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Abstract. We discuss recent work on Coulomb dissociation and an aféecange theory of low-lying electromagnetic
strength of halo nuclei. We propose to study Coulomb disgimei of a halo nucleus bound by a zero-range potential as a
homework problem. We study the transition from strippingpdeind and unbound states and point out in this context teat th
Trojan-Horse method is a suitable tool to investigate swstiold resonances.

1. INTRODUCTION AND OVERVIEW

With the exotic beam facilities all over the world - and more & come - direct reaction theories are experiencing a
renaissance. We report on recent work - just finished anddgrpss - on Coulomb dissociation of halo nudlei |1, 2]
and on transfer reactions to bound and scattering statehopéeto report on further progress at the next workshop at
MSU/ANL/INT/JINA/RIA or elsewhere.

Electromagnetic strength functions of halo nuclei exhibiiversal features that can be described in terms of
characteristic scale parameters. For a nucleus with no¢twve structure the reduced transition probability, as
determined, e.g., by Coulomb dissociation experimentsafieview seel[3,14]), shows a typical shape that depends
on the nucleon separation energy and the orbital momenteeimtitial and final states. The sensitivity to the final-
state interaction (FSI) between the nucleon and the corebeastudied systematically by varying the strength of
the interaction in the continuum. In the case of neutroneaurclei analytical results for the reduced transition
probabilities are obtained by introducing an effectivaga expansion. The scaling with the relevant parameters is
found explicitly. General trends are observed by studyevggal examples of neutron+core and proton+core nuclei in
a single-particle model assuming Woods-Saxon potentiddsy important features of the neutron halo case can be
obtained already from a square-well model. Rather simpdyéinal formulae are found. The nucleon-core interaction
in the continuum affects the determination of astrophysic#éactors at zero energy in the method of asymptotic
normalisation coefficients (ANC). It is also relevant foetbxtrapolation of radiative capture cross sections to low
energies.

Coulomb dissociation of a neutron halo nucleus in the lirh@ pero-range neutron-core interaction in the Coulomb
field of a target nucleus can be studied in various limits effiarameter space and rather simple analytical solutions
can be found. We propose to solve the scattering problerhi®ntodel Hamiltonian by means of the various advanced
numerical methods that are available nowadays. In this tvaily tange of applicability can be studied by comparison
to the analytical benchmark solutions.

The Trojan-Horse Method|[5, 6] is a particular case of transfactions to the continuum under quasi-free scattering
conditions. Special attention is paid to the transitiomfroeactions to bound and unbound states and the role of
subthreshold resonances. Since the binding energies tdimlmse to the drip line tend to be small, this is expected
to be an important general feature in exotic nuclei.
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2. EFFECTIVE RANGE THEORY OF HALO NUCLEI

At low energies the effect of the nuclear potential is comeetly described by the effective-range expansion [7]. An
effective-range approach for the electromagnetic stredgtribution in neutron halo nuclei was introducedlin [1]
and applied to the single neutron halo nuclétBe. Recently, the same method was applied to the descripfion
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FIGURE 1. Reduced probability for dipole transitions as a functiorite# excitation energ* = E + S, in comparison to
experimental data extracted from Coulomb dissociatioh'Be [14].

electromagnetic dipole strength A0 [€]. A systematic study sheds light on the sensitivity &f tHectromagnetic
strength distribution to the interaction in the continudiMe expose the dependence on the binding energy of the
nucleon and on the angular momentum quantum numbers. Owagpextends the familiar textbook case of the
deuteron, that can be considered as the prime example o aheleus, to arbitrary nucleon+core systems, for related
work seel[B} 10, 11]. We also investigate in detail the squagk potential model. It has great merits: it can be solved
analytically, it shows the main characteristic featuresl@ads to rather simple and transparent formulae. As faeas w
know, some of these formulae have not been published befbese explicit results can be compared to our general
theory for low energies (effective-range approach) and @smore realistic Woods-Saxon models. Due to shape
independence, the results of these various approachesowdiffer for low energies. It will be interesting to delimte

the range of validity of the simple models.

Our effective-range approach is closely related to effedield theories that are nowadays used for the description
of the nucleon-nucleon system and halo nuclei [12]. Theattaristic low-energy parameters are linked to QCD in
systematic expansions. Similar methods are also used isttkly of exotic atomsrt” A, m™mm, T p, ...) in terms
of effective-range parameters. The close relation of &ffedield theory to the effective-range approach for haéron
atoms was discussed in Ref.[13].

In Fig. O we show the application of the method to the electrgnetic dipole strength iA'Be. The reduced
transition probability was deduced from high-enetgBe Coulomb dissociation at GS1|14]. Using a cutoff radius
of R=2.78 fm and an inverse bound-state decay length©f0.1486 fr ! as input parameters we extract an ANC
of Co = 0.724(8) fm~/2 from the fit to the experimental data. The ANC can be convereispectroscopic factor
of C2S = 0.704(15) that is consistent with results from other methods. In theekt order of the effective-range
expansion the phase shqi in the partial wave with orbital angular momentdrand total angular momentuinis
written as tay’ = —(xd'y)?*1, wherey = gqR= 0.4132< 1 is the halo expansion parameter and k/q = \/E/S,
with the neutron separation energy The parametenlJ corresponds to the scattering Ieng#h: (clJ R)2+1, We obtain
cf/z = —0.41(86,—20) andci/2 = 2.77(13,—14). The latter is unnaturally large because of the existeneebafund

%7 state close to the neutron breakup threshofttBe. For a further discussion we refer o [1].

3. HOMEWORK PROBLEM

We consider a three-body system consisting of a neutrarcorec and an (infinitely heavy) target nucleus with charge
Ze The Hamiltonian is given by
H=T+Vcz+Vnc (1)



whereT is the kinetic energy. The Coulomb interaction between tre and the target is given My = ZZ.€?/r¢
andVyc is a zero-range interaction betweeandn. The s-wave bound state of the= (c+ n) system is given by the
wave functiond® = /q/(2m) exp(—qr)/r, whereq is related to the binding enerds, by E, = h?g?/(2u) and the
reduced mass of the+ n system is denoted by. We refer tol[3] (see especially Ch. 4 there) for details.g present
homework problem is simpler than the one assigned by |. Tsomgn his case there is a p-wave bound stafitin
and, in addition, the interactions between the target aagtbjectile are much more complicated.)

One can study elastic scattering (influence of the polavisatotential) as well as breakup of the halo nuclaus
in the Coulomb field of the target nucleis Although the Coulomb dissociation of this zero-range traloleus is
governed by a rather simple Hamiltonian, the solution of fhrioblem is nontrivial, as is often the case in physics.
This model is also relevant for the Oppenheimer-Phillipgpss (polarisation of a deuteron in the Coulomb field of a
nucleus)|[15], see also [16] for a criticism. The paramegpacs is given by the chargee of the target ande of the
corec, the binding energi, of the (c+ n) system, the neutron and core massg&ndm. respectively.

In this model one can study elastic scattering as well akbpdahe beam momentum is denoteddaythe beam
velocity is denoted by), the momenta of the outgoing fragmentandn ared; anddp, respectively (o, in the case
of elastic scattering). In the case of elastic scattering,imfluence of the polarisation potential can be studiefl [17
The polarizability of a zero-range neutron halo nucleusvsmgby

(Zemneh)?

Opol = 2R -2= 6[-1(mn+ mc)zEg . (2)
For a small binding enerdy, this can be a large effect. In 1982 the electric dipole poédiility of the deuteron was
determined by measuring elastic scattering of deuterorf8%b at energies from 3.0 to 7.0 Me\/ [18]. (By the way,
two of the authors of this paper were participating in thiskehop.) The measured value of the electric polarizability
apol = (0.70+0.05) fm3 is in fair agreement with eq. 2, if the necessary finite raragesctions are applied see, e.g.,
[d.

The kinematics of the breakup process is giver@py- Gem+ Grel Whereqem andge are directly related tqc and
dn, respectively. Analytic results are known for the planarstimit, the Coulomb-wave Born approximation (CWBA,
“Bremsstrahlung integral”) and the adiabatic approxima{iRon Johnson, this workshop and [20]). A first derivation
of the “Bremsstrahlung formula” was given by Landau and hitfs [21], it was improved by Breit in_[22]; an early
review is given inl[23].

In the plane-wave limit the result does not dependiitself but only on the “Coulomb pust.ou = Ga — Gem

In the semiclassical high energy straight-line and eledipole limit, first and second order analytical results are
available, as well as for the sudden limit. E.g., in the gtialine dipole approximation a shape parameterk/q
and a strength parameter myn /[(m, + me)bg] determine the breakup probability (in the sudden limit)e Tinpact
parameter is denoted dyand the Coulomb parameter is= ZZ.€?/(hv). In [24] it was found that the breakup
probability is given in leading order by

dRo 16 x*
dk qu2(1+x2)4 3
and in next-to-leading order by
dRwo 16 ,X*(5—55¢+ 28" @

dk  3mg 15(1+x2)8

Another important scaling parameter, in additiorxtandy, is £ = wb/v, wherehw is the excitation energy of the
(c+n) system. In the sudden approximation we h&ve 0 and there is an analytical solution [26].

This homework problem can be studied, e.g., in the CDCC noktivhich was widely discussed at the workshop.
It would be very interesting to see how well this method wankgarious limits of the parameter space. An especially
interesting limit is the limit of low beam energies, where tBWBA is very appropriate. We would expect that
higher-order effects are very important under these cammitand it would be good to see that the CDCC method
converges. We refer tol[3], especially Sect. 4.2, for furthetails and references on experimental and theoretiad wo
onEq = 12 MeV deuteron breakup df’Au.

It would also be extremely interesting to apply the threeybmethods ofi[25] to the homework problem. In this
work, the so-called post-decay acceleration of the fragsisrstudied and genuine three-particle wave functions for
the final state are used. In their case there are three chpegtdes in the final state, but the problem is non-trivial
even for only two (out of three) charged patrticles in the fstate.



A related problem, the Coulomb breakup of antideuteronsiddw an orbit with quantum numbensl, m[27, 28]
can also be studied with this Hamiltonian: in this case thergh of the core nucleusis negativeZ; = —|Z|. In
[27] the adiabatic method is used: the antideuteron c.miomat assumed to be slow compared to the intepahd
n-motion and the authors calculate the antideuteron tumedlgbility through the Coulomb barrier which is provided
by the nucleus Z.

4. TRANSFER REACTIONS

Exotic nuclei have low thresholds for particle emissiorislexpected that in transfer reactions one will often meet
a situation where the transferred particle is in a stateecloghe particle threshold. In “normal” nuclei, the neutron
threshold is around an excitation energy of about 8 MeV, hregtire single particle picture is not directly applicable.
Much is known from stripping treactions liKel, p) and thermal neutron scattering, see, elgl, [29]. The sjpeytécle
strength is fragmented over many more complicated compstates. The interesting quantity is the strength function
which is proportional td” /D whererl is the width and D the level spacing. This raticdsl, as can be estimated from
a square well model (see, e.q../[29]). et O there are no sharp resonances, sinceE around threshold. Due to
the angular momentum (and/or) Coulomb barrier, onelh& < 1 at threshold for all the other cases.

For neutron rich (halo) nuclei the neutron threshold is moaler, of the order of one MeV. In this case the single-
particle properties are dominant and the ideas develop#ukiriollowing can become relevant, see alsd [30]. The
level density is also much lower. In normal nuclei the levenhsity at particle threshold is generally so high that the
single particle structure is very much dissolved. This cargbite different in exotic nuclei which can show a very
pronounced single particle structure.

4.1. Trojan-Horse Method

A similarity between cross sections for two-body and clpselated three-body reactions under certain kinematical
conditions|[31] led to the introduction of the Trojan-Horeethod|[32, 33, 34, 5]. In this indirect approach a two-body
reaction

A+x—C+c (5)

that is relevant to nuclear astrophysics is replaced byaicea
A+a—C+c+b (6)

with three particles in the final state. One assumes thatrbjaThorseais composed predominantly of clusterand

b, i.e.a= (x+b). This reaction can be considered as a special case of agraeattion to the continuum. It is studied
experimentally under quasi-free scattering conditiores,when the momentum transfer to the specthtis small.
The method was primarily applied to the extraction of the-Ewergy cross section of reactidm (5) that is relevant for
astrophysics. However, the method can also be applied tttidg of single-particle states in exotic nuclei around the
particle threshold.

4.2. Continuous Transition from Bound to Unbound State Stripping

Motivated by this we look again at the relation between tiemt® bound and unbound states. Our notation is as
follows: we have the reaction
A+a—B+b @

wherea = (b+x) and B denotes the findd = (A+ x) system. It can be a bound steBewith binding energy
Epinga = —Eax(> 0), the open channel+ x, with Eax > 0, or another chann& + ¢ of the systenB = (A+x). In
particular, the reactiom+ A — C+ ¢ can have a positiv€) value and the energliax can be negative as well as
positive. As an example we quote the recently studied Trbjase reactior+°Li [35] applied to the®Li(p, a)3He
two-body reaction (the neutron being the spectator). Ia tlise there are two charged particles in the initial state
(SLi+ p). Another example with a neutral partiotevould be'°Be+d — p+ 'Be+y. The general question which we
want to answer here is how the two regidfys > 0 andEay < 0 are related to each other. E.g., in Fig. 7o [35] the



coincidence yield is plotted as a function of tfé- p relative energy. It is nonzero at zero relative energy. Hoesd

the theoryl|[5] (and the experiment) continue to negativatred energies? With this method, subtreshold resonances
can be investigated rather directly. We treat two casegatghy one where systeBiis always in thg A+ x) channel,

with a real potential/ax betweerA andx. In the other case, there are also other char®els, at positive and negative
energieEay.

4.2.1. One Channel Case

We imagine the following situation: The potenti4l, gives rise to a bound state with angular momentuiose
to threshold. Now we decrease the potential so that the betate disappears and reappears as a resonance in the
continuum. Foll > 0 there are sharp resonances and we can define a cross sectfripping to a resonance by
integrating over the resonance line (over an energy randgehvig several times larger than the width) and they join
smoothly to the stripping to the bound states, 5ee [36].

Due to the absence of the angular momentum barriel fo0 there are some peculiarites which we study now.
Stripping to bound states is determined by the asymptotimabization constarB (see egs. (A54) - (A56) of [2]) of
the bound-state wave function and the functipfiqr) whereq is related to the binding energy. Since

B~qg¥? for =0 (8)

and
B~qtRY2 for 1>0 (9)

the stripping cross section (see, e.g., eq. (17).df [36]) thado) state witH = O tends to zero foq going to zero,
while it stays finite fol > 0. We note that the presence of a bound state close to zergydeads to a large scattering
length in theA+ x system which leads to an enhancement of the elastic breaksp section. The double differential
cross section at threshold is proportional to
d’c  sifd

dQdE = k
The quantity siAd is given byk?/(g? + k?) for a bound and virtual state. Thus the double differentiass section
tends to zero liké ~ /E, for | = 0.

When the strength of the potential is decreased, the boatellstcomes a virtual state, which again leads to a very
large scattering length, see al50l[30]. In this contexténsg interesting to note that about 30 years ago a new type of
threshold effects was predicted in|[37] (what is now calldthi state was referred to as a puffy state in those days).
Related to this is the qualitative differencel ef 0 andl > 0 in the location of the poles of the S matrix in the complex
plane [38|.39]. Only fof > 0 there are poles of the S matrix close to the real axis.

: (10)

4.2.2. Absorption at Zero Energy, Multichannel Case

We follow the work of Ichimura, Austern, Vincent, and Kasda€,41] who have studied the caBgx > 0 and we
now extend it to the case &y < 0. The exclusive case can be also studied by generalizigng eg). (61) ofl[b].

For positive energieax the inclusive cross section f8r+a — b+ X whereX is any state of the systeBi= (A+X)
consists of an elastic and inelastic component, see ed)(@t340] or eq. (8) ofl[41]. For negative energiEg, the
elastic breakup component is zero, and only the inelasticpoment remains. For positive energies this inclusive
inelastic breakup cross section is writtenlas [41]

dGinel . (27‘[)4 3
ke v /d rw(r)

2
/ G(7,7)p ()| . (11)

The “source termp can be calculated from the distorted waves in the incidedifiaal channel and is given by eq. (3)
of [41]. The Green’s function in the+ A channel is given by, andW = —ImU (r) whereU is the optical potential
(assumed to be local) in thet+ A channel.

It is now our aim to give a meaning W andGy for negative energielSayx and show that the cross section behaves
smoothly when going from positive energies to negative giesr



In [41] the Green's function is expanded in partial waves as

6ur.¥) =~ 5 M 07) (12

wheref; andh, are regular and outgoing radial wave functions in the paédt
The imaginary part-W of the optical model potential is related to the partial weaection cross sectian of X+ A
scattering by (this is eq. (26) af [41])

Rk
/ W) i(r)Pdr = = o

The total reaction cross secti@eac is given byoreac = 5(21 + 1)) andgj is related to the imaginary part of the
phase shift byo = {1 — exp(—4Img )] /k?. We now derive this equation and generalize it to the casesgétive
energieEay. According to (A.20) inl[2] we normalize the regular scattgrwave functiong, as (our normalization
differs from the one of Refl[41] by a factor of k)

i (13)

1 . _
g — 5 exp(2|cﬁ)u|(+> - ul( )} (14)
valid for r ouside the range of the potential. The ingoing and outgoiargaﬁunctions;l(i) are given by

U™ =x(—yi £iji) (15)

for neutrons and
U = exp(¥ioi) (G +iF) (16)

for charged particles, respectively. The asymptotic biehevis ufi) — exp[+i (x—nIn(2x) —111/2)]. For positive
energie€ay > 0 we havex = kr. By the usual procedure we obtain

d d
—2I—/ W(r) |g [*dr = (g|—g—g| q) (17)
r=oo
- - ds (Hay  ()ay” i Using thi
From the Wronskian relatioB9%; — F 98 =1 we obtalnuI ax — U —gx = —2i. Using this we can evaluate the
RHS. For positive energies we haf«xéi = uI ) and the RHS is given by
K
RHS= - [1 exp(—4Img )] . (18)

This quantity is directly related to the partial wave reacttross sectiog; and eq.[(IB) is established. For low energies
Eax > 0 the phase shift is small and we can expand

RHS= —2kimg . (19)

For negative energieBax < 0 we putx = igr. The functionsul(i> are exponentially decreasing and increasing
respectively. (A bound state corresponds to a pol§ ef exp(2i9).) They are given asymptotically by (disregarding

the logarithmic Coulomb phase)
*) — i exp(Fqr). (20)
Using these properties we can evaluate the Wronskians ariRHl$ is found to be

ul

RHS= g(—l)' [exp(2id) — exp(—2i57)] . (21)
Close to the threshold is small and we have

RHS=iq(—1)'(& + &) = 2iq(—1)'Rej . (22)



We can assume that the interior logarithmic derivalives smooth wherEa, goes from positive to negative values.
Now we can relate the value éf to this logarithmic derivative and show in this way that trensition from positive
to negative values dfay is smooth. In the presence of an imaginary péithe LHS is non-vanishing. The logarithmic
derivativel; is complex. This means that f@ax > 0 § acquires an imaginary part, f& < 0 the “phase shift’g
acquires a real part.

Let us deal with neutral particles. For low (positive) enesgve can express the phase shift in terms of the scattering
lengthay by tan(§) = —ak? 1 where the scattering length is related to the interior litganic derivativel; by eq.

(A.31) of [4]
/. 241

where the hard sphere scattering length is giverllfy= R?+1/[(2| 4+ 1)!! (2 — 1)!!]. In order to obtain this result,

the expansion of the Bessel and Neumann functions for sradlles ofkr was used:j; = (kr)' /(21 + 1)!! and
n = —(2 — 1)1 /(kr)'*1. We can write

_ a4ins(, 2d+1
§ = -k g (1 oor ) (24)

Thus the Wronskian can be expressed in termis; oFor Eax > 0 we findRHS= —2ik?+2aIm[(2] + 1)/(L; +1)].
For negative energies we pkit= —iq . Carrying through the corresponding steps as for the pesitihergy case we

obtain I
a — i(_1)|q2l+1a{hs (1_ 2LI_—:—'?') ) (25)

This leads tRHS= —2iq?+2aim[(2I + 1) /(L; +1)]. In our approach we have used the surface approximation, see
egs. (24) and (25) of [41]. This means that the r-coordimatmi [T1) is associated with the-coordinate in eq[{12)
andr” with r~.. Thek? *1 andg? 1 factors which enter in eq€_{R4) afid25) are cancelled btetime coming fronhy,
see eqs[{11)[112) and eq. (25) bofl[41]. Thus there is a contis transition in the stripping from bound to unbound
states.

Quite similarly, one can relate the logarithmic derivatiyéo the phase shift for charged particles and establish the
smooth transition from positive to negative energies. Wealayive the details here.

4.2.3. Imaginary part of the optical model potential andwgimn of a toy model

A formal expression for the optical potential is given in E2.16) of [40] by the Feshbach projector formalism. In
a schematic two-state model we want to illustrate the smivatisition from positive to negative energies. We assume
two channels with = 0, the coupled radial equations are

d2
(W —ug(r)+ k%) f1(r) = uga(r) f2(r) (26)

and
d2
(g2~ 1) +18) fa) =) @)

We haveks = kZ + Q(> 0) and the channel 2 is open fk§ = 0 down tok? > —Q. Introducing the Green’s function
Ga(r,r") we can expres$; as fa(r) = [ Gy(r,r')up1 f1(r')dr'. Inserting this into eq[{26) we obtain an equation for

in an optical potential. This optical potential has a real an imaginary part. We are especially interested here in the
imaginary part V\ihiCh can be found as follows: We can expies&reen’s function a6, = [dE xe(r)xe(r')/(E* —

E). Using Iimm = PP& Fimd(x—Xg) we obtain InG; = —imxe(r) X (r') wherexe(r) is the regular solution

of the homogeneous part of e[.126) (with the coupling péént; = 0). This leads to a nonlocal, separable imaginary
part given byW(r,r') = — tVao(r) Xe () Xe(F)Vaa(r').

It is instructive to solve eqs_(26) anld]27) analytically fosquare-well model with delta-function coupling. We
takeu; = —|us|,up = —|up| forr < Rand zero otherwise and, = up1 = ud(r — R). This leads to a Sprungbedingung



in the logarithmic derivatives. According to egs. (22) ff.[B] we have the following asymptotic behaviour of the
(s-wave) radial wave functions:

(1) — 3 [Sizexp(-ikur) 8)
and .
fy— 'é\/% (S5, exp(—ikar ) — explikar)] - (29)

The two logarithmic matching conditions determime= /k>/k1S;, andz, = S;,. The interior logarithmic derivatives
L; andL; are real (somewhat differently from the previous subsedfiey are defined here &s= f//fi,i = 1,2).
Introducingl = L, — u?/(L1 +iky) one can expres® = exp(2ikoR)(L — ikz) /(L + ikz) andz = 2ikouexpi(ky +
ko)R]/[(L1+iky)(L +ik2)]. From these expressions one can derive the unitarity of that8x (2 by 2 fork? > 0). The
S-matrix elementl(f > 0) S, has the threshold behavio8¢, O v/k; which is characteristic for the s wave. It should
be straightforward to generalizelto- 0 and to Coulomb interactions.

For kf < 0 there is only one open channel (channel 2) and the S matnisigts only of one S-matrix elemet,.
We putk; = —iq (|En| = F?g%/(2m)). One sees thdt is real (rather than complex for the 2 channel case)zrid
unitary (modulus is one). The quantitytends to a well defined number, of interest for the THM metiradE, = 0
it is given byz; = 2ik2uexp(ik2R)/[L1(I:+ ik2)]. Since channel 1 is closef;, is not an S-matrix element, but it can

still be used as an input in egs. (64), (65)lof [5]. The quiyanr) there can also be defined for imaginary values of
kax (closed channel case).

5. CONCLUSION

While the foundations of direct reaction theory have be@hdaveral decades ago, the new possibilites which have
opened up with the rare isotope beams are an invitation isitévis field. The general frame is set by nonrelativistic
many-body quantum scattering theory, however, the inargdsvel of precision demands a good understanding of
relativistic effects notably in intermediate energy Canbpexcitation, see the talk by Carlos Bertulani at this wbhds

The properties of halo nuclei depend very sensitively orbthding energy and despite the ever increasing precision
of microscopic approaches using realistic NN forces it mdlt be possible, say, to predict the binding energies ofaiucl
to a level of about 100 keV. Thus halo nuclei ask for new apghiea in terms of some effective low-energy constants.
Such a treatment was provided in Ch. 2 and an example to th@euteon halo nucleus'Be was given. With RIA
one will be able to study also neutron halo nuclei for intediate mass nuclei. This is expected to be relevant also for
the astrophysical r process. It is a great challenge to dxtenpresent approach for one-nucleon halo nuclei to more
complicated cases, like two-neutron halo nuclei.

The treatment of the continuum is a general problem, whicloimes more and more urgent when the dripline is
approached. In the present proceedings we studied thétimarfsom bound to unbound states as a typical example.
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