.nist.gov/Classes.html and especially
http://gams.nist.gov/serve.cgi/Class/D/

3. B. Wilkinson and M. Allen,Parallel Programming: Techniques and Applications
using networked Workstations and Parallel Computers, Pearson, Upper Saddle
River (2005).

4. A. Grama, A. Gupta, G. Karypis, and V. Kumar,Introduction to Parallel Computing,
Pearson, Harlow (2003).

5. M. Bücker,Iteratively Solving Large Sparse Linear Systems on Parallel Computers in
Quantum Simulation of Complex Many-Body Systems: From Theory to Algorithms,
J. Grotendorst et al. (Ed.), John von Neumann Institute for Computing, NIC Series
Vol. 10, 521-548 (2002)
http://www.fz-juelich.de/nic-series/volume10/buecker.pdf

6. B. Lang,Direct Solvers for Symmetric Eigenvalue Problems in Modern Methods and
Algorithms of Quantum Chemistry, J. Grotendorst (Ed.), John von Neumann Institute
for Computing, NIC Series Vol.3, 231-259 (2000).
http://www.fz-juelich.de/nic-series/Volume3/lang.pdf

7. B. Steffen,Subspace Methods for Sparse Eigenvalue Problems in Modern Methods
and Algorithms of Quantum Chemistry, J. Grotendorst (Ed.),John von Neumann In-
stitute for Computing, NIC Series Vol.3, 307-314 (2000).
http://www.fz-juelich.de/nic-series/Volume3/steffen.pdf

8. http://www.netlib.org/blas/
9. http://www.netlib.org/lapack/

10. http://www.netlib.org/scalapack/
11. http://www.caam.rice.edu/software/ARPACK/
12. http://www-unix.mcs.anl.gov/petsc/petsc-as/
13. L. S. Blackford, J. Choi, A. Cleary et al.,ScaLAPACK Users’ Guide, SIAM, Philadel-

phia (1997).
14. G. Ahlefeld, I. Lenhardt, and H. Obermaier,Parallele numerische Algorithmen,

Springer, Berlin (2002).
15. J. M. Ortega,Introduction to parallel and vector solution of linear systems, Plenum

Press, New York (1988).
16. J. Zhu,Solving partial differential equations on parallel computers, World Scientific,

Singapore (1994).
17. W. Gropp, E. Lusk, and A. Skjellum,Using MPI : Portable Parallel Programming

with the Message-Passing Interface, MIT Press, Cambridge (1994).
18. R. Courant and D. Hilbert,Methods of Mathematical Physics, Volume I, Interscience

Publishers, New York (1953).
19. http://www.netlib.org/scalapack/pblas qref.html

15

20. J. J. Dongarra and R. C. Whaley,A User’s Guide to the BLACS, LAPACK Working
Note94 (1997).
http://www.netlib.org/lapack/lawns/lawn94.ps

21. E. Anderson, Z. Bai, C. Bischof et al.,LAPACK Users’ Guide, Second Edition, SIAM,
Philadelphia (1995).

22. I. Gutheil,Basic Numerical Libraries for Parallel Systems in Modern Methods and
Algorithms of Quantum Chemistry, J. Grotendorst (Ed.), John von Neumann Institute
for Computing, NIC Series Vol.3, 47-65 (2000).
http://www.fz-juelich.de/nic-series/Volume3/gutheil.pdf

16

