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Molecular Dynamics - Vision and Reality

Godehard Sutmann

John von Neumann Institute for Computing
Central Institute for Applied Mathematics
Forschungszentrum Jillich
52425 Julich, Germany
E-mail: g.sutmann@fz-juelich.de

“We may regard the present state of the universe as the efféspast
and the cause of its future. An intellect which at any givermeat
knew all of the forces that animate nature and the mutual tjwos
of the beings that compose it, if this intellect were vastugmoto
submit the data to analysis, could condense into a singledida the
movement of the greatest bodies of the universe and thag difjthtest
atom; for such an intellect nothing could be uncertain and thture
just like the past would be present before its eyes.

Marquis Pierre Simon de Laplace, 1814

1 Introduction

With the age of enlightenment and the development of mattieat@ools the vision of
computability and predictability of natural phenomenasaramong scientists and philoso-
phers. Pierre Simon de Laplace phrased this vision in tefrascontrolling, omniscient
instance which would be able to look into the future as welirés the past due to the
deterministic nature of processes, governed by the salafidifferential equations. This
omniscientinstance, introduced by Laplace was hencedaftbd the_aplace demonThis
rational view of Laplace, however, had to be corrected with advent of chaos theory,
starting with the work of Poincaré, which states that milichanges in initial config-
urations of nonlinear differential equations might leadataliverging behavior between
solutions. Although the general view of Laplace’s visiomdsrected nowadays by chaos
theory and quantum mechanics, it expresses two main featirelassical mechanics,
i.e. (i) determinism of processes and (ii) time reverdipitif the fundamental equations.
His understanding of nature was one of the first ideas forgloinlecular dynamics sim-
ulations, i.e. considering an isolated system of partidies behavior of which is fully
determined by the solution of the classical equations ofenot

OH . OH

dq; > q; = Op; (2)
whereH is the Hamiltonian of the system anmg, q; are the generalized momenta and
coordinates of particle with index However, as is shown in Section 3, even for small
systems, which are precisely described by initial and baandonditions, the vision of
Laplace is not fulfilled.
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Nevertheless, the main line, which governs the ideaaylace’s demoris found in
modern simulation methodologies and computer simulati@sed on this principle have
become a powerful tool to treat the dynamical behavior ofinear many-body systems.
The initial conditions as well as boundary conditions eeidrer from theoretical consid-
erations (limiting laws) or from experimental values. I&thhysical system is fully char-
acterized, simulations may be an indispensable tool toesthlgoretical models beyond
certain approximations or to provide additional help fopesimentalists to get a deeper
view into phenomena or to answer questions which are noilgeds treat with current
experimental facilities.

Although there are different methods to obtain informatatiout complex systems,
particle simulations always require a model for the intBoacbetween system con-
stituents. The model can only be considered as an appragimtatreality, but computer
simulations should provide a tool to solve this model exa@tithin numerical precision).
In order to get a connection to real world systems, this mbdsl to be tested against
experimental results, i.e. it should reproduce or appratinexperimental findings like
distribution functions or phase diagrams and theoretioaktraints, i.e. it should obey
certain fundamental or limiting laws like energy conseioat

Concerning MD simulations the ingredients for a programbescally threefold:

(i) As already mentioned, a model for the interaction betwggstem constituents (atoms,
molecules, surfaces etc.) is needed. Often, it is assunaghéticles interact only pair-
wise, which is exact e.g. for particles with fixed partial ies. This assumption greatly
reduces the computational effort and the work to implemisantodel into the program.
(ii) An integrator is needed, which propagates particleétms and velocities from time
tot + dt. Itis a finite difference scheme which moves trajectorissmditely in time. The
time stepdt has properly to be chosen to guarantee stability of the iiateg i.e. there
should be no drift in the system’s energy.

(iii) A statistical ensemble has to be chosen, where theymanhic quantities like pressure,
temperature or the number of particles are controlled. Tteral choice of an ensemble
in MD simulations is the microcanonical ensemble (NVE)¢sithe system’s Hamiltonian
without external potentials is a conserved quantity. Nenedess, there are extensions to
the Hamiltonian which also allow to simulate different Etital ensembles.

These steps essentially define an MD simulation. Havingdlolkat hand, it is possible
to obtainexactresults within numerical precision. Results are only ottrvéith respect to
the model which enters into the simulation and they have ttebed against theoretical
predictions and experimental findings. If the simulatiosutes differ from thereal system
properties or are incompatible wittolid theoretical manifestations, the model has to be
refined. This procedure can be understood as an adaptiverrefirt which leads in the
end to an approximation of a model of tresal world at least for certain properties. The
model itself may be constructed from plausible considenstiwhere parameters are cho-
sen from neutron diffraction or NMR measurements. It mag asult from first principle
investigations, like quantumb initio calculations. Although the electronic distribution of
the particles is calculated very accurately, this type ofledduilding contains also some
approximations, since many-body interactions are mosblacted (this would increase
the parameter space in the model calculation enormouslgjveier, it often provides a
good starting point for a realistic model.

The problem which is often met in molecular simulations is éixistence of a variety



of time scales, which govern the physical system. Since outde dynamics consists of an
integration of differential equations, one often has t@taito account the fastest motion in
the system by imposing a small time step of integration ireotd sample the movements
correctly and conserve first integrals. Considering emgukations of DNA, there is a huge
gap between time scales which govern certain phenomenésteatomic vibrations take
place on a sub-picosecond time scdle (' s), twisting of the molecule on a picosecond
scale {0712 s), bending of the whole molecule on a nanosecond stéie (- 10'° s) and
supercoiling of the molecule on a broad time scale band ugd¢orss {06 — 10° sy
(similar range of timescales holds for protein dynajic¥ herefore prute-forcecalcula-
tions have to be done on the most powerful computers at haraghpvoximations have to
be done, reducing system components in order to coarseryttaanics of the system. In
the second approach it is of course very important to keepdbential ingredients which
still reproduce global motions or long time dynamics. Exéaagor this approach may be
found e.g. in Ref. 4. An impressive example for the first apptowas given by the group
of Peter Kollman, where a small protein (subdomain HP-3fhftiee villin headpiece) was
studied in an all-atom simulation for a micro-second timeeiivaP-5. Although this is
still a small system, consisting of about 10000 atoms ( 6@®gim atoms and 3000 water
molecules), CRAY T3D and CRAY T3E machines with 256 proceshad to be kept busy
(continuously) for several months. This huge computatiaak had to be spent because
5 x 108 steps of integration had to be performed because of the imalktep of integra-
tion of 6t = 2 x 10~15s which was necessary to apply in order to resolve high freguen
motions in the system. Although with the development of cataphardware the time
scales as well as the system sizes can be extended more amd msatill a current field
of research how to model and simulate complex systems onggtilie scalé.

It is clear that the performance of particle dynamics simiaites strongly depends on
the computer facilities at hand. The first studies using Miutation techniques were
performed in 1957 by B. J. Alder and T. E. Wainrigfitwho simulated systems of hard
spheres. In this early simulation, which was run on an IBM;ip to 500 particles could
be simulated, for which 500 collisions per hour could be wlaled. Taking into account
200000 collisions for a production run, these simulati@stdd for more than two weeks.
Nowadays, systems for several million or even billion et are performéf=2 These
huge systems make parallel computing an indispensible temtunately, molecular dy-
namics is in principle possible to parallelize to 100% (ring into account input/output
operations). Therefore, the problem sizes and timescatessally extended with the
inauguration of more powerful parallel systems. Nevedseli is still challenging to de-
velop programs which are able to scale up to thousands oepsocs. In principle, new
architectures, like the IBM Blue Genéft:'* should provide a platform for tackling the
grand challenge problems, e.g. protein folding. Neveet®l practical experience tells
that parallel programs do not scale good enough to use n@obprocessors up to 10000
or more. This makes it necessary to improve parallel algoritand to think in new algo-
rithms, which overcome different time and length scafés

Classical molecular dynamics methods are nowadays appliachuge class of prob-
lems, e.g. properties of liquids, defects in solids, freetisurface properties, friction,
molecular clusters, polyelectrolytes and biomoleculese b the large area of applica-
bility, simulation codes for molecular dynamics were depeld by many groups. On the
internet homepage of the Collaborative Computationald@tdjlo.5 (CCP5Y¥ there are a



lot of computer codes assembled for condensed phase dynamiging the last years
several programs were designed for parallel computers. ngntikem, which are partly
available free of charge, are, e.g., Amber/Salgd&@HARMM*, NAMD *°, NWCHEM?°
and LAMMPS?,

2 Models and Methods for Particle Interactions

The part of a simulation where physics come into play is theleling of interactions

between particles. This is the part of a molecular dynamiognam which makes the dif-
ference between simulating a galaxy or simualting a draleiater molecules. In general
the physical system is determined by its Hamiltonian (oeotliay around, the Hamilto-
nian is written down according to the system under consiiera It can be written as

intrinsic partHo andexternalpart?, (t)

H = Ho + Hi(t) ()

where the time-dependence #f indicates that time-varying external fields, e.g. sinu-
soidal laser beams, may enter into the energetic desariptiothe external part of the
Hamiltonian is omitted then it is clear from classical medba that the system Hamilto-
nian is a conserved quantity.

The intrinsic part of the Hamiltonian can often be written as

1 Tag—1 1 Tp—1 Pl
HozﬁpM p+§w0 w+Z.Z u(rsj) 3)
=1 j=i+1
N-2 N-1 N
+ Z Z Z U(B)(T‘i]‘,mk,rjk) +...
i=1 j=i+1 k=j+1
wherep is a 3N-dimensional vector of particle momend, a diagonal mass matrix,
ri; = |r; —r;| the distance between particle pairs an@) a pair potential function.
Furthermore, if simulating rigid bodies or molecules witkefi atomic distancesy is
the angular velocity an€ the tensor of inertia. If not only pair interactions are to be
considered, 3-body potentiai$®), or multi-body potentials(™ can be included into the
Hamiltonian. Mainly this is avoided, since it is not easy todel and also it is rather time
consuming to evaluate potentials and forces originatiagnfthese many-body terms.
Roughly speaking the potential functions can be classifigd iwo main groups,
namely short-range and long-range interactions. One danags the range of a potential
function by considering the leading term of its expansiopawers ofr~". The integral
over the leading term gives an estimate of the range of inflegire.

/i g = {finite : short range @)
rn oo :longrange
whered is the dimension of the physical space. Therefore, in 3-dsimmal space, poten-
tials dropping a3, e.g. dipole-dipole interactions, are still long ranged.

There may be different terms contributing to the interatpotential between particles,
i.e. there is no universal expression, as one can imaginér$oiprinciples calculations.
In fact, contributions to interactions depend on the modattvis used and this is the re-
sult of collecting various contributions into differentites, coarse graining interactions or



imposing constraints, to name a few. Generally one camdisish between bonded and
non-bonded terms, or intra- and inter-molecular terms.firbeclass denotes all contribu-
tions originating between particles which are closelytezldo each other by constraints or
potentials which guaranty defined particles as close neighbrhe second class denotes
interactions between particles which dagely move, i.e. there are no defined neighbors,
but interactions simply depend on distances.

A typical form for a (so-called) force field (e.g. AMBER looks as follows

U= Y Knr—re)®+ ) Ko(0 —00)"+ %[Hcos(nqﬁ—v)] (5)

bonds angles dihedrals
Aij By Cij Dy 4i4;
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In the following, short- and long-range interaction potalistand methods are briefly
described in order to show differences in their algoritrahiceatment.

2.1 Short Range Interactions

In Eqg. (5) the first three terms are examples for bonded, shage interactions. They
consist of bond vibrations (i.e. two molecules oscillating potential), angular vibrations
(i.e. varying bond angle between three molecules) and dihedotion (i.e. torsional
deformation of four bonded particles). It is clear by deforitthat these interactions are
short ranged. Since the bond partners between moleculg&eadein a simulation (in
principle it is possible to include bond breaking in an apjrate way? also in a classical
simulation), one can set up fixed lists in the beginning ofdimsulation, containing all
indices of particle-pairs, -triples, -quadruples etc. ehhgxhibit bonded interactions. This
omits lengthy checks, which particles take part in an irdgoa.

The next two terms are examples for short range, non-boretetst The first is the
famous Lennard-Jones potential, which includes a stroregeglling term, modeling the
Pauli exclusion, i.e. hard core repulsion. The attractergnton the other hand models
the effect of interactions between induced dipoles, attvaclue to fluctuating charge dis-
tributions. The other term is sometimes included to give aemealistic description of
hydrogen bonds. This term is only evaluated between sppaidicle pairs, i.e. hydro-
gens and electronegative atoms, which are able to form lggdrbonds. The constants,
A;j, Bij, Cy5, Dyj are in general different for different atom types or pairs, they have
to be adjusted by proper modeling. Often the constants aleaed for single atom types
and the parameters for cross terms between different atmreakulated by combination
rules.

The Lennard-Jones and the hydrogen bond terms can be wnittedifferent way

o “ o ’
u(Tia,jp) = 4€ap ((r a/;) N (T" aéﬁ) ©
1a,] @, ]

wherei, j denotes different particle indices ands different types of atoms (for Lennard-
Jones e.g. itiz = (A/B)~% e = B?/44, a = 12 andb = 6). The most frequently
applied combining rule is the Lorentz-Berthelot forntdla

Oaa + 083

Oap = f s €af = VV€aa€pp (7)



It is simply noted here that there are also more complicaiéeby e.g. the Kong rufé
or the Waldman-Hagler rufé which sometimes give better results in the calculation of
pressure-density profiles of liquitfs

Since these potentials are short ranged one can restrievéheation to limited region
of space. Usually one introduces a cutoff radiRs, beyond which the interactions are
set to zero. A common choice for the cutoff radius is givenRy = 2.5¢. Since at
R, the interaction is not identical zero, it is clear that pdes entering from outsid&,
into inside region exhibit a jump in potential and forcesrrrally, the force at the cutoff
distance F;; = —Vu(r;;)) is infinitely large, since the potential exhibits a step doe
truncation. This sudden acceleration of particles usdaligls to a heating of the system,
since the motion is not reversible. Consider, e.g. a twoiglarsystem, where one particle
comes from outside and moving with velocity to an interparticle distance= R, — ¢,
with e << 1. Then it gets an abrupt force contribution, acceleratifigétding to a velocity
v1 > vo. On the other hand, if a particle starts frdfa — e with velocity v; to leave the
sphere with radiug,, then it still has velocity, > vo. For a many-particle system this
means thafv?) increases due to many crossings and recrossings of thagtiter sphere,
i.e. the temperature increases.

In order to avoid this statistical effect, one may eitherddtice smoothing functions,
which continuously drop the potential and the forces to z@iee disadvantage with this
approach is that there will be a zone of large forces at theffedistance if the forces are
properly evaluated as derivatives of the potential. Thereebne has to smooth forces in
this region, leading however to a non-conservative systeherefore a different method
is most often used, which consists in shifting the whole ptig and force by a certain
amount, which guarantees that both the potential and thee fare exactly zero at the
cutoff distance, i.e.

u(rij) — u(Re) + (rij — Re) F(Re) : 1ij < Re
w377 (rij) = { (8)
0 1Ty > R,
F(I'ij) - F(RC) f‘ij “ Ty S RC
FO/P) (1) = { ©)
0 1T > R,

This ensures a smooth transition from outside to inside titefiregion and vice versa.
Since there are only relatively few particles which haveeabnsidered for the inter-
action with a tagged particle (i.e. those particles wittiia tutoff range), it would be a
computational bottleneck if in any time step all particlerpavould have to be checked
whether they lie inside or outside the interaction rangeis Becomes more and more a
problem as the number of particles increases. A way to oneedbis bottleneck is to in-
troduce list techniques. The first implementation date& bathe early days of molecular
dynamics simulations. In 1967, Verlet introduced &listvhere at a given time step all
particle pairs were stored within a ran§le + R, whereR; is called the skin radius and
which serves as a reservoir of particles, in order not to tgpthe list in each time step
(which would make the list redundant). Therefore, in a fortngine, not all particles have
to tested, whether they are in a range < R., but only those particle pairs, stored in the
list. Since particles are moving during the simulationsiheécessary to update the list from
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Figure 1. Contour plots of the performance for the combamatf linked-cell and Verlet list as a function
of the cell length and the size of the skin radius. Crosse& tharpositions predicted from an optimization
proceduré®. Test systems were composed of 4000 Lennard-Jones pawitieR, = 2.5 o at temperature
T = 1.4e/kp. Left: p = 0.75/03. Right: p = 2.0/03.

time to time. A criterion to update the list could be, e.g.

max r3(t) — ri(tupa)] > (10

wheret,,q is the time from the last list update. This ensures that gagicannot move
from the outside region into the cutoff sphere without beiagognized. This technique,
though efficient, has still complexit§(N?2), since at an update stegl| particle pairs have
to be checked for their mutual distances. Another problésesmwhen simulating many
particles, since the memory requirements are relativebeldsize of the list iglr (R, +
R;)3p N/3). There is, of course also the question, how large the skiiusashould be
chosen. Often, itis chosen & = 1.50. In Ref. 28 it was shown that an optimal choice
strongly depends on the number of particles in the systemaaraptimization procedure
was outlined.

An alternative list technique, which scales linearly witle number of particles is the
linked-cell method® 3L The linked-cell method starts with subdividing the whofstsm
into cubic cells and sorting all particles into these cedlsading to their position. The size
of the cells,L., is chosen to bé&,, < Lg,, /floor(Lp,;/R.), whereLg,, is the length of
the simulation box. All particles are then sorted into adisty of lengthV. The list is or-
ganized in a way that particles, belonging to the same celisked together, i.e. the entry
in the list referring to a particle points directly to the smf a next particle inside the same
cell. A zero entry in the list stops the search in the cell andx cell is checked for entries.
This technique not only has computational complexity)gfV), since the sorting into the
cells and into theV-dimensional array is oD (V), but also has memory requirements
which only grow linearly with the number of particles. Thésatures make this technique
very appealing. However, the technique is not well vectie and also the addressing of
next neighbors in the cells require indirect access (exj.ndex(i ) ), which may lead
to cache misses. In order not to miss any particle pair inritexactions every box has to
have a neighbor region in each direction which extend®tdn the case, wherg,. > R.,
every cell is surrounded by 26 neighbor cells in three diriwerad systems. This gives rise



to the fact that the method gives only efficiency gainsgf,, > 4R., i.e. subdividing each
box direction into more than 3 cells. In order to approxintatecutoff sphere in a better
way by cubic cells, one may reduce the cell size and simultasig increasing the total
number of cells. In an optimization procedtfidgt was found that a reduction of cell sizes
to L. = R./2 or even smaller often gives very much better results.

It is, of course, possible to combine these list technigues, using the linked-cell
technique in the update step of the Verlet list. This redtitessomputational complexity
of the Verlet list toO(N) while fully preserving the efficiency of the list techniquiéis
also possible to model the performance of this list comineand to optimize the length
of the cells and the size of the skin radius. Figure 1 showsdkelt of a parameter study,
where the performance of the list was measured as a functioh.0R;). Also shown is
the prediction of parameters coming out of an optimizatioycpduré®.

2.2 Long Range Interactions

Long range interactions essentially require to take aliglamairs into account for a proper
treatment of interactions. This may become a problem, ifogér boundary conditions
are imposed to the system, i.e. formally simulating an itdimumber of particles (no
explicit boundaries imply infinite extend of the system) efdfore one has to devise special
techniques to treat this situation. On the other hand oreehads to apply fast techniques
to overcome the inhereid®(N?2) complexity of the problem, since for large numbers of
particles this would imply an intractable computationattlemeck. In general one can
classify algorithms for long range interactions into thikofeing system:

e Periodic boundary conditions

— Grid free algorithms, e.g. Ewald summation metfogf

— Grid based algorithms, e.g. Smoothed Particle Mesh Ewafd Particle-
Particle Particle-Mesh methdd°

e Open boundary conditions

— Grid free algorithms, e.g. Fast Multipole MetH8d*® (FMM), Barnes-Hut Tree
method® 47

— Grid based algorithms, e.g. Particle-Particle Particlgitlgrid method®
(P*Mg), Particle Mesh Wavelet methG{(PMW)

In the following two important members of these classes badldescribed, the Ewald
summation method and the Fast Multipole Method.

2.2.1 Ewald Summation Method

The Ewald summation method originates from crystal physitere the problem was to
determine the Madelung constafhdescribing a factor for an effective electrostatic energy
in a perfect periodic crystal. Considering the electristtergy of a system d¥ particles

in a cubic box and imposing periodic boundary conditionsgfeto an equivalent problem.



At positionr; of particlei, the electrostatic potentiafi(r;), can be written down as a
lattice sum

I=212 Z e al] ()

wheren = (ng,ny, n.),nq € Z is avector along cartesian coordinates &rid the length
of the simulation box. The sign” means thai # j for |n| = 0.

Eq. (11) is conditionally convergent, i.e. the result of thubecome depends on the order
of summation. Also the sum extends over infinite number dicktvectors, which means
that one has to modify the procedure in order to get an alisoartvergent sum and to get
it fast converging. The original method of Ewald consistedhtroducing a convergence
factore~—™#, which makes the sum absolute convergent; then transfgriminto different
fast converging terms and then putting the convergence factor to zero. The final result
of the calculation can be easier understood from a physictune. If every charge in
the system is screened by a counter charge of opposite sigohws smeared out, then
the potential of this composite charge distribution becesteort ranged (it is similar in
electrolytic solutions, where ionic charges are screeryecblointer charges - the result is
an exponentially decaying function, the Debye potetifjalin order to compensate for
the added charge distribution it has to be subtracted agHiw. far field of a localized
charge distribution is, however, again a Coulomb potenfiderefore this term will be
long ranged. There would be nothing gained if one would synspim up these different
terms. The efficiency gain shows up, when one calculateshibet Eange interactions as
direct particle-particle contributions in real space, lsumming up the long range part
of the smeared charge cloud in reciprocal Fourier spaceosihg as the smeared charge
distribution a Gaussian charge cloud of half widtfi the corresponding expression for
the energy becomes

N
erfc(alr;; +nL|)
=V : j

; Z 4 |ri; +nL] (12)

ZZ _ekP/4a? gikrss _ g, 20

byt \kl VT
The last term corresponds to a self energy contribution whigs to be subtracted, as it is
considered in the Fourier part. Eq. (12) is an exact equivalEEq. (11), with the differ-
ence that it is an absolute converging expression. Thexefmhing would be gained with-
out further approximation. Since the complimentary errorction can be approximated
for large arguments by a Gaussian function and the k-spategecreases like a Gaussian,
both terms can be approximated by stopping the sums at arcktéce vectom and a
maximalk-valuek,,... The choice of parameters depends on the eeret, exp(—p?),
which one accepts to tolerate. Setting the error tolerarened choosing the width of the
counter charge distribution, one gets

log(R.) 1

2 _ 2

Rc + o2 - ?(p - 10g(2)) (13)
47

k2 .. + 8a” log(kmaz) = 4a°p® + log (ﬁ) (14)



This can be solved iteratively or if one is only interestedtirapproximate estimate for the
error, i.e. neglecting logarithmic terms, one gets

R.=? (15)
(0]
kmaz = 2ap (16)

Using this error estimate and furthermore introducing exea times, spent for the real-
and reciprocal-space part, it is possible to show that paramsR., a andk,,,, can be
chosen to get a complexity @(N3/?) for the Ewald surf? >3 In this case, parameters

are
R T Lk
—cz1/N1/3 , osz#:\/le/3 (17)

L

Figure 2 shows the contributions of real- and reciprocalsiar Eqg. (12), as a func-
tion of the spreading parameter where an upper limit in both the real- and reciprocal-
contributions was applied. In the real-space part usually/ restricts the sum tm| = 0
and applies a spherical cutoff radiug,. For fixed values oR?. andk,,,, there is a broad
plateau region, where the two terms add up to a constant.\litlein this plateau region,
a value fora should be chosen. Often it is chosen according te 5/L. Also shown is
the potential energy of a particle, calculated with the Ehgalm. It is well observed that
due to the periodicity of the system the potential energjaseris not radial symmetric,
which may cause problems for small numbers of particlesérsistem.

PN WAoo N

Energy

Figure 2. Left: Dependence of the calculated potential @ndhoice of the scaled inverse width,L,
of the smeared counter charge distribution. Parameterthidrtest wereN = 152, R, = 0.5 L and
kmazL/2m = 6. Right: Surface plot and contours for the electrostatieptil of a charge, located in the
center of the simulation volume. Picture shows the xy-plane = L/2. Parameters werB, = 0.25 L,
aL =12.2 andkmasL/27 = 6.

2.2.2 The Fast Multipole Method

In open geometries there is no lattice summation, but ordystim over all particle pairs
in the whole system. The electrostatic energy at a parsigesition is therefore simply

calculated as
N

AEDY qij (18)

10



Without further approximation this is always afi(N?2) algorithm since there are
N(N - 1)/2 interactions to consider in the system (here Newton’s tldivd was taken
into account). The idea of a multipole method is to groupiplag which are far away
from a tagged particle together and to consider an effeatitezaction of a particle with
this particle groupf—°¢. The physical space is therefore subdivided in a hieraathiay,
where the whole system is considered as level 0. Each fulékel is constructed by
dividing the length in each direction by a factor of two. Thhole system is therefore
subdivided into a hierarchy of boxes where eparent boxcontains eighthildren boxes
This subdivision is performed at maximum until the level anneach particle is located in
an individual box. Often it is enough to stop the subdivisidneady at a lower level.

In the following it is convenient to work in spherical coandies. The main principle
of the method is that the interaction between two partidiesated atr = r,6, ¢ and
a = (a, o, 3) can be written as a multipole expansién

l

l_ o —im(B—
Z Z | D! rH‘l le(cosa) Py (cosb) e (B—¢) (19)

|r—a| P @+ [m!

where P;,,,(x) are associated Legendre polynomiéls This expression requires that
a/r < 1 and this gives a lower limit for the so-calleekll separatedoxes. This makes it

necessary to have at least one box between a tagged box arahthevhere contributions
can be expanded into multipoles. Defining the operators

Oim(a) = a' (I — |m|)! Py (cos a) e imP (20)

1 1 im
My (r) = T 0 ) Py (cost) e™? (21)
with which Eg. (19) may simply be rewritten in a more compaaywit is possible to write
further three operators, which are needed, in a compactrssHee.

1.) atranslation operator, which relates the multipoleaggion of a point located atto a
multipole expansion of a point locatedaat- b

Oim(a+b) = Z Z Alp (@) ,  ARM®) =0_jmd) (22

7=0 k=—1

2.) a transformation operator, which transforms a mulgépekpansion centered at the
origin into a Taylor expansion centered at locafion

L
Mim(a — Z Z Bii(®)Ojr(a) ,  Bi(b) = Myyjmik(b) (23)

3.) a translation operator, which translates a Taylor esigarof a pointr about the origin
into a Taylor expansion af about a poinb

Mlm r— = Z Z I‘) ’ Cjzl (b) = Aérkr:l (b) (24)

7=0 k=—1

The procedure to calculate interactions between partisldsen subdivided into five
passes. Figure 3 illustrates four of them. The first passsisraf calculating the multipole
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Figure 3. Schematic of different passes in the Fast Multipdethod. Upper left: Pass 1, evaluation of
multipole terms in finest subdivision and translating infiation upwards the tree. Upper right: Pass 2,
transforming multipole expansions in well separated baxtslocal Taylor expansions. Lower left: Pass
3, transferring multipole expansions downwards the tiaes tollecting information of the whole system,
except nearest neighbor boxes. Lower right: Pass 5, diedctilation of particle-particle interactions in

local and nearest neighbor boxes.

expansions in the lowest level boxes (finest subdivisiorging) the translation operator
Oun(a + b), the multipole expansions are translated into the centéradf parent boxes
and summed up. This procedure is repeated then subseqfrebch level, until level 2

is reached, from where no further information is passed twaaser level. In pass 2, using
operatorM;,, (a — b), multipole expansions are translated into Taylor exparssio a box
from well separated boxes, whose parent boxes are neargboeboxes. Well separated
means, that for all particles in a given box the multipoleangion in a separated box is
valid. Since the applicability of Eqg. (19) implies> a, well separateness means on level
I that boxes should be separated by a disténde This also explains, why there is no
need to transfer information higher than level 2, since ftbere on it is not possible to
have well separated boxes anymore, i.e. multipole expagsice not valid any more. In
pass 3, using the operatdf;,,,(a — b), this information is then translated downwards the
tree, so that finally on the finest level all multipole inforina is known in order to inter-
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act individual particles with expansions, originatingrfr@ll other particles in the system
which are located in well separated boxes of the finest ldaglass 4 this interaction be-
tween individual particles and multipoles is performechdtly in pass 5, explicit pair-pair
interactions are calculated between particles in a lovexs box and those which are in
nearest neighbor boxes, i.e. those boxes which are notlcaé separated.
It can be showf? that each of the steps performed in this algorithm is of o€2eV),

making it an optimal method. Also the error made by this meéttem be controlled rather
reliably*®. A very conservative error estimate is thereby givett48°°

I ey L (25)

r—a|| —r—a\r

At the current description the evaluation of multipole terssales a® (14, ,.), whenl,,q,
is the largest value dfin the multipole expansion, Eq. (19). A faster version widchles
asO(13,,.) and therefore strongly reducing the prefactor of the ovechleme, was pro-
posed in Ref. 43, where multipoles are evaluated in a roteveddinate frame, which
makes it possible to reduce calculations to Legendre pofyals and not requiring asso-
ciated Legendre polynomials.

Also to mention is that there are approaches to extend theMratpole Method to

periodic systenf§:6%

3 The Integrator

The propagation of a classical particle system can be desthy the temporal evolution
of the phase space variabl§s, q), where the phase spatép,q) € RS" contains all
possible combinations of momenta and coordinates of thtersysThe exact time evolution
of the system is thereby given by a flow map

Bs19 : ROV — ROV (26)
which means
®5e,u(p(t),q(t)) = (p(t) + 0p, q(t) + dq) (27)
where
p+ 6p = p(t + dt) , q+ déq = q(t + dt) (28)

For a nonlinear many-body system, the equations of motionaigbe integrated exactly
and one has to rely on numerical integration of a certainroRl®pagating the coordinates
by a constant step size a number of different finite difference schemes may be uged f
the integration. But there are a number of requirements;inhave to be fulfilled in order
to be useful for molecular dynamics simulations. An intégrasuitable for many-body
simulations should fulfill the following requirements:

e Accuracy, i.e. the solution of an analytically solvable m®blem should be as close
as possible to the numerical one.

e Stability, i.e. very long simulation runs should producegibally relevant trajecto-
ries, which are not governed by numerical artifacts
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e Conservativity, there should be no drift or divergence imsarved quantities, like
energy, momentum or angular momentum

e Reversibility, i.e. it should have the same temporal stmects the underlying equa-
tions

e Effectiveness, i.e. it should allow for large time stepdwiit entering instability and
should require a minimum of force evaluations, which uguatted about 95 % of
CPU time per time step

e Symplecticity, i.e. the geometrical structure of the phgsace should be conserved

It is obvious that the numerical flowgs; 7, of a finite difference scheme will not be
fully equivalent to®s 7, but the system dynamics will be described correctly if teens
above will be fulfilled.

In the following the mentioned points will be discussed anduanber of different
integrators will be compared.

3.1 Basic Methods

The most simple integration scheme is the Euler method,wmiay be constructed by a
first order difference approximation to the time derivatiehe phase space variables

0
n = Pn — a_ n; Un 2
Prnt1 =P 5t6q7i(p dn) (29)
0
Qni1 = qn + 5t%7i(pmqn) (30)

wheredt is the step size of integration. This is equivalent to a Tagkpansion which is
truncated after the first derivative. Therefore, it is olngdhat it is of first order. Knowing
all variables at step, this scheme has all relevant information to perform thegretion.
Since only information from one time step is required to de ifitegration, this scheme
is called the one-step explicit Euler scheme. The basicrseh&qgs. (29,30) may also be
written in different forms.

The implicit Euler method

0
Pn+1 = Pn — 6t8_qH(pn+la qn+1) (31)

0
dnt+1 = dn + 5t%7{(pn+1; qn+1) (32)

can only be solved iteratively, since the derivative on thbtrhand-siderhs) is evaluated
at the coordinate positions on the left-hand-sitis)(

An example for a so-called partitioned Runge-Kutta mettsthevelocity implicit
method

0
Pnt+1 = Pn — 6ta_qH(pn+la qn) (33)

0
dnt1 = Qp + 6t%ﬂ(pn+1, dn) (34)
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Since the Hamiltonian usually splits into kineficand potential/ parts, which only de-
pend on one phase space variable, i.e.

1 _
H(p,q) = 5p" M~ p+U(q) (35)
whereM ! is the inverse of the diagonal mass matrix, this scheme nsayba written as
0
nt1 = Pn — 0t—U(qn 36
Pntl =P aqu (an) (36)
ot
dn+1 =9qn + Epn+l (37)

showing that it is not necessary to solve it iteratively.
Obviously this may be written asposition implicit method

0
Pn+1 = Pn — ‘Sta_qu(qn-i-l) (38)
ot
dnt+1 = dn + — Pn (39)
m

Applying first Eq. (39) and afterwards Eg. (38) also this &atidoes not require an iterative
procedure.

All of these schemes are first order accurate but have diffgneperties, as will be
shown below. Before discussing these schemes it will begstig to show a higher order
scheme, which is also based on a Taylor expansion. Firg @oivn expansions

q(t + 0t) = q(t) + 6t q(t) + % St g(t) + 0(6t%) (40)
=q(t) + % p(t) + % St2p(t) + O(6t%) (41)
p(t+ 6t) = p(t) + 5t p(t) + %&2 B(t) + 0(6t%) (42)
= p(t) + 5 (B(1) + Bt +50)) + O(F) (@3)

where in Eq. (41), the relatio§ = p/m was used and in Eq. (43) a first order Taylor
expansion fop was inserted. From these expansions a simple second orgestep
splitting scheme may be written as

ot
Pnti/2 =Pnt 3 F(qn) (44)
ot
dn+1 =9qn + m Pn+1/2 (45)
ot
Pnt1 = Pn41/2 + ) F(qn1) (46)

where the relatiop = —0#H /0q = F was used. This scheme is called Wedocity Verlet
scheme. In a pictorial way it is sometimes described askielf-drift, half-kick, since the
first step consists in applying forces for half a time steppgad step consists in free flight
of a particle with momenturp,, ., /» and the last step applies again a force for half a time
step. In practice, forces only need to be evaluated oncedh tae step. After having
calculated the new positiong, 11, forces are calculated for the last integration step. They
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are, however, stored to be used in the first integration stegydeforces in the next time
step of the simulation.

This algorithm comes also in another flavor, called Bosition Verletscheme. It can
be expressed as

ot
dn+1/2 = dn + m Pn (47)
Pn+1 = Pn + 0t F(Qpny1/0) (48)
ot
Ur+1/2 = nt1/2 + 5 Pt (49)

In analogy to the description above this is sometimes dasdras half-drift, kick, half-
drift. Using the relationp = ¢/m and expressing this as a first order expansion, it is
obvious thatf (q,+1/2) = F((an + dn+1)/2) which corresponds to an implicit midpoint
rule.

3.2 Stability

Performing simulations of stable many-body systems fog lttimes should produce con-
figurations which are in thermal equilibrium. This meang gystem properties, e.g. pres-
sure, internal energy, temperature etc. are fluctuatingrarconstant values. To measure
these equilibrium properties it should not be relevant wherput the time origin from
where configurations are considered to calculate averagtitjes. This requires that the
integrator should propagate phase space variables in swal that small fluctuations do
not lead to a diverging behavior of a system property. Thaskigid of minimal requirement
in order to simulate any physical system without a domimatibnumerical artifacts. It is
clear, however, that any integration scheme will have ita stability range depending on
the step sizét. This is a kind of sampling criterion, i.e. if the step siz&ds large, in order
to resolve details of the energy landscape, an integratioerse may end in instability.
For linear systems it is straight forward to analyze theiltglbange of a given numer-
ical scheme. Consider e.g. the harmonic oscillator, foccvithe equations of motion may
be written asj(t) = p(t) andp(t) = —w?q(t), wherew is the vibrational frequency and it
is assumed that it oscillates around the origin. The exdatiea of this problem may be

written as
wq(t)\ _ [ coswt sinwt w ¢(0) (50)
p(t) ) \ —sinwt coswt p(0)
For a numerical integrator the stepwise solution may beevrias
(‘*’ q"“) = M(5t) (‘*’ q”) (51)
Pn+1 Dn

whereM(dt) is a propagator matrix. It is obvious that any stable nuna¢scheme re-
quires eigenvaluga (M)| < 1. For|A| > 1 the scheme will be unstable and divergent, for
|A] < 1 it will be stable but will exhibit friction, i.e. will loose rergy. Therefore, in view
of the conservativity of the scheme, it will be required thgiM)| = 1.

As an example the propagator matrices for the Implicit E(IlEy and Position Verlet
(PV) algorithms are calculated as

1 1 wit
Mig(3t) = 155 (_w& : ) (52)
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1 1
1-— §w2(5t2 wot (1 — ZUJZ&2>

1
—wdt 1- §w26t2

Mpy (6t) = (53)

Itis then straight forward to calculate the eigenvalue®assrof the characteristic polyno-
mials. The eigenvalues are then calculated as

)\EE =1+ iwdt (54)

1 .

1 5.5 / 4
PV = = = =1-_ + - —
Apv = Avy = Avig = Apre =1 2(,0 ot <1 1 55 (56)

This shows that the absolute values for the Explicit Euldéf)(&nd the Implicit Euler
methods never equals one for# 0, i.e. both methods do not produce stable trajectories.
This is different for the Position Verlet, the Velocity Vetl(VV), the Position Implicit
Euler (PIE) and the Velocity Implicit Euler (VIE), which aflave the same eigenvalues.
It is found that the range of stability for all of them is in th@ngew?dt> < 2. For
larger values obt the absolute values of the eigenvalues bifurcates, geldirgger and
smaller values than one. In Figure 4 the absolute valueshangrsfor all methods and
in in Figure 5 the imaginary versus real partsdoére shown. For EE it is clear that the
imaginary part diverges linearly with increasejef The eigenvalues of the stable methods
are located on a circle until?6¢> = 2. From there one branch diverges-teo, while the
other decreases to zero.

As a numerical example the phase space trajectories of ttmoé oscillator for
w = 1 are shown for the different methods in Figure 6. For the stabéthods, results
for a time step close to instability is shown. All differenethods produce closed, stable
orbits, but it is seen on the other hand that they stronglyadefrom the exact solution,
which is shown for reference. This demonstrates that #glsl a necessary, but only a
weak criterion for correct results. Numerically correctutts are only obtained for much
smaller time steps in the range & =~ 0.01. Also shown are the results for EE and IE.
Here a very much smaller time stefi, = 0.01 is chosen. Itis seen that the phase space
trajectory of EE spirals out while the one of IE spirals intwitme, showing the instable
or evanescent character of the methods.

Another issue related to stability is the effect of a trapegtperturbation. If initial
conditions are slightly perturbed, will a good integrateep this trajectory close to the
reference trajectory? The answer is No and it is even fouatttie result is not that
strong dependent on the integrator. Even for integratofsighi order, trajectories will
not stay close to each other. The time evolution of the distnce may be studied similar
to the system trajectory. Consider the time evolutionIfor 6T, wherel' = (p, q) and
0T = (ép, dq) is a small disturbance. Then

dr

7 = Vri@) (57)

AIE =
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Euler. Right: Velocity and Position Verlet as well as Vetgdimplicit and Position implicit Euler method.

Similarly one can write for smalil’

@D 4+ 6T) = VrH(T + oT) (58)

dt
= VrH(T) + Vr(VrH(T))T (59)

where the second line is a truncated Taylor series. Congpéeiins one simply gets as
equation of motion for a perturbation

‘Zs—f = V3H(T)oT (60)

Itis found that the disturbance develops exponentiallh awicharacteristic, system depen-
dent exponent, which is the Ljapunov expor?éi

Now consider the following situation where identical Stagtconfigurations are taken
for two simulations. They will be carried out by differenttyexact algorithms, therefore
leading formally to the same result. Nevertheless it maypkaghat different orders of
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Figure 6. Phase space trajectories for the one-dimendiamnalonic oscillator, integrated with the Velocity
Implicit Euler, Position Implicit Euler, Velocity VerleRosition Verlet and integration step sized¢f= 1.8
(left) and the Implicit Euler and Explicit Euler and stepeséz = 0.01 (right).

floating-point operations are used in both algorithms. Dueound off errors, floating-
point arithmetic is not necessarily associative, i.e. inegal

ao(boc)# (adb)oc (61)

whereos is a floating-point machine operation(—, /, *). Therefore, both simulations
will be different by round off errors. According to the abogiscussion, this may be
considered as the slightest disturbance of a system toayedl ,;,, and the question is,
what effect such a round off error will have. A different mathto study difference in
system trajectories is the calculation of the difference

N
)= 5D 3 (@) - #0)? (62)

=1 a=z,y,z

whereNN is the number of particlex;(¢) a certain property, e.g. the coordinates or mo-
menta, andi the same property of a disturbed trajectory. In Figure 7Itesue shown
for a system of Lennard-Jones particles, where the distedwas induced by reversing
the order of summation in the force routine, thereby prorgkound off errors in the first
time step. Shown are results for the coordinates, the w@de@nd the forces and it is seen
that all quantities diverge exponentially from machinewaacy up to a certain behavior at
long times, which is shown in the inset. To understand thg lime behaviory, (¢) can

be written as average property

Y2 (t) = ((2(t) — 2(0) — () + 2(0))*) (63)
= (l2(t) — 2(0)*) + (|Z(t) — z(0)[*) (64)
~2A(z()Z(t)) + 22(0)Z(t)) + 2z(t)z(0)) - 2(x(0)*)
In the second equation the first two terms are mean squarkacispents of: in the two
systems (note that(0) = x(0) since the same starting configurations are used), the next

term is a cross correlation between the systems. This wilisveif the systems become
independent of each other. The next two systems consistofcurelation functions af
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in each system. For long times they will also decrease to. Zeémally, the last term gives
a constant offset which does not depend on time. Thereferkotig time behavior will be
governed for coordinates, momenta and forces by

Jim (1) = 2(/a(t) — q(0)]?) = 12Dt (©5)
Jim 7,(t) = 2(p(t)*) = mksT (66)
Jim 7y = 2(F(@) = 2V )

whereD is the diffusion coefficient]” the temperature arid the potential of mean force.

That the divergent behavior of neighbored trajectoriessgstem dependent property
is shown in Figure 7 where results for Lennard-Jones sysatuifferent temperatures are
shown.

In conclusion, the individual trajectories of a physicaimqaex system will end up at
different places in phase space when introducing roundrodire or small perturbations.
Round off errors cannot be avoided with simple floating-pairithmetic (only discrete
calculations are able to avoid round off errors; but therptisical problem is transformed
into a different space). Since one cannot say anything abtrue summation order, the
location in phase space cannot have an absolute meaningefdtes the solution to come
out of this dilemma is to interpret the phase space locat®@a possibleand allowed
realization of the system, which makes it necessary, howéweaverage over a lot of
possible realizations.

3.3 Time Reversibility

Considering the classical equations of motion for the cdsetone independent Hamil-
tonian, i.e. no externally applied time-dependent po#dsitit becomes clear that the dy-
namics of conservative particle systems should be timasible. Since the momentum
has dimension [length/time], a time transformation widdeto

t— —t , P—-p (68)

Therefore this transform will lead to
op  OH bt o(-p)  OH

% = a 8(-) ~ 9a (©9)
o _ M _p st 0@ . OH _ p
o  op m - -ty  o(-p) m (70)

showing the equations of motion are unchanged under a tineese transformation.

Therefore it is not a qualitative change to calculate thehapeizal system towards the
past and not towards the future. This means that an integsiadwild be able to propagate a
system trajectory up to a certain time step and from thera,tbyie reversal transformation
0t — —dt, should go exactly the same trajectory back to the starmdiguration, i.e.

g
B = 5 = Pou (71)
The mapy3, is called the adjoint meth8@iand if Eq. (71) holdsgs; is symmetric.
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The time reversibility can easily be checked by inspectmmeiach integrator. As an
example consider the Position Implicit Euler method. Therge of this method, to move
positions and momenta from stept+ 1 back to stem or by a time reversal would be

Reverse Transfordit — —dt
ot ot
qn = An+1 — Epn qn = Qn+1 — Epn—i-l (72)
Pn = Pn+1 — (StF(Qn—H) Pn = Pn+1 — 5tF(Qn) (73)

As it is seen the method with time reversal is not identicahi inverse map, since the
derivativesg,H and9,H are evaluated at the wrong time step. Therefore the Position
Implicit Euler method is not time reversible. The same igtior all other Euler methods,
shown in Section 3.1. However, it is instructive to note thatreverse map corresponds to
the Velocity Implicit Euler. Applying a proper time revel$@nsformT to the algorithms
yields the following

T{¢5"} = ¢35 (74)

T{¢i} = ¢5,F (75)
T {¢6 IE} _ ¢VIE (76)
T {¢(15/;IE} ¢PIE (77)

Therefore one can simply combine different methods in ordleonstruct a new scheme.
In order to propagate the system by a time siépapply each scheme faxt/2. For
example consider the combinati()z;’nft’f2 o ¢§52), which leads to the following steps

ot

dn+1/2 = dn + o Prt1/2 (78)
ot
Pnt1/2 =Pn t+ EF(qn—i-l/Z) (79)
ot
An+1 = Ant1/2 + o Prt1/2 (80)
ot
Pn+1 = Pnt1/2 + 5F(Qn+1/2) (81)

A simple comparison of terms yields th@t 1 /> = (qn + dnt1)/2 ANAP,11/2 = (Pr +
Pr+1)/2 which leads to

ot

Ant1 = Gn + 5 (Pn + Pnt1) (82)
ot

Pnt1 = Pn + 5F((qn +dnt1)/2) (83)

which is the Implicit Midpoint Euler scheme (IME).
Combining different types of methods, it comes out that tilefving relations hold

D5ifa © Pitre = D5t (84)
¢6t/2 ¢5t/z = ¢ITE (85)
Bheys © seys = Sat” (86)
ez © Poeps = Dit. (87)
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Y q(t) and?p(t), Eq. (88), for the Velocity Verlet integrator (VV2) and highorder composition schemes
(VV4, VV6, VV8, cmp. Section 3.4 and the Appendix). As a refece, results are shown fgg (¢) and
~p(t), obtained for two trajectories with different round offens att = 0.

wheregITF is the Implicit Trapezoidal Euler. This result shows sonteriesting proper-
ties: (i) symmetric methods can be constructed by compositf non-symmetric methods
(example for the adjoint method), (ii) since PIE and VIE amhbfirst order methods,
while VV is of second order, this shows that composition otimoes increases the order
of a method.

Now that time reversibility is established in principle four different methods (VV,
PV, IME, ITE), the question is how good time reversibilitydshieved in a molecular dy-
namics computer simulation. In practice one can test thisifmylating A/ /2 time steps
and then reversing the sign 6f. For a symmetric method, the trajectories should end
up exactly in the initial configuration afté¥/ time steps. E.g. if particles started from a
regular lattice with zero momentum, this should be exadté/final configuration. Here
now it is important to consider the effect of round off errdrshe simulation which accu-
mulate during the run. It was already discussed that a veall parturbation of the initial
configuration may lead to a diverging behavior of two (ilijiaery close) trajectories. If
in the time reverse motion of particles the round off erraesraot fully compensated, the
trajectory will finally end up a distance apart, which cop@sds to an initial perturbation
of the size of the cumulated round off error. In Figure 8 theutes for such a numerical
experiment is shown. Calculated is the norm of the trajgaddferences

Yo (t) = [1x(0) — x_ (0[t)]]? (88)

wherex = (q,p) and¢ denotes the time step, from where the trajectory was resterse
Figure 8 shows results for this calculation for a system of Bénnard-Jones particles.
In addition to the trajectory difference, calculated frame reversal, aeferencecurve is
shown, which is the result from a different summation ordEhnis shows that true time
reversibility cannot be achieved easily for a trajectorynolecular dynamics, although a
true time reversible integrator is used. This problem caftrdeed back to the round off
errors. The largest number of floating-point operationsligis done in the force routine
of an MD program. This usually takes about 95% of CPU time efilhole simulation
time. Since forces are used to update the velocities, whittirh are needed to propagate
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the coordinates, it seems to be clear that the main sour@intiroff errors is to be found
in the force loop. Therefore one attempt would be to reducadamff errors in this part
of the program. Several techniques were proposed for this &ag. up- or down-sorting
for force contribution® %6 tree like summation or compensated summa&fidi These

methods have in common that they are able to reduce the rdtiadar, but they do not
avoid it. Therefore there will be still a slight deviatiorofn thetrue summation, which

may act as a slight perturbation for the trajectory.

Another approach, which avoids round off errors is the useteger arithmeti® 8. In
this approach all relevant quantities, e.g. length, tinh@rge, energy, are scaled in a way
that they can be represented by large integer values. Thekihe values thus determines
the resolution with which differences in lengths etc. camésolved.

A different approach, which still relies on floating-poimitametic was introduced by
Skeel®. If a variable is denoted hy and its upper limit is known, i.emax |z| < Z, where
Z is a power of 2 and ifx is denoted the target precision, one can construct an gquall
spaced floating-point grid, with grid spacing = 27 Z. If v denotes the number of
significant bits in the floating-point representation of achine (oftenv = 24 for single
precisiony = 53 for double precision and = 113 for quadruple precision), then use the
following procedures to transform a machine numbgwith upper bound::

If u <v—2define

round, (z;) = (z; + (0.75 x 2 # 7)) 2 (0.75 x 2 7) (89)
If p = v — 1 define
roundy(z:) = (z; 4 sign(z;) 2)) ~ sign(z:) z (90)
If 1 = v define
round, (z;) = (z; — sign(z;) )) + sign(z;) # (91)

whereo denotes a machine operation.
E.g. the Velocity Verlet algorithm then reads as

Pnt1/2 = Pn + round, ((0.5 X6t S m) X F(qn)) 92)
A AN
dn+1 = dp + round, ((615 +m) X pn> (93)
A A A
Pn+1 = Pn+1/2 + fOUNG, ((0-5 X 6t +m) x F(Qn+1)> (94)

Varying the value ofu it is possible to change the accuracy of floating-point ofiema
gradually while preserving exact machine operations,awwiding round off errors. This

is shown in Figure 9 where the quadratic displacement betwragectories is shown for
interval floating-point arithmetic with different value$ @ and a reference trajectory with
ordinary floating-point arithmetic. In practical appliiats it will be expensive to apply
the round-function in every force evaluation. Therefohe torces are calculated in the
usual way, accepting round off errogg.has to be chosen then in such a way that the last
digits, affected by round off errors in the forces are truadan the integration step.
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The interest of such round off free algorithms is not only aademic one to prove
a theoretical property of an integration scheme. Sincedaffierrors accumulate, the
calculated trajectory is dominated by round off errors floertain time on. This does not
mean that the trajectory does not carry any information amgirbut it may lead to the fact
that correlations between particles over this time inteceanot be seen in a simulation.
Avoiding round off errors this should not happen and smdlas$, which are usually
covered by round off errors show up.

1e-08f

le-16f

1e-24F 1e-24F ¢

1e-32F

L | L | L
0 1000 2000 30C
steps

Figure 9. Left: Divergent behavior of system trajectoriggculated with the usual floating-point arithmetic
and round off free interval floating-point arithmetic. Intb@ases a Velocity Verlet integration scheme is
used. Right: Result foy;(t) of floating-point interval arithmetic where trajectorieens calculated with
different summation sequences.

A numerical test shows that there is no accumulation of nigakgrrors in such a sim-
ulation. Reversing the time stép after M /2 time steps and comparing the two trajectory
pieces in the intervals € [1,M/2] 6t andt € [M/2 + 1, M] 6t leads to differences in
trajectories identical to zero (no fluctuations in positiorelocity- or force-differences)!
This shows that complete reversibility is possible.

What about the effect of different summation order? If feraee not subject to floating-
point interval arithmetic, there will be round off errorstatine result of the forces will de-
pend on the order of summing up individual force contribnioT his does not do any harm

to the integrator, unless the value of royrd0.5 X ot ﬁ m) X F(q,) ) lies in different

intervals for different summation orders. It is clear thétwva wider floating-point interval
the probability of such an event becomes smaller and coestigufor smaller it is to be
expected that round off errors due to summation order sholatapthan for large..

In Figure 9 the quadratic displacemeni(t), of forces is shown due to a different order
of summation in the force routine. It is found that the divargbehavior of trajectories
starts at different times depending on the valug:pés can be expected from the above
discussion. Fop = 38 there are only small fluctuations on the level of machine smu
Nevertheless, also this function will start to diverge agjéa times. Compared to floating-
point interval arithmetic is the result for usual doublegis@®n floating-point arithmetic.

It is found that for largeu the diverging behavior is even more pronounced (although th
Ljapunov exponent s for all cases the same of course). Tieistés due to a stronger effect
of initial disturbance in the case of interval arithmetichid effect, induced by different

25



order of summation, may be avoided by simply using intervithaetic also in the force
routine, i.e. rounding properly every individual force ¢dgloution before summing up.
This introduces, however, a stronger computational oatlsince the round-function has
to be applied very much more often (in the case of short ramigesactions 10-100 times
for each particle and time step).

3.4 Accuracy

For an integrator of order > 1, the local error may be written as an upper bdlind
@509 — poell < MotPH! (95)

whereM > 0 is a constant®s, 4, is the exact angs; the numerical flow of the system.
The global error, i.e. the accumulated error for larger ime thereby bound for stable
methods b§°

IT(ty) —Thl| < K (e —1) 6t» | ¢, =nét (96)

whereK > 0is a constant]. > 0 the Lipschitz constani,(t,,) = (p(t»), a(t,)) the exact
andl', = (pn,qn) the numerically computed trajectory at tiye This estimate gives of
course not too much information fdrt,,1 unlessét is chosen very small. Nevertheless,
qualitatively this estimate shows a similar exponentiaédjent behavior of numerical and
exact solution for a numerical scheme, as was observed tin8ex2.

A different approach to the error behavior of a numericalkesct is backward error
analysis, first mentioned in Ref. 81 in the context of difféi@ equations. The idea is
to consider the numerical solution of a given scheme as thetesolution of a modified
equation. The comparison of the original and the modifiechign then gives qualitative
insight into the long time behavior of a given scheme.

It is assumed that the numerical scheme can be expresseeém@ssacs the form

¢5t(Tn) =T + 3tf(T) + g2 (T) + 6t°g3(T) £ ... (97)

where they; are known coefficients and for consistency of the diffedm®fjuation it must
hold

=13 (%) e (98)

On the other hand it is assumed that there exists a modifiéerelitial equation of the
form

%f = F(E) + 6t fo(F) + 62 f5 () + ... (99)

wherel will be equivalent to the numerically obtained solution.dimler to construct the
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Figure 10. Phase space trajectories of the Lennard-Jorwdifatos calculated with the Explicit Euler
scheme and different time steps of integration. Ekactsolution (numerical solution of a high order
composition scheme with small time step) is shown as a mnefere it forms closed orbits. Superimposed
to the solutions are results, obtained with a Velocity \feseheme, applied to the modified equations,
Egs. (101,102). The right figure shows the differences indioates between the calculation with Explicit
Euler scheme applied to Lennard-Jones oscillator and Wglderlet applied to the modified equation,

|qE'E(t) — Qmod (t) ‘ .

modified equation, the solution of Eq. (99) is Taylor expahde.
T(t + 6t) = D(t) + 6t (f( ) + 8t fo(T )+6t2f3(f‘)+...) (100)

‘”2 e (r@ o) (00 (5@ + e+ )

5t3{(f” Yoty @+ ) (08 () +otpa@ +...))
+(r@® +oen@® +. ) () (FE +oesE) +..)
x f(f)+5tf2(f)+...)}

+...

The procedure to construct the unknown functignproceeds in analogy to perturbation
theory, i.e. coefficients with same powersdfare collected which leads to a recursive
scheme to solve for all unknowns.

To give an example the Lennard-Jones oscillator is consitjée. a particle perform-
ing stable motions in negative part of a Lennard-Jones piateAs was observed already
for the harmonic oscillator, the Explicit Euler method wglin energy during the time,
i.e. the particle will increase kinetic energy which finalljil lead to an escape of the
Lennard-Jones potential well. Solving for the modified eiuneof the Explicit Euler, one
gets as a first correction

OH  O0tOH
“op T 20q (1on)
OH 6t O*H
“3q T 2P (102)
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Figure 11. Comparison of symmetric composition high ordeegrators, based on the Position Verlet
scheme. Coefficients of composition methods are given ilppendix.

Figure 10 shows results for the integration of equations afion with the Explicit Euler
scheme. Different time steps for integration were appliééttvshow a faster escape from
a stable orbit with increasing time step. Also plotted in $aene figure is the solution of
the modified equations with a high order symplectic schentéglwcan be considered as
exacton these time scales. Itis found that the trajectories moless coincide and cannot
be distinguished by eye. A more quantitative analysis (fedid) shows that for relatively
long times the solution is rather well approximated by thelified equation, although with
increasing time the differences between solutions becoore pronounced. This means
that for longer times it would be necessary to include mamaseof higher order it into
the modified equation. It should be mentioned that, in génera series expansion of the
modified equation diverges.

This gives a method to analyze the error. A better way, of @®\uis to avoid errors.
A natural approach would be to increase the ondef the integrator at hand. As was
shown already in Section 3.3 in the context of time reveligthone can compose different
methods in order to get (i) symmetric methods and (ii) inseete order of the method.
A method for constructing higher order symplectic methods proposed by Yoshi&a®
and Suzul* 85 where an s-fold composition of symmetric methods was adpliThe
resulting flow can thus be written as

Vot = Puw, 6t © Pw._15t © - - - © Duwyst © uwi bt (103)
where ¢s; is a symmetric basic method, e.g. Velocity Verlgs( = ¢s5:/2,7 © dst,u ©
Pst/2,7, EQs. (44-46,86)) or Implicit Midpoint Rulepe: = @s1/2,% © 5, 4, EQ- (84)) and
w; are chosen parameters which determine the width of a substeonsistency and if
the composition method itself is symmetric, it is requiriedtt

s
Zwizl , Ws41—k = Wg k=1,...,s (104)
i=1

28



In order to calculate the coefficients one has the additiomadlition
el
D> whtt =0 (105)
=1

If the basic method is of orderit can be shown that the composed method is at least of
orderp + 1%4. A symmetric method has an even order since all odd termseiTaylor
expansion cancel. If the composition method is construated symmetric method ac-
cording to Eq. (104), thetty, is even (at least) of order ordgr- 2. This procedure can be
repeated recursively in order to construct symmetric nastod any order. Of course, the
number of stages increases each time the order is increagedtarting with a symmetric
method of ordep = 2 as basic method and takisg= 3, this will result in a method of
orderp = 4. This order-four method can again be taken as a basic metitbdree ends up
with a resulting order op = 6 ands = 9. For even higher methods the number of stages
will strongly increase, making this type of high order meth@omputationally demand-
ing (cmp. Appendix). It is a matter of choice with which numbésteps the procedure is
started. Fog = 3, one gets the scheme of Yoshidaorresponding to

1 ol/(p+1)
W= =5 oy 0 2T Ty o1/ (106)
Fors = 5 one gets the scheme of Suzifkicorresponding to
1 41/(p+1)
w1=w2=w4=w5=m 3 w3=—m (107)

There are also refined composition schemes, which do notthaethrge number of sub-
steps. They are also based on Eq. (103) with symmetric bastlads like the Velocity

Verlet. References and coefficients are given in the Apperfeigure 11 shows the error
energy fluctuation

1 N, E 2
_ |t _ Tk
0E = , > (1 Eo) (108)

k=1

for a test case of a system of Lennard-Jones patrticles, where the total energy in the
system at time step and N; the number of MD steps. As a basic method the Position
Verlet scheme was applied. It is found that all integrationesnes obey the prescribed
order. Due to numerical round off errors the methods satdoatvery small time steps.

4 Conclusions

The old vision of Laplace as it was sketched in Section 1 ee@mat be met in computer
simulations, where all initial conditions are knowemactly Slight disturbances, which
may even be introduced by simple round off errors, as was stxywdifferent orders of
summation, lead to Lyapunov instabilities of close trajeies. Only in the case, where
really discrete lattice maps are introduced, reversjbi#tn be achieved and no effects due
to round off errors will be seen. Nevertheless, also in sudiserete system, there will
be Lyapunov instabilities if disturbing the initial conidits in the slightest way. These
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instabilities, however, have no dramatic consequencethéoverall stability of trajecto-
ries of the system. The system develops into different préscessible phase space but
if symplectic, time reversible integrators are used to sdhe equations of motions, the
geometrical structure of phase space is conserved. PHygita behavior can be inter-
preted as interference of a system with an uncontrollabtghtdisturbance, which could
happen within an experimental setup e.g. by thermal fluctngtor impurities etc.. This
also should not drive a system out of equilibrium. Actuale fact that a disturbance
develops an exponential drift of two nearby trajectoriesfien used to impose artificial
initial conditions, i.e. start a simulation from an orderedular grid and impose a uniform
velocity distribution corresponding to a desired tempamatEquilibration will then lead a
loss of memory to the initial conditions and to a proper statal distribution of physical
guantities. From that point of view an individual trajectaf particles is of no principal
importance. It can only be considered as a possible, alloeaization of the system and
lots of different configurations have to be obtained to getogper averaging over different
trajectories.

Appendix
Composition Methods of Order p

As an example a composition is done with a Velocity Verletgmator as basic method, i.e.

st 1 = Pst/2,u © Pot, T © Dst/2.u
Then the composition scheme is performed in a step wisedashn the program an
s-stage composition scheme is then implemented as follbere for the Velocity Verlet
integrator)

, n_part
do k =1, 3
v(k,i) = v(k,i) + 0.5*w(is)*h*f(k,i)/n(i)
X(k,i) = x(k,i) + wis)*h*v(k,i)
enddo
enddo

cal cul ate forces

doi =1, n_part
do k =1, 3
v(k,i) = v(k,i) + 0.5*w(is)*h*f(k,i)/n(i)
enddo
enddo
enddo

In the following, coefficients for composition methods, éd®n symmetric schemes,
with different number of stages,and of orderp are given. For all cases, the symmetry
relation

Wsp1—f = W ) k=1,...,s
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holds. Therefore only coefficients up[tg/2] + 1 are shown.

stages order coefficients reference
3 4 wr = 1.351207191959657771818 Yoshid&?
we = —1.702414403875838200264
5 4 w1 = we = 0.414490771794375711944 Suzukf?
w3 = —0.657963093139439791912
7 6 wy = 0.78451361047755726382 Yoshid&?
we = 0.23557321335935813368
wsg = —1.17767998417887100695
Wy = 1-2 Eizlws
9 6w =0.39216144400731413928 Kahan & Li®
we = 0.33259913678935943860
ws = —0.70624617255763935981
wy = 0.08221359629355080023
Wy = 1-2 Z;l:lws
15 8  w; = 0.74167036435061295345 McLachlar¥’
we = —0.40910082580003159400
ws = 0.19075471029623837995
wy = —0.57386247111608226666
ws = 0.29906418130365592384
we = 0.33462491824529818378
wr = 0.31529309239676659663
wg = 1—2 Zzzlws
17 8  wp = 0.13020248308889008087881763 Kahan & L8
wy = 0.56116298177510838456196441
ws = —0.38947496264484728640807860
wy = 0.15884190655515560089621075
ws = —0.39590389413323757733623154
we = 0.18453964097831570709183254
wr = 0.25837438768632204729397911
wg = 0.29501172360931029887096624
wg = 1-2 Zgzlws
33 10  w; = 0.09040619368607278492161150 Kahan & L8

wy = 0.53591815953030120213784983
ws = 0.35123257547493978187517736
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wy = —0.31116802097815835426086544
ws = —0.52556314194263510431065549
we = 0.14447909410225247647345695
wr = 0.02983588609748235818064083
wg = 0.17786179923739805133592238
wy = 0.09826906939341637652532377
wio = 0.46179986210411860873242126
w1 = —0.33377845599881851314531820
w2 = 0.07095684836524793621031152
wiz = 0.23666960070126868771909819
w4 = —0.49725977950660985445028388
wis = —0.30399616617237257346546356
wie = 0.05246957188100069574521612

1r=1-231 w,
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