-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Juelich Shared Electronic Resources

John von Neumann Institute for Computing Nlc |

Parallel Linear Algebra Methods

Bernd Korfgen and Inge Gutheill

published in

Computational Nanoscience: Do It Yourself!,

J. Grotendorst, S. Blugel, D. Marx (Eds.),

John von Neumann Institute for Computing, Jilich,

NIC Series, Vol. 31, ISBN 3-00-017350-1, pp. 507-522, 2006.

© 2006 by John von Neumann Institute for Computing

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume31

https://core.ac.uk/display/34931818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Parallel Linear Algebra Methods

Bernd Korfgen and Inge Gutheil

John von Neumann Institute for Computing
Central Institute for Applied Mathematics
Forschungszentrum Jillich
52425 Julich, Germany

E-mail: {b.koerfgen, i.gutheil } @fz-juelich.de

This contribution presents two examples for the numerreaittnent of partial differential equa-
tions using parallel algorithms / computers. The first exengplves the Poisson equation in
two dimensions; the second partial differential equatiesatibes the physical process of vibra-
tion of a membrane. Both problems are tackled with diffestrategies: The Poisson equation
is solved by means of the simple Jacobi algorithm and a deitzsdrallelization scheme is dis-
cussed; in the second case the parallel calculation isnoeefdwith the help of the ScaLAPACK
library and the issue of data distribution is addressed.

1 Introduction

Numerical linear algebra is an active field of research whpicvided over the years many
methods / algorithms for the treatment of standard problémshe solution of systems of
linear equations, the factorization of matrices, the dation of eigenvalues / eigenvectors
etcl. The most suitable algorithm for a given linear algebra [mob e.g. arising in a
scientific application, has to be determined depending erptioperties of the system /
matrix (see for instance Ref. 2) like:

e symmetry

definitenesy(positive, negative,..)

non-zero structure (dense, sparse, banded)

real or complexcoefficients

and so on. Furthermore the scientist has to decide whethisetedirect solver, leading to
a transformation of the original matrix and thus (for largelgjems) generating a need for
hugemain memory, or to use aiiterative solver which works with the original matrix.

The same rationale holds for the more specialized fielgartllel linear algebra
methods. There the additional aspects originating fromptirallelcomputer architec-
ture have to be taken into account in order to choose a suitabtgitlgn. Several topics
influencing the choice and even more the consequent impletieam of these algorithms
areb 4

e memory architectureshared-memoryvs. distributed memory)
e amount ofmemory per process/processor

e implementedtachestructures

It is far beyond the scope of this contribution to give an @iew of the available
algorithms. Instead we refer to review articles like Refs7 .5

From a practical point of view another important decisiowisether the user imple-
ments the linear algebra algorithnimself or relies onavailable software / libraries.
A variety of well-known, robust packages providing high qortational performance are
on the market, which can be used as building blocks for ani@gfin software. Some
freely-availablelibraries are:

e Basic Linear Algebra Subprograr(BLAS)®

e Linear Algebra Packag@&APACK) °

e Scalable LAPACK(ScaLAPACK)10

e (P)ARPACK - a (parallel) package for the solution of large eigenvahab@ms*
e Portable, Extensible Toolkit for Scientific computati®tETSc)?

Some of them like BLAS or LAPACK arserial software, which help to gain good sin-
gle processor performance, but leave the tasgastllelization of the high-level linear
algebra computations, e.g. solution of the coupled linegragons, to the user; others,
e.g. ScaLAPACK or PARPACK, contain implementationgafallel solvers Thus these
packages relieve the user of the parallelization, but ttdly rely on special data distri-
bution schemés$ which require a specific organization of the applicationgpam. As a
consequence the user has to handle the corresponding sfaiiaudiion on his own, i.e. he
has to parallelize his program at least partly. Nevertisdleis might be a lot easier than to
implement the full parallel linear algebra algorithm.

Since both strategies are preferable under certain cir@noss, we will present in the
following two simple physical problems where tparallel numerical solution will be
demonstrated paradigmatically along the two differentapphes:

In Section 2 the Poisson equation will be treated usipgrallel Jacobi solverfor the
evolving system of linear equations.

In Section 3 the eigenvalue problem arising from the catmneof the vibration of a
membrane is solved usingSctal APACK routine.

Of course, one would not use these solutions in real appitatNeither is the Jacobi
algorithm a state-of-the-art method for the solution of atesn of linear equations, nor
is the eigensolver from ScaL APACK the optimal choice for ¢fieen problem. Both ex-
amples result in a sparse matrix as will be shown in the falgwScalL APACK contains
solvers for full and banded systems, whereas (P)ARACK ibraty based on the Arnoldi
method which is very suitable for the calculation ofeav eigenvalues for largeparse
systems; thus (P)ARPACK would be the natural choice forkiid of problem.

Nevertheless due to the importance of ScaLAPACK for manyiegumon fields, e.qg.
nanoscience and the simplicity of the Jacobi algorithm we present thanillastrative
examples.

2 The Poisson Problem

In this section we discuss the numerical solution of the $awisequation as an example
for the approximate treatment of partial differential etipras. We give a short outline of

the steps necessary to obtain a serial and later on parafigimentation of the numerical
solver. Similar but more elaborate material on this topitlsa found in the Refs. 14-16.

In a first step we discuss the discretization of the Poissoiatémn and introduce one
simple solver for the evolving system of linear equationdteAvards we focus on the
parallelization of this algorithm.

2.1 Discretization of the Poisson Equation

ThePoisson equatiorin two dimensions is given by

u 0%u
Au = —+— = R? 1
wheref is a domain inR2. For simplicityu(z, y) shall be given on the boundadf? by a
Dirichlet boundary condition

u(z,y) =g(z,y) , (x,y) €0Q 2)

The functionsf(z, y) andg(z, y) are given and:(z, y) is to be calculated.

Since the analytic solution of such a partial differentgliation might not be feasible
depending on the shape of the domain, the functjfyipsetc., one often has to resort to the
numerical solution of such a differential equation.

In the following we will develop a simple scheme how to cadtaks approximately.
For this we assume that the domain has a simple férs:a rectangle (Figure 1).

y

Ya {--

Figure 1. Rectangular domain R?

In order to determine the approximate solution of the Poigspuationy is calculated
at certain points of the rectangle. We impéke- (z4,zr) X (y4,yr) with an equidistant
mesh (Figure 2), wherg 4, zg) is divided into(IN I + 1) sub-intervals andy 4, yz) into
(NJ +1) sub-intervals(NI, NJ € N). The mesh widtth is then given by

XX X X X Xy X X X X

Figure 2. Mesh folNI = 7andNJ =5

(g —za) _ (yp—ya)
= ®3)

(NI+1) (NJ+1)
With this choice for the mesh the approximate solution wélldalculated at th&/'I - N.J
inner points of the domain (The outer points don’t have todleuwdated, because they are
given by the Dirichlet boundary condition!).

As a next step the second derivatives are replaced by fiffiegelices. For this purpose
we use the following Taylor expansions®ht a point(z, y):

b =

2 h3
h? hs
u(z — h,y) = u(z,y) — hug(z,y) + aum(x,y) - gumw(x,y) +... (5)

Addition of both equations and division i gives
U(.CL' — hay) - 2“(‘7733/) + U(.CL' + hay)
h2
The result of the analogous procedure forghdirection is
u(z,y — h) — 2u(z,y) + u(z,y + h)
h2
Using these finite differences the Poisson equation foiNtie N J inner mesh points of
the domaim is given by

= Ugg (.’U, Z/) + O(hZ) (6)

= uyy (@, y) + O(h2) (7)

uww(xiayj) + uyy(miayj) = f(xiayj)

(8)
(i=0,...,NI—-1;j=0,...,NJ-1)
By neglecting the discretization erro(h?) Egs. (8) can be written as:
Wi g1 + Wim1,j — Mg+ wijy1 + w1y = B2 fi 9)
fori=0,...,NI—1; j=0,...,NJ — 1. The unknowns
Uij = u(Ti, yj) (10)

have to be calculated from théI - N'J coupled linear equations (9).
The approximation used here fag, + uy, is called5-point stencil (Figure 3). The
name describes the numerical dependency between the pbitits mesh. The lexico-

.
(xy+h)

(x+hy)

(x-hy) (*)

(xy-h)

Figure 3. 5-point stencil

graphical numbering (Figure 4) of the mesh points
l=j-NI+i+1 ;i=0,...,NI-1;j=0,...,NJ—1 (11)
and
Uy = U (12)

allows a compact representation of the system of lineart@nsby means of a matrix.
The coefficient matrix4 is a block tridiagonal matrix:

7 8 9
4 5 6
1 2 3

Figure 4. Lexicographical numbering ofax 5 mesh (with3 x 3 inner points)

I Ay T
A= € RIVI-NJ)X(NI-NJ) (13)
I Ay, 1
I Ay
with A;, I € RVI*NI - herel is the unit matrix and
-4 1
1 —41
1 41
1 -4

This means the task to solve the Poisson equation numgriealils us to the problem to
find the solution of a system of linear equations:
Ad =} (15)
with
A e RVI-N)X(NI-NJ) gnq 6,56 RNI-NJ) (16)

The right hand sidé contains thef; ; of the differential equations as well as the Dirichlet
boundary condition.

For the solution of these coupled linear equations many-kvedlvn numerical algo-
rithms are available. We will focus here on the classic buy gample Jacobi algorithm.

2.2 The Jacobi Algorithm for Systems of Linear Equations

Suppose
A=D-L-U a7

is a decomposition of the matri®, whereD is the diagonal sub-matrix; L is the strict
lower triangular part and-U the strict upper triangular part. Then for the system ofdine
equations holds

Ai=b & (D-L-U)i=b & Di=(L+U)i+b < (18)

@ =D YL+U)d+D 'b if D! exists. (19)
From Eq. (19) follows the iteration rule (fdp non-singular)
a® =D L +U)g* " +D'b withk=1,2,... (20)

This iterative procedure is known dacobi or total-step method The second name is
motivated by the fact that the next iteration is calculatety from the values of the un-
knowns of the last iteration. There are other schemes, eagRR&eidel algorithm, which
depend on olénd the current iteration of the unknowns!

The corresponding pseudo code for the serial Jacobi digoig given here:

Jacobi algorithm
Choose an initial vector @(® € R™
For £k=1,2,...
For i=1,2,...,n
w _ 1 - (k1)
ui = — bz — Z aij Uj
Qi —
j=1
J#i

The Poisson equation (9) discretized with §point stencil results in the following iter-
ation procedure

U1 (k) A1 ’Uz.l (k=1) b.1
—I Ay —I :
1 _ . 1
. . : 1
-1 Ay, I : :
_] . .
UnN T ANJ UN bN
(21)
with N = NI-NJ and
0-1
-1 0-1
A;-: e i=1,...,NJ (22)
-1 0-1

-1 0

This can be seen easily by application of the Jacobi matr@oagosition on the coeffi-
cient matrix given by Egs. (13) and (14). The pseudo codehiigrdpecial case is shown
here

Jacobi algorithm for the Poisson equation

Chooseinitial vector @© ¢ RV
Fork=1,2,...

Forj=0,1,...,NJ—1
Fori=0,1,...,NI -1

g 1 k—1
ui(,j) =1 (Ui(,jA) +u

k—1 k—1 k—1
S5)+l - hzfi’j)

2.3 Parallelization of the Jacobi Algorithm

The numerical treatment of the Poisson equation led us tdagieto solve a system of
linear equations. We introduced the Jacobi algorithm asmglsi method to calculate
this solution and presented the corresponding serial pseoade. Now the next step is to
discuss strategidsow to implement the Jacobi algorithm on a parallel computer

The important point about the Jacobi (total-step) algaritme has to remember is that
the calculation of the new iteration only depends on theeslf the unknowns from the
last iteration as can be seen for instance from Eq. (21). As a consequenpecttessors
of a parallel computer can calculate the new iteration ofuhknowns simultaneously,
supposed each unknown is assigned to its own processonribiss the parallelization of
the Jacobi algorithm quite easy compared to other methatismére complicated depen-
dencies between different iterations.

Usually the number of unknowns is much larger than the numbewailable pro-
cessors. Thus some / many unknowns have to be assigned toanessor, i.e. for our
example: the inner points 61 (Figure 1) are distributed to the available processorsh Wit
other words thelomain Q2 is decomposedaccording to a suitable strategy.

The criteria for a “suitable” strategy are

e |oad balance i.e. same / similar number of unknowns for each processor

e minimization of thecommunication between the processors, i.e. the dependency on
unknowns stored on other processors (within one iteratiep sis reduced

For our example, the Poisson equation in two dimensionsasoreble domain decompo-
sition is shown in Figure 5: Each processor “owns” a domaithefsame size, i.e. each

%3 F]).4 F?I.S P16
| Ro| Ri| R
R R|R|R

V)
U
U
V)

Figure 5. Domain decomposition of a squ&revith 16 processors

P; “owns” the same number of points. Furthermore the ratio tvesges of each square
and consequently the ratio between the number of inner p@nat dependency on points
“owned” by other processors) to the number of points neabthendary is rather good.
This point can been seen even better from Figure6.

]

Figure 6. Dependency of the unknowns of proced3ofred) on values stored on the neighbobdug)

In Fig. 6 the points / corresponding unknowns of proceggare represented byd
circles, whereas thielue squares depict thghost points i.e. points stored on other pro-
cessors which are required for the calculation of the nexafton of the unknowns on
processof;.

The dependencies / ghost points shown in Fig. 6 are a resthiied-point stencil (see
Fig. 3) originating from the Laplace operator in Eq. (1). $hibhe domain decomposition
of choice might differ for other differential equations dher discretization schemes, e.g.
finite elements.

Due to the dependencies between the unknowns “owned” bgrdift processors it
is clear that the parallelization of the Jacobi algorithre taintroduce statements which
will take care of the communication between the processong portable way to handle
the communication is the widely usétessage Passing Interface (MPH library.

The pseudo code of the parallel Jacobi algorithm is givea:her

Parallel Jacobi algorithm

Chooseinitial valuesfor the own mesh pointsand the ghost points
Chooseinitial Precision (eg. Precision = 10'°)
While Precison >¢ (eg.e = 107°)
1. Calculate next iteration for the own domain
2. Send the new iteration on boundary of domain
to neighboring processors
3. Receivethe new iteration for the ghost points

4. Calculate Precision = ||Az*) — ||
End While

The steps 2 and 3 show the extension of the serial Jacobiitaligoloy Send and Receive
statements. This is of course only one very simple way toémgint such a communication
with the four neighboring processors. In real applications will look for more efficient
communication patterns.

Step 4 requires implicitlglobal communication because the vecta*) holding the
approximate solution of the system of linear equations s¢rithuted over all processors.
As soon as the required precision of the solution is achidvedteration stops.

3 Vibration of a Membrane

The vibration of a homogeneous membrane is governed byrttfeedependent partial dif-
ferential equatiot?

0%v
In order to solve this equation we make a separation ansathdédime and spatial vari-
ables:

v(z,y,t) = u(z,y)g(t) (24)
By insertion of Eq. (24) into Eq. (23) one immediately obain
9(t) Au(z,y) = u(z,y)g"(t) & (25)
Au(z,y) _ g"(t)
uWwy) 9 29

The left side of Eq. (26) is independentifthe right side ofx,y. Therefore both sides
must be equal to a constanf

Auz,y) _ g"(t) _
u(z,y) g(t)

-2 & (27)

Au(z,y) = —Au(z,y) and g"(t) = —Ag(t) (28)

The differential equation fogi(¢) can be solved easily with the usual ansatz (a linear com-
bination of trigonometric functions).
In the following we want to solve the spatial partial diffatial equation

numerically. In section 2.1 we presented the discretipatithe Poisson equation in two
dimensions. In order to allow a re-use of the results derthede, we will calculate the
solution of Eq. (29) for aectangular membrane / domain.

Furthermore we choose for simplicity the Dirichlet boundeondition

u(z,y) = 0 for(z,y) € 00 (30)

Using the same discretization for the Laplace operator exiddgraphical numbering
of the mesh points / unknowns as in section 2.1 one can sdg tadiEq. (29) leads to the
eigenvalue problem

Ad = -\@ (31)

10

where the matrix is given by Egs. (13) and (14).

In section 2 we presented a simple algorithm for the solutibthe system of lin-
ear equations and discussed the parallelization by handthEceigenvalue problem we
choose a different strategy: We make use of a widely usedl@alibrary, namely the
Scal APACK library.

3.1 Parallel Solution Using the ScaLAPACK Library

The largest and most flexible public domain library with Binelgebra routines for dis-
tributed memory parallel systems up to now is ScaL APACKVithin the ScalL APACK
project many LAPACK routines were ported to distributed nogyrcomputers using MPI.

The basic routines of ScaLAPACK are tiRBLAS (Parallel Basic Linear Algebra
Subroutinesy. They contain parallel versions of the BLAS which are pataed us-
ing BLACS (Basic Linear Algebra Communication Subprograth$dr communication
and sequential BLAS for computation. Thus the PBLAS delixeny good performance
on most parallel computers.

ScaLAPACK contains direct parallel solvers for dense linegstems (LU and
Cholesky decomposition), linear systems with band matraewell as parallel routines
for the solution of linear least squares problems and fayudar value decomposition.

Furthermore there are several different routines for thetism of the full symmetric
eigenproblem. We will focus in the following onsample driver routine using the QR-
algorithm, which computes all eigenvalues and optiondllgigenvectors of the matrix.

Besides this there are other eigensolvers available whehhglementations of other
algorithms, e.g. a divide-and-conquer routine; an additi@expert driver allows to choose
a range of eigenvalues and optionally eigenvectors to bepated.

For performance and load balancing reasons ScaLAPACK uses-dimensional
block cyclic distribution for full matrices (see ScaLAPACK Users’ Guid#)

First the matrix is divided into blocks of size MB NB, where MB and NB are the number
of rows and columns per block, respectively. These bloc&glan uniformly distributed
across the MPx NP rectangular processor gridin a cyclic manner. As a result, each
process owns a collection of blocks. Figure 7 shows theildigton of a(9 x 9) matrix
subdivided into blocks of siz€8 x 2) distributed across € x 2) processor grid.

0 1 0 1 0
11 12 | 13 Q14 | Q15 Q16 | Q17 A1g | Q19
0| ax a2 | a3 a2 | 25 a2 | G27 Q28 | G2
azy as2 | Gzz3 Aa34 | G35 A3e | G37 A3 | A39
41 @42 | A43 Q44 | Q45 Q46 | Q47 Q48 | Q49
llasi as2 | as3 ass | ass ase | asr Gss | Gsg
a1 Q¢2 | Ge3 Qg4 | Ge5 Q66 | Ge7 Q68 | Gp9
ar1 Qr2 | Qrz Q74 | Qs Qe | Ay arg | Grg
O|asr asz2 | ags ass | Ggs age | agr ass | Ggg
Gg1 Qg2 | Qg3 Qg4 | G95 Qg9 | Qg7 Gg9g | A9y

Figure 7. Block cyclic 2D distribution of €9 x 9) matrix subdivided intq3 x 2) blocks on &2 x 2) processor
grid. The numbers outside the matrix indicate processoramsivcolumn indices, respectively.

11

ScalLAPACK as a parallel successor of LAPACK attempts toddhe calling sequence
of the subroutines unchanged as much as possible in coropaoishe corresponding se-
guential subroutine from LAPACK. The user should have tangjfeeonly a few parameters
in the calling sequence to use ScaLAPACK routines instedd\®ACK routines.

Therefore ScaLAPACK uses so-callééscriptors, which are integer arrays containing
all necessary information about thestribution of the matrix . This descriptor appears in
the calling sequence of the parallel routine instead of¢éaeihg dimension of the matrix
in the sequential one.

For example the sequential simple dri@BYEV from LAPACK for the computation
of all eigenvaluesand (optionally) eigenvectors ofraal symmetric (NxN) matrix A has
the following calling sequenéé

CALL DSYEV(JOBZ, UPLO, N, A LDA, W WORK, LWORK, |INFO

where JOBZ and UPLO are characters indicating whether topabeneigenvectors, and
whether the lower or the upper triangular part of the matriisArovided. LDA is the
leading dimension of A and W is the array of eigenvalues of Ae Bther variables are
used as workspace and for error report.

The corresponding ScaLAPACK routiRDSYEV is called as follow¥:

CALL PDSYEV (JOBZ, UPLO, N, A |A JA DESCA
$ W z, 12z, Jz, DESCZ, WORK, LWORK, |INFO)

As one can see the leading dimension LDA of the LAPACK callubddituted by the
indices IA and JA and the descriptor DESCA. IA and JA indigatestart position of the
global matrix (usually 1A, JA = 1, but in cases where the global matrix isla-matrix of a
larger matrix IA, JA# 1 might occur) , whereas DESCA contains all information rdgay
the distribution of the global matrix. The parameters 1Z,d#&d DESCZ provide the same
information for Z, the matrix of the eigenvectors calcuthby PDSYEV.

In order to use the ScaLAPACK routine the user has to didtilis system matrix
in the way required by ScalL APACK. Thus the user has to setapthcessor grid by
initializing MP, the number of processor rows, and NP, thebar of processor columns.
Furthermore one has to choose a suitable blocking of thesmiagr. MB and NB. For many
routines, especially for the eigenvalue solvers and thdeSkg decomposition, MB=NB
is mandatory. (Since MB and NB are cruical for the perforneaotthe solver, one has
to use these parameters with c&feFurther details on the two-dimensional block cyclic
distribution of the matrix A given by Egs. (13) and (14) canftyend in the appendix.

Once the matrix has been distributed to the processors,aloalation of the eigen-
values and corresponding eigenvectors for the vibratiothefrectangular membrane
(Eq. (31)) can be calculated easily by one call of the rouBBSYEV. Please note that
the matrix of the eigenvectors Z, is distributed to the pssoes; thus if necessary, e.g. for
output, it is again the task of the user to collect the diffétecal data and to generate the
global matrix.

12

4 Conclusion

In this contribution we presented two examples for the nicaétreatment of partial dif-
ferential equations using parallel algorithms / computBath problems were tackled with
different strategies: The first example has been solved anmef the simple Jacobi algo-
rithm and a suitable parallelization scheme was discudsetthe second case the parallel
calculation has been performed with the help of the ScaL ARAkrary.

The pros and cons of the different strategies are obvious stfitable parallel library
is available and a reorganization of the application saféveeccording to the complex data
distribution schemes of the libraries is possible, the [fnautines from the library will
provide a robust numerical solution with fair or even goodqenance.

Otherwise the user has to choose a parallelization scherioh whst fits his specific
application problem and he has to implement the necessgoyitims himself; in order
to improve the single processor performance it is still rmgeendable to use serial library
routines, e.g. from BLAS or LAPACK, wherever possible!

Appendix

In section 3.1 some information on theo-dimensional block cyclic distribution of the
data used bycalLAPACK has been given. In this appendix we will discuss this issue in
greater detail.

In Fig. 8 a code fragment is shown which distributes the<NN matrix given by
Egs. (13) and (14) according to the ScaLAPACK data schemntehiitck sizes NB=MB
to an MPx NP processor grid. Inclusion of this fragment into a patgllegram allows
the calculation of the eigenvalues and eigenvectors ubmgautinePDSYEV:

CALL PDSYEV (JOBZ, UPLO, N, A |A JA DESCA
$ W Z, 1Z, JZ, DESCZ, WORK, LWORK, |NFO)

Notice that in the sequential as well as in the parallel reethe matrix A is destroyed.
The difference is that in the sequential case if the eigeoveare requested A is overwrit-
ten by the eigenvectors whereas in the parallel case thewegers are stored to a separate
matrix Z.

The matrix Z has to be allocated with the same local sizes asdADESCZ is filled
with the same values as DESCA. The size LWORK of the local wjpake WORK can be
found in the ScaLAPACK Users’ Guide.

The four nested loops in Fig. 8 show how local and global ieslican be computed
from block sizes, the number of rows and columns in the pregrid and the processor
coordinates. The conversion of global to local indices &nd versa is supported by some
auxiliary routines in th& OOLS sub-library of ScaLAPACK. Here the routine NUMROC
is used to calculate the number of rows / columns stored oodiresponding processor.

There is also a sub-librafREDIST of ScaLAPACK which allows the redistribution
of any two-dimensional block cyclically distributed mattd any other block cyclic two-
dimensional distribution. Thus if A was column cyclicalligttibuted or if the eigenvectors
have to be column cyclically distributed for further comgaiins they can be redistributed

13

! Create the MP x NP processor grid

CALL BLACS_GRIDINIT (ICTXT, 'Row—major’ ,MP,NP)

! Find my processor coordinates MYROW and MYCOL

I NPROW returns the same value as MP,

I NPCOL returns the same value as NP

CALL BLACS_GRIDINFO (ICTXT,NPROW, NPCOL, MYROW, MYCOL)

I Compute local dimensions with routine NUMROC from TOOLS
I N is dimension of the matrix

! NB is block size

MYNUMROWS = NUMROC(N, NB,MYROW, 0 ,NPROW)

MYNUMCOLS = NUMROC(N,NB,MYCOL, 0 ,NPCOL)

! Local leading dimension of A,

! Number of local rows of A

MXLLDA = MYNUMROWS

I Allocate only the local part of A

ALLOCATE (A (MXLLDA,MYNUMCOLS))

I Fill the descriptors, PO and Q0 are processor coordinates
I of the processor holding global element A(1,1)

CALL DESCINIT (DESCA,N,N,NB,NB, PO, QO0, ICTXT,MXLLDA, INFO)

' Fill the local part of the matrix with data
do j = 1, MYNUMCOLS, NB ! Fill the local column blocks
do jj=1,min(NB,MYNUMCOLS-j +1) I all columns of one block
jloc = j—1+ jj ! local column index
jglob = (j—1)xNPCOL + MYCOL«NB +jj ! global column index
do i =1, MYNUMROWS, NB ! local row blocks in column
do ii=1,min(NB,MYNUMROWS-i +1) ! rows in row block
iloc = i—=1+ ii ! local row index
iglob = (i—1)xNPROW + MYROWNB+ii ! global row index

A(iloc ,jloc) =0

If (iglob==jglob) A(iloc ,jloc)=—4

If (iglob==jglob+1.and.mod(jglob ,NI)/=0) &
A(iloc ,jloc)=1

If (jglob==iglob+1.and.mod(iglob ,NI)/=0) &
A(iloc ,jloc)=1

If (iglob==jglob+NI) A(iloc ,jloc)=1

If (jglob==iglob+NI) A(iloc ,jloc)=1

enddo
enddo
enddo
enddo

Figure 8. Code fragment which distributes the matrix giveriElys. (13) and (14) according to ScaL APACK (It
is assumed that MB=NB=NI and N=NNJ).

14

by such a routine, as a column cyclic distribution is nothétge but a block cyclic two-
dimensional distribution to a & NPR (with NPR = number of processors) grid with block
size 1.

References

1.

2.

3.

14.

15.

16.

17.

18.

19.

J. J. Dongarra, I. S. Duff, D. .C. Sorensen, and H. A. varv/dest, Numerical Linear
Algebra for High-Performance Computers, SIAM, Philadelphia (1998).
http://gans. ni st.gov/ O asses. ht Ml and especially

http://gams. ni st.gov/serve.cgi/d ass/ D

B. Wilkinson and M. Allen,Parallel Programming: Techniques and Applications
using networked Workstations and Parallel Computers, Pearson, Upper Saddle
River (2005).

. A. Grama, A. Gupta, G. Karypis, and V. Kumamroduction to Parallel Computing,

Pearson, Harlow (2003).

. M. Biicker,Iteratively Solving Large Sparse Linear Systems on Parallel Computersin

Quantum Simulation of Complex Many-Body Systems: From Th¢o Algorithms,
J. Grotendorst et al. (Ed.), John von Neumann Institute fam@uting, NIC Series
\Vol. 10, 521-548 (2002)

http://ww. fz-juelich. de/nic-series/volunelO/buecker. pdf

. B. Lang,Direct Solversfor Symmetric Eigenvalue Problemsin Modern Methods and

Algorithms of Quantum Chemistry, J. Grotendorst (Ed.),nJebn Neumann Institute
for Computing, NIC Series Vo3, 231-259 (2000).
http://wwv. fz-juelich.del/nic-series/Volune3d/I| ang. pdf

. B. Steffen,Subspace Methods for Sparse Eigenvalue Problems in Modern Methods

and Algorithms of Quantum Chemistry, J. Grotendorst (Exbhn von Neumann In-
stitute for Computing, NIC Series Va8, 307-314 (2000).
http://ww. fz-juelich.de/nic-series/ Vol ume3/ st ef f en. pdf

. http://ww. netlib.org/ bl as/

http://ww. netlib.org/l apack/
10.
11.
12.
13.

http://ww. netlib. org/scal apack/

http://ww. caam ri ce. edu/ sof t war e/ ARPACK/

htt p: //ww«+ uni x. nts. anl . gov/ pet sc/ pet sc-as/

L. S. Blackford, J. Choi, A. Cleary et afcal APACK Users Guide, SIAM, Philadel-
phia (1997).

G. Ahlefeld, I. Lenhardt, and H. Obermaid®arallele numerische Algorithmen,
Springer, Berlin (2002).

J. M. Ortegalntroduction to parallel and vector solution of linear systems, Plenum
Press, New York (1988).

J. ZhuSolving partial differential equationson parallel computers, World Scientific,
Singapore (1994).

W. Gropp, E. Lusk, and A. Skjellunsing MPI : Portable Parallel Programming
with the Message-Passing Interface, MIT Press, Cambridge (1994).

R. Courant and D. Hilberlethods of Mathematical Physics, Volume I, Interscience
Publishers, New York (1953).

http://ww. netlib. org/scal apack/ pbl as_gref. htni

15

20. J. J. Dongarra and R. C. WhaléylUser's Guide to the BLACS, LAPACK Working

Note 94 (1997).
http://ww. netlib. org/lapack/| awns/| awn94. ps

21. E. Anderson, Z. Bai, C. Bischof et dLAPACK Users Guide, Second Edition, SIAM,
Philadelphia (1995).

22. 1. Gutheil,Basic Numerical Libraries for Parallel Systems in Modern Methods and
Algorithms of Quantum Chemistry, J. Grotendorst (Ed.),nJebn Neumann Institute
for Computing, NIC Series VoB, 47-65 (2000).
http://ww. fz-juelich.de/nic-series/Vol ume3/ gut hei | . pdf

16

