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“We may regard the present state of the universe as the effect of its past
and the cause of its future. An intellect which at any given moment
knew all of the forces that animate nature and the mutual positions
of the beings that compose it, if this intellect were vast enough to
submit the data to analysis, could condense into a single formula the
movement of the greatest bodies of the universe and that of the lightest
atom; for such an intellect nothing could be uncertain and the future
just like the past would be present before its eyes.“1

Marquis Pierre Simon de Laplace, 1814

1 Introduction

With the age of enlightenment and the development of mathematical tools the vision of
computability and predictability of natural phenomena arose among scientists and philoso-
phers. Pierre Simon de Laplace phrased this vision in terms of a controlling, omniscient
instance which would be able to look into the future as well asinto the past due to the
deterministic nature of processes, governed by the solution of differential equations. This
omniscient instance, introduced by Laplace was henceforthcalled theLaplace demon. This
rational view of Laplace, however, had to be corrected with the advent of chaos theory,
starting with the work of Poincaré, which states that minimal changes in initial config-
urations of nonlinear differential equations might lead toa diverging behavior between
solutions. Although the general view of Laplace’s vision iscorrected nowadays by chaos
theory and quantum mechanics, it expresses two main features of classical mechanics,
i.e. (i) determinism of processes and (ii) time reversibility of the fundamental equations.
His understanding of nature was one of the first ideas for doing molecular dynamics sim-
ulations, i.e. considering an isolated system of particles, the behavior of which is fully
determined by the solution of the classical equations of motion

�� � � �
��
��� �

�� � �
��
�� � (1)

where
�

is the Hamiltonian of the system and� �, �� are the generalized momenta and
coordinates of particle with index	. However, as is shown in Section 3, even for small
systems, which are precisely described by initial and boundary conditions, the vision of
Laplace is not fulfilled.
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Nevertheless, the main line, which governs the idea ofLaplace’s demonis found in
modern simulation methodologies and computer simulationsbased on this principle have
become a powerful tool to treat the dynamical behavior of nonlinear many-body systems.
The initial conditions as well as boundary conditions entereither from theoretical consid-
erations (limiting laws) or from experimental values. If the physical system is fully char-
acterized, simulations may be an indispensable tool to solve theoretical models beyond
certain approximations or to provide additional help for experimentalists to get a deeper
view into phenomena or to answer questions which are not possible to treat with current
experimental facilities.

Although there are different methods to obtain informationabout complex systems,
particle simulations always require a model for the interaction between system con-
stituents. The model can only be considered as an approximation to reality, but computer
simulations should provide a tool to solve this model exactly (within numerical precision).
In order to get a connection to real world systems, this modelhas to be tested against
experimental results, i.e. it should reproduce or approximate experimental findings like
distribution functions or phase diagrams and theoretical constraints, i.e. it should obey
certain fundamental or limiting laws like energy conservation.

Concerning MD simulations the ingredients for a program arebasically threefold:
(i) As already mentioned, a model for the interaction between system constituents (atoms,
molecules, surfaces etc.) is needed. Often, it is assumed that particles interact only pair-
wise, which is exact e.g. for particles with fixed partial charges. This assumption greatly
reduces the computational effort and the work to implement the model into the program.
(ii) An integrator is needed, which propagates particle positions and velocities from time�
to � � ��. It is a finite difference scheme which moves trajectories discretely in time. The
time step�� has properly to be chosen to guarantee stability of the integrator, i.e. there
should be no drift in the system’s energy.
(iii) A statistical ensemble has to be chosen, where thermodynamic quantities like pressure,
temperature or the number of particles are controlled. The natural choice of an ensemble
in MD simulations is the microcanonical ensemble (NVE), since the system’s Hamiltonian
without external potentials is a conserved quantity. Nevertheless, there are extensions to
the Hamiltonian which also allow to simulate different statistical ensembles.

These steps essentially define an MD simulation. Having thistool at hand, it is possible
to obtainexactresults within numerical precision. Results are only correct with respect to
the model which enters into the simulation and they have to betested against theoretical
predictions and experimental findings. If the simulation results differ from thereal system
properties or are incompatible withsolid theoretical manifestations, the model has to be
refined. This procedure can be understood as an adaptive refinement which leads in the
end to an approximation of a model of thereal world at least for certain properties. The
model itself may be constructed from plausible considerations, where parameters are cho-
sen from neutron diffraction or NMR measurements. It may also result from first principle
investigations, like quantumab initio calculations. Although the electronic distribution of
the particles is calculated very accurately, this type of model building contains also some
approximations, since many-body interactions are mostly neglected (this would increase
the parameter space in the model calculation enormously). However, it often provides a
good starting point for a realistic model.

The problem which is often met in molecular simulations is the existence of a variety
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of time scales, which govern the physical system. Since molecular dynamics consists of an
integration of differential equations, one often has to take into account the fastest motion in
the system by imposing a small time step of integration in order to sample the movements
correctly and conserve first integrals. Considering e.g. simulations of DNA, there is a huge
gap between time scales which govern certain phenomena, i.e. fast atomic vibrations take
place on a sub-picosecond time scale (����� s), twisting of the molecule on a picosecond
scale (����� s), bending of the whole molecule on a nanosecond scale (���� � ���� s) and
supercoiling of the molecule on a broad time scale band up to seconds (���� � ��� s)2

(similar range of timescales holds for protein dynamics3). Therefore,brute-forcecalcula-
tions have to be done on the most powerful computers at hand, or approximations have to
be done, reducing system components in order to coarsen the dynamics of the system. In
the second approach it is of course very important to keep theessential ingredients which
still reproduce global motions or long time dynamics. Examples for this approach may be
found e.g. in Ref. 4. An impressive example for the first approach was given by the group
of Peter Kollman, where a small protein (subdomain HP-36 from the villin headpiece) was
studied in an all-atom simulation for a micro-second time interval5, 6. Although this is
still a small system, consisting of about 10000 atoms ( 600 protein atoms and 3000 water
molecules), CRAY T3D and CRAY T3E machines with 256 processors had to be kept busy
(continuously) for several months. This huge computational work had to be spent because	 
 ��� steps of integration had to be performed because of the smalltime step of integra-
tion of �� � � 
 ���� � which was necessary to apply in order to resolve high frequency
motions in the system. Although with the development of computer hardware the time
scales as well as the system sizes can be extended more and more it is still a current field
of research how to model and simulate complex systems on a long time scale7.

It is clear that the performance of particle dynamics simulations strongly depends on
the computer facilities at hand. The first studies using MD simulation techniques were
performed in 1957 by B. J. Alder and T. E. Wainright8, 9 who simulated systems of hard
spheres. In this early simulation, which was run on an IBM-704, up to 500 particles could
be simulated, for which 500 collisions per hour could be calculated. Taking into account
200000 collisions for a production run, these simulations lasted for more than two weeks.
Nowadays, systems for several million or even billion particles are performed10–12. These
huge systems make parallel computing an indispensible tool. Fortunately, molecular dy-
namics is in principle possible to parallelize to 100% (not taking into account input/output
operations). Therefore, the problem sizes and timescales are usually extended with the
inauguration of more powerful parallel systems. Nevertheless it is still challenging to de-
velop programs which are able to scale up to thousands of processors. In principle, new
architectures, like the IBM Blue Gene/L13, 14 should provide a platform for tackling the
grand challenge problems, e.g. protein folding. Nevertheless, practical experience tells
that parallel programs do not scale good enough to use numbers of processors up to 10000
or more. This makes it necessary to improve parallel algorithms and to think in new algo-
rithms, which overcome different time and length scales7, 15.

Classical molecular dynamics methods are nowadays appliedto a huge class of prob-
lems, e.g. properties of liquids, defects in solids, fracture, surface properties, friction,
molecular clusters, polyelectrolytes and biomolecules. Due to the large area of applica-
bility, simulation codes for molecular dynamics were developed by many groups. On the
internet homepage of the Collaborative Computational Project No.5 (CCP5)16 there are a
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lot of computer codes assembled for condensed phase dynamics. During the last years
several programs were designed for parallel computers. Among them, which are partly
available free of charge, are, e.g., Amber/Sander17, CHARMM18, NAMD19, NWCHEM20

and LAMMPS21.

2 Models and Methods for Particle Interactions

The part of a simulation where physics come into play is the modeling of interactions
between particles. This is the part of a molecular dynamics program which makes the dif-
ference between simulating a galaxy or simualting a dropletof water molecules. In general
the physical system is determined by its Hamiltonian (or other way around, the Hamilto-
nian is written down according to the system under consideration). It can be written as
intrinsic part

�
� andexternalpart

�
�
�
��

� � �
� � �

�
�
�� (2)

where the time-dependence of
�

� indicates that time-varying external fields, e.g. sinu-
soidal laser beams, may enter into the energetic description. If the external part of the
Hamiltonian is omitted then it is clear from classical mechanics that the system Hamilto-
nian is a conserved quantity.

The intrinsic part of the Hamiltonian can often be written as

�
�
� �

� � � � ��� � �
���� � �������� �

�
���
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�

��	� �

�

� �� �	 � (3)
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� ��� �� �	 � � � � �	  � � � � �
where� is a 3N-dimensional vector of particle momenta,� a diagonal mass matrix,� �	 � �� � � �	 � the distance between particle pairs and� �� � a pair potential function.
Furthermore, if simulating rigid bodies or molecules with fixed atomic distances,��� is
the angular velocity and��� the tensor of inertia. If not only pair interactions are to be
considered, 3-body potentials� ���, or multi-body potentials� ��� can be included into the
Hamiltonian. Mainly this is avoided, since it is not easy to model and also it is rather time
consuming to evaluate potentials and forces originating from these many-body terms.

Roughly speaking the potential functions can be classified into two main groups,
namely short-range and long-range interactions. One can estimate the range of a potential
function by considering the leading term of its expansion inpowers of��� . The integral
over the leading term gives an estimate of the range of influence, i.e.� ��� �� � � �finite � short range� � long range

(4)

where� is the dimension of the physical space. Therefore, in 3-dimensional space, poten-
tials dropping as��� , e.g. dipole-dipole interactions, are still long ranged.

There may be different terms contributing to the interaction potential between particles,
i.e. there is no universal expression, as one can imagine forfirst principles calculations.
In fact, contributions to interactions depend on the model which is used and this is the re-
sult of collecting various contributions into different terms, coarse graining interactions or
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imposing constraints, to name a few. Generally one can distinguish between bonded and
non-bonded terms, or intra- and inter-molecular terms. Thefirst class denotes all contribu-
tions originating between particles which are closely related to each other by constraints or
potentials which guaranty defined particles as close neighbors. The second class denotes
interactions between particles which canfreelymove, i.e. there are no defined neighbors,
but interactions simply depend on distances.

A typical form for a (so-called) force field (e.g. AMBER17) looks as follows� � ������ � � �� � � �	 �� �
�
���� � � �� � � �	 �� �

������
�� ��� �� � ��� ��� � � �� (5)

�
�
��	 �� �	� ���	 � � �	� ��	 � �

� 
�
����� �! �	� ���	 � " �	� ���	 � �

�
��	 # �#	� �	

In the following, short- and long-range interaction potentials and methods are briefly
described in order to show differences in their algorithmical treatment.

2.1 Short Range Interactions

In Eq. (5) the first three terms are examples for bonded, shortrange interactions. They
consist of bond vibrations (i.e. two molecules oscillatingin a potential), angular vibrations
(i.e. varying bond angle between three molecules) and dihedral motion (i.e. torsional
deformation of four bonded particles). It is clear by definition that these interactions are
short ranged. Since the bond partners between molecules arefixed in a simulation (in
principle it is possible to include bond breaking in an approximate way22 also in a classical
simulation), one can set up fixed lists in the beginning of thesimulation, containing all
indices of particle-pairs, -triples, -quadruples etc. which exhibit bonded interactions. This
omits lengthy checks, which particles take part in an interaction.

The next two terms are examples for short range, non-bonded terms. The first is the
famous Lennard-Jones potential, which includes a stronglyrepelling term, modeling the
Pauli exclusion, i.e. hard core repulsion. The attracting term on the other hand models
the effect of interactions between induced dipoles, attraction due to fluctuating charge dis-
tributions. The other term is sometimes included to give a more realistic description of
hydrogen bonds. This term is only evaluated between specialparticle pairs, i.e. hydro-
gens and electronegative atoms, which are able to form hydrogen bonds. The constants,� �	 �� �	 � ! �	 �" �	 are in general different for different atom types or pairs, i.e. they have
to be adjusted by proper modeling. Often the constants are evaluated for single atom types
and the parameters for cross terms between different atoms are calculated by combination
rules.

The Lennard-Jones and the hydrogen bond terms can be writtenin a different way

� �� �$ %	& � � '($& )* +$&� �$ %	& , - � * +$&� �$ %	& , ./ (6)

where	 � 0 denotes different particle indices and1 � 2 different types of atoms (for Lennard-
Jones e.g. it is+ � ��3� ��� , ( � � � 3'� , 4 � �� and 5 � 6). The most frequently
applied combining rule is the Lorentz-Berthelot formula23+$& � +$$ � +&&� � ($& � 7($$ (&& (7)
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It is simply noted here that there are also more complicated rules, e.g. the Kong rule24

or the Waldman-Hagler rule25 which sometimes give better results in the calculation of
pressure-density profiles of liquids26.

Since these potentials are short ranged one can restrict theevaluation to limited region
of space. Usually one introduces a cutoff radius,��, beyond which the interactions are
set to zero. A common choice for the cutoff radius is given by� � � � �	+ . Since at�� the interaction is not identical zero, it is clear that particles entering from outside� �
into inside region exhibit a jump in potential and forces. Formally, the force at the cutoff
distance (� �	 � ��� �� �	 �) is infinitely large, since the potential exhibits a step dueto
truncation. This sudden acceleration of particles usuallyleads to a heating of the system,
since the motion is not reversible. Consider, e.g. a two-particle system, where one particle
comes from outside and moving with velocity�� to an interparticle distance� � � � � �,
with � �� �. Then it gets an abrupt force contribution, accelerating it, leading to a velocity� � � �� . On the other hand, if a particle starts from�� � � with velocity � � to leave the
sphere with radius��, then it still has velocity� � � �� . For a many-particle system this
means that�� � 	 increases due to many crossings and recrossings of the interaction sphere,
i.e. the temperature increases.

In order to avoid this statistical effect, one may either introduce smoothing functions,
which continuously drop the potential and the forces to zero. The disadvantage with this
approach is that there will be a zone of large forces at the cutoff distance if the forces are
properly evaluated as derivatives of the potential. Therefore one has to smooth forces in
this region, leading however to a non-conservative system.Therefore a different method
is most often used, which consists in shifting the whole potential and force by a certain
amount, which guarantees that both the potential and the force are exactly zero at the
cutoff distance, i.e.

� �
� � � �� �	 � �
 � �� �	 � � � ��� � � �� �	 � �� � � ��� � � � �	 � ��

� � � �	 � �� (8)

� �
� � � �� �	 � �
� �� �	 � � � �� � � �� �	 � � �	 � ��

� � � �	 � �� (9)

This ensures a smooth transition from outside to inside the cutoff region and vice versa.
Since there are only relatively few particles which have to be considered for the inter-

action with a tagged particle (i.e. those particles within the cutoff range), it would be a
computational bottleneck if in any time step all particle pairs would have to be checked
whether they lie inside or outside the interaction range. This becomes more and more a
problem as the number of particles increases. A way to overcome this bottleneck is to in-
troduce list techniques. The first implementation dates back to the early days of molecular
dynamics simulations. In 1967, Verlet introduced a list27, where at a given time step all
particle pairs were stored within a range� � � �
, where�
 is called the skin radius and
which serves as a reservoir of particles, in order not to update the list in each time step
(which would make the list redundant). Therefore, in a forceroutine, not all particles have
to tested, whether they are in a range� �	 � ��, but only those particle pairs, stored in the
list. Since particles are moving during the simulation, it is necessary to update the list from
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Figure 1. Contour plots of the performance for the combination of linked-cell and Verlet list as a function
of the cell length and the size of the skin radius. Crosses mark the positions predicted from an optimization
procedure29. Test systems were composed of 4000 Lennard-Jones particles with�� � � �� � at temperature� � ��	 
�� . Left: � � � ����� � . Right: � � � ����� .

time to time. A criterion to update the list could be, e.g.

���� �� � ��� � � � ���� � � � � �

� (10)

where��� � is the time from the last list update. This ensures that particles cannot move
from the outside region into the cutoff sphere without beingrecognized. This technique,
though efficient, has still complexity� �� � �, since at an update step,all particle pairs have
to be checked for their mutual distances. Another problem arises when simulating many
particles, since the memory requirements are relatively large (size of the list is'� ��� ��
 ��� � 3�

). There is, of course also the question, how large the skin radius should be
chosen. Often, it is chosen as�
 � � �	+ . In Ref. 28 it was shown that an optimal choice
strongly depends on the number of particles in the system andan optimization procedure
was outlined.

An alternative list technique, which scales linearly with the number of particles is the
linked-cell method30, 31. The linked-cell method starts with subdividing the whole system
into cubic cells and sorting all particles into these cells according to their position. The size
of the cells,� �, is chosen to be� � � �� �� 3floor

��� �� 3� � �, where�� �� is the length of
the simulation box. All particles are then sorted into a listarray of length

�
. The list is or-

ganized in a way that particles, belonging to the same cell are linked together, i.e. the entry
in the list referring to a particle points directly to the entry of a next particle inside the same
cell. A zero entry in the list stops the search in the cell and anext cell is checked for entries.
This technique not only has computational complexity of �� �, since the sorting into the
cells and into the

�
-dimensional array is of �� �, but also has memory requirements

which only grow linearly with the number of particles. Thesefeatures make this technique
very appealing. However, the technique is not well vectorizable and also the addressing of
next neighbors in the cells require indirect access (e.g.i=index(i)), which may lead
to cache misses. In order not to miss any particle pair in the interactions every box has to
have a neighbor region in each direction which extends to��. In the case, where� � � ��,
every cell is surrounded by 26 neighbor cells in three dimensional systems. This gives rise
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to the fact that the method gives only efficiency gains if�� �� � '� �, i.e. subdividing each
box direction into more than 3 cells. In order to approximatethe cutoff sphere in a better
way by cubic cells, one may reduce the cell size and simultaneously increasing the total
number of cells. In an optimization procedure28, it was found that a reduction of cell sizes
to � � � ��3� or even smaller often gives very much better results.

It is, of course, possible to combine these list techniques,i.e. using the linked-cell
technique in the update step of the Verlet list. This reducesthe computational complexity
of the Verlet list to� �� � while fully preserving the efficiency of the list technique.It is
also possible to model the performance of this list combination and to optimize the length
of the cells and the size of the skin radius. Figure 1 shows theresult of a parameter study,
where the performance of the list was measured as a function of

�� � ��
 �. Also shown is
the prediction of parameters coming out of an optimization procedure29.

2.2 Long Range Interactions

Long range interactions essentially require to take all particle pairs into account for a proper
treatment of interactions. This may become a problem, if periodic boundary conditions
are imposed to the system, i.e. formally simulating an infinite number of particles (no
explicit boundaries imply infinite extend of the system). Therefore one has to devise special
techniques to treat this situation. On the other hand one also has to apply fast techniques
to overcome the inherent� �� � � complexity of the problem, since for large numbers of
particles this would imply an intractable computational bottleneck. In general one can
classify algorithms for long range interactions into the following system:

� Periodic boundary conditions

– Grid free algorithms, e.g. Ewald summation method32–34

– Grid based algorithms, e.g. Smoothed Particle Mesh Ewald35, 36, Particle-
Particle Particle-Mesh method37–39

� Open boundary conditions

– Grid free algorithms, e.g. Fast Multipole Method40–45 (FMM), Barnes-Hut Tree
method46, 47

– Grid based algorithms, e.g. Particle-Particle Particle-Multigrid method48

(P�Mg), Particle Mesh Wavelet method49 (PMW)

In the following two important members of these classes willbe described, the Ewald
summation method and the Fast Multipole Method.

2.2.1 Ewald Summation Method

The Ewald summation method originates from crystal physics, where the problem was to
determine the Madelung constant50, describing a factor for an effective electrostatic energy
in a perfect periodic crystal. Considering the electrostatic energy of a system of

�
particles

in a cubic box and imposing periodic boundary conditions, leads to an equivalent problem.
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At position � � of particle 	, the electrostatic potential,� �� � �, can be written down as a
lattice sum � �� � � � �

�
�

��	�
�

#	�� �	 � �� � (11)

where� � ��� � � � �� � � ��$ � � is a vector along cartesian coordinates and� is the length
of the simulation box. The sign ”�” means that	 �� 0 for �� � � �.

Eq. (11) is conditionally convergent, i.e. the result of theoutcome depends on the order
of summation. Also the sum extends over infinite number of lattice vectors, which means
that one has to modify the procedure in order to get an absolute convergent sum and to get
it fast converging. The original method of Ewald consisted in introducing a convergence
factor	��
, which makes the sum absolute convergent; then transforming it into different
fast converging terms and then putting� in the convergence factor to zero. The final result
of the calculation can be easier understood from a physical picture. If every charge in
the system is screened by a counter charge of opposite sign, which is smeared out, then
the potential of this composite charge distribution becomes short ranged (it is similar in
electrolytic solutions, where ionic charges are screened by counter charges - the result is
an exponentially decaying function, the Debye potential51). In order to compensate for
the added charge distribution it has to be subtracted again.The far field of a localized
charge distribution is, however, again a Coulomb potential. Therefore this term will be
long ranged. There would be nothing gained if one would simply sum up these different
terms. The efficiency gain shows up, when one calculates the short range interactions as
direct particle-particle contributions in real space, while summing up the long range part
of the smeared charge cloud in reciprocal Fourier space. Choosing as the smeared charge
distribution a Gaussian charge cloud of half width�31 the corresponding expression for
the energy becomes� �� � � � �

�
�

��	�
� #	 erfc

�1 �� �	 � �� ���� �	 � �� � (12)

�
'�
� � �


 ��
�

��	�
�

#	�� �� 	� 
 
� �
�
$�

	
�
��� � # � �17�

The last term corresponds to a self energy contribution which has to be subtracted, as it is
considered in the Fourier part. Eq. (12) is an exact equivalent of Eq. (11), with the differ-
ence that it is an absolute converging expression. Therefore nothing would be gained with-
out further approximation. Since the complimentary error function can be approximated
for large arguments by a Gaussian function and the k-space parts decreases like a Gaussian,
both terms can be approximated by stopping the sums at a certain lattice vector� and a
maximal�-value�� -� . The choice of parameters depends on the error,( � ��� ��� � �,
which one accepts to tolerate. Setting the error tolerance� and choosing the width of the
counter charge distribution, one gets

� �� �
��� �� � �1 �

� �1 �
�� � � ��� ���� (13)

� �� -� � �1 � ��� ��� -� � � '1 �� � � ��� *'�
� � , (14)
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This can be solved iteratively or if one is only interested inan approximate estimate for the
error, i.e. neglecting logarithmic terms, one gets

� � � �1 (15)

�� -� � �1� (16)

Using this error estimate and furthermore introducing execution times, spent for the real-
and reciprocal-space part, it is possible to show that parameters� �, 1 and �� -� can be
chosen to get a complexity of� �� ��� � for the Ewald sum52, 53. In this case, parameters
are � �

� �
� �
�

�
�� � 1� � � �� -��� � ��� �

�� (17)

Figure 2 shows the contributions of real- and reciprocal parts in Eq. (12), as a func-
tion of the spreading parameter1, where an upper limit in both the real- and reciprocal-
contributions was applied. In the real-space part usually one restricts the sum to�� � � �
and applies a spherical cutoff radius,��. For fixed values of�� and�� -� there is a broad
plateau region, where the two terms add up to a constant value. Within this plateau region,
a value for1 should be chosen. Often it is chosen according to1 � 	3� . Also shown is
the potential energy of a particle, calculated with the Ewald sum. It is well observed that
due to the periodicity of the system the potential energy surface is not radial symmetric,
which may cause problems for small numbers of particles in the system.
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Figure 2. Left: Dependence of the calculated potential on the choice of the scaled inverse width,� �,
of the smeared counter charge distribution. Parameters forthis test were� � ���, �� � � �� � and�������	 � 
. Right: Surface plot and contours for the electrostatic potential of a charge, located in the
center of the simulation volume. Picture shows the xy-planefor � � � ��. Parameters were�� � � ��� �,� � � �� �� and

����� ��	 � 
.

2.2.2 The Fast Multipole Method

In open geometries there is no lattice summation, but only the sum over all particle pairs
in the whole system. The electrostatic energy at a particle’s position is therefore simply
calculated as � �� � � �

��	�
�

#	�� � � �	 � (18)
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Without further approximation this is always an� �� � � algorithm since there are� �� � ��3� interactions to consider in the system (here Newton’s thirdlaw was taken
into account). The idea of a multipole method is to group particles which are far away
from a tagged particle together and to consider an effectiveinteraction of a particle with
this particle group54–56. The physical space is therefore subdivided in a hierarchical way,
where the whole system is considered as level 0. Each furtherlevel is constructed by
dividing the length in each direction by a factor of two. The whole system is therefore
subdivided into a hierarchy of boxes where eachparent boxcontains eightchildren boxes.
This subdivision is performed at maximum until the level, where each particle is located in
an individual box. Often it is enough to stop the subdivisionalready at a lower level.

In the following it is convenient to work in spherical coordinates. The main principle
of the method is that the interaction between two particles,located at� � � � � �� and
� � �4 � 1 � 2 � can be written as a multipole expansion57

��� � � � � ��
��

�

��
��

�
�

�� � �� �� ���
� �� �� � 4 �� �
 �

��� ���� 1 � ��� ���� � � 	� �� �& �� � (19)

where
��� �	 � are associated Legendre polynomials58. This expression requires that43� � � and this gives a lower limit for the so-calledwell separatedboxes. This makes it

necessary to have at least one box between a tagged box and thezone, where contributions
can be expanded into multipoles. Defining the operators

 �� �� � � 4 � �� � �� �� � � �� ���� 1 � 	���& (20)

�� ��� � �� �
 �

���
� �� �� � � �� ���� � � 	 ��� (21)

with which Eq. (19) may simply be rewritten in a more compact way, it is possible to write
further three operators, which are needed, in a compact scheme, i.e.

1.) a translation operator, which relates the multipole expansion of a point located at� to a
multipole expansion of a point located at� � �

 �� �� � � � �
��	�
�

	��
�
�
� ��	  �

� �  	  �� � �
� ��	  �

� � �  ��	 %� �
 �� � (22)

2.) a transformation operator, which transforms a multipole expansion centered at the
origin into a Taylor expansion centered at location�


 �� �� � � � �
��	�
�

	��
�
� � ��	  �

� �  	  �� � � � ��	  �
� � � 
�
	 %�
 �� � (23)

3.) a translation operator, which translates a Taylor expansion of a point� about the origin
into a Taylor expansion of� about a point�


 �� �� � � � �
��	�
�

	��
�
�
! ��	  �

� �
 	  ��� �
! ��	  �

� � � � ��	  �
� � (24)

The procedure to calculate interactions between particlesis then subdivided into five
passes. Figure 3 illustrates four of them. The first pass consists of calculating the multipole
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Figure 3. Schematic of different passes in the Fast Multipole Method. Upper left: Pass 1, evaluation of
multipole terms in finest subdivision and translating information upwards the tree. Upper right: Pass 2,
transforming multipole expansions in well separated boxesinto local Taylor expansions. Lower left: Pass
3, transferring multipole expansions downwards the tree, thus collecting information of the whole system,
except nearest neighbor boxes. Lower right: Pass 5, direct calculation of particle-particle interactions in
local and nearest neighbor boxes.

expansions in the lowest level boxes (finest subdivision). Using the translation operator
 �� �� � � �, the multipole expansions are translated into the center oftheir parent boxes
and summed up. This procedure is repeated then subsequentlyfor each level, until level 2
is reached, from where no further information is passed to a coarser level. In pass 2, using
operator


�� �� � � �, multipole expansions are translated into Taylor expansions in a box
from well separated boxes, whose parent boxes are nearest neighbor boxes. Well separated
means, that for all particles in a given box the multipole expansion in a separated box is
valid. Since the applicability of Eq. (19) implies� � 4, well separateness means on level�

that boxes should be separated by a distance��
�
. This also explains, why there is no

need to transfer information higher than level 2, since fromthere on it is not possible to
have well separated boxes anymore, i.e. multipole expansions are not valid any more. In
pass 3, using the operator


�� �� � � �, this information is then translated downwards the
tree, so that finally on the finest level all multipole information is known in order to inter-

12



act individual particles with expansions, originating from all other particles in the system
which are located in well separated boxes of the finest level.In pass 4 this interaction be-
tween individual particles and multipoles is performed. Finally in pass 5, explicit pair-pair
interactions are calculated between particles in a lowest level box and those which are in
nearest neighbor boxes, i.e. those boxes which are not called well separated.

It can be shown42 that each of the steps performed in this algorithm is of order� �� �,
making it an optimal method. Also the error made by this method can be controlled rather
reliably45. A very conservative error estimate is thereby given as54, 42, 59����� �� � � #�� � � � ���� � �# �� � 4 �4� ��
 � (25)

At the current description the evaluation of multipole terms scales as� ���� -� �, when
�� -�is the largest value of

�
in the multipole expansion, Eq. (19). A faster version whichscales

as� ���� -� � and therefore strongly reducing the prefactor of the overall scheme, was pro-
posed in Ref. 43, where multipoles are evaluated in a rotatedcoordinate frame, which
makes it possible to reduce calculations to Legendre polynomials and not requiring asso-
ciated Legendre polynomials.

Also to mention is that there are approaches to extend the Fast Multipole Method to
periodic systems60, 61.

3 The Integrator

The propagation of a classical particle system can be described by the temporal evolution
of the phase space variables

�� �
� �, where the phase space� �� �

� � � � �
�

contains all
possible combinations of momenta and coordinates of the system. The exact time evolution
of the system is thereby given by a flow map��� %� � � �

� 	 � �
�

(26)

which means ��� %� �� �
�� � � ���� � �� �

�� � �� �
� ��� � �� � (27)

where
� � �� � � �

� � ��� �
� � �� � � �� � ��� (28)

For a nonlinear many-body system, the equations of motion cannot be integrated exactly
and one has to rely on numerical integration of a certain order. Propagating the coordinates
by a constant step size
, a number of different finite difference schemes may be used for
the integration. But there are a number of requirements, which have to be fulfilled in order
to be useful for molecular dynamics simulations. An integrator, suitable for many-body
simulations should fulfill the following requirements:

� Accuracy, i.e. the solution of an analytically solvable test problem should be as close
as possible to the numerical one.

� Stability, i.e. very long simulation runs should produce physically relevant trajecto-
ries, which are not governed by numerical artifacts
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� Conservativity, there should be no drift or divergence in conserved quantities, like
energy, momentum or angular momentum

� Reversibility, i.e. it should have the same temporal structure as the underlying equa-
tions

� Effectiveness, i.e. it should allow for large time steps without entering instability and
should require a minimum of force evaluations, which usually need about 95 % of
CPU time per time step

� Symplecticity, i.e. the geometrical structure of the phasespace should be conserved

It is obvious that the numerical flow,��� %� , of a finite difference scheme will not be
fully equivalent to

��� %� , but the system dynamics will be described correctly if the items
above will be fulfilled.

In the following the mentioned points will be discussed and anumber of different
integrators will be compared.

3.1 Basic Methods

The most simple integration scheme is the Euler method, which may be constructed by a
first order difference approximation to the time derivativeof the phase space variables

��
 �
� �� � ��

�
�� � ��� � �� � (29)

��
 �
� �� � ��

�
��

� ��� � �� � (30)

where�� is the step size of integration. This is equivalent to a Taylor expansion which is
truncated after the first derivative. Therefore, it is obvious that it is of first order. Knowing
all variables at step� , this scheme has all relevant information to perform the integration.
Since only information from one time step is required to do the integration, this scheme
is called the one-step explicit Euler scheme. The basic scheme, Eqs. (29,30) may also be
written in different forms.

The implicit Euler method

��
 �
� �� � ��

�
� � � ���
 � �

��
 � � (31)

��
 �
� �� � ��

�
��

� ���
 � �
��
 � � (32)

can only be solved iteratively, since the derivative on the right-hand-side (rhs) is evaluated
at the coordinate positions on the left-hand-side (lhs).

An example for a so-called partitioned Runge-Kutta method is thevelocity implicit
method

��
 �
� �� � ��

�
� � � ���
 � �

�� � (33)

��
 �
� �� � ��

�
��

� ���
 � �
�� � (34)
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Since the Hamiltonian usually splits into kinetic� and potential
�

parts, which only de-
pend on one phase space variable, i.e.

� �� �
� � � �

� � � � �� � � � �� � (35)

where� �� is the inverse of the diagonal mass matrix, this scheme may also be written as

��
 �
� �� � ��

�
� � � ��� � (36)

��
 �
� �� � ��

� ��
 � (37)

showing that it is not necessary to solve it iteratively.
Obviously this may be written as aposition implicit method

��
 �
� �� � ��

�
� � � ���
 � � (38)

��
 �
� �� � ��

� �� (39)

Applying first Eq. (39) and afterwards Eq. (38) also this variant does not require an iterative
procedure.

All of these schemes are first order accurate but have different properties, as will be
shown below. Before discussing these schemes it will be interesting to show a higher order
scheme, which is also based on a Taylor expansion. First write down expansions

� �� � ��� � � ��� � �� �� ��� � �
� ��� �� ��� �  �

��� � (40)

� � ��� � ��
� � �

�� � �
�� ��� �� �

�� �  �
��� � (41)

� �
� � ��� � � �

�� � �� �� �
�� � �

� ��� �� �
�� �  �

��� � (42)

� � �
�� � ��

�
�
�� �
�� � �� �

� � ���� �  �
��� � (43)

where in Eq. (41), the relation�� � � 3� was used and in Eq. (43) a first order Taylor
expansion for �� was inserted. From these expansions a simple second order, one-step
splitting scheme may be written as

��
 �
�
�
� �� � ��

� � ��� � (44)

��
 �
� �� � ��

� ��
 �
�
� (45)

��
 �
� ��
 �

�
� � ��

� � ���
 � � (46)

where the relation�� � ��� 3� � � � was used. This scheme is called theVelocity Verlet
scheme. In a pictorial way it is sometimes described as half-kick, drift, half-kick, since the
first step consists in applying forces for half a time step, second step consists in free flight
of a particle with momentum��
 �

�
� and the last step applies again a force for half a time

step. In practice, forces only need to be evaluated once in each time step. After having
calculated the new positions,

��
 �, forces are calculated for the last integration step. They
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are, however, stored to be used in the first integration step as old forces in the next time
step of the simulation.

This algorithm comes also in another flavor, called thePosition Verletscheme. It can
be expressed as

��
 �
�
�
� �� � ��

�� �� (47)
��
 �

� �� � �� � ���
 �
�
� � (48)

��
 �
�
�
� ��
 �

�
� � ��

�� ��
 � (49)

In analogy to the description above this is sometimes described as half-drift, kick, half-
drift. Using the relation� � ��3� and expressing this as a first order expansion, it is
obvious that� ���
 �

�
� � � � ���� � ��
 � �3�� which corresponds to an implicit midpoint

rule.

3.2 Stability

Performing simulations of stable many-body systems for long times should produce con-
figurations which are in thermal equilibrium. This means that system properties, e.g. pres-
sure, internal energy, temperature etc. are fluctuating around constant values. To measure
these equilibrium properties it should not be relevant where to put the time origin from
where configurations are considered to calculate average quantities. This requires that the
integrator should propagate phase space variables in such away that small fluctuations do
not lead to a diverging behavior of a system property. This isa kind of minimal requirement
in order to simulate any physical system without a domination of numerical artifacts. It is
clear, however, that any integration scheme will have its own stability range depending on
the step size��. This is a kind of sampling criterion, i.e. if the step size istoo large, in order
to resolve details of the energy landscape, an integration scheme may end in instability.

For linear systems it is straight forward to analyze the stability range of a given numer-
ical scheme. Consider e.g. the harmonic oscillator, for which the equations of motion may
be written as

�# ��� � � ��� and
�� ��� � �� �# ���, where� is the vibrational frequency and it

is assumed that it oscillates around the origin. The exact solution of this problem may be
written as *� # ���� ��� , � * ��� � � ��� � �� ��� � � ��� � � , *� # �� �� ��� , (50)

For a numerical integrator the stepwise solution may be written as*� #�
 �� �
 � , � � �
��� *� #�� � , (51)

where� �
��� is a propagator matrix. It is obvious that any stable numerical scheme re-

quires eigenvalues�� �� � � � �. For �� � � � the scheme will be unstable and divergent, for�� � � � it will be stable but will exhibit friction, i.e. will loose energy. Therefore, in view
of the conservativity of the scheme, it will be required that�� �� � � � �.

As an example the propagator matrices for the Implicit Euler(IE) and Position Verlet
(PV) algorithms are calculated as� � � �

��� � �
� � � � ���

* � � ���� �� � , (52)
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� � � �
��� �

�
��

� � �
� � ���� � �� *� � �' � ����,
�� �� � � �

� � ����

�
�� (53)

It is then straight forward to calculate the eigenvalues as roots of the characteristic polyno-
mials. The eigenvalues are then calculated as

��� � � � 	� �� (54)

��� � �
� � � ����

�� � 	� ��� (55)

�� � � �� � � �� �� � �� �� � � � �
� � ���� )� �

�
� � '

� � ��� / (56)

This shows that the absolute values for the Explicit Euler (EE) and the Implicit Euler
methods never equals one for�� �� �, i.e. both methods do not produce stable trajectories.
This is different for the Position Verlet, the Velocity Verlet (VV), the Position Implicit
Euler (PIE) and the Velocity Implicit Euler (VIE), which allhave the same eigenvalues.
It is found that the range of stability for all of them is in therange� ���� � �. For
larger values of�� the absolute values of the eigenvalues bifurcates, gettinglarger and
smaller values than one. In Figure 4 the absolute values are shown for all methods and
in in Figure 5 the imaginary versus real parts of

�
are shown. For EE it is clear that the

imaginary part diverges linearly with increase of��. The eigenvalues of the stable methods
are located on a circle until� ���� � �. From there one branch diverges to�� , while the
other decreases to zero.

As a numerical example the phase space trajectories of the harmonic oscillator for� � � are shown for the different methods in Figure 6. For the stable methods, results
for a time step close to instability is shown. All different methods produce closed, stable
orbits, but it is seen on the other hand that they strongly deviate from the exact solution,
which is shown for reference. This demonstrates that stability is a necessary, but only a
weak criterion for correct results. Numerically correct results are only obtained for much
smaller time steps in the range of�� � � �� �. Also shown are the results for EE and IE.
Here a very much smaller time step,�� � � �� � is chosen. It is seen that the phase space
trajectory of EE spirals out while the one of IE spirals in with time, showing the instable
or evanescent character of the methods.

Another issue related to stability is the effect of a trajectory perturbation. If initial
conditions are slightly perturbed, will a good integrator keep this trajectory close to the
reference trajectory? The answer is No and it is even found that the result is not that
strong dependent on the integrator. Even for integrators ofhigh order, trajectories will
not stay close to each other. The time evolution of the disturbance may be studied similar
to the system trajectory. Consider the time evolution for� � ��, where� � �� �

� � and
�� � �

�� � �
� � is a small disturbance. Then

���� � �	� �� � (57)
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Figure 4. Absolute value of the eigenvalues� as function of the time step��. Left: Explicit and implicit
Euler method. Right: Velocity and Position Verlet as well asVelocity Implicit and Position implicit Euler
method. All methods have the eigenvalues.
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Figure 5. Imaginary versus real part of eigenvalues� of the propagator matrices. Left: Implicit and Explicit
Euler. Right: Velocity and Position Verlet as well as Velocity Implicit and Position implicit Euler method.

Similarly one can write for small��
��� �� � �� � � �	� �� � �� � (58)

� �	� �� � � �	 ��	� �� ���� (59)

where the second line is a truncated Taylor series. Comparing terms one simply gets as
equation of motion for a perturbation

����� � � �	� �� ��� (60)

It is found that the disturbance develops exponentially, with a characteristic, system depen-
dent exponent, which is the Ljapunov exponent62, 63.

Now consider the following situation where identical starting configurations are taken
for two simulations. They will be carried out by different yet exact algorithms, therefore
leading formally to the same result. Nevertheless it may happen that different orders of
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Figure 6. Phase space trajectories for the one-dimensionalharmonic oscillator, integrated with the Velocity
Implicit Euler, Position Implicit Euler, Velocity Verlet,Position Verlet and integration step size of�� � ���
(left) and the Implicit Euler and Explicit Euler and step size �� � � �� � (right).

floating-point operations are used in both algorithms. Due to round off errors, floating-
point arithmetic is not necessarily associative, i.e. in general4 �

� �5 �
� �� �� �4 �

� 5� �
� � (61)

where
�
� is a floating-point machine operation (� � � �

3
� �). Therefore, both simulations

will be different by round off errors. According to the abovediscussion, this may be
considered as the slightest disturbance of a system trajectory, ��� �� , and the question is,
what effect such a round off error will have. A different method to study difference in
system trajectories is the calculation of the difference�� ��� � ���

��
��

�

�$�� %� %� �	 ��� � �	 ����� (62)

where
�

is the number of particles,	
�
�� a certain property, e.g. the coordinates or mo-

menta, and�	 the same property of a disturbed trajectory. In Figure 7 results are shown
for a system of Lennard-Jones particles, where the disturbance was induced by reversing
the order of summation in the force routine, thereby provoking round off errors in the first
time step. Shown are results for the coordinates, the velocities and the forces and it is seen
that all quantities diverge exponentially from machine accuracy up to a certain behavior at
long times, which is shown in the inset. To understand the long time behavior,�� ��� can
be written as average property�� ��� � ��	 ��� � 	 �� � � �	 ��� � 	 ����� 	 (63)

� � �	 ��� � 	 �� � �� 	 � � ��	 ��� � 	 ��� �� 	 (64)
�� �	 ��� �	 ���	 � � �	 ��� �	 ���	 � � �	 ���	 ���	 � � �	 ���� 	

In the second equation the first two terms are mean square displacements of	 in the two
systems (note that�	

�� � � 	 ��� since the same starting configurations are used), the next
term is a cross correlation between the systems. This will vanish if the systems become
independent of each other. The next two systems consist of auto-correlation functions of	
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Figure 7. Divergent behavior of trajectories due to round off errors, induced by different summation order
in the force routine. From top to bottom: coordinates, velocities, forces. The insets show on a linear scale
the long time behavior of the trajectory differences, i.e. when the two systems get decorrelated.
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in each system. For long times they will also decrease to zero. Finally, the last term gives
a constant offset which does not depend on time. Therefore the long time behavior will be
governed for coordinates, momenta and forces by

������ � 	 ��� � � � �� ��� � � �� � �� 	 � ��" � (65)
������ �� ��� � � �� �

��� 	 � � �� � (66)
������ � � ��� � � �� �

��� 	 � � ��� �� (67)

where" is the diffusion coefficient,
�

the temperature and� the potential of mean force.
That the divergent behavior of neighbored trajectories is asystem dependent property

is shown in Figure 7 where results for Lennard-Jones systemsat different temperatures are
shown.

In conclusion, the individual trajectories of a physical complex system will end up at
different places in phase space when introducing round off errors or small perturbations.
Round off errors cannot be avoided with simple floating-point arithmetic (only discrete
calculations are able to avoid round off errors; but then thephysical problem is transformed
into a different space). Since one cannot say anything abouta true summation order, the
location in phase space cannot have an absolute meaning. Therefore, the solution to come
out of this dilemma is to interpret the phase space location as a possibleand allowed
realization of the system, which makes it necessary, however, to average over a lot of
possible realizations.

3.3 Time Reversibility

Considering the classical equations of motion for the case of a time independent Hamil-
tonian, i.e. no externally applied time-dependent potentials, it becomes clear that the dy-
namics of conservative particle systems should be time reversible. Since the momentum�
has dimension [length/time], a time transformation will lead to

�
	 �� � � 	 �� (68)

Therefore this transform will lead to
��
� �

� �
��
��

��
�
�	 � ��� �� ���� � �

��
�� (69)

��
� �

�
��
�� � �

�
��

�
�	 � �� �� ���� � �

��
� ��� � � � �

� (70)

showing the equations of motion are unchanged under a time reverse transformation.
Therefore it is not a qualitative change to calculate the mechanical system towards the

past and not towards the future. This means that an integrator should be able to propagate a
system trajectory up to a certain time step and from there, bya time reversal transformation
��

	 ���, should go exactly the same trajectory back to the starting configuration, i.e.� ��� � ����
�� �� ��� (71)

The map� ��� is called the adjoint method64 and if Eq. (71) holds,��� is symmetric.
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The time reversibility can easily be checked by inspection for each integrator. As an
example consider the Position Implicit Euler method. The reverse of this method, to move
positions and momenta from step� � � back to step� or by a time reversal would be

Reverse Transform��
	 ���

�� � ��
 �
� ��

� �� �� � ��
 �
� ��

� ��
 � (72)
�� � ��
 �

� ��� ���
 � � �� � ��
 �
� ��� ��� � (73)

As it is seen the method with time reversal is not identical tothe inverse map, since the
derivatives

� 	� and
��� are evaluated at the wrong time step. Therefore the Position

Implicit Euler method is not time reversible. The same is true for all other Euler methods,
shown in Section 3.1. However, it is instructive to note thatthe reverse map corresponds to
the Velocity Implicit Euler. Applying a proper time reversal transform� to the algorithms
yields the following

� ������ � � � � ��� (74)

� �� � ��� � � �����
(75)

� ��� � ��� � � �� � ���
(76)

� ��� � ��� � � �� � ���
(77)

Therefore one can simply combine different methods in orderto construct a new scheme.
In order to propagate the system by a time step��, apply each scheme for��3�. For
example consider the combination

�������
�
� �� ����

� �, which leads to the following steps

��
 �
�
�
� �� � ��

�� ��
 �
�
� (78)

��
 �
�
�
� �� � ��

� � ���
 �
�
� � (79)

��
 �
� ��
 �

�
� � ��

�� ��
 �
�
� (80)

��
 �
� ��
 �

�
� � ��

� � ���
 �
�
� � (81)

A simple comparison of terms yields that
��
 �

�
�
� ��� � ��
 � �3� and��
 �

�
�
� ��� ���
 � �3� which leads to

��
 �
� �� � ��

��
��� � ��
 � � (82)

��
 �
� �� � ��

� � ���� � ��
 � �3�� (83)

which is the Implicit Midpoint Euler scheme (IME).
Combining different types of methods, it comes out that the following relations hold������

�
� �� ����

�
� � �� ���

(84)� � ����
�
� ������

�
� � � � ���

(85)�� � ����
�

� �� � ����
�

� �� ��� (86)�� � ����
�

� �� � ����
�

� �� ��� (87)
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Figure 8. Results for calculations with time reversal transformation,�� � ��� after time t. Results show�� � ��� and
�� � ���, Eq. (88), for the Velocity Verlet integrator (VV2) and higher order composition schemes

(VV4, VV6, VV8, cmp. Section 3.4 and the Appendix). As a reference, results are shown for�� ��� and�� ���, obtained for two trajectories with different round off errors at� � �.

where�� � ��� is the Implicit Trapezoidal Euler. This result shows some interesting proper-
ties: (i) symmetric methods can be constructed by composition of non-symmetric methods
(example for the adjoint method), (ii) since PIE and VIE are both first order methods,
while VV is of second order, this shows that composition of methods increases the order
of a method.

Now that time reversibility is established in principle forfour different methods (VV,
PV, IME, ITE), the question is how good time reversibility isachieved in a molecular dy-
namics computer simulation. In practice one can test this bysimulating


 3� time steps
and then reversing the sign of��. For a symmetric method, the trajectories should end
up exactly in the initial configuration after



time steps. E.g. if particles started from a

regular lattice with zero momentum, this should be exactly the final configuration. Here
now it is important to consider the effect of round off errorsin the simulation which accu-
mulate during the run. It was already discussed that a very small perturbation of the initial
configuration may lead to a diverging behavior of two (initially very close) trajectories. If
in the time reverse motion of particles the round off errors are not fully compensated, the
trajectory will finally end up a distance apart, which corresponds to an initial perturbation
of the size of the cumulated round off error. In Figure 8 the results for such a numerical
experiment is shown. Calculated is the norm of the trajectory differences

�� � ��� � 	
 ��� � 
� �� ��� 	� (88)

where
 � ��
� � � and � denotes the time step, from where the trajectory was reversed.

Figure 8 shows results for this calculation for a system of 864 Lennard-Jones particles.
In addition to the trajectory difference, calculated from time reversal, areferencecurve is
shown, which is the result from a different summation order.This shows that true time
reversibility cannot be achieved easily for a trajectory inmolecular dynamics, although a
true time reversible integrator is used. This problem can betraced back to the round off
errors. The largest number of floating-point operations usually is done in the force routine
of an MD program. This usually takes about 95% of CPU time of the whole simulation
time. Since forces are used to update the velocities, which in turn are needed to propagate
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the coordinates, it seems to be clear that the main source of round off errors is to be found
in the force loop. Therefore one attempt would be to reduce round off errors in this part
of the program. Several techniques were proposed for this task, e.g. up- or down-sorting
for force contributions65, 66, tree like summation or compensated summation67–74. These
methods have in common that they are able to reduce the round off error, but they do not
avoid it. Therefore there will be still a slight deviation from thetrue summation, which
may act as a slight perturbation for the trajectory.

Another approach, which avoids round off errors is the use ofinteger arithmetic75–78. In
this approach all relevant quantities, e.g. length, time, charge, energy, are scaled in a way
that they can be represented by large integer values. The size of the values thus determines
the resolution with which differences in lengths etc. can beresolved.

A different approach, which still relies on floating-point arithmetic was introduced by
Skeel79. If a variable is denoted by	 and its upper limit is known, i.e.��� �	 � � �	, where
�	 is a power of 2 and if� is denoted the target precision, one can construct an equally
spaced floating-point grid, with grid spacing�	 � ��� �	. If � denotes the number of
significant bits in the floating-point representation of a machine (often� � �' for single
precision,� � 	�

for double precision and� � ��� for quadruple precision), then use the
following procedures to transform a machine number	 � with upper bound�	:
If � � � � � define

round� �	 � � � �	 � �
�

�� ��	 
 ���� �	 �� �� �� ��	 
 ���� �	 � (89)

If � � � � � define

round� �	 � � � �	 � �
� sign

�	 � � �	 �� �� sign
�	 � � �	 (90)

If � � � define

round� �	 � � � �	 � �� sign
�	 � � �	 �� �

� sign
�	 � � �	 (91)

where
�
� denotes a machine operation.

E.g. the Velocity Verlet algorithm then reads as

��
 �
�
�
� �� � round� *�� �	 �
 ��

�� � � �
 � ��� �, (92)

��
 �
� �� � round	 *��� �� � � �
 ��, (93)

��
 �
� ��
 �

�
� � round� *�� �	 �
 ��

�� � � �
 � ���
 � �, (94)

Varying the value of� it is possible to change the accuracy of floating-point operations
gradually while preserving exact machine operations, i.e.avoiding round off errors. This
is shown in Figure 9 where the quadratic displacement between trajectories is shown for
interval floating-point arithmetic with different values of � and a reference trajectory with
ordinary floating-point arithmetic. In practical applications it will be expensive to apply
the round-function in every force evaluation. Therefore, the forces are calculated in the
usual way, accepting round off errors.� has to be chosen then in such a way that the last
digits, affected by round off errors in the forces are truncated in the integration step.
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The interest of such round off free algorithms is not only an academic one to prove
a theoretical property of an integration scheme. Since round off errors accumulate, the
calculated trajectory is dominated by round off errors froma certain time on. This does not
mean that the trajectory does not carry any information anymore, but it may lead to the fact
that correlations between particles over this time interval cannot be seen in a simulation.
Avoiding round off errors this should not happen and small effects, which are usually
covered by round off errors show up.
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Figure 9. Left: Divergent behavior of system trajectories,calculated with the usual floating-point arithmetic
and round off free interval floating-point arithmetic. In both cases a Velocity Verlet integration scheme is
used. Right: Result for� � ��� of floating-point interval arithmetic where trajectories were calculated with
different summation sequences.

A numerical test shows that there is no accumulation of numerical errors in such a sim-
ulation. Reversing the time step�� after


 3� time steps and comparing the two trajectory
pieces in the intervals� � �� �
 3�� �� and � � �
 3� � � �


 � �� leads to differences in
trajectories identical to zero (no fluctuations in position-, velocity- or force-differences)!
This shows that complete reversibility is possible.

What about the effect of different summation order? If forces are not subject to floating-
point interval arithmetic, there will be round off errors and the result of the forces will de-
pend on the order of summing up individual force contributions. This does not do any harm

to the integrator, unless the value of round� *�� �	 �
 ��
�� � � �
 � ��� �, lies in different

intervals for different summation orders. It is clear that with a wider floating-point interval
the probability of such an event becomes smaller and consequently, for smaller� it is to be
expected that round off errors due to summation order show uplater than for large�.

In Figure 9 the quadratic displacement,� � ���, of forces is shown due to a different order
of summation in the force routine. It is found that the divergent behavior of trajectories
starts at different times depending on the value of�, as can be expected from the above
discussion. For� � �� there are only small fluctuations on the level of machine accuracy.
Nevertheless, also this function will start to diverge at larger times. Compared to floating-
point interval arithmetic is the result for usual double precision floating-point arithmetic.
It is found that for large� the diverging behavior is even more pronounced (although the
Ljapunov exponent is for all cases the same of course). This effect is due to a stronger effect
of initial disturbance in the case of interval arithmetic. This effect, induced by different
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order of summation, may be avoided by simply using interval arithmetic also in the force
routine, i.e. rounding properly every individual force contribution before summing up.
This introduces, however, a stronger computational overhead since the round-function has
to be applied very much more often (in the case of short range interactions 10-100 times
for each particle and time step).

3.4 Accuracy

For an integrator of order� � �, the local error may be written as an upper bound80

	��� %� � ��� 	 � 
 ���
 � (95)

where

 � � is a constant,

��� %� is the exact and��� the numerical flow of the system.
The global error, i.e. the accumulated error for larger times, is thereby bound for stable
methods by80

	� ��� � � �� 	 � � �	� �� � �� ��� � �� � ��� (96)

where
� � � is a constant,� � � the Lipschitz constant,� ��� � � �� �

�� � � � ��� �� the exact
and�� � ��� � �� � the numerically computed trajectory at time�� . This estimate gives of
course not too much information for� �� � unless�� is chosen very small. Nevertheless,
qualitatively this estimate shows a similar exponential divergent behavior of numerical and
exact solution for a numerical scheme, as was observed in Section 3.2.

A different approach to the error behavior of a numerical scheme is backward error
analysis, first mentioned in Ref. 81 in the context of differential equations. The idea is
to consider the numerical solution of a given scheme as the exact solution of a modified
equation. The comparison of the original and the modified equation then gives qualitative
insight into the long time behavior of a given scheme.

It is assumed that the numerical scheme can be expressed as a series of the form� �� ��� � � �� � ��� �� � � ���� � �� � � ���� � �� � � � � � (97)

where the� � are known coefficients and for consistency of the differential equation it must
hold

� �� � � *� � �
� � , *��� 	 , � �� �

� � (98)

On the other hand it is assumed that there exists a modified differential equation of the
form

��� �� � � ��� � � ���� ��� � � ��� �� ��� � � � � � (99)

where
�� will be equivalent to the numerically obtained solution. Inorder to construct the
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Figure 10. Phase space trajectories of the Lennard-Jones oscillator calculated with the Explicit Euler
scheme and different time steps of integration. Theexactsolution (numerical solution of a high order
composition scheme with small time step) is shown as a reference - it forms closed orbits. Superimposed
to the solutions are results, obtained with a Velocity Verlet scheme, applied to the modified equations,
Eqs. (101,102). The right figure shows the differences in coordinates between the calculation with Explicit
Euler scheme applied to Lennard-Jones oscillator and Velocity Verlet applied to the modified equation,���� ��� � �� �� ��� �.

modified equation, the solution of Eq. (99) is Taylor expanded, i.e.
�� �

� � ��� � �� ��� � ��
�� ��� � � ���� ��� � � ����� ��� � � � � �� (100)

� ���
� �

�� � ��� � � ��� �� ��� � � � � �� �� �
� � � �� ��� � � ���� ��� � � � � ��

� ���� �
 �� �� ��� � � ��� ��� ��� � � � � � � �� � �

� � � �� ��� � � ���� ��� � � � � ��� �
�
�� � ��� � � ��� �� ��� � � � � � � �� � �

� � � �� � ��� � � ��� �� ��� � � � � � ��

 �� ��� � � ���� ��� � � � � � �

�
� � � �

The procedure to construct the unknown functions� � proceeds in analogy to perturbation
theory, i.e. coefficients with same powers of�� are collected which leads to a recursive
scheme to solve for all unknowns.

To give an example the Lennard-Jones oscillator is considered, i.e. a particle perform-
ing stable motions in negative part of a Lennard-Jones potential. As was observed already
for the harmonic oscillator, the Explicit Euler method willgain energy during the time,
i.e. the particle will increase kinetic energy which finallywill lead to an escape of the
Lennard-Jones potential well. Solving for the modified equation of the Explicit Euler, one
gets as a first correction

�� �
��
�� � ��

�
��
�� (101)

�� � �
��
�� � ��

� �
� ���� � (102)
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Figure 11. Comparison of symmetric composition high order integrators, based on the Position Verlet
scheme. Coefficients of composition methods are given in theAppendix.

Figure 10 shows results for the integration of equations of motion with the Explicit Euler
scheme. Different time steps for integration were applied which show a faster escape from
a stable orbit with increasing time step. Also plotted in thesame figure is the solution of
the modified equations with a high order symplectic scheme, which can be considered as
exacton these time scales. It is found that the trajectories more or less coincide and cannot
be distinguished by eye. A more quantitative analysis (Figure 10) shows that for relatively
long times the solution is rather well approximated by the modified equation, although with
increasing time the differences between solutions become more pronounced. This means
that for longer times it would be necessary to include more terms of higher order in�� into
the modified equation. It should be mentioned that, in general, the series expansion of the
modified equation diverges.

This gives a method to analyze the error. A better way, of course, is to avoid errors.
A natural approach would be to increase the order� of the integrator at hand. As was
shown already in Section 3.3 in the context of time reversibility, one can compose different
methods in order to get (i) symmetric methods and (ii) increase the order of the method.
A method for constructing higher order symplectic methods was proposed by Yoshida82, 83

and Suzuki84, 85, where an s-fold composition of symmetric methods was applied. The
resulting flow can thus be written as

� �� � ��� �� � ����� �� � � � � � �� � �� � �� � �� (103)

where� �� is a symmetric basic method, e.g. Velocity Verlet (��� � ����
�
%� � ��� %� �����

�
%� , Eqs. (44-46,86)) or Implicit Midpoint Rule (��� � ����

�
%� � ���� %� , Eq. (84)) and

� � are chosen parameters which determine the width of a substep. For consistency and if
the composition method itself is symmetric, it is required that


�
��

�

� � � � � � 

 ��
 � �  � � � � � � � � � � (104)
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In order to calculate the coefficients one has the additionalcondition
�
��

�

� �
 �� � � (105)

If the basic method is of order� it can be shown that the composed method is at least of
order� � �64. A symmetric method has an even order since all odd terms in the Taylor
expansion cancel. If the composition method is constructedas a symmetric method ac-
cording to Eq. (104), then

�� ��
is even (at least) of order order� � �. This procedure can be

repeated recursively in order to construct symmetric methods of any order. Of course, the
number of stages increases each time the order is increased,e.g. starting with a symmetric
method of order� � � as basic method and taking� � �

, this will result in a method of
order� � '. This order-four method can again be taken as a basic method and one ends up
with a resulting order of� � 6 and� � �. For even higher methods the number of stages
will strongly increase, making this type of high order methods computationally demand-
ing (cmp. Appendix). It is a matter of choice with which number of steps the procedure is
started. For� � �

, one gets the scheme of Yoshida82, corresponding to

�
�
� � � � �

� � ��
� ��
 �� � �

�
� � ��

� ��
 ��
� � ��

� ��
 �� (106)

For � � 	
one gets the scheme of Suzuki84, corresponding to

�
�
� �

�
� �

�
� �


� �' � ' �� ��
 �� � � � � � ' �� ��
 ��' � ' �� ��
 �� (107)

There are also refined composition schemes, which do not needthat large number of sub-
steps. They are also based on Eq. (103) with symmetric basic methods like the Velocity
Verlet. References and coefficients are given in the Appendix. Figure 11 shows the error
energy fluctuation

�� �
���� �� � � ���

�
*� � � 

� �
, �

(108)

for a test case of a system of Lennard-Jones particles, where�  is the total energy in the
system at time step� and

� �
the number of MD steps. As a basic method the Position

Verlet scheme was applied. It is found that all integration schemes obey the prescribed
order. Due to numerical round off errors the methods saturate for very small time steps.

4 Conclusions

The old vision of Laplace as it was sketched in Section 1 even cannot be met in computer
simulations, where all initial conditions are knownexactly. Slight disturbances, which
may even be introduced by simple round off errors, as was shown by different orders of
summation, lead to Lyapunov instabilities of close trajectories. Only in the case, where
really discrete lattice maps are introduced, reversibility can be achieved and no effects due
to round off errors will be seen. Nevertheless, also in such adiscrete system, there will
be Lyapunov instabilities if disturbing the initial conditions in the slightest way. These
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instabilities, however, have no dramatic consequences forthe overall stability of trajecto-
ries of the system. The system develops into different partsof accessible phase space but
if symplectic, time reversible integrators are used to solve the equations of motions, the
geometrical structure of phase space is conserved. Physically this behavior can be inter-
preted as interference of a system with an uncontrollable, slight disturbance, which could
happen within an experimental setup e.g. by thermal fluctuations or impurities etc.. This
also should not drive a system out of equilibrium. Actually the fact that a disturbance
develops an exponential drift of two nearby trajectories isoften used to impose artificial
initial conditions, i.e. start a simulation from an orderedregular grid and impose a uniform
velocity distribution corresponding to a desired temperature. Equilibration will then lead a
loss of memory to the initial conditions and to a proper statistical distribution of physical
quantities. From that point of view an individual trajectory of particles is of no principal
importance. It can only be considered as a possible, allowedrealization of the system and
lots of different configurations have to be obtained to get a proper averaging over different
trajectories.

Appendix

Composition Methods of Order p

As an example a composition is done with a Velocity Verlet integrator as basic method, i.e.� �� %� � ����
�
%� � ��� %� � ����

�
%�

Then the composition scheme is performed in a step wise fashion. In the program an
s-stage composition scheme is then implemented as follows (here for the Velocity Verlet
integrator)

do is = 1, s
do i = 1, n_part

do k = 1, 3
v(k,i) = v(k,i) + 0.5*w(is)*h*f(k,i)/m(i)
x(k,i) = x(k,i) + w(is)*h*v(k,i)

enddo
enddo

... calculate forces ...

do i = 1, n_part
do k = 1, 3

v(k,i) = v(k,i) + 0.5*w(is)*h*f(k,i)/m(i)
enddo

enddo
enddo

In the following, coefficients for composition methods, based on symmetric schemes,
with different number of stages,� and of order� are given. For all cases, the symmetry
relation

� 

 ��
 � �  � � � � � � � � � �
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holds. Therefore only coefficients up to
��3�� � � are shown.

stages order coefficients reference

3 4 �
�
� � ��	������ ��	�6	������� Yoshida82

�
�
� � � ����' �''����	�������6'

5 4 �
�
� �

�
� � �' �''�������'��	����'' Suzuki84

� � � �� �6	��6���� ���'���� �� ��
7 6 �

�
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� � � � � ����6����' ��������6�	
�
�
� � � � � �
� �

� 

9 6 �

�
� � �����6 �'''�����' ����� Kahan & Li86
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