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Abstract

A big spectrum of processes induced by real and virtual photons on the 3He and 3H nuclei is

theoretically investigated through many examples based on nonrelativistic Faddeev calculations for

bound and continuum states. The modern nucleon-nucleon potential AV18 together with the three-

nucleon force UrbanaIX is used. The single nucleon current is augmented by explicit π- and ρ-like

two-body currents which fulfill the current continuity equation together with the corresponding

parts of the AV18 potential. We also employ the Siegert theorem, which induces many-body

contributions to the current operator. The interplay of these different dynamical ingredients in the

various electromagnetic processes is studied and the theory is compared to the experimental data.

Overall we find fair to good agreement but also cases of strong disagreement between theory and

experiment, which calls for improved dynamics. In several cases we refer the reader to the work

of other groups and compare their results with ours. In addition we list a number of predictions

for observables in different processes which would challenge this dynamical scenario even more

stringently and systematically.

PACS numbers: 21.45+v,21.10-k,25.10+s,25.20-x

2



Contents

I. Introduction 5

II. Formalism in the Faddeev scheme 9

III. Current operators 19

A. The single nucleon current 20

B. The Siegert approach 22

C. π and ρ-like meson exchange currents 25

IV. The Observables 32

V. The Performance 45

VI. Comparison with data 55

A. Elastic electron scattering on 3He and 3H 55

B. Inclusive electron scattering on 3He and 3H 64

C. Electron induced pd breakup of 3He 78

D. Nd radiative capture and the time reversed Nd photodisintegration of 3N bound

states. 87

E. Three-nucleon photodisintegration of the 3He 97

VII. Predictions 101

A. Inclusive electron scattering on 3He 101

B. Electron induced pd breakup of 3He 106

C. Semiexclusive nucleon knockout processes 111

D. The electron induced complete 3N breakup process 118

E. Spin dependent momentum distributions of polarized proton-deuteron clusters

in polarized 3He 123

F. 3N Photodisintegration of 3He 128

VIII. Addendum 135

IX. Summary and Outlook 138

3



Acknowledgments 144

References 144

4



I. INTRODUCTION

Real and virtual photon induced processes in the three-nucleon (3N) system have been

studied for a long time and these investigations go on with intensity. The reason is that

beyond the deuteron the 3N system in the form of 3He has been always considered since

the very beginning of nuclear physics [1, 2] as a challenge to be understood in terms of the

available state of the art forces. Then the next question followed naturally: what is the

response of the 3N bound state to real and virtual photon absorption ? Again answers have

been searched for over the many years to the best of the available physical insights and

technical feasibilities. Here we point just to a few early studies [3, 4] and refer the reader to

the various reviews given below for the long history of that research.

While the 3N bound states were numerically mastered already in the seventies and early

eighties using nucleon-nucleon (NN) forces with realistic and complex spin-momentum struc-

tures [5–10] and later on adding first models for 3N forces [10–15], the technical challenges

for the 3N continuum with the complex asymptotic boundary conditions were much more

demanding. But in the last 10-15 years also the 3N continuum got more and more under con-

trol [16–21], which opened solid theoretical access to the great diversity of inelastic real and

virtual photon induced reactions on 3He and the nucleon-deuteron (Nd) capture processes.

There has been, and this is going on, an intensive interplay and reciprocal stimulation of

theory and experiment, which justifies, as we think, a review of the present state of the art.

Elastic electron scattering on 3He (3H) has been reviewed many times over the years [22–

26]. The inclusive process 3He(e, e′) has been reviewed in [26]. A very informative monograph

on electron induced processes on nuclei including the 3N system is [27]. Semiexclusive and

above all exclusive electron induced processes on 3He came into the focus only with the high-

duty cycle electron accelerators (NIKHEF, MAMI, Jlab) and reviews about those processes

in the 3N system are not known to us. A good collection of references to old calculations

on the photodisintegration of 3He can be found in [28]. Recent work on these processes is

discussed and cited in [26].

Variational approaches and rudimentary treatments of the 3N continuum in electromag-

netically induced processes were used before the sixties and still in the early seventies and

we refer the reader to the literature quoted in the above listed reviews. Then with the Fad-

deev formulation of the three-body system [29] or the equivalent Alt-Grassberger-Sandhas
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(AGS) equations [30], where the latter ones are ideally suited for finite rank forces, a new

epoch started. In the following we shall not distinguish between the two and just call them

for short ”Faddeev approach”. At that time, due to the lack of sufficiently strong com-

putational resources, the nuclear potentials were chosen in a quite simple form, low rank

separable ones. Very first calculations for electrodisintegration of 3He and 3H in the Faddeev

scheme were performed in [31], where the 3N bound state was treated correctly but in the

final 3N continuum state only the interaction within the spectator pair was kept (the two

nucleons which have not absorbed the photon under a single nucleon current assumption).

Very similar in nature and techniques is the photodisintegration, where the first Faddeev

calculation for the 3N continuum appeared in [32] and where the importance of the rescat-

tering with the spectator nucleons was emphasized. One step further was the work in [33]

where for the two- and three-body photodisintegration of 3He (3H) both, ground state and

3N continuum, were treated consistently as solutions of the Schrödinger equation with the

same 3N Hamiltonian. This exact treatment, though still with simple NN forces, already

allowed one to ask detailed questions [34] like the suppression of the isospin T=1/2 contri-

bution in three-body photodisintegration of 3He. Then the first calculation for two-body

electrodisintegration of 3He (3H) came up in [35]. Though also the formalism for three-body

disintegration in the context of separable forces was formulated, limitations of computer

resources prevented their realization. It then took quite some time that the three-body elec-

trodisintegration has been treated [36] using simple s-wave local forces in an unitary pole

expansion or only in the form of the unitary pole approximation. The conclusion was again

that a proper description has to take into account contributions from the complete multiple

scattering series, or in other words, that final state interaction (FSI) are important. Due to

the lack of kinematically complete breakup data, the calculation of [36] was applied to a set

of existing inclusive data, where the two- and three-body electrodisintegration processes are

both involved.

Physically and formally closely related to electron induced processes is the proton-

deuteron (pd) radiative capture reaction, where a first configuration space 3N calculation

based on solutions of the Faddeev equation for the 3N bound state and 3N scattering states

appeared in [37] using the Reid NN force [38]. Thereby, as in the following studies [39–42],

the interest was in the sensitivity of tensor analyzing powers to properties of the 3N bound

state and to the NN tensor forces. The treatment of the initial state interaction in the pd
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capture processes turned out to be very crucial as well as the inclusion of higher NN force

components. In [39] realistic NN forces and even 3N forces were used in a consistent 3N

Faddeev treatment for both the ground state and the continuum states. In [40] separable

forces were employed but also an Ernst-Shakin-Thaler-expansion form of the Paris potential.

At very low energies (neutron-deuteron) nd capture was treated in [43] using a config-

uration space Faddeev method and realistic NN and 3N forces. The method of correlated

orthogonal states [44] represents the continuum to some extent and puts in short-range

correlations. Although the states are not proper solutions of the 3N Hamiltonian, their

use in studying inclusive response functions clearly showed significant improvements over

plane-wave impulse approximation results and underlined the importance of treating the cor-

relations between the three nucleons in the final state as consequently as in the 3N bound

state.

Another development was the Euclidean response method [45] applied to inclusive re-

sponses. By path integral techniques one calculates the Laplace transform of the response

functions and compares them to the corresponding Laplace transformed data. This is an

exact method and includes the full dynamics of the chosen Hamiltonian. Related to that

are approaches with Stieltjes transforms [46] or transformations by a Lorentz kernel [47].

Around that time the first calculations appeared, where realistic NN forces, with all their

complexities and including all the relevant higher NN force components, were applied to the

pd(nd) and three-nucleon electrodisintegration of 3He (3H) in the Faddeev scheme [48, 49].

In that formulation the pd and ppn breakup of 3He induced by an external probe can be

calculated in ”one shot” solving a Faddeev like integral equation and avoiding the nasty low

order rescattering processes occurring in the separate treatment of the 3N continuum [36].

For inclusive scattering a convenient short cut was found in [50, 51] using the closure relation

for the eigenstates of the Hamiltonian. In this manner, one avoids the explicit numerical

integrations over all the available two-body and three-nucleon disintegration configurations.

In the older investigations mostly only the nonrelativistic single nucleon current operator

has been used. For real photon induced processes it was supplemented by the Siegert ap-

proach, which takes some exchange currents into account. This is insufficient and the explicit

use of two-body currents (and possibly three-body contributions when a three nucleon force

(3NF) is included) is required. These dynamical ingredients are as complicated as nuclear

forces and therefore progress is slow. An important practical step was performed in [52, 53]

7



by associating two-body currents to NN forces through the continuity equation. In the case

of the AV18 NN force [54] that recipe has been used quite often [26] and is still applied.

Closely related studies connecting NN forces and two-body currents appeared in [55, 56].

Nearly all of the results shown in this review are based on our own work using the Faddeev

scheme in a purely nucleonic Hilbert space. There are also other groups, which investigate

real and virtual photon induced processes on light systems. For the wealth of insight and

achievements in the case of the deuteron we refer to [57, 58]. Here we focus just on the

3N system. The group in Pisa uses hyperspherical harmonic expansions of different types

and treats bound and continuum states consistently. They use modern nuclear forces in

all their complexities together with related currents. Their focus is mostly on processes

at very low energies [59]. This includes pd radiative capture, inclusive threshold electron

scattering on 3He, and pd breakup electrodisintegration of 3He. The Urbana-Argonne group

relies beside variational approaches on the Green-function-Monte-Carlo method [60]. A

good overview on the theory and their important results can be found in [26]. In the 3N

system this comprises work on the elastic form factors, short-range correlations related to

the Coulomb sum rule, Nd capture reactions, and Euclidean inclusive response functions.

The group in Trento uses the Lorentz integral transform (LIT) method [47] and employs also

hyperspherical harmonic expansions. In this method one avoids the direct treatment of the

continuum which requires the handling of the complex boundary conditions. Instead that

method converts the continuum problem into a bound state problem. The price to be paid

is an inversion of auxiliary Lorentz transformed amplitudes. The mathematical properties of

that technique are displayed in [61]. This method is being applied not only to the 3N system

but is powerful enough to go beyond A=3 using ideas of effective force expansions [62–64].

More recently the Hanover group also started to thoroughly investigate the 3N continuum

and photon induced reactions therein [65–67]. The new feature is the explicit inclusion of

the ∆-degree of freedom. Thus the Hilbert space is the direct sum of NNN and NN∆ states.

In this manner a certain subset of 3N forces is taken care of as well as consistent two-body

currents.

Last but not least we would like to point to the very rich list of investigations by J.M.

Laget who uses a diagrammatic approach. That work has stimulated many experimental

investigations and sheds light on the reaction mechanisms. A recent paper [68] discusses

electrodisintegration of few-body systems high in momenta above our nonrelativistic domain
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but also provides many references to earlier studies, which are relevant to the work discussed

in this review.

For all technical details used by these other groups we refer the reader to the cited

literature. We shall provide, however, information on their results at the appropriate places

in section VI.

This review is organized as follows. In Section II we describe our approach in the Faddeev

scheme for the great diversity of photon induced processes. A brief review on electromag-

netic currents is given in Section III. The observables are defined in Section IV. Then

Section V describes the way we technically perform the calculations. Section VI is devoted

to a comparison of our theoretical results and some selected results by other groups to the

data. Much remains, however, to be done and we present in Section VII an incomplete and

subjective list of theoretical predictions, some of which will hopefully be testified in exper-

iments in the near future. In Section VIII we provide remarks on several issues relevant in

the 3N system which have not been addressed directly in this review. We end up with a

summary and outlook in Section IX.

II. FORMALISM IN THE FADDEEV SCHEME

Let us start with a heuristic approach toward the photon induced complete breakup of

3He. Once the photon has been absorbed inside 3He, the three nucleons are released but

on the way of leaving the space spanned by the 3He state they interact strongly. This is

illustrated in Fig. 1. Clearly this infinite set of diagrams summarizes all what can happen

in the 3N breakup process under the condition that the three nucleons are interacting by

pairwise forces. Because of the strength of nuclear forces that series is generally diverging for

c.m. energies in the 3N system below the pion production threshold. It has to be summed

up to infinite order. We follow here the Faddeev scheme and perform first a partial re-

summation of the NN forces into NN t-operators. Apparently aside from the very first term

without any interaction after the photon absorption process (U
(0)
0 ) that set of diagrams can

be split into 3 subsets according to the utmost left pair force

U0 = U
(0)
0 + U

(1)
0 + U

(2)
0 + U

(3)
0 , (1)

where U
(i)
0 stands for the subset with Vjk to the left (j 6= i 6= k).
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++ +

+ ...

 =

++ +

+

++ + +

U0

6 more terms 

24 more terms 

FIG. 1: The multiple scattering series for a 3N breakup amplitude due to photon absorption. The

half moon to the very right stands for the 3He state, the circle with the wiggly line attached to it

for the one-photon absorption process and the wiggly lines for NN forces acting between all pairs

to first order, second order etc. For the sake of notation simplicity the action of 3N forces has

been dropped. The three horizontal lines between the action of NN forces and between the photon

absorption and the NN forces stand for a free 3N propagation and the three final horizontal lines

to the very left represent the three final nucleons (their momentum eigenstates).
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Let us regard the first few terms for U
(1)
0 in Fig. 2:

+ ...

 =

++ +

++ +

U0
(1)

FIG. 2: The subset of diagrams ending with V23 to the very left. Symbols as in Fig. 1.

By the very definition of the three subsets this equals

U
(1)
0 = V23G0O | Ψ〉 + V23G0

(
U

(1)
0 + U

(2)
0 + U

(3)
0

)
, (2)

where O is the photon absorption operator, | Ψ〉 the 3He state and G0 the free 3N propagator.

We combine the terms with U
(1)
0 on the left hand side

(1 − V23G0)U
(1)
0 = V23G0O | Ψ〉 + V23G0

(
U

(2)
0 + U

(3)
0

)
, (3)

invert

U
(1)
0 = (1 − V23G0)

−1 V23G0O | Ψ〉 + (1 − V23G0)
−1 V23G0

(
U

(2)
0 + U

(3)
0

)
, (4)

and introduce the NN t-operator t23

t23 ≡ (1 − V23G0)−1 V23. (5)

Obviously, t23 obeys the two-body Lippmann-Schwinger equation

t23 = V23 + V23G0t23. (6)

This leads to

U
(1)
0 = t23G0O | Ψ〉 + t23G0

(
U

(2)
0 + U

(3)
0

)
. (7)

Two more equations for U
(2)
0 and U

(3)
0 arise in exactly the same manner.

11



Now we make use of the identity of the three nucleons. Since the photon absorption

operator O has to be symmetrical under exchange of the three nucleons and the 3He state

is antisymmetrical one immediately obtains

U
(2)
0 = P12P23U

(1)
0 (8)

and

U
(3)
0 = P13P23U

(1)
0 , (9)

where Pij interchanges nucleons i and j. It is convenient to define [69]

P ≡ P12P23 + P13P23 (10)

and we obtain

U
(1)
0 = t23G0O | Ψ〉 + t23G0PU

(1)
0 . (11)

This is already a Faddeev type integral equation, which after iteration leads to the multiple

scattering series, now formulated in terms of NN t-operators

U
(1)
0 = tG0O | Ψ〉 + tG0PtG0O | Ψ〉 + tG0PtG0PtG0O | Ψ〉 + . . . (12)

This is graphically depicted in Fig. 3. The whole breakup amplitude is then given as

U0 = U
(0)
0 + (1 + P )U

(1)
0 . (13)

Here U
(0)
0 is obtained by a simple quadrature and U

(1)
0 arises as solution of the one Faddeev-

like equation (11).

+ ... = + +U0
(1)

FIG. 3: In comparison to Fig. 2 the NN forces are now replaced by NN t-operators represented

as circles or as an oval in the case of the pair 13. In the second and higher orders clearly only

consecutive circles acting on different pairs can appear.

Written in a more definite manner as matrix element the breakup amplitude reads

U0 = 〈φ0 | O | Ψ〉 + 〈φ0 | (1 + P ) | U〉 (14)

12



where the amplitude | U〉 obeys according to (11)

| U〉 = tG0O | Ψ〉 + tG0P | U〉. (15)

We dropped the index 23 on t since one can choose any pair and we introduced the free 3N

state 〈φ0 |. Since O | Ψ〉 and (1 + P ) | U〉 are totally antisymmetrical, we can assume 〈φ0 |
to be antisymmetrical as well.

Let us now re-derive that result in a more standard algebraic manner including also 3N

forces. The general form of the nuclear matrix element for an electroweak probe represented

by a symmetric operator O is given as

N = 〈Ψ(−)
f | O | Ψi〉. (16)

Here | Ψi〉 is the initial nucleus state and 〈Ψ(−)
f | the final scattering state with asymptotic

quantum numbers f . It is generated as [70]

| Ψ
(−)
f 〉 = lim

ǫ→0+

−iǫ
E − iǫ−H

| φf〉. (17)

In the three-nucleon system and for inelastic processes f stands either for asymptotic Nd or

3N quantum numbers. In the latter case we already introduced the fully antisymmetrical

state | φ0〉, which in our notation is given as

| φ0〉 = (1 + P ) | ϕ0〉 (18)

where | ϕ0〉 in the nonrelativistic regime is conveniently expressed in terms of Jacobi mo-

menta

| ϕ0〉 ≡ (1 − P23) | ~p ~q〉 ≡| ~p〉a | ~q〉. (19)

Depending on which pair of nucleons is singled out there are three choices for the Jacobi

momenta. Let us choose one of them and define

~p =
1

2
(~k2 − ~k3) (20)

~q =
2

3

[
~k1 −

1

2
(~k2 + ~k3)

]
, (21)

where the ~ki are the individual laboratory momenta. In the notation (19) we dropped

additional spin and isospin quantum numbers.

Let us now firstly stick to the 3N breakup channel, thus | φf〉 =| φ0〉.

13



The Hamiltonian H occurring in (17) contains NN and 3N forces on top of the kinetic

energy H0

H = H0 +
∑

i<j

Vij + V123. (22)

One way to handle the 3N force operator V123 is to split it into 3 parts

V123 = V (1) + V (2) + V (3), (23)

where V (i) is symmetrical under exchange of nucleons j and k. Such a splitting is always

possible. Thus it appears natural to combine the interactions as

H = H0 + (V12 + V (3)) + (V23 + V (1)) + (V31 + V (2)) ≡ H0 +
3∑

i=1

(Vi + V (i)). (24)

We introduced the standard and convenient notation Vi ≡ Vjk, (j 6= i 6= k). Clearly both

terms Vi and V (i) are symmetrical under exchange of nucleons j and k.

Now using the well known identity between the full resolvent operator G(−) occurring in

(17) and the free resolvent operator

G
(−)
0 ≡ 1

E − iǫ−H0
, (25)

namely

G(−) = G
(−)
0 +G

(−)
0

3∑

i=1

(Vi + V (i))G(−), (26)

one obtains the Lippmann-Schwinger equation for | Ψ
(−)
0 〉 as

| Ψ
(−)
0 〉 =| φ0〉 +G

(−)
0

3∑

i=1

(Vi + V (i)) | Ψ
(−)
0 〉. (27)

This suggests a decomposition of the total state into three parts and using again the identity

of the three nucleons leads to [71]

| Ψ
(−)
0 〉 = (1 + P ) | ψ(−)〉, (28)

where | ψ(−)〉 obeys the Faddeev-like equation

| ψ(−)〉 =| ϕ(−)
0 〉 +G

(−)
0 t(−)P | ψ(−)〉 +

(
1 +G

(−)
0 t(−)

)
G

(−)
0 V (1)(1 + P ) | ψ(−)〉. (29)

The driving term is

| ϕ(−)
0 〉 =

(
1 +G

(−)
0 t(−)

)
| ϕ0〉 ≡| ~p〉(−)

a | ~q〉. (30)

14



Thus in the 2N subsystem the antisymmetric free state | ~p〉a is replaced by the two-body

scattering state | ~p〉(−)
a .

The result for | Ψ
(−)
0 〉 can now be inserted into the nuclear matrix element (16):

N = 〈ψ(−) | (1 + P )O | Ψi〉 = 〈ϕ0 | (1 + tG0)(1 −K)−1(1 + P )O | Ψi〉, (31)

where

K = PtG0 + (1 + P )V (1)G0(1 + tG0) (32)

is the adjoint kernel to the one occurring in (29).

The heuristically derived result (14) valid for V (i) = 0 can now be recovered easily. We

use the identity

(1 + tG0)(1 − PtG0)
−1 = 1 + (1 + P )(1 − tG0P )−1tG0 (33)

and obtain

N = 〈ϕ0 | (1 + P )O | Ψi〉 + 〈ϕ0 | (1 + P )(1 − tG0P )−1tG0(1 + P )O | Ψi〉

= 〈φ0 | O | Ψi〉 + 〈φ0 | U ′〉, (34)

with | U ′〉 given by the integral equation

| U ′〉 = tG0(1 + P )O | Ψi〉 + tG0P | U ′〉. (35)

This has to be compared to the result given in (14) and (15). Since O | Ψi〉 is antisym-

metrical, we obtain

tG0(1 + P )O | Ψi〉 = 3tG0O | Ψi〉. (36)

Consequently, | U ′〉 = 3 | U〉 and the second term in (34) yields 〈φ0 | U ′〉 = 3〈φ0 | U〉 which

equals the second term in (14). This is obvious by applying (1 + P ) to the antisymmetrical

state 〈φ0 | on the left yielding again a factor of 3. This completes the verification of the

heuristically derived result.

Including now the 3NF we define according to the expression (31)

| Ũ ′〉 ≡ (1 −K)−1(1 + P )O | Ψi〉, (37)

or the equivalent integral equation

| Ũ ′〉 = (1 + P )O | Ψi〉 +
(
PtG0 + (1 + P )V (1)G0(1 + tG0)

)
| Ũ ′〉. (38)

15



The breakup matrix element is determined by means of | Ũ ′〉 according to (29) - (31)

N = (−)〈ϕ0 | Ũ ′〉. (39)

Unfortunately, the form (38), although suitable for separable forces, is not appropriate for

numerical applications with realistic interactions because of the presence of the permutation

operator P to the very left in the first part of the kernel[72]. It would “smear out” the

position of the deuteron singularity in the NN t-operator. To rewrite (38) into a suitable

form we use the following obvious identities

1 + P =
1

2
P (1 + P ), (40)

1

2
P (P − 1) = 1. (41)

Then we obtain from (38)

(P − 1) | Ũ ′〉 = (P − 1)(1 + P )O | Ψi〉 +

(
(P − 1)PtG0 + (P − 1)(1 + P )V (1)G0(1 + tG0)

1

2
P (P − 1)

)
| Ũ ′〉, (42)

or with the definition

(P − 1) | Ũ ′〉 ≡| Ũ〉 (43)

the following equation for Ũ

| Ũ〉 = (1 + P )O | Ψi〉 +
(
tG0P +

1

2
(P + 1)V (1)G0(1 + tG0)P

)
| Ũ〉. (44)

This integral equation is now suitable for numerical applications and provides according to

(41) and (39) the nuclear matrix element

N =
1

2
〈ϕ0 | (1 + tG0)P | Ũ〉. (45)

In order to separate the contribution from the plane wave alone ( 〈ϕ0 | ) and the sym-

metrized plane wave (〈φ0 |= 〈ϕ0 | (1 + P )) one can modify the driving term in (44) and

solve the following equation for | ˜̃U〉

| ˜̃U〉 =
[
tG0 +

1

2
(P + 1)V (1)G0(1 + tG0)

]
(1 + P )O | Ψi〉

+
(
tG0P +

1

2
(P + 1)V (1)G0(1 + tG0)P

)
| ˜̃U〉. (46)
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With that auxiliary state | ˜̃U〉 the amplitude N reads now

N = 〈ϕ0 | (1 + tG0)(1 + P )O | Ψi〉 + 〈ϕ0 | (1 + tG0)P | ˜̃U〉. (47)

Dropping the second term and tG0 in the first term in (47) one encounters two plane wave

impulse approximations to the amplitude N

NPWIA ≡ 〈ϕ0 | O | Ψi〉 (48)

and

NPWIAS ≡ 〈ϕ0 | (1 + P )O | Ψi〉. (49)

While in (48) the final state is antisymmetrized only in one pair, in (49) it is fully antisym-

metrized. The verification of (46) and (47) requires straightforward algebra.

A completely alternative approach is based on two coupled Faddeev equations, again

starting from (38). Defining

| U ′〉 ≡ tG0 | Ũ ′〉, (50)

| U ′′〉 ≡ V (1)G0(tG0 + 1) | Ũ ′〉, (51)

and

| χ〉 ≡ (1 + P )O | Ψi〉, (52)

one obviously obtains the set of coupled equations for U ′ and U ′′

| U ′〉 = tG0 | χ〉 + tG0P | U ′〉 + tG0(1 + P ) | U ′′〉

| U ′′〉 = V (1)G0(1 + tG0) | χ〉 + V (1)G0(1 + tG0)P | U ′〉

+ V (1)G0(1 + tG0)(1 + P ) | U ′′〉. (53)

These three states (50), (51) and (52) sum up by definition to

| Ũ ′〉 =| χ〉 + P | U ′〉 + (1 + P ) | U ′′〉, (54)

which determines according to (39) the breakup matrix element. Inserting the definition of

(−)〈ϕ0 | and using (53) again, the breakup matrix element is easily turned into the simpler

form

N = 〈ϕ0 | (| χ〉 + (1 + P )(| U ′〉+ | U ′′〉)) . (55)
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For the pd breakup of 3He, the final channel state regarded up to now

(−)〈ϕ0 |= 〈ϕ0 | (1 + tG0) ≡ (−)
a〈~p ~q | (56)

has simply to be replaced by

〈φq |≡ 〈ϕd | 〈~q | . (57)

Thus the two-body scattering state (−)
a〈~p | turns into the deuteron state 〈ϕd | and the pd

breakup matrix element is given as

Npd =
1

2
〈φq | P | Ũ〉, (58)

or

Npd = 〈φq | (1 + P )O | Ψi〉 + 〈φq | P | ˜̃U〉, (59)

if the auxiliary state | ˜̃U〉 is employed.

If one uses the coupled set of equations, (53), the matrix element Npd will be

Npd = 〈φq | Ũ ′〉 = 〈φq | (| χ〉 + P | U ′〉 + (1 + P ) | U ′′〉) . (60)

We refrain to quote again the simpler equations given in [48–51, 73] valid for NN forces

only. The more complex equations are necessary since for light nuclei [26, 74] and few-nucleon

scattering processes [18] 3N forces are mandatory. In the context of effective field theory

constrained by chiral symmetry NN and three- and more-nucleon forces are consistently

linked to each other [75]. Applications in that framework to few-nucleon systems [76] defi-

nitely show that more than pairwise forces are acting and are clearly visible in the measured

values of the observables (binding energies and scattering observables). This new approach

grounded on effective field theory backs up the earlier results based on phenomenological

forces which were constrained only by the one-π exchange, that three-nucleon forces are

necessary to describe the data.

The basic equations (44) or (53) are valid for electron induced reactions and for real

photon induced processes as well. They only differ in the choice of the photon absorption

operator O (see Section III).

In the case of nucleon-deuteron capture one can use time reversal invariance and evaluate

the nuclear matrix element via Nd photodisintegration of the 3N bound state as given in

(58), (59) or (60). A more direct way is to choose the matrix element in the form

Ncapture = 〈Ψ | O | Ψ
(+)
i 〉, (61)
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where | Ψ
(+)
i 〉 is the Nd scattering state with appropriately chosen initial state quantum

numbers i, O a suitable operator depending on the final photon momentum, and 〈Ψ | the

3N bound state. Here we can use directly the Faddeev equation for the 3N scattering state

[71]. It corresponds to (29) and for the initial Nd channel is given as

| ψ(+)〉 =| φi〉 +G0tP | ψ(+)〉 + (1 + tG0)G0V
(1)(1 + P ) | ψ(+)〉. (62)

Here | φi〉 ≡| φq〉 with appropriate initial spin quantum numbers. The total scattering state

is then

| Ψ
(+)
i 〉 = (1 + P ) | ψ(+)〉. (63)

Let us define the amplitude | T 〉 by

| ψ(+)〉 =| φi〉 +G0 | T 〉, (64)

where | T 〉 obeys the Faddeev-like equation

| T 〉 = tP | φi〉 + (1 + tG0)V (1)(1 + P ) | φi〉 + tPG0 | T 〉 + (1 + tG0)V (1)(1 + P ) | T 〉. (65)

It is this central equation (65) which we solve for 3N scattering [71]. Consequently the

nuclear matrix element for Nd capture is obtained in the form

Ncapture = 〈Ψ | O(1 + P ) | φi〉 + 〈Ψ | O(1 + P )G0 | T 〉. (66)

III. CURRENT OPERATORS

While the treatment of the interacting nucleons in the 3N bound and scattering states is

quite well established in the framework of the nonrelativistic Schrödinger equation, for the

current operator, there is still quite some room for improvements. The current operator is

a dynamical object containing in addition to a single nucleon term also the two- and three-

body contributions, which are as complex as nuclear forces themselves. First considerations

can be found in [77] and [78]. A very nice discussion and review is given in [26]. Earlier

reviews for instance are [79] and [25]. Since our review does not focus on this issue, we will

only briefly describe what underlies our applications.

One approach to include some of the many-body terms in the current, applied in the case

of photodisintegration (or Nd capture), is based on the old Siegert idea [80]. The way we
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use it is described in section III B. The other approach used for virtual and real photons is

to link a certain subset of currents via the continuity equation to the NN force AV18, which

has been phrased “model independent” in [52, 53]. This is briefly reviewed in section III C.

For additional currents not constrained by the continuity equation we refer the reader to

[26]. We start with the single nucleon current in section III A.

A. The single nucleon current

We work in the Hamiltonian formalism and therefore the nucleons are on the mass shell.

The standard single nucleon current at space-time point zero jµ
SN (0) expressed in terms of

the nucleon four momentum p ≡ (p0 =
√
m2

N + ~p 2, ~p) is

jµ
SN(0) = ū(~p ′s′)(γµF1 + iσµν(p′ − p)νF2)u(~ps) = ū(~p ′s′)(GMγ

µ − F2(p
′ + p)µ)u(~ps). (67)

Here u are Dirac spinors, F1((p′ − p)2) and F2((p′ − p)2) the Dirac and Pauli nucleon form

factors, and GM ≡ F1 + 2mNF2 the magnetic form factor of the nucleon. That fully rela-

tivistic form can be expressed as a four component 2×2 matrix operator Jµ(p′, p) acting on

Pauli spinors ξ:

jµ
SN(0) = ξ†(s′)Jµ(p′, p)ξ(s). (68)

With

A =

√
mN

p0

√
mN

p0
′

√
p0

′ +mN

2mN

√
p0 +mN

2mN

(69)

the components Jµ(p′, p) are written as

J0 = A

{[
GM − F2(p+ p′)0

]
+
[
GM + F2(p+ p′)0

] ~p ′ · ~p
(p0 +mN )(p0

′ +mN)

}

+A
[
GM + F2(p+ p′)0

] i~σ · (~p ′ × ~p)

(p0 +mN )(p0
′ +mN)

(70)

and

Jk = −AF2

(
1 − ~p ′ · ~p

(p0 +mN)(p0
′ +mN )

)
(p+ p′)k

+AGM

(
pk

p0 +mN
+

p′k

p0
′ +mN

)

+AF2
(p+ p′)k

(p0 +mN )(p0
′ +mN )

i~σ · (~p ′ × ~p)

+AGM

[
1

(p0 +mN )
i(~p× ~σ)k +

1

(p0
′ +mN )

i(~σ × ~p ′)k

]
. (71)
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This form will be used in section VI.

In the bulk of this review we apply only the nonrelativistic limit leading to the simple

forms for the convection and spin current components:

~J = F1
~p+ ~p ′

2mN

+
i

2mN

GM ~σ × (~p ′ − ~p). (72)

The nucleon form factors F1 and F2, and thus GM , are normalized for neutron and proton

as

F n
1 (0) = 0 (73)

F p
1 (0) = 1 (74)

F n
2 (0) = −1.913

1

2mN
= Gn

M(0)
1

2mN
(75)

F p
2 (0) = 1.793

1

2mN

= Gp
M(0)

1

2mN

− 1

2mN

. (76)

In the case of the density component the leading term in the nonrelativistic limit

J0 = F1 (77)

is very small for the neutron and therefore one generally adds the next order relativistic

corrections, which are of the form [81, 82]

J0 = GE


1 −

~Q 2

8m2
N


+ i (2GM −GE)

~σ · ~p ′ × ~p

4m2
N

, (78)

with the electric form factor

GE ≡ F1 +
Q2

2mN

F2 ≈ F1 −
~Q 2

2mN

F2. (79)

Due to formal reasons we use that form also for the proton. Here Q = (Q0, ~Q) ≡ (ω, ~Q)

is the real or virtual photon four-momentum and ~Q ≡ ~p ′ − ~p.

In the case of the convection current in (72) some authors [26] replace F1 by GE which

adds some (not all) relativistic corrections of O ((p/mN)2) on top of the leading order going

with F1. Once, however, GE is chosen for the density, then of course GE should also be used

for the convection current due to current conservation.

The choice which underlies our nonrelativistic calculation here is GE for the density in

lowest order and GE in the convection current instead of F1 shown in (72). The spin current

with GM is used as in (72).
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For the convenience of the reader we display the functional forms of the various nucleon

form factors restricted to our momentum range in Figs. 4–5. We show theoretical predictions

based on a dispersion theoretical analysis constrained by data [83]. Recent reviews on

nucleon form factors can be found in [84].

In the nonrelativistic regime we choose for virtual photons ~Q2 to be the argument of the

nucleon electromagnetic form factors. In case of real photons we put this argument to be

zero since for our momentum range ~Q2 is anyway very small.
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FIG. 4: The electromagnetic proton form factors Gp
E (dashed line) and Gp

M (solid line) from [83]

used in our calculations for this review as a function of the four-momentum transfer squared Q2.

For the orientation of the reader F p
1 (dotted line) is also shown.

B. The Siegert approach

Let ~ǫξ( ~Q) be the spherical component of the photon polarization vector for a photon with

three-momentum ~Q and ~j(0) the nuclear current operator at space-time point zero. Then

the nuclear matrix element for photodisintegration is written as

Nξ( ~Q) = 〈~P ′ Ψ
(−)
f | ~ǫξ( ~Q) ·~j(0) | Ψi

~P 〉 ≡ ~ǫξ( ~Q) · ~I( ~Q). (80)

As before | Ψi〉 and 〈Ψ(−)
f | are the internal 3N bound and scattering states and we added

the dependence on the total initial and final 3N momenta. Clearly ~P ′ = ~P + ~Q as expressed

in the overall δ-function of four-momentum conservation. This δ-function is taken care of

in the evaluation of the observables. Each component of the pure nuclear matrix element
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FIG. 5: The electromagnetic neutron form factors Gn
E and Gn

M (solid lines) from [83] used in

our calculations for this review as functions of the four-momentum transfer squared Q2. For the

orientation of the reader Fn
1 (dashed line) is also shown.

~I( ~Q) can be expanded into spherical harmonics

Ik( ~Q) =
∑

lm

Y ∗
lm(Q̂)

∫
dQ̂ ′ Ylm(Q̂ ′)Ik(| ~Q | Q̂ ′). (81)

Here and throughout the paper the “hat” notation stands sometimes for a unit vector.

Further the polarization vector ~ǫξ( ~Q) for a photon with momentum in Q̂-direction is related

to the photon polarization vector ~ǫξ(ẑ) for a photon with momentum in z-direction by a

rotation. Since ~ǫξ is a rank one object, one has

~ǫξ(Q̂) =
∑

ξ′
D1

ξ′ξ(Q̂)~ǫξ′(ẑ) (82)

and using the Clebsch-Gordan coefficients we combine ~ǫξ′(ẑ) with Ylm(Q̂ ′) to vector spherical

harmonics [85]

~ǫξ′(ẑ)Ylm(Q̂ ′) ≡
∑

J≥1

C(l1J ; 0, ξ′, ξ′)~Y ξ′

l1J(Q̂ ′). (83)

Thus altogether we obtain

Nξ( ~Q) =
∑

lm

Y ∗
lm(Q̂)

∑

ξ′
D1

ξ′ξ(Q̂)
∫
dQ̂ ′ ∑

J≥1

C(l1J ; 0, ξ′, ξ′)~Y ξ′

l1J(Q̂ ′) · ~I(| ~Q | Q̂ ′). (84)

Now we can use [86]

Y ∗
lm(Q̂) =

√
2l + 1

4π
Dl

m0(Q̂), (85)
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as well as

∑

m

C(l1l2L;m,M −m,M)Dl1
m m1

Dl2
M−m m2

= C(l1l2L;m1, m2, m1 +m2)DL
M m1+m2

, (86)

and obtain after rearranging the summation over the magnetic quantum numbers

Nξ( ~Q) =
∑

J≥1

J∑

M=−J

DJ
Mξ(Q̂)

∑

l=J,J±1

√
2l + 1

4π
C(l1J ; 0, ξ, ξ)

∫
dQ̂ ′ ~Y M

l1J(Q̂ ′)·~I(| ~Q | Q̂ ′). (87)

This nicely shows the dependence on the photon direction together with projections of

the pure nuclear matrix element into the vector spherical harmonics. The latter ones are

conventionally called the electric and magnetic multipole elements. Inserting the Clebsch-

Gordan coefficients one defines

T el
JM(| ~Q |) ≡ − 1

4π

∫
dQ̂ ′





√
J

2J + 1
~Y M

J+11J(Q̂ ′) +

√
J + 1

2J + 1
~Y M

J−1 1J(Q̂ ′)



 · ~I(| ~Q | Q̂ ′), (88)

and

Tmag
JM (| ~Q |) ≡ 1

4π

∫
dQ̂ ′ ~Y M

J 1J(Q̂ ′) · ~I(| ~Q | Q̂ ′). (89)

This leads then to

Nξ( ~Q) = −
√

2π
∑

J≥1

√
2J + 1

J∑

M=−J

DJ
Mξ(Q̂)

{
±Tmag

JM (| ~Q |) + T el
JM(| ~Q |)

}
, (90)

where (±) refers to ξ = ±1.

Now the identity [85]

Q̂ YJM(Q̂) = −
√
J + 1

2J + 1
~Y M

J+11J (Q̂) +

√
J

2J + 1
~Y M

J−1 1J(Q̂) (91)

applied in (88) allows us to express ~Y M
J−1 1J (Q̂) in terms of a vector spherical harmonics with

an orbital part larger by 2 and by Q̂ YJM(Q̂). This leads to the expression Q̂ · ~I( ~Q) which

occurs in the continuity equation for the electromagnetic current matrix element:

~Q · ~I( ~Q) = 〈~P ′ Ψ
(−)
f | [H, ρ̂(0)] | Ψi

~P 〉 = (Ef −Ei)〈~P ′ Ψ
(−)
f | ρ̂(0) | Ψi

~P 〉. (92)

Here ρ̂(0) ≡ j0(0) is the density operator. Because of energy conservation, Ef −Ei = ω, the

photon energy ω =| ~Q |. Thus with

ρ( ~Q) ≡ 〈~P ′ Ψ
(−)
f | ρ̂(0) | Ψi

~P 〉, (93)
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we end up with the electric multipole term in the form

T el
JM(| ~Q |) = − 1

4π

∫
dQ̂ ′





√
2J + 1

J
~Y M

J+11J (Q̂ ′) · ~I(| ~Q | Q̂ ′)

+

√
J + 1

J
YJM(Q̂ ′)ρ(| ~Q | Q̂ ′)



 . (94)

Summarizing, one finds that by using the identity among vector spherical harmonics

(91) together with the continuity equation it is possible to replace a part of the current

matrix element ~I( ~Q) by the density matrix element ρ( ~Q) and higher multipole contributions.

Because the matrix element ρ( ~Q) receives two-body contributions only at a higher order in

a p/m expansion than the current matrix element [26], one can expect that the form (94)

for the electric multipole contribution is a better approximation than (88) even when only

the single nucleon density operator is used. The higher multipole term in (94) is usually

neglected in the literature, but not in our applications. We also do not approximate (94) in

a long wave length limit. We take zero as arguments in the nucleon electromagnetic form

factors for all processes with real photons. In the nonrelativistic framework one should rather

take the photon three-momentum squared. The results based on these two approaches are

practically indistinguishable for low energies but for ω=140 MeV/c they lead to differences

in the cross section up to about 8%. For polarization observables these changes are much

smaller (about 1%).

C. π and ρ-like meson exchange currents

The seminal papers [87] introduced π- and heavy-meson exchange current (MEC) opera-

tors satisfying the continuity equation with meson-exchange interactions. But of course they

violate the continuity equation in relation to phenomenological high precision NN forces like

AV18, which we employ. Thus we follow a recipe adapted to phenomenological NN forces.

For the sake of completeness we briefly sketch the derivation formulated in [52, 53, 88].

Equivalent proposals have been given in [55] and [56].

High accuracy NN forces like AV18 are not formed in a pure meson exchange picture

but, except for the long range one-π exchange, they contain a phenomenological structure

dependent on a number of parameters. Nevertheless the spin-isospin structure occurring

in a proper one-π and one-ρ exchange is present. For the isovector exchanges this is the
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~τ(1) · ~τ(2) isospin operator. Also there occur the spin-spin and the tensor operators. In

addition for the ρ-exchange there is a pure central term. Therefore, this part of a local NN

force reads in momentum space

V =
1∑

t=0

vt
SS(k)Ω̃SS(~k)Pt +

1∑

t=0

vt
T (k)Ω̃T (~k)Pt +

1∑

t=0

vt
C(k)Ω̃C Pt, (95)

with the isospin projection operators Pt=0 = 1
4
(1−~τ(1) · ~τ (2)) and Pt=1 = 1

4
(3 + ~τ(1) · ~τ (2)),

and the spin operators

Ω̃SS(~k) = ~k 2 ~σ(1) · ~σ(2), (96)

Ω̃T (~k) = ~k 2 ~σ(1) · ~σ(2) − 3~σ(1) · ~k ~σ(2) · ~k, (97)

Ω̃C = 1. (98)

In (95) vt
SS(k), vt

T (k) and the central piece vt
C(k) are radial functions depending on | ~k |≡|

~p ′ − ~p |, where ~p ′ and ~p are the final and initial relative two-nucleon momenta.

Separating the term with ~τ(1) · ~τ(2) one obtains

V → v1~τ(1) · ~τ(2) ≡ ~τ(1) · ~τ(2)
(
vSS(k)Ω̃SS(~k) + vT (k)Ω̃T (~k) + vC(k)Ω̃C

)
, (99)

with

vSS(k) ≡ 1

4

(
vt=1

SS (k) − vt=0
SS (k)

)
, (100)

vT (k) ≡ 1

4

(
vt=1

T (k) − vt=0
T (k)

)
, (101)

vC(k) ≡ 1

4

(
vt=1

C (k) − vt=0
C (k)

)
. (102)

Now one assumes that vt
SS(k) and vt

T (k) are built up by the sum of π- and ρ-like parts

vt
SS ≡ vπ,t

SS + vρ,t
SS, (103)

vt
T ≡ vπ,t

T + vρ,t
T , (104)

and that these parts obey the same relations which are valid for the true one-π and one-ρ

exchange terms

vπ,t
SS = −vπ,t

T , (105)

vρ,t
SS = 2vρ,t

T . (106)
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All that taken together allows now to solve for the individual π- and ρ-like parts contained

in the potential V in terms of vt
SS and vt

T . According to (100)–(106) one obtains

vt=1
SS − vt=0

SS + vt=1
T − vt=0

T =
(
vπ,t=1

SS + vπ,t=1
T

)

︸ ︷︷ ︸
=0

−
(
vπ,t=0

SS + vπ,t=0
T

)

︸ ︷︷ ︸
=0

+
(
vρ,t=1

SS + vρ,t=1
T

)
−

(
vρ,t=0

SS + vρ,t=0
T

)
=

3

2

(
vρ,t=1

SS − vρ,t=0
SS

)
. (107)

Consequently, the ρ-like term of the potential in the form (99) is determined via the two

functions vρ
SS(k) and vρ

T (k) given by

vρ
SS(k) ≡ 1

4

(
vρ,t=1

SS − vρ,t=0
SS

)
=

1

6

(
vt=1

SS + vt=1
T − vt=0

SS − vt=0
T

)
= 2 vρ

T (k), (108)

and the π-like part of the potential in the form (99) is determined by the two functions vπ
SS

and vπ
T given by

vπ
SS(k) = vSS(k) − vρ

SS(k), (109)

vπ
T (k) = vT (k) − vρ

T (k). (110)

Also one assumes that vC(k) is a ρ-like object

vρ
C(k) = vC(k). (111)

In this manner the isospin dependent part (99) of the general potential (95) is separated

into two parts, a π-like and ρ-like terms.

Now let us regard the continuity equation in the lowest nontrivial order of a p/m expansion

[
V, j0

SN (0)
]

=
[
~P ,~j exch(0)

]
. (112)

Here V is a nonrelativistic NN force, like the lowest order one-π or one-ρ exchange poten-

tials, j0
SN(0) is the single nucleon density operator taken at the space-time point 0, ~j exch(0)

the related exchange current operator, and ~P the total two-nucleon momentum operator.

Neglecting in (78) all terms except the first one the matrix element of j0
SN(0) is

〈~p ′
i | j0

SN(0) | ~pi〉 = Gp
E (~p ′

i − ~pi) Πp + Gn
E (~p ′

i − ~pi) Πn, (113)

with Gp,n
E and Πp,n the nucleon Sachs form factors and the projection operators for the proton

and neutron, respectively. Then the equation (112) is easily worked out in momentum space

with the result

~Q · 〈~p1
′~p2

′|~j exch(0)|~p1~p2〉 =
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( V (~p ′,
~Q

2
+ ~p) − V (~p ′ −

~Q

2
, ~p) ) ( Gp

E

(
~Q
)

Πp(1) +Gn
E

(
~Q
)

Πn(1) )

+( V (~p ′,−
~Q

2
+ ~p) − V (~p ′ +

~Q

2
, ~p) ) ( Gp

E( ~Q) Πp(2) +Gn
E( ~Q) Πn(2) )

+ i ( v1(~p
′ −

~Q

2
, ~p) − v1(~p ′ +

~Q

2
, ~p) )( Gp

E( ~Q) −Gn
E( ~Q) )( ~τ (1) × ~τ (2) )3. (114)

For V we assumed the form

V (~p ′, ~p) = v0(~p ′, ~p) + v1(~p ′, ~p)~τ(1) · ~τ(2), (115)

in terms of two-nucleon relative momenta. Further, having photon absorption in mind,

~Q ≡ ~P ′ − ~P is the photon momentum.

For a purely local potential the first two terms on the right-hand-side of (114) vanish.

For a pure one-π exchange potential

Vπ = vπ(k)~σ(1) · ~k ~σ(2) · ~k ~τ (1) · ~τ (2), (116)

with

vπ(k) = −f
2
πNN

m2
π

1

m2
π + k2

, (117)

a simple algebra employing (114) leads to the well known pure pionic exchange current [89]

~jexch
π (~k1, ~k2) = i

(
Gp

E( ~Q) −Gn
E( ~Q)

)
(~τ (1) × ~τ (2))3

(
~σ(2)~σ(1) · ~k1vπ(k1) − ~σ(1)~σ(2) · ~k2vπ(k2)

+
~k1 − ~k2

k2
1 − k2

2

(vπ(k2) − vπ(k1))~σ(1) · ~k1 ~σ(2) · ~k2


 . (118)

The momentum ~ki ≡ ~p ′
i − ~pi is the momentum transferred to the nucleon i.

Similarly for the pure one-ρ exchange potential

Vρ = vρ(k)
(
~σ(1) × ~k

)
·
(
~σ(2) × ~k

)
+ vS

ρ (k), (119)

with

vρ(k) = −
(
gρNN

2M

)2 (1 + κ)2

m2
ρ + k2

, (120)

and

vS
ρ (k) = g2

ρNN

1

m2
ρ + k2

, (121)
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one obtains going through the corresponding algebra

~jexch ′
ρ = i

(
Gp

E( ~Q) −Gn
E( ~Q)

)
(~τ(1) × ~τ(2))3



~k1 − ~k2

k2
1 − k2

2

(vS
ρ (k2) − vS

ρ (k1))

−
(
vρ(k2)~σ(1) × (~σ(2) × ~k2) − vρ(k1)~σ(2) × (~σ(1) × ~k1)

)

−vρ(k2) − vρ(k1)

k2
1 − k2

2

(~σ(1) × ~k1) · (~σ(2) × ~k2) (~k1 − ~k2)

]
. (122)

That extraction of the two-body currents ~jexch from the continuity equation obviously can

determine only the longitudinal (direction Q̂) part of ~jexch and in the case of the ρ-exchange

in fact one piece required by the underlying Lagrangian is missing. The full expression is

~jexch
ρ = ~jexch ′

ρ − i
(
Gp

E( ~Q) −Gn
E( ~Q)

)
(~τ (1) × ~τ (2))3

vρ(k2) − vρ(k1)

k2
1 − k2

2

(
~σ(2) · (~k1 × ~k2) (~σ(1) × ~k1) + ~σ(1) · (~k1 × ~k2) (~σ(2) × ~k2)

)
. (123)

In (120)–(121) gρNN and κ are the vector and tensor coupling constants andmρ is the ρ-mass.

This agrees with the expressions given in [53, 88].

Putting now the π-like part of the phenomenological potential v1 in (99) and (109)–(110)

into the form (116) of the pure pion exchange one finds the correspondence

−3vπ
T (k)=̂vπ(k). (124)

This leads to the idea proposed in [52, 53, 88] to replace vπ(k) in (118) by −3vπ
T (k) deter-

mined via (109)–(110) from the phenomenological potential (95). In this manner one arrives

at the π-like exchange current which together with the π-like part of the force fulfills the

continuity equation by construction.

Similarly putting the ρ-like part of the phenomenological potential in (99) and (108) into

the form (119) of the pure ρ-exchange leads to the correspondence

vρ
T (k)=̂vρ(k), (125)

and

vρ
C(k)=̂vS

ρ (k). (126)

Therefore one replaces vρ(k) in (122)–(123) by vρ
T (k) given in (108) and vS

ρ (k) in (122) by

vρ
C(k) given in (111). This leads to the ρ-like exchange current which again together with

the ρ-like part of the force fulfills the continuity equation exactly.

29



It remains to provide the forms of vt
SS(k), vt

T (k), and vt
C(k) belonging to the local NN

force

V =
1∑

t=0

vt
SS(r)~σ1 · ~σ2 Pt +

1∑

t=0

vt
T (r) (3~σ1 · ~r ~σ2 · ~r − ~σ1 · ~σ2) Pt +

1∑

t=0

vt
C(r)Pt. (127)

The Fourier transform of (127) results in

vt
T (k) =

4π

k2

∞∫

0

drr2j2(kr)vt
T (r), (128)

vt
SS(k) =

4π

k2

∞∫

0

drr2 [j0(kr) − 1] vt
SS(r), (129)

vt
C(k) = 4π

∞∫

0

drr2j0(kr)vt
C(r). (130)

The bracket [j0(kr) − 1] in (129) guarantees that the volume integral related to vt
SS(k)

vanishes, like for the pure one-π exchange.

Clearly there are additional two-body currents related to spin-orbit NN interactions and

other momentum dependences in the NN force AV18. They have been considered in [90]

and [91], and appear in general to be of less quantitative importance. The purely transverse

currents are of course not constrained by the continuity equation. Among them ρπγ-, ωπγ-

and ∆- currents have been considered and we refer the reader to [26] and references therein

for their discussion. Again they appear to be less important for low energy physics [26].

Based on current insights they are clearly strongly model dependent.

Quite recently [92, 93] currents have been constructed, which exactly fulfill the current

continuity equation with the AV18 NN force in combination with the UrbanaIX 3NF. The

authors follow the steps using minimal substitutions as outlaid in [94, 95]. The first obser-

vation on those steps is that ~τi · ~τj can be replaced by

~τi · ~τj = −1 − (1 + ~σi · ~σj) P
space(i, j)

when applied to an antisymmetric wave function. Thereby the operator P space(i, j) ex-

changes the positions of particles i and j. The key point is then that P space(i, j) can be

expressed in terms of momentum operators as [94, 96]

P space(i, j) = e~rji·~∇i+~rij ·~∇j , (131)
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where the ~∇-operators do not act on the pair distances ~rij = −~rji. In this form one can

perform a minimal substitution to couple to an electromagnetic field ~A(~r ). This leads to an

expression of the form

P (~r ) = e~a·
~∇+g(~r ), (132)

which can be expressed as

P (~r ) = e

1

a

~r+~a∫
~r

d~s g(~s )

e~a·
~∇ (133)

with a line integral along the straight line between the positions ~r and ~r + ~a. For the

application to the NN force AV18 and the 3NF UrbanaIX we refer the reader to the very

recent paper [93]. Here, low energy electronuclear observables, nd and pd radiative capture

reactions and magnetic form factors of 3He and 3H are calculated. Comparative studies

of new and old current models are performed. It turns out that three-body currents give

small but significant contributions to some of the very low energy observables. For detailed

information see [92, 93].

The interesting issue of modifications for the absorption mechanism of a photon on

hadrons in nuclear medium is addressed in [97, 98].
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IV. THE OBSERVABLES

Knowing the nuclear matrix elements for electron scattering on 3He (3H) the step to

the rich variety of observables based on the one-photon exchange is standard. Thereby it

is assumed that the initial and final nuclear states are eigenstates of the hadronic four-

momentum operator. This leads to the S-matrix element

Sfi = i(2π)4 δ(k ′ − k + Pf − Pi)
e2

Q2
Lµ N

µ, (134)

where k(k ′), Pi(Pf) are the initial (final) electron and nuclear four momenta,

Q = k − k ′ = Pf − Pi (135)

the photon four momentum, and

Nµ ≡ 〈f | 1

e
jµ
hadron(0) | i〉 (136)

Lµ ≡ 〈k′s′ | −1

e
jµ
electron(0) | ks〉 (137)

the hadronic and electronic matrix elements. In a nonrelativistic treatment which we pur-

sue, this underlying property of the hadronic states to be eigenstates of the hadronic four-

momentum operator P̂ µ

P̂ µ | i, f〉 = P µ
i,f | i, f〉 (138)

is of course not fulfilled but in the derivation for the expression of the observables we nev-

ertheless assume this to be true.

The cross section for the transition into the final states spanned by df reads

dσ = (2π)4 δ(k′ − k + Pf − Pi)
e4

Q4
(Lµ L

∗
ν) (Nµ Nν ∗) df. (139)

For an initially polarized electron with helicity h one obtains by well known steps

Lµ L
∗
ν =

1

2k ′
0 k0

1

(2π)6

(
kµk

′
ν + kνk

′
µ − gµνk · k ′ − ihǫµναβk

αk ′β
)
. (140)

Further we regard ultrarelativistic electrons (me → 0) and use current conservation in the

form

Q0N
0 − ~Q · ~N = 0. (141)
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Thus we can drop some terms in (140) and put

Lµ L
∗
ν → 1

4k ′
0 k0

1

(2π)6

(
KµKν + gµνQ

2 − 2ihǫµναβk
αk ′β

)
≡ 1

(2π)6
lµν , (142)

with

K ≡ k + k ′. (143)

The contraction with NµNν ∗ is a quite tedious step. Starting from

lµνN
µNν ∗ =

1

4k ′
0 k0

(
K ·N K ·N∗ + Q2N ·N∗ − 2ihǫµναβk

αk ′βNµNν ∗
)

(144)

one uses spherical unit vectors êµ to represent the space part of Nµ as

~N = ê ∗1N1 + ê ∗−1N−1 + ê0N0. (145)

The assumed current conservation (141), another property of the hadronic dynamics which

is not always exactly fulfilled in the present day practice, allows to eliminate the component

of ~N along ~Q in favor of N0:

Q̂ · ~N =
Q0

| ~Q |
N0. (146)

From now on we shall choose the z-direction to be the direction of ~Q. In rewriting (144) in

terms of N±1 and N0 only the kinematical relation (135) is used. Further it is convenient to

choose the plane spanned by ~k and ~k ′ to coincide with the x − z plane and to choose the

positive x-direction such that (k + k ′)x ≥ 0. Then one obtains [99]

dσ = (2π)4 δ(Pf − Pi −Q)
e4

(Q2)2
cos2 ϑ

2
df

[vLRL + vTRT + vTTRTT + vTLRTL + h (vT ′RT ′ + vTL′RTL′)] , (147)

where the purely kinematical functions v are given in terms of electron properties only (ϑ is

the laboratory electron scattering angle)

vL =
(Q2)2

(
~Q 2

)2

vT = −1

2

Q2

~Q 2
+ tan2 ϑ

2

vTT =
1

2

Q2

~Q 2

vTL =
1√
2

Q2

~Q 2

√√√√− Q2

~Q 2
+ tan2 ϑ

2
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vT ′ =

√√√√− Q2

~Q 2
+ tan2 ϑ

2
tan

ϑ

2

vTL′ =
1√
2

Q2

~Q 2
tan

ϑ

2
. (148)

The nuclear response functions are

RL =| N0 |2

RT =| N1 |2 + | N−1 |2

RTT = 2ℜ
(
N1N

∗
−1

)

RTL = −2ℜ (N0(N1 −N−1)
∗)

RT ′ =| N1 |2 − | N−1 |2

RTL′ = −2ℜ (N0(N1 +N−1)
∗) . (149)

This is a general form for the cross section where the polarization of the hadronic states can

still be chosen at will.

Let us first regard elastic scattering on 3He. Straightforward calculation of the phase

space factor

ρ ≡
∫
δ(P ′ − P −Q)df =

∫
δ(P ′ − P −Q)d~P ′ d~k ′ (150)

in the lab system leads to

ρ = dk̂ ′ EP ′

M

k ′ 2
0

1 + k0

M
(1 − cosϑ)

. (151)

Here M is the 3He mass, EP ′ =
√
M2 + ~P ′ 2, and

k ′
0 =

k0

1 + k0

M
(1 − cosϑ)

. (152)

Then one introduces the Mott cross section

σMott =
α2 cos2 ϑ

2

4k2
0 sin4 ϑ

2

, (153)

with α = e2

4π
≈ 1

137
and obtains the differential cross section for unpolarized electron scat-

tering on an unpolarized 3He target state in the lab system

dσ

dk̂ ′
= σMott

1

1 + k0

M
(1 − cosϑ)




(Q2)2

(
~Q 2

)2RL +

(
−1

2

Q2

~Q 2
+ tan2 ϑ

2

)
RT


 . (154)
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We defined longitudinal RL and transversal RT response functions, averaged over initial

(m) and summed over final (m′) spin magnetic quantum numbers

RL = (2π)6 EP ′

M

1

2

∑

mm′

| N0 |2 (155)

RT = (2π)6 EP ′

M

1

2

∑

mm′

(
| N1 |2 + | N−1 |2

)
. (156)

This is usually written in terms of the charge and magnetic form factors [100]

dσ

dk̂ ′
= σMott

Z2

1 + k0

M
(1 − cosϑ)

[
F 2

C

− Q2

4M2
F 2

m(1 + κ)2

(
1 + 2(1 − Q2

4M2
) tan2 ϑ

2

)]
1

1 − Q2

4M2

. (157)

The form factors are normalized as

FC

(
Q2 = 0

)
= 1 (158)

Fm

(
Q2 = 0

)
= 1, (159)

such that (1 + κ) is the magnetic moment of 3He in nuclear magnetons ( e
2mN

) [101].

In contrast to (147) the response functions RTT and RTL do not show up in (157). The

partial wave decomposition reveals [101] that they are zero in this case.

It is known that polarizing the initial electron or initial 3He does not lead to new inde-

pendent information [99].

Now we move on to inclusive scattering on 3He. Only the scattered electron is measured

and one has to integrate over all final nucleon momenta. We choose the lab system and

work nonrelativistically. The phase space factor in the pd channel is then

ρpd ≡
∫
δ(~P ′ − ~Q) δ

(
Ed +

k2
d

4mN
+

k2
p

2mN
−Q0 − E3He

)
d~kd d~kp d~k

′, (160)

where Ed (E3He) is the (negative) deuteron (3He) binding energy and ~kd (~kp) is the final

deuteron (proton) momenta. Since the nuclear matrix element is evaluated in terms of

Jacobi momenta it is convenient to change ~kd and ~kp to

~q ≡ 2

3
(~kp −

1

2
~kd) (161)

~P ′ ≡ ~kp + ~kd. (162)
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This leads then to

ρpd = dk̂ ′ dq̂
2mN

3
| ~q0 |, (163)

with

| ~q0 |=

√√√√√4mN

3


Q0 + E3He −

~Q 2

6mN
−Ed


. (164)

In the case of the 3N breakup one introduces Jacobi momenta for both relative motions

~p ≡ 1

2
(~k2 − ~k3) (165)

~q ≡ 2

3

(
~k1 −

1

2
(~k2 + ~k3)

)
(166)

on top of the total momentum and obtains

ρppn ≡
∫
δ(~P ′ − ~Q) δ

(
3∑

i=1

k2
i

2mN
−Q0 − E3He

)
d~k1 d~k2 d~k3 d~k

′

= d~k ′
∫
d~q d~p δ


 p2

mN
+

3q2

4mN
+

~Q 2

6mN
−Q0 − E3He


 = d~k ′

∫
dq̂ d~p

2mN

3
| ~q |, (167)

with

| ~q |=

√√√√√4mN

3


Q0 + E3He −

~Q 2

6mN
− p2

mN


, (168)

and the integration over | ~p | is between 0 and pmax

pmax =

√√√√√mN


Q0 + E3He −

~Q 2

6mN


. (169)

Again the partial wave decomposition reveals (see [73]) that in the case when electron and

3He are unpolarized only two response functions survive (this is, of course, known from

standard symmetry arguments)

RL = (2π)6 1

2

∑

mdmpm

2mN

3
| ~q0 |

∫
dq̂ | Npd

0 |2

+ (2π)6 1

2

∑

m1m2m3m

2mN

3

pmax∫

0

d~p dq̂ | ~q | | Nppn
0 |2, (170)

RT = (2π)6 1

2

∑

mdmpm

2mN

3
| ~q0 |

∫
dq̂
(
| Npd

1 |2 + | Npd
−1 |2

)

+ (2π)6 1

2

∑

m1m2m3m

2mN

3

pmax∫

0

d~p dq̂ | ~q |
(
| Nppn

1 |2 + | Nppn
−1 |2

)
. (171)
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Then the inclusive unpolarized scattering cross section reads

dσ

dk̂ ′ dk ′
0

= σMott {vLRL + vTRT} . (172)

In (170) and (171) we added superscripts to the nuclear matrix elements according to the

two types of final channels.

At this point it is adequate to describe another manner for evaluating the two response

functions RL and RT [50, 73]. Both functions are of the type

R =
∑∫

dfδ (Ef −Ei −Q0) |〈Ψf | O | Ψi〉|2 , (173)

where O is an appropriate operator. Since the final states | Ψf〉 are eigenstates to the

Hamiltonian H , one can use closure to evaluate R as

R =
∑∫

df 〈Ψi | O† δ (H − Ei −Q0) | Ψf 〉〈Ψf | O | Ψi〉

= 〈Ψi | O† δ (H − Ei −Q0) | O | Ψi〉. (174)

The bound state does not contribute since Q0 > 0. The result is easily converted into

R = −1

π
ℑ〈Ψi | O† 1

Q0 + Ei −H + iǫ
O | Ψi〉. (175)

The remaining task is to evaluate the auxiliary state

| Φ〉 ≡ 1

Q0 + Ei −H + iǫ
O | Ψi〉, (176)

which apparently fulfills the inhomogeneous Schrödinger equation

(E + iǫ−H) | Φ〉 = O | Ψi〉. (177)

We introduced E ≡ Ei +Q0. The Faddeev scheme is introduced by converting (177) into

| Φ〉 = G0

3∑

i=1

(Vi + V (i)) | Φ〉 +G0O | Ψi〉. (178)

Similarly to the 3NF, the operator O for three identical nucleons can always be split into

three parts Oi, symmetrical under the exchange of particles j and k

O =
3∑

i=1

Oi. (179)
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Therefore, the right hand side decomposes as

| Φ〉 = G0

3∑

i=1

| Φi〉, (180)

where as before | Φ2〉 and | Φ3〉 result by cyclical and anticyclical permutations out of | Φ1〉.
One obtains using the definition (10)

(1 − V1G0) | Φ1〉 = V1G0P | Φ1〉 + V (1)G0(1 + P ) | Φ1〉 + O1 | Ψi〉, (181)

or

| Φ1〉 = (1 + tG0)O1 | Ψi〉 + (t1G0P + (1 + t1G0)V
(1)G0(1 + P )) | Φ1〉. (182)

This is a Faddeev-like integral equation with the same kernel as in (65). The response

function is then given as

R = −3

π
ℑ〈Ψi | O†

1(1 + P )G0 | Φ1〉. (183)

The factor 3 arises since we kept only O†
1.

The remaining cross section observables are for semi-exclusive and exclusive reactions on

3He. In the case of the processes 3He(e, e′p)d and 3He(e, e′N)NN , where only one nucleon

is measured in coincidence with the scattered electron, the plane spanned by the photon

momentum and the detected nucleon momentum (hadronic plane) is in a general case rotated

by an angle φ with respect to the plane spanned by the electron momenta (electronic plane).

The dependence of the cross section on φ can be made explicit by introducing instead of the

spherical unit vectors ê±1 used up to now and which are perpendicular to Q̂ (chosen in ẑ

direction) two other perpendicular unit vectors [102]

ê⊥ ≡ ̂~Q× ~p = −x̂ sin φ+ ŷ cosφ (184)

ê‖ ≡
̂

ê⊥ × ~Q = x̂ cosφ+ ŷ sinφ. (185)

The unit vector ê⊥ is perpendicular to the hadronic plane and ê‖ lies in that plane. The two

pairs of unit vectors are connected by

ê±1 = ∓e
±iφ

√
2

(
±iê⊥ + ê‖

)
. (186)

Introducing the components

N⊥ ≡ ê⊥ · ~N, (187)
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N‖ ≡ ê‖ · ~N, (188)

of the nuclear matrix elements one finds the connections to the components used up to now

N±1 = ∓e
±iφ

√
2

(
±iN⊥ +N‖

)
. (189)

The advantage of using N⊥ and N‖ in the cross section formula is to make the φ-dependence

explicit.

After a simple algebra, using (189) and the definitions (148) of the v’s, one obtains

vL | N0 |2 + vT

(
| N1 |2 + | N−1 |2

)
+

vTT 2ℜ
(
N1N

∗
−1

)
+ vTL (−2)ℜ (N0(N1 −N−1) ∗)

= vL | N0 |2 + vT

(
| N⊥ |2 + | N‖ |2

)
+

2
√

2 vTL cosφℜ
(
N0N

∗
‖
)

+ vTT cos(2φ)
(
| N⊥ |2 − | N‖ |2

)
. (190)

Thereby two terms proportional to ℜ (N0N
∗
⊥) and ℜ

(
N⊥N

∗
‖
)

have been dropped since they

vanish here as is seen in a partial wave decomposition [48].

As is seen from (147) and (149) these sums generate the cross sections except for an overall

factor. The rotational invariance around the z-axis (chosen in Q̂ direction) guarantees that

none of the quantities N0, N‖ and N⊥ depends on φ.

It follows that the pd breakup cross section can be written in two forms

d5σ

dk̂ ′ dk ′
0dq̂0

= σMott

[
vL | N0 |2 + vT

(
| N1 |2 + | N−1 |2

)
+

vTT 2ℜ
(
N1N

∗
−1

)
+ vTL (−2)ℜ (N0(N1 −N−1) ∗)

]
ρpd

= σMott

[
vL | N0 |2 + vT

(
| N⊥ |2 + | N‖ |2

)
+

2
√

2 vTL cosφℜ
(
N0N

∗
‖
)

+ vTT cos(2φ)
(
| N⊥ |2 − | N‖ |2

)]
ρpd, (191)

where the second one shows the φ dependence explicitly.

In the case of the semi-exclusive 3He(e, e′p)pn or 3He(e, e′n)pp reactions one has to in-

tegrate over the internal (relative) momentum of the undetected pair of nucleons and one

obtains for the cross section

d6σ

dk̂ ′ dk ′
0d~q

= σMott C
1

2
mN p

∫
dp̂

[
vL | N0 |2 + vT

(
| N⊥ |2 + | N‖ |2

)
+

2
√

2 vTL cosφℜ
(
N0N

∗
‖
)

+ vTT cos(2φ)
(
| N⊥ |2 − | N‖ |2

)]
, (192)
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with

p ≡| ~p |=

√√√√√mN


Q0 + E3He −

~Q 2

6mN
− 3~q 2

4mN


. (193)

To avoid double-counting the C factor is equal 1/2 in case when the two undetected nucleons

are identical (protons). Otherwise C = 1.

Lastly there is the complete breakup of 3He measured exclusively by detecting two nucle-

ons in coincidence with the scattered electron. This leads to an eightfold differential cross

section. The phase space factor is

ρ =
∫
δ(~P ′ − ~Q) δ

(
3∑

i=1

k2
i

2mN
−Q0 − E3He

)
d~k1 d~k2 d~k3 d~k

′

= d~k ′ dk̂1 dk̂2 dE1
m2 | ~k1 || ~k2 |∣∣∣1 − ~k2·~k3

k2
2

∣∣∣
, (194)

where ~k3 = ~Q− ~k1 − ~k2 and | ~k2 | is determined kinematically from the given energy of the

first nucleon E1 and the directions of the first (k̂1) and the second (k̂2) nucleons detected

in coincidence. At some values of the momenta the denominator in (194) can vanish. One

avoids that singularity by representing the breakup cross section along the kinematically

allowed locus in the E1 − E2 plane and parameterizing it by the arc-length S along that

locus. This is a well known and usual device for the treatment of the Nd breakup process

[103]. It leads to

ρ = d~k ′ dk̂1 dk̂2 dS
m2 | ~k1 || ~k2 |√(

1 − ~k2·~k3

k2
2

)2
+
(
1 − ~k1·~k3

k2
1

)2
, (195)

and one obtains the following form for the complete breakup cross section expressed in terms

of four response functions

d8σ

dk̂ ′ dk ′
0 dk̂1 dk̂2 dS

= σMott [vLRL + vTRT + vTTRTT + vTLRTL] ρ. (196)

One can also relate the nuclear matrix elements to the unit vectors ê⊥ and ê‖ which leads

to six structure functions [49].

The inclusion of polarizations opens a wide field. We only mention cases which have

already been studied experimentally in the 3N system or which are on the list of our predic-

tions (see section VII). In inclusive scattering, when only the outgoing electron is detected,

two more response functions beyond the ones in (172) occur in the cross section. They
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Θ∗

φ∗S

k

k’

Q
h=+1

h=−1

υ

 

   

  

   

FIG. 6: Definition of the two angles (θ⋆, φ⋆) used to specify the initial 3He polarization.

go with the helicity h of the initial electron state as given in (147) (see [99]). This leads

naturally to an asymmetry defined by

A ≡ σ(h = +1) − σ(h = −1)

σ(h = +1) + σ(h = −1)
=

vT ′RT ′ + vTL′RTL′

vLRL + vTRT

. (197)

This quantity has been investigated especially for the case of additionally polarized 3He. If

the quantization axis of 3He points in the direction given by the two polar angles (θ⋆, φ⋆)

(see Fig. 6), the 3He state can be written as

| Ψ3Hem〉(θ⋆,φ⋆) =
∑

m′

| Ψ3Hem
′〉D( 1

2
)

m′m(φ⋆, θ⋆, 0), (198)

where | Ψ3Hem
′〉 is quantized in z-direction. We refer to [73] where the dependence on

(θ⋆, φ⋆) of the two new response functions has been worked out. There also the generalization

necessary for evaluating the new response functions with the help of the closure relation is

detailed. One obtains the explicit (θ⋆, φ⋆) dependence as [99]

RT ′ ≡ −R̃T ′ cos θ⋆ (199)

RTL′ ≡ −2R̃TL′ sin θ⋆ cos φ⋆. (200)

Consequently the asymmetry reads now

A = − vT ′R̃T ′ cos θ⋆ + 2vTL′R̃TL′ sin θ⋆ cosφ⋆

vLRL + vTRT
. (201)

Polarizing the 3He target spin (m = 1/2) along the virtual photon direction Q̂ (θ⋆ = 0◦) one

selects the transverse asymmetry AT ′ (proportional to R̃T ′), whereas taking θ⋆ = 90◦ one

gets the transverse-longitudinal asymmetry ATL′ (proportional to R̃TL′).
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In the case of the semiexclusive
−−→
3He(~e, e′p)pn and

−−→
3He(~e, e′n)pp processes, the asymmetry

is defined analogously to (197). However, an additional integration over the direction of the

relative momentum of the two undetected nucleons is needed and, according to (147), two

additional response functions, RTT and RTL, occur in the denominator. One obtains

A ≡
∫
dp̂ (vT ′RT ′ + vTL′RTL′)

∫
dp̂ (vLRL + vTRT + vTTRTT + vTLRTL)

, (202)

and one can define again the asymmetries A⊥ and A‖ corresponding to two different initial

3He spin orientations with respect to the photon direction.

In the case of the pd breakup process
−−→
3He(~e, e′p)d the asymmetries are defined corre-

spondingly.

The more intricate processes
−−→
3He(~e, e′~p)d and

−−→
3He(~e, e′~d)p, where also the polarization of

the final particles is measured, are dealt with in section VII.

Spin asymmetries in the exclusive 3N breakup reaction have not yet been measured or

investigated theoretically in the 3N system to the best of our knowledge but the formal

extensions are straightforward.

The last group of observables we want to address in this review are photodisintegration

of 3He and Nd capture processes. Because of lack of own experience we shall, however, not

discuss Compton scattering on 3He nor Bremsstrahlung in the 3N system.

The S-matrix element for photodisintegration into the final channel f , which is either pd

or ppn fragmentation, is given as

Sfi = −i(2π)4 δ(P ′ − P −Q)
1√

2 | ~Q |
1

(2π)3/2
〈Ψ(−)

f
~P ′ | ~ǫλ ·~j(0) | Ψ ~P 〉, (203)

with 〈Ψ(−)
f | the 3N scattering state with appropriate asymptotic quantum numbers f .

Further ~ǫλ is the polarization vector for the initial photon whose momentum defines the

z-direction. It results in the differential cross section

dσ = (2π)4 1

2 | ~Q |
δ(P ′ − P −Q) df

∣∣∣〈Ψ(−)
f

~P ′ | ~ǫλ ·~j(0) | Ψ ~P 〉
∣∣∣
2
. (204)

Neglecting any polarization the differential cross section for pd fragmentation in the lab

system is

dσ

dk̂p

= (2π)4 α
1

2 | ~Q |
k2

p∣∣∣∣
kp

mN
− ~kd·~kp

2mN |~kp|

∣∣∣∣

1

2

∑

mmN md

(
| N1 |2 + | N−1 |2

)
. (205)
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In the nuclear matrix elements

N±1 ≡ 〈Ψ(−)
~q | ~j±1(0) | Ψ 〉 (206)

the final 3N scattering state depends on the asymptotic Jacobi momentum ~q expressed in

terms of the final lab momenta ~kp and ~kd as

~q ≡ 2

3

(
~kp −

1

2
~kd

)
. (207)

In the case of the 3N breakup the unpolarized cross section is

d5σ

dk̂1 dk̂2 dS
=

2π2 α

Eγ

1

2

∑

mm1m2m3

(
| N1 |2 + | N−1 |2

) m2
N | ~k1 || ~k2 |√(

1 − ~k2·~k3

k2
2

)2
+
(
1 − ~k1·~k3

k2
1

)2
. (208)

Now the nuclear matrix element depends of course on the asymptotic Jacobi momenta ~p

and ~q related to the lab momenta as given before in (20) and (21).

The cross sections for the semi-exclusive processes 3He(γ, p) and 3He(γ, n) in the 3N

breakup are

d3σ

dk̂1 dE1

=
2π2α

Eγ
m2

N

1

2
| ~k1 | | ~p | C

∫
dp̂

1

2

∑

mm1m2m3

(
| N1 |2 + | N−1 |2

)
, (209)

where | ~p | and p̂ are the magnitude and direction of the relative momentum between the

undetected nucleons 2 and 3 and C as given before.

The availability of high intensity polarized γ sources [104] made it possible to measure

semiexclusive reactions with a linearly polarized incoming γ beam and even with a polarized

3He target. Due to the polarization of the incoming γ’s and/or of the 3He target, the energy

spectrum of the outgoing nucleon taken at a particular polar lab angle θ depends on the

azimuthal angle φ, leading to an asymmetry of the measured cross sections. Assuming that

the incoming γ’s are linearly polarized along the x-axis with a nonzero component P γ
0 and

that the 3He target nucleus is polarized along the y-axis with polarization P
3He
0 , one obtains

for the cross section measured with a nucleon detector placed at angles (θ, φ):

σpol
γ,3He = σunpol

γ,3He[1 + P γ
0 cos(2φ) Aγ

x + P
3He
0 cos(φ) A

3He
y +

P γ
0 cos(2φ) P

3He
0 cos(φ) Cγ,3He

x,y + P γ
0 sin(2φ) P

3He
0 sin(φ) Cγ,3He

y,x ]. (210)

The analyzing powers Aγ
x(θ), A

3He
y (θ) and spin correlation coefficients Cγ,3He

x,y(y,x)(θ) are

expressed through the nuclear matrix element Nm1m2m3,λm ≡ Nmi,λm by:

Aγ
x(θ) ≡

∑
mim(2ℜ{Nmi,−1mN

∗
mi,+1m})

∑
mim(|Nmi,+1m|2 + |Nmi,−1m|2)
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A
3He
y (θ) ≡

∑
mi

(−2ℑ{Nmi,−1− 1

2

N∗
mi,−1 1

2

} − 2ℑ{Nmi,+1− 1

2

N∗
mi,+1 1

2

})
∑

mim(|Nmi,+1m|2 + |Nmi,−1m|2)

Cγ,3He
x,y (θ) ≡

∑
mi

(−2ℑ{Nmi,−1− 1

2

N∗
mi,+1 1

2

} + 2ℑ{Nmi,−1 1

2

N∗
mi,+1− 1

2

})
∑

mim(|Nmi,+1m|2 + |Nmi,−1m|2)

Cγ,3He
y,x (θ) ≡

∑
mi

(2ℑ{Nmi,−1− 1

2

N∗
mi,+1 1

2

} + 2ℑ{Nmi,−1 1

2

N∗
mi,+1− 1

2

})
∑

mim(|Nmi,+1m|2 + |Nmi,−1m|2)
, (211)

where m is the spin projection of the 3He target and mi are the spin projections of the

outgoing nucleons.

Finally we come to the Nd capture process. The angular distribution of the photon in

the system of total momentum zero neglecting any polarization is

dσ

dQ̂
= (2π)2α

1

6

∑

mmN md

(
| N1 |2 + | N−1 |2

) 2mNQ

3 | ~q0 |
, (212)

where ~q0 is the relative nucleon-deuteron momentum in the initial state, which also defines

the z-direction.

For this reaction vector and tensor analyzing powers have been measured. This comprises

the cases that the initial proton is polarized perpendicular to the scattering plane or the

initial deuteron is vector or tensor polarized. Now a more detailed notation for the nuclear

matrix element is needed, namely

Nλm,mN md
≡ 〈Ψ3Hem~Q | ~ǫλ ·~j(0) | Ψ~q0

mNmd 〉 (213)

showing explicitly the dependence on the spin magnetic quantum numbers m, mN , md and

λ of 3He, the nucleon, the deuteron and the photon, respectively. Then according to the

standard formalism [18] one obtains the nucleon analyzing power Ay as

Ay = i
√

2

∑
mN ,m′

N
,md,λ,m

√
2 (−1)

1

2
−mN C

(
1
2
, 1

2
, 1;m′

N ,−mN , 1
)
Nλ,m,mN ,md

N⋆
λ,m,m′

N
,md

∑
mN ,md,m

(| N+1 |2 + | N−1 |2)
,

(214)

the deuteron vector analyzing power iT11

iT11 = i

∑
mN ,md,m′

d
,λ,m

√
3 (−1)1−md C (1, 1, 1;m′

d,−md, 1) Nλ,m,mN ,md
N⋆

λ,m,mN ,m′

d

∑
mN ,md,m

(| N+1 |2 + | N−1 |2)
, (215)

and the deuteron tensor analyzing powers Tjk

Tjk =

∑
mN ,md,m′

d
,λ,m

√
3 (−1)1−md C (1, 1, j;m′

d,−md, k) Nλ,m,mN ,md
N⋆

λ,m,mN ,m′

d

∑
mN ,md,m

(| N+1 |2 + | N−1 |2)
. (216)
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Similarly to the unpolarized cross section these observables can be parametrized by e.g. the

c.m. scattering angle of the outgoing photon against the direction of the incoming deuteron.

V. THE PERFORMANCE

This is the most central but also likely less pleasant part of this review. Here we would

like to indicate the way we evaluate the nuclear matrix elements, which requires the solution

of various types of Faddeev-like equations.

Let us regard the electron induced pd breakup matrix element (58), where the state | Ũ〉
obeys the Faddeev like equation (44). Neglecting all rescattering | Ũ〉 reduces to the driving

term in (44). This leads to the nuclear matrix element in the symmetrized plane wave

approximation, denoted as PWIAS,

Npd,PWIAS =
1

2
〈φq′ | P (1 + P )O | Ψ〉 = 〈φq′ | (1 + P )O | Ψ〉. (217)

The second equality is due to the identity (40). Now we have to insert explicit choices for

the operator O. In the case of N0 the density operator appears while N±1 is driven by the

transversal pieces of the vector current. We start with the single nucleon contributions for

the density and the vector current. Since O is fully symmetrical and 〈φq′ | (1 +P ) as well as

| Ψ〉 are fully antisymmetrical, it is sufficient to choose the operators acting on one nucleon,

say nucleon 1, and multiply that matrix element by the factor 3. Thus still not specifying

the component of jµ
SN , one has in the very first step

Npd,PWIAS ≡ 3 〈φq′ | (1 + P )jSN(1) | Ψ〉. (218)

The nonrelativistic 3N states are conventionally expressed in terms of Jacobi momenta ~p and

~q as defined in (20) and (21) for one choice of the two-nucleon subsystem. Thus inserting

completeness relations one obtains

Npd,PWIAS = 3
∫
〈φq′ | (1 + P ) | ~p ′ ~q ′ 〉〈~p ′ ~q ′ | jSN(1) | ~p ~q 〉〈~p ~q | Ψ〉, (219)

where of course integration over ~p , ~q, ~p ′, ~q ′ is assumed. The free states | ~p ~q 〉 also include

spin and isospin magnetic quantum numbers for the three nucleons but for the sake of a

simpler notation we dropped that information and the accompanying discrete sums. Now

because of the overall δ-function δ(~P ′ − ~P − ~Q) which is taken care of in evaluating the
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observables, the matrix element of the single particle operator in the space of the 3N Jacobi

momenta is

〈~p ′ ~q ′ | jSN(1) | ~p ~q 〉 = J( ~Q, ~q) δ(~p ′ − ~p) δ
(
~q ′ − ~q − 2

3
~Q
)
, (220)

and it results in

Npd,PWIAS = 3
∫
〈φq′ | (1 + P ) | ~p ~q 〉 J( ~Q, ~q ) 〈~p ~q − 2

3
~Q | Ψ〉. (221)

Three components of j occur in the response functions, j0 and j±1. According to (78) the

function J0( ~Q, ~q) related to the density operator is in lowest order

J0( ~Q, ~q ) = Gp
E( ~Q) Πp + Gn

E( ~Q) Πn, (222)

and according to (72) the functions related to the spherical components of the spin current

are

Jspin
±1 ( ~Q, ~q ) =

i

2m

(
Gp

M( ~Q) Πp + Gn
M( ~Q) Πn

) (
~σ(1) × ~Q

)
±1
. (223)

In the case of the convection current (see (72) ) one expresses the individual nucleon momenta

by the Jacobi momentum ~q
~k1 + ~k ′

1

2mN

=
2
3
~P + ~Q + 2~q

2mN

. (224)

Then in the lab system and choosing the ẑ and Q̂ directions to coincide only ~q survives for

the spherical components and the corresponding functions for the convection current are

Jconvect
±1 ( ~Q, ~q ) =

q±1

m

(
Gp

E( ~Q) Πp + Gn
E( ~Q) Πn

)
. (225)

The bra state in (217)-(219) and (221) composed of a deuteron and a state of free relative

motion of nucleon 1 and the deuteron is

〈φ~q′ | ~p ~q〉 = 〈ϕd | ~p 〉 δ (~q′ − ~q) . (226)

The permutations P are most conveniently evaluated as described in [69] (here we drop

the spin-isospin parts for simplicity)

P | ~p ~q 〉1 =| ~p ~q 〉2 + | ~p ~q 〉3 =

∣∣∣∣−
1

2
~p− 3

4
~q, ~p− 1

2
~q
〉

1
+

∣∣∣∣−
1

2
~p+

3

4
~q,−~p− 1

2
~q
〉

1
. (227)

In (227) we added subscripts. The subscript ”1” indicates that ~p refers to the subsystem (23)

and ~q is the relative momentum of particle 1 in relation to the pair (23). This choice appears

in (221). Now | ~p ~q〉2 (| ~p ~q〉3) signifies that the momenta did not change but they refer to
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different two-body subsystems. The particles are cyclically (anticyclically) permuted, thus

”2” points to the subsystem (31) and ”3” to the subsystem (12). In the second equality the

Jacobi momenta of the type ”2” and ”3” are re-expressed in terms of linear combinations

of the Jacobi momenta of the type ”1”. Therefore, one can again use (226) to evaluate

〈φ~q′ | P | ~p ~q〉 .

The second part of | Ũ〉 in (44) depends on the solution | Ũ〉 of that equation. In the

future it might be advisable to solve that equation directly in vector variables. First steps

in that direction have been already undertaken [105]. We still work using partial wave

decomposition and would like to indicate some formal structures. A complete set of basis

states for three nucleons is

| p q α 〉 ≡ | p q (ls)j (λ
1

2
)I (jI)Jm; (t

1

2
)TmT 〉, (228)

where p and q are the magnitudes of Jacobi momenta, l, s, and j orbital, spin, and total

angular momentum quantum numbers of the two-body subsystem, λ, 1
2
, and I orbital, spin,

and total angular momentum quantum numbers of the third particle. Then j and I are

coupled to the total 3N angular momentum J . Finally the two-body subsystem isospin t is

coupled with the one of the third particle to the total isospin T .

Because of the identity of the nucleons not all quantum numbers are allowed and one has

the condition

(−1)l+s+t = −1. (229)

That set of basis states is complete

∑

α

∫
dpp2

∫
dqq2 | p q α 〉〈p q α |= 1. (230)

An equation like (44) is now projected onto those states

〈p q α | Ũ〉 = 〈p q α | Ũ 0〉 + 〈p q α | tG0P + . . . | Ũ〉. (231)

We abbreviated the driving term by | Ũ 0〉 and the dots stand for the second part of the

integral kernel. Now tG0P is exactly the kernel which occurs in our standard Faddeev like

integral equation for 3N scattering [16, 18, 71]. In [18, 71] that partial wave decomposition

has been displayed in all detail, namely the evaluation of the permutation operator in the

chosen basis |pqα >, the solution of the Lippmann-Schwinger two-body equation leading

to the representation of t in that basis, and the treatment of the logarithmic singularities
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arising from the free propagator G0. Therefore, we shall not repeat all that here. Clearly

one ends up with a set of coupled integral equations in two variables for each total angular

momentum J , total isospin T , and parity π = (−1)l+λ. The second part of the kernel, which

involves the three nucleon force V (1) in interference with the NN t-operator, appears to be

more complex but in fact it is easier for numerical treatment. We refer for its representation

to [106].

Let us now come back to the driving term and regard its projection on the basis states

(228) in the case of a single nucleon operator O:

〈p q α | (1 + P )O | Ψ〉 = 3 〈p q α | (1 + P )jSN(1) | Ψ〉 =

3 〈p q α | jSN(1) | Ψ〉 + 3 〈p q α | PjSN(1) | Ψ〉. (232)

We could extract again the factor 3 since 〈p q α | (1 +P ) is fully antisymmetrical due to the

condition (229). As an example we now show for the simplest case of the density operator

the partial wave decomposition of 〈p q α | j0
SN (1) | Ψ〉. Comparing (220) and (221) we see

that

〈~p ~q | j0
SN (1) | Ψ〉 = J0( ~Q) 〈~p , ~q − 2

3
~Q | Ψ〉. (233)

Consequently

〈p q α | j0
SN(1) | Ψ〉 = J0( ~Q)

∫
〈p q α | ~p ′ ~q ′ 〉〈~p ′ ~q ′ − 2

3
~Q | Ψ〉

= J0( ~Q)
∫

〈p q α | ~p ′ ~q ′ 〉
∑∫

〈~p ′ ~q ′ − 2

3
~Q | p′′ q′′ α′′ 〉Ψα′′(p′′, q′′). (234)

In the second equality we inserted the partial wave decomposition of the 3N bound state.

The wave function components Ψα′′(p′′, q′′) ≡ 〈p′′ q′′ α′′ | Ψ〉 result from solving the 3N bound

state Faddeev equation [15]. The rather tedious but known steps to evaluate the overlaps

between momentum vector states with shifted vector arguments and our partial wave pro-

jected basis states as well as the six fold integration can be carried through analytically with

the techniques presented in [69]. Results for various partial wave projected matrix elements

can be found in [51, 73, 101, 107]. As an example the expression in (234) results for an

arbitrary direction of ~Q in

〈p q (ls)j (λ
1

2
)I (jI)Jm; (t

1

2
)TmT | j0

SN(1) | Ψm′′ 〉 =

I(t, T,MT )
√
π (−1)j

√
Ĵ

√
Î
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∑

α′′

δl′′l δs′′s δj′′j δt′′t

√
λ̂′′
√
Î ′′
√

(2λ′′ + 1)! (−1)λ′′

∑

λ′′

1
+λ′′

2
=λ′′

(q)λ′′

1

(
2

3
Q
)λ′′

2

(−1)λ′′

2
1√

(2λ′′1)! (2λ′′2)!
∑

k

k̂ (−1)k (kλ′′1λ; 000) gk

∑

g

(kλ′′2g; 000)




g λ λ′′

λ′′1 λ′′2 k








I λ 1

2

λ′′ I ′′ g








g I I ′′

j 1
2
J





(
Jg

1

2
;m,m′′ −m,m′′

)
Yg,m′′−m

(
Q̂
)
, (235)

where

gk ≡ gk

(
p, q, | ~Q | ;α′′

)
=

1∫

−1

dxPk(x)
Ψα′′(p, q̃)

q̃λ′′
, (236)

with

q̃ =

√

q2 +
4

9
| ~Q |2 −4

3
| ~Q | qx . (237)

Note that we abbreviate â ≡ 2a+ 1. The isospin factor I(t, T,MT ) arising from the isospin

matrix element

〈(
t
1

2

)
TMT

∣∣∣∣ G
p
E

1

2
(1 + τ̂z(1)) + Gn

E

1

2
(1 − τ̂z(1))

∣∣∣∣
(
t′′

1

2

)
T ′′M ′′

T

〉∣∣∣∣
T ′′= 1

2

(238)

is given as

I(t, T,MT ) = δM ′′

T
MT

δt′′t

[
(Gp

E +Gn
E)

1

2
δT 1

2

− (Gp
E −Gn

E)
√

3
(

1
1

2
T ; 0MTMT

)
(−1)t




t 1

2
1
2

1 T 1
2






 . (239)

The corresponding expressions for the convection and spin currents are

〈p q α JM ; TMT | Jconvect
τ (1) | ΨM ′′ 〉 =

(−1)τ
√
π

q

mN
I(t, T,MT ) (−1)j+λ+1

√
Ĵ

√
Î

√
λ̂

∑

α′′

δl′′l δs′′s δj′′j δt′′t

√
λ̂′′
√
Î ′′
√

(2λ′′ + 1)!

∑

λ′′

1
+λ′′

2
=λ′′

(q)λ′′

1

(
2

3
Q
)λ′′

2 1√
(2λ′′1)! (2λ′′2)!

∑

g1

(λ1g1; 000)
∑

k

k̂ (kλ′′1g1; 000) gk
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∑

g2

(kλ′′2g2; 000)




g2 g1 λ′′

λ′′1 λ′′2 k




Yg2,M ′′−M+τ

(
Q̂
)

∑

h

√
ĥ




λ 1 g1

g2 λ′′ h








I λ 1

2

λ′′ I ′′ h








h I I ′′

j 1
2
J





(
Jh

1

2
;M,M ′′ −M,M ′′

)
(1g2h;−τ,M ′′ −M + τ,M ′′ −M) (240)

and

〈p q α JM ; TMT | Jspin
τ (1) | ΨM ′′ 〉 =

(−3)
√
π
Q

mN
Ĩ(t, T,MT )

√
Î

√
Ĵ (−1)

1

2
+I (−1)J+ 1

2

∑

α′′

δl′′l δs′′s δj′′j δt′′t
√
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√
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√
Î ′′

∑
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1
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2
=λ′′

(q)λ′′

1

(
2

3
Q
)λ′′

2 1√
(2λ′′1)! (2λ′′2)!

∑

k

k̂ (kλ′′1λ; 000) gk

∑

g

√
ĝ (kλ′′2g; 000)
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λ′′1 λ′′2 k
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J 1 x

g 1
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h
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ĥ

(g1h; 000) (1wh; τ,M ′′ −M,M ′′ −M + τ)

(
Jw

1
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(
Q̂
)
, (241)

where in Ĩ(t, T,MT ) the electric nucleon form factors, Gp
E and Gn

E are replaced by the

magnetic nucleon form factors, Gp
M and Gn

M .

The second piece in (232) including the permutation operators P is evaluated as

〈pqα | PjSN(1) | Ψ〉 =
∑∫

〈pqα | P | p′q′α′〉〈p′q′α′ | jSN(1) | Ψ〉. (242)
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Now the partial wave representation of P can be chosen in various forms [106]. Beside purely

geometrical quantities it is always an integral of two δ-functions over the cosine of an angle,

where the arguments depend on momenta and that cosine. The two δ-functions express two

of the four momenta in terms of the other two. In the case of (242) one chooses the form of

P where p′ and q′ are expressed in terms of p and q:

〈pqα | P | p′q′α′〉 =

1∫

−1

dxGα α′(p, q, x)
δ(p′ − π1(p, q, x))

p′ l
′+2

δ(q′ − π2(p, q, x))

q′ λ
′+2

. (243)

This then leads to

〈pqα | PjSN(1) | Ψ〉 =
∑

α′

1∫

−1

dxGα α′(p, q, x)
〈π1(p, q, x) π2(p, q, x)α′ | jSN(1) | Ψ〉

π1(p, q, x) l′ π2(p, q, x)λ′
, (244)

where the functions Gα α′(p, q, x), π1(p, q, x) and π2(p, q, x) are given in [106]

Because one evaluates 〈pqα | jSN(1) | Ψ〉 on certain grids in p and q, the evaluation of

(244) requires interpolation. We use cubic splines of two types [108, 109]. In this manner

the driving term in (231) is determined on grids in p and q.

We solve the set of coupled integral equations in the two variables p and q by iteration,

generating the multiple scattering series for each fixed total angular momentum J and

parity. We neglect the coupling of states with total isospin T = 1
2

and T = 3
2
, which is

due to charge independence breaking for np and pp forces but keep both isospins T . The

difference between pp and np forces is, however, taken into account by applying the “2
3
− 1

3

′′

rule [110, 111]. For the lower J-values (especially for J = 1
2

+
, the 3N bound state quantum

numbers) that multiple scattering series diverges or converges only very slowly. For every

Jπ-value we sum up the series by the Padé method [69] which is a very reliable and accurate

method. Because of the rather high dimension of the discretized integral kernel an iterative

procedure is mandatory. Typical dimensions for the kernel are 100000 × 100000 for each

Jπ-value.

Once 〈pqα | Ũ〉 has been determined, final integrations are required to arrive at the

nuclear matrix elements 〈φq | P | Ũ〉 occurring in (58). In this case another form of the

permutation operator is used, namely

〈pqα | P | p′q′α′〉 =

1∫

−1

dxG̃α α′(q, q′, x)
δ(p− π̃1(q, q′, x))

p l+2

δ(p′ − π̃2(q, q′, x))

p′ l
′+2 . (245)
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The two δ-functions allow to perform the integrations over p and p′ and one encounters the

deuteron wave function components ϕl(π̃1) (l = 0, 2) and 〈π̃2q
′α′ | Ũ〉 which can be gained

by cubic splines interpolation. We refer to [16, 18, 71] and references therein for the detailed

notation.

In the case of the complete breakup one encounters the matrix elements (45), (47) or

(55). In the case of 〈ϕ0 | P | Ũ〉 we use (227) and apply the permutation P to the left. Then

we obtain the structure

〈~p ′ ~q ′ | Ũ〉 =
∑∫

〈~p ′ ~q ′ | pqα〉〈pqα | Ũ〉, (246)

with certain linear combinations ~p ′ and ~q ′ of the original final momenta ~p and ~q. The

overlaps 〈~p ′ ~q ′ | pqα〉 are trivially given by the very definition of the basis states | pqα > in

terms of geometrical quantities and spherical harmonics [112].

The remaining term 〈ϕ0 | tG0P | Ũ〉 requires just an application of part of the kernel in

(44) onto | Ũ〉 and the additional structures in (44) and (47) are treated in a corresponding

manner. We refer to [18] for more details.

The capture matrix element given in (66) consists of two terms. For the second one we

need the quantity T , which is part of the 3N breakup amplitude for Nd scattering [18] and

is determined in form of the set of functions 〈pqα | T 〉. The free propagator G0 delivers

a simple pole, which we treat by subtraction. The remaining part 〈Ψ | O(1 + P ) | pqα〉
has been discussed before. The first term in (66) is apparently closely related to the first

term in (59). With these relatively schematic and brief remarks we end the description

of the performance related to matrix elements and Faddeev like integral equations. For

practitioners more is needed and we refer for details to [16, 18, 71, 113].

Up to now we addressed the | p q α〉-representation of the single nucleon current. The

representation of the two-body currents is much more complex. In the 3N space spanned by

the Jacobi momenta ~p and ~q the two-body current related to particles 2 and 3 has the form

〈~p ′ ~q ′ | ~j(2, 3) | ~p ~q〉 = δ
(
~q ′ − ~q − 1

3
~Q
)
~J (~p2, ~p3) , (247)

where

~p2 ≡ ~k ′
2 − ~k2 =

1

2
~Q+ ~p ′ − ~p,

~p3 ≡ ~k ′
3 − ~k3 =

1

2
~Q− ~p ′ + ~p, (248)
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are the momentum transfers to nucleons 2 and 3. The photon momentum ~Q occurs due to

the overall momentum conserving δ-function. The structure (247) shows that the ~p and ~q

dependence is separated, what simplifies the partial wave decomposition quite substantially.

Let us split the basis states as

| p q α〉 =| p q (ls)j(λ
1

2
)I(jI)Jm〉 | (t

1

2
)TmT 〉 ≡| p q αJ〉 | αT 〉, (249)

and introduce

Yjµ(p̂) ≡
∑

µ′

C(lsj;µ− µ′, µ′, µ)Yl,µ−µ′(p̂) | s µ′〉, (250)

and

Yλν(q̂) ≡
∑

ν′

C(λ
1

2
I; ν − ν ′, ν ′, ν)Yλ,ν−ν′(q̂) | 1

2
ν ′〉. (251)

Then

〈
p′q′α′

∣∣∣~j(2, 3)
∣∣∣ pqα

〉

=
∫
d~p′1

∫
d~q′1

∫
d~p1

∫
d~q1

〈
p′q′α|~p′1~q′1

〉 〈
~p′1
~q′1 |j(2, 3)| ~p1~q1

〉
〈~p1~q1|pqα〉

=
∫
d~p′1

∫
d~q′1

∫
d~p1

∫
d~q1

∑

µ′µ

C(j′I ′J ′;µ′,M ′ − µ′,M ′)C(jIJ ;µ,M − µ,M)

× Y∗
j′µ′(p̂′1)

δ(p′1 − p′)

p′1
2 Y∗

I′,M ′−µ′(q̂′1)
δ(q′1 − q′)

q′1
2 δ(~q1 − ~q′1 −

1

3
~Q)

×
〈
αT ′

∣∣∣∣~j
(

1

2
~Q + ~p1

′ − ~p1,
1

2
~Q− ~p1

′ + ~p1; 2, 3
)∣∣∣∣αT

〉

× Yjµ(p̂1)YI,M−µ(q̂1)
δ(p1 − p)

p1
2

δ(q1 − q)

q12
. (252)

Here ~p1, ~q1 and ~p ′
1, ~q

′
1 are Jacobi momenta of the type (23), what leads immediately to

〈
p′q′α′

∣∣∣~j(2, 3)
∣∣∣ pqα

〉

=
∑

µ′µ

C(j′I ′J ′;µ′,M ′ − µ′,M ′)C(jIJ ;µ,M − µ,M)

× ~I2(p
′, p, Q; (l′s′)j′µ′αT ′, (ls)jµαT )

× I3(q
′, q, Q; (λ′

1

2
)I ′M ′ − µ′, (λ

1

2
)IM − µ), (253)

with

~I2(p′, p, Q; (l′s′)j′µ′αT ′ , (ls)jµ, αT )

=
∫
dp̂′

∫
dp̂Y∗

j′µ′(p̂′)
〈
αT ′

∣∣∣∣~j
(

1

2
~Q+ ~p ′ − ~p,

1

2
~Q− ~p ′ + ~p; 2, 3

)∣∣∣∣αT

〉
Yjµ(p̂), (254)
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and

I3(q′, q, Q; (λ′
1

2
)I ′M ′ − µ′, (λ

1

2
)IM − µ)

=
∫
dq̂′Y∗

I′,M ′−µ′(q̂′)
δ(q − |~q′ + 1

3
~Q|)

q2
YI,M−µ(

̂
~q′ +

1

3
~Q). (255)

In the nuclear matrix elements the current is applied onto the 3He state. Therefore we need

the basic building blocks 〈pqα | ~j(2, 3) | Ψ〉. We obtain

〈
p′q′α′

∣∣∣~j(2, 3)
∣∣∣Ψ
〉

=
∑

α

∫
p2dpq2dq

〈
p′q′α′

∣∣∣~j(2, 3)
∣∣∣ pqα

〉
〈pqα|Ψ〉

=
∑

α

∫
p2dp

∑

µµ′

C(j′I ′J ′;µ′,M ′ − µ′,M ′)C(jIJ, µ;M − µ,M)

×~I2(p′, p, Q; (l′s′)j′µ′αT ′, (ls)jµαT )

×Ĩ3(p, q′, Q; (λ′
1

2
)I ′M ′ − µ′, (λ

1

2
)IM − µ), (256)

with

Ĩ3(p, q
′, Q; (λ′

1

2
)I ′M ′ − µ′, (λ

1

2
)IM − µ) =

∫
dq̂′Y∗

I′,M ′−µ′(q̂′)
〈
p, |~q′ +

1

3
~Q|, α|Ψ

〉
YI,M−µ(

̂
~q′ +

1

3
~Q). (257)

The angular integration in Ĩ3 can be performed by well established analytical steps (see

[69]). The much harder task is the reliable evaluation of ~I2. It is convenient to decompose

the current as

~j(2, 3) = GV
E

∑

kκ

~O kκ (~p2, ~p3) {σ(2) ⊗ σ(3)}kκ i [~τ (2) × ~τ (3)]z. (258)

The π- and ρ-like currents given in (118) and (123) are of that type. The complex angular

momentum algebra is detailed in [107] and we refer the reader to that reference. In [107]

we also evaluate those integrals directly in a numerical manner to check the validity and

accuracy independently. Benchmark studies are displayed there, which we think are very

useful for practitioners, since the momentum space representation of the two-body currents

requires great care.
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VI. COMPARISON WITH DATA

Our theoretical framework is nonrelativistic. This limits the range of data we can analyze.

Unfortunately, in addition, quite a few data are not well documented in the literature with

respect to the necessary angular and energy averaging. Therefore, a quantitative comparison

of such data to our theory is no longer possible. Under all these limitations we are aware of

only a restricted data set, which we shall display now.

In the following, the dynamical input for the theoretical calculations is always the

NN force AV18 alone or together with the 3N force UrbanaIX [114]. Including the 3N

force, the resulting binding energies for 3He and 3H are 7.746 and 8.476 MeV, respec-

tively, which is sufficiently close to the experimental values (7.718109±0.000010) MeV

and (8.481855±0.000013) MeV [115]. The AV18 potential includes electromagnetic forces

[15, 54]. They are all kept in our treatment of the two 3N bound states but for the 3N

continuum we keep only the strong forces.

On top of the standard single nucleon current, we employ the π- and ρ-like two-body

currents related to AV18. In the case of photodisintegration we also show examples based on

the Siegert approximation as defined in section III B. Technically we still rely on a partial

wave decomposition which is always converged within our typical numerical accuracy of

about 1-2 % in the observables.

A. Elastic electron scattering on 3He and 3H

It has been known for a long time [116, 117] that the 3N charge and magnetic form

factors require two-body densities and two-body currents. The two-body density is already

a relativistic correction and therefore strictly spoken already outside our framework. Nev-

ertheless, we follow [89] and use the one-π and one-ρ exchange process. Nowadays [26] the

radial functions ”v” are also taken from the π- and ρ-like pieces of AV18. In all calculations

the UrbanaIX 3NF is included.

Our results for the charge form factors of 3He and 3H are shown in Figs. 7 and 8. The

dashed curves are based on the single nucleon density, solely given by GE (not including the

Darwin-Foldy and spin-orbit terms as in (78)). They start to deviate strongly from the data

for momenta above ≈2.5 fm−1. The solid curve includes in addition to the Darwin-Foldy
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and spin-orbit terms the two-body π − ρ densities. All that shifts theory rather close into

the data for 3H. This is also true at least up to about 3 fm−1 for 3He. Since in this review we

concentrate on a regime which can be called dominantly nonrelativistic we do not comment

on missing dynamics responsible for the strong deviations above around 3 fm−1 in 3He and

on the possibly accidental agreement for 3H. Nevertheless, we would like to illustrate the

effects of relativity in the single nucleon density operator in Figs. 9-10. Since for Q-values

below about 3 fm−1 the changes in FC going beyond the single density operator GE caused

by relativity stay below about 5 %, we show only the effects for the higher Q-values. There

we can choose a linear scale and display five curves according to different choices of the single

nucleon density operator. We see in Fig. 9 for 3He that the Darwin-Foldy term added to

the nonrelativistic single nucleon current operator (GE) shifts the theory downwards, while

further adding the spin-orbit term reduces that downward shift. We also display the full

relativistic result according to the first term (spin independent) in (70). In the maximum

this is identical to the nonrelativistic result. Thus the terms additional to the Darwin Foldy

term cancel its contribution completely in this case. Finally, the complete relativistic single

nucleon density operator shifts the theory upwards beyond the nonrelativistic result by about

5% in the maximum.

In the case of 3H both the Darwin-Foldy and the spin-orbit terms shift theory downwards

from the nonrelativistic result and the full relativistic curve ends up below the nonrelativistic

one by about 14 % in the maximum.

After this small excursion into relativistic features, we display noticeable effects of the

3NF in Figs. 11-12. For both nuclei, 3He and 3H, the addition of the 3NF shifts the theory

closer into the data for the lower Q-range, on which we concentrate. For 3He the effects

grow with Q from 0 to about 12 % at Q= 2 fm−1 and about 20 % at Q= 3 fm−1. For 3H

they are slightly smaller (17 % at Q= 3 fm−1). 3NF effects on the charge form factor have

been investigated earlier in [118] showing a similar tendency.

Since at higher Q-values the comparison between theory and experiment differs in quality

for 3He and 3H, it is common to look into the isoscalar and isovector charge form factors

defined as

F S,V
C =

1

2
[2FC(3He) ± FC(3H)]. (259)

They are displayed in Figs. 13-14 together with the data. For the lower Q-values the
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FIG. 7: The charge form factor of 3H as a function of Q ≡
√

Q2 for the single nucleon density

given alone by GE (dashed curve) and including the Darwin-Foldy and spin-orbit terms as well as

the two-body π- and ρ-like densities (solid curve). Data are from [122].
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FIG. 8: The same as in Fig. 7, now for 3He. Data are from [122].

agreement with the data is in both cases quite good but in the higher Q-range the isovector

form factor, which is sensitive to our two-body density, underestimates the data significantly.

We refer the reader to [119] and [26] for further discussions on that higher Q-range and an

inclusion of different components of the charge density operator. Including additional parts

in the two-body density in [119] leads to a remarkably good description of the data. Similarly,

the Hanover group could describe the data very well with a single ∆-isobar admixture and

including several selected relativistic corrections [67, 120]. In [121] the first time three-

nucleon currents related to the 2π-exchange 3NF have been included. Also variational

Monte Carlo techniques based on realistic NN and 3N forces have been successfully applied

and similar results for the elastic form factors have been achieved [123]. We also would like
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FIG. 9: The effects of relativity in the single nucleon density for the charge form factor of 3He. GE

alone (thin dotted), GE + Darwin-Foldy (thin dashed), GE + Darwin-Foldy + spin-orbit (thin

solid), the first spin independent term in (70) (thick dashed), the full relativistic density (thick

solid).
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FIG. 10: The effects of relativity in the single nucleon density for the charge form factor of 3H.

Curves as in Fig. 9.

to draw attention to the work in [124] where relations between isoscalar charge form factors

of two- and three-nucleon systems were studied and inconsistencies were found using the

”standard” model of meson exchange currents.

Now we regard the magnetic form factors of 3He and 3H in Figs. 15 and 16. Here the

situation is more demanding in relation to the choice of the two-body current operators.

Up to about 2.5 fm−1 the agreement with the data is quite good but beyond that it is very

insufficient. The effects of the 3NF slightly improve the agreement in the lower Q-range as

displayed in Figs. 17 and 18. In Fig. 19 we show the isoscalar magnetic form factor which
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FIG. 11: The 3NF effects for the charge form factor of 3He. The solid curve is the same as in

Fig. 8. For the dashed curve only the 3NF has been dropped in the bound state wave function. In

the right panel the Q-range is restricted to 2 ≤ Q ≤ 3 and the linear scale for FC(Q) is used.
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FIG. 12: The 3NF effects for the charge form factor of 3H. Curves as in Fig. 11.

is in quite good agreement with the data up to about 4 fm−1, while the two-body current

dependent isovector magnetic form factor is dramatically off the data in the higher Q-range

as shown in Fig. 20.

Finally we come to the relativistic effects in the single nucleon current operator given in

(71). As in all our results we choose the laboratory frame for which the total momentum of

the initial 3He is zero and work with the Jacobi momenta defined in (20) and (21). Assuming

that the photon couples to nucleon 1, the initial (~p) and final (~p ′) individual momenta of

the struck nucleon are given in terms of the Jacobi momentum ~q and the three-momentum

transfer ~Q as

~p = ~q − 2

3
~Q (260)
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FIG. 13: The 3N isoscalar charge form factor. Curves as in Fig. 7.
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FIG. 14: The 3N isovector charge form factor. Curves as in Fig. 7.

~p ′ = ~q +
1

3
~Q. (261)

Further we put ~Q ‖ ẑ, which simplifies the calculation of the spherical τ = ±1 components

of the current operator given in (71). Since

(~p ′ + ~p)τ = 2 (~q )τ , (262)

(
~p ′

p0 +mN
+

~p

p′0 +mN

)

τ

=

(
1

p0 +mN
+

1

p′0 +mN

)
(~q )τ , (263)

(~p× ~σ)τ = (~σ × ~q)τ −
2

3

(
~Q× ~σ

)
τ
, (264)

and

(~σ × ~p ′)τ = (~σ × ~q)τ +
1

3

(
~σ × ~Q

)
τ
, (265)
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FIG. 15: The magnetic form factor of 3He. The dashed line represents the results obtained with

the nonrelativistic single nucleon current operator from (72) (with F1 replaced by GE) and the

solid line includes the effects of the π- and ρ-like meson exchange currents. Data are from [122].
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FIG. 16: The magnetic form factor of 3H. Curves as in Fig. 15. Data are from [122].

we rewrite (71) as

Jτ = A

{
−2F2

(
1 − ~p ′ · ~p

(p0 +mN)(p0
′ +mN )

)
+GM

(
1

p0 +mN
+

1

p0
′ +mN

)}
(~q )τ

+2AF2
1

(p0 +mN )(p0
′ +mN )

i~σ ·
(
~Q× ~q

)
(~q )τ

+AGM

(
1

(p0 +mN)
− 1

(p0
′ +mN)

)
i (~q × ~σ )τ

+AGM

(
2

3

1

(p0 +mN )
+

1

3

1

(p0
′ +mN )

)
i
(
~σ × ~Q

)
τ
. (266)

The first and the last parts in (266) correspond in the non-relativistic limit to the con-

vection and spin current, respectively. The second and the third parts disappear in the

non-relativistic limit and turn out to be less important. This is shown in Figs. 21 (22) for
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FIG. 17: The 3NF effects for the magnetic form factor of 3He. The solid curve is the same as in

Fig. 15. In the case of the dashed curve only the 3NF has been dropped in the bound state wave

function.
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FIG. 18: The 3NF effects for the magnetic form factor of 3H. Curves as in Fig. 17.
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FIG. 19: The 3N isoscalar magnetic form factor. The curves as in Fig. 15.
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FIG. 20: The 3N isovector magnetic form factor. The curves as in Fig. 15.
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FIG. 21: The convection (thin dashed) and the spin part (thin solid) of the nonrelativistic single

nucleon current, and the four parts of the relativistic single nucleon current given in (266) (first

(thick dashed), second (dot-dashed), third (dotted), fourth (thick solid) ) for the magnetic form

factor of 3He. The thin and thick solid lines practically overlap.

3He (3H). We see that the convection part, nonrelativistically and relativistically, is unim-

portant. It is the spin part which provides the dominant contribution and the relativistic

effects are quite insignificant.

The magnetic form factors have been studied by other groups as well [67, 120, 121],

where more sophisticated currents and ∆-admixtures have been included. This shifts theory

much closer to the data, especially at the higher Q-values, which are not in the focus of this

review. Therefore, we do not comment further on all that. Finally, we would like to draw

attention to a first attempt within the Bethe-Salpeter approach in the Faddeev form [125]

which, however, due to severe truncations cannot yet been conclusively confronted to data.
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FIG. 22: The same as in Fig. 21 but for 3H.

3He 3H

rch [fm] µ rch [fm] µ

without 3NF 2.025 -2.054 1.788 2.883

with 3NF 1.932 -2.071 1.722 2.891

exp. 1.959 ± 0.030 -2.127 1.755 ± 0.086 2.979

TABLE I: The theoretical predictions including MEC and experimental values for the 3He and 3H

charge radii and magnetic moments. Data are from [26, 122] and [126].

We end up with showing the charge radii and the magnetic moments of 3He and 3H in

Table I. In all cases the inclusion of the 3NF improves the description of the data. Small

discrepancies remain. The agreement in the case of the magnetic moments is somewhat

better using the enriched dynamics in [67, 121].

B. Inclusive electron scattering on 3He and 3H

Without polarization two response functions RL and RT defined in (170)-(172) can be

measured using a Rosenbluth separation method. We compare in Figs. 23 and 24 for 3H

and 3He the data to our theory for the longitudinal response function RL depending on the

energy transfer ω = Q0 at the | ~Q |-values 200, 300, 400 and 500 MeV/c. As can be seen

already at | ~Q |= 500 MeV/c the experimental and theoretical peak positions are slightly

different. This is already the result of our non-relativistic kinematics and could be cured

by improving the kinematics. We have not done that and will concentrate on the lower
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| ~Q |-values.

The two types of plane wave approximations, PWIA and PWIAS (not shown), are very

much off the data at 200 and 300 MeV/c. There the inclusion of the rescattering in the

final state is strongly needed. We would like to point out, that we distinguish between final

state interaction effects when the nucleons in the final state are interacting only through NN

forces (FSI) and when both two- and three-nucleon forces are acting. In the following, we

also present the results of the simplified treatment of FSI, where the interaction is restricted

only to the spectator nucleons 2 and 3 (FSI23). A more detailed explanation of FSI23 is

given in section VII C. For both nuclei, the FSI predictions are close to the data at | ~Q| =

200 and 300 MeV/c. The effects of the two-body density are marginal in case of the 3H,

but noticeable for 3He. The 3NF effects are clearly visible. Note that 3NF effects are taken

consistently into account, in the bound and in the scattering states. For the PWIA, FSI23,

FSI, FSI+MEC results the 3N bound states obtained without 3NF are used. In the case of

3H the 3N force effects lower theory too much and lead to an underprediction of the data

while for 3He theory goes right away into the data. The underprediction of theory in the

case of 3H is clearly visible at Q= 400 MeV/c. It is also of interest to notice the tendency

that the nuclear interaction effects in the continuum decrease with increasing | ~Q |-values.

The situation in the case of the transverse response function RT , shown in Figs. 25 and

26 is different. The tendency that the interaction effects in the continuum decrease with

increasing | ~Q |-values starts earlier than for RL. Further, the MEC effects are quite strong,

as is well known, but are essentially compensated by the 3NF effects in the maxima. In

the lower and upper energy wings of the peaks the addition of the 3NF has little effect.

Overall the agreement of data and theory for our complete prediction (NN and 3N forces

plus MEC) is quite good for both nuclei, 3H and 3He, at | ~Q |= 200, 300 and 400 MeV/c.

The very interesting interplay of 3NF and MEC effects would make a renewed, more precise

measurement very interesting. Finally, like for RL, relativistic effects, at least the ones of

kinematical origin, are clearly visible at | ~Q |= 500 MeV/c.

There are also inclusive data [129] for | ~Q |= 174, 323 and 487 MeV/c, starting at thresh-

old. They are plotted as a function of the energy transfer ω in Figs. 27- 30 in comparison

to our theory. The overall agreement of our complete theory with the data is quite good,

for both nuclei, 3H and 3He. Not including full FSI would be a disaster for all | ~Q |-values:

namely predictions based on the two simplest approximations, PWIA and FSI23, are far
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FIG. 23: The longitudinal response function of 3H for different magnitudes of the three-momentum

transfer. The double-dot-dashed curve represents the prediction based on the extreme PWIA.

The dot-dashed curve was obtained under the assumption that FSI acts only in one two-nucleon

subsystem (the so-called FSI23), the dotted curve takes the full FSI into account but neglects MEC

and 3NF effects. The π- and ρ-like two-body densities are accounted for in the dashed curve and

finally the full dynamics including MEC and the 3NF is given by the solid curve. The dotted and

dashed curves practically overlap. Data are from [127].

away from the data. In the case of RL 3NF as well as MEC effects turn out to be small,

except at | ~Q |= 174 MeV/c where 3NF effects for 3He shift theory downwards in direction

to the data. For RT MEC effects are again quite significant, shifting the theory upwards.

The counteractive effect of the 3NF is only seen at | ~Q |= 174 MeV/c.

For a smaller ω region (not explicitly displayed) there are also results for RL of the Trento

group [130]. They use the same dynamical input but without two-body densities. Taking

that into account the agreement between ours and the Trento group results in the case of
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FIG. 24: The same as in Fig. 23 for 3He. Data are from [127] (circles) and from [128] (squares).

3H is good. In case of 3He a quantitative comparison is not possible, since we do not include

the Coulomb force in the continuum. Going to the ω-region below the three-body breakup

in case of 3He one can compare to the results from the Pisa group [59]. Despite the fact

that we do not include the Coulomb force in continuum we find in the case of RL a similar

increase of the two-body density effect with increasing | ~Q|-values, namely a shift downwards.

In the case of RT we find a similar, upwards shift of the two-body current effects. Our curves

including FSI+MEC+3NF lie a bit higher in comparison to the ones in [59] but still rather

close to the data.

We would like to present another set of data for threshold electrodisintegration of 3He

[131], where the electron scattering angle was 160◦, emphasizing the contribution from RT .

The cross section is shown in Fig. 31. Again the absolute need for interaction in the con-

tinuum is obvious, but furthermore also significant effects of MEC and 3NF are visible.

The agreement of our theory with the data is very good. Further data displayed in [131]

require relativity and are therefore not shown here (see, however, [67], where some selected
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FIG. 25: The transverse response functions RT for 3H. Curves as in Fig. 23, except that the

two-body density is replaced by the two-body current. Data are from [127].

relativistic corrections shift theory in the direction to the data).

Finally, Fig. 32 displays 180◦ inelastic electron scattering cross sections for 3He at rather

low incident electron energies [132]. We see three theoretical curves, one with AV18 alone

in the continuum (the dotted curve), then using AV18 alone + MEC (the dashed curve)

and finally our most complete calculation with AV18+MEC+3NF (the solid curve). There

are strong up and down effects against the pure NN force predictions adding MEC and the

3NF. Though our most complete theoretical prediction is close to the data at the strong rise

for the lowest excitation energies, it clearly underpredicts the data at the higher excitation

energies.

Previous calculations for the inclusive responses aside from the pioneering one [36] men-

tioned in the introduction, appeared in [59, 130, 133]. In [133] the longitudinal response

was determined with the LIT method combined with a Faddeev decomposition and carried
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FIG. 26: The same as in Fig. 25 for 3He. Data are from [127] (circles) and from [128] (squares).

through in momentum space. A qualitative agreement with experimental data was achieved

using the Bonn B [134] NN interaction and the nonrelativistic single nucleon density op-

erator. In [130] the longitudinal response functions were determined via the LIT method

using correlated sums of products of hyperspherical functions, hyperspherical harmonics,

and spin-isospin factors. The configuration space Bonn A [134] and AV18 NN potentials

including the UrbanaIX and Tucson-Melbourne [135] 3NF’s were used and standard rela-

tivistic corrections of lowest order for the density operator were included. Quite remarkable

is the fact that, because the LIT method requires only bound state-like solutions, it was

possible to include the Coulomb force also in the final state.The results for |Q|-values up to

500 MeV/c are quite similar to the ones shown above. We mention the decrease of the peak

heights adding a 3NF and the different effects on 3H and 3He, namely an underestimation

for 3H and a reasonable agreement for 3He. Also the RL results in [130] for the 3H data in

[129] agree quite well with ours shown in Fig. 27 except for |Q| = 487 MeV/c, where in [130]

an overestimation is visible. The same data of [129] were also analyzed in [59], now for the
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FIG. 27: The longitudinal response function RL for 3H. Curves as in Fig. 23. Data are from [129].

longitudinal as well as the transversal responses, but staying below the three-body breakup.

The 3He and pd scattering state wave functions were obtained variationally with the pair

correlated hyperspherical harmonics method. Again the AV18 and AV18+UrbanaIX were

used and the Coulomb force was also fully included. The currents and densities are as de-

scribed above, but additional pieces are added which are not constrained by the current

conservation. This also includes terms related to the ∆-excitation. The agreement to the

data is comparable to the one shown above. Below the three-body threshold the results

for the longitudinal response for 3He agree well with the ones in [130] at the two larger

|Q|-values.

Finally the Euclidean longitudinal and transversal responses have been worked out . As a

Laplace transform in the energy transfer ω the response is mapped onto an imaginary time τ .

The technically very attractive feature is that the Euclidean response can be cast in a path-

integral form which can be naturally evaluated with Monte Carlo techniques. We refer the

reader to the original literature [26, 136–138] for the interesting insights into the propagation

70



10 15 20 25
0.00

0.02

0.04

0.06
R

L
 [MeV

-1
]

24 28 32 36
ω [MeV]

0.000

0.005

0.010

50 60 70 80
ω [MeV]

0.000

0.001

0.002

|Q
→

|=174 MeV/c |Q
→

|=323 MeV/c

|Q
→

|=487 MeV/c

FIG. 28: The same as in Fig. 27 for 3He. Data are from [129].

of charge with increasing τ and the comparison with correspondingly transformed data. In

[139] a thorough study on both (longitudinal and transversal) Euclidean response functions

have been performed and compared to the world data. This also includes 4He, which sheds

light on the access to the transverse quasi-elastic strengths. Also sum rules techniques were

employed to study the T/L ratios. Nevertheless the Laplace transform of the data looses

details and appears not to be a substitute of evaluating the responses directly for fixed |Q|.
In addition, data are available for the cases, where both initial particles, the electron and

3He, are polarized. This allows to access two more response functions, RT ′ and RTL′. Data

for RT ′ and RTL′ alone are not yet taken to the best of our knowledge, only asymmetries. In

PWIA RT ′ ∝ (Gn
M)2 [140]. Thus measurements concentrated on the transversal asymmetry

AT ′ (θ⋆ ≈ 0◦) what according to (201) focuses on RT ′ . That sensitivity to the magnetic form

factor of the neutron survives despite the fact that PWIA is insufficient [141, 142]. This is

documented in Fig. 33 for AT ′. We show three groups of curves where within each group

Gn
M is multiplied by the factors 0.9, 1.0 and 1.1. The sensitivities to changes of Gn

M values

71



12 16 20 24

0.000

0.002

0.004

0.006

R
T
 [MeV

-1
]

24 28 32 36 40
ω [MeV]

0.000

0.002

0.004

50 60 70 80
ω [MeV]

0.000

0.001

0.002

0.003

|Q
→

|=174 MeV/c |Q
→

|=323 MeV/c

|Q
→

|=487 MeV/c

FIG. 29: The transverse response function RT for 3H. Curves as in Fig. 23. Data are from [129].

are very similar whether one uses PWIA, FSI23 or our complete picture FSI+MEC+3NF.

Therefore the measurement of AT ′ for polarized 3He is a good tool to extract Gn
M because we

can consider Gn
M the only unknown dynamical input for our calculations. The dependence

of AT ′ on the electric form factor of the neutron Gn
E, which still has rather big error bars, is

negligible. Therefore one can use the measured values of AT ′ and adjust Gn
M . For the detailed

procedure we refer to [141, 142]. The theoretical results against the data are displayed in

Fig. 34 for Q2= 0.1 and 0.2 (GeV/c)2. While PWIA has the wrong slope, already the

inclusion of the NN interaction in the spectator pair (FSI23) leads to the correct shape,

though it lies high above the data. Complete FSI is important and the NN force prediction

alone comes rather close to the data. On top we show the MEC effects which are quite

noticeable and the somewhat smaller 3NF effects. The latter ones lower the theoretical

prediction on top of the shift caused by MEC. A direct comparison of our new results to the

ones presented in [141, 142] reveals some differences. The reasons for those differences are

manifold. In [142] we did not use AV18 plus the explicit π- and ρ-like two-body currents
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FIG. 30: The same as in Fig. 29 for 3He. Data are from [129].
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FIG. 31: The inclusive differential cross section d3σ
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0

taken at ϑ= 160◦ as a function of the energy

transfer ω for the electron beam energy of 263 MeV. Curves as in Fig. 23. Data are from [131].

but Bonn B with the standard π- and ρ-currents augmented by the strong form factors of
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0

taken at ϑ= 180◦ as a function of the energy

transfer ω for three electron beam energies. For the description of the curves see Fig. 23. Data are

from [132].

Bonn B. In addition we use now Gp
E in the charge density and Gp

E and Gn
E in the convection

current, while in the previous works we employed F p
1 and F n

1 . We also replaced the Höhler

models for the electromagnetic form factors [143] by the electromagnetic form factors [83]

based on a dispersion theoretical analysis. Further now we also add the two-body density.

At this point we would like to add a more conceptual remark. In the spirit of a Hamil-

tonian approach the arguments of the nucleon form factors are the difference of the four-

momenta of the nucleons squared, before and after the photon absorption, and not the

four-momentum squared of the photon, which would be required in a manifestly covariant

formalism. The reason is that in a Hamiltonian formalism, where the nucleons are on the

mass-shell one has only three-momentum conservation at the photon vertex. Then since

we nearly always neglect relativistic features we choose as arguments of the electromagnetic
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form factors just ( ~Q)2. In the case of real photons and in our momentum region, (~Q)2 is

very small and we put it simply to zero.

In addition to all that we allow now for np and pp (nn) forces using the “2
3
− 1

3
” rule, while

in the previous work [141, 142] we used np forces only. Finally the deuteron and the 3He

wave functions are generated with all the electromagnetic pieces of the AV18 interaction and

thus especially the pp Coulomb force as the dominant part is now taken into account in 3He.

Based on all that and noting that in [142] the theory was averaged over the spectrometer

acceptances using a Monte Carlo simulation, while in Fig. 34 we show point geometry results,

some differences to the previous results had to be expected. Therefore one has to accept that

a renewed extraction of Gn
M from the data given in [142] would provide a slightly different

result. We did not perform that study since we have no more access to the experimental

conditions and moreover our theory is anyhow only some intermediate step toward a more

basic concept.
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FIG. 33: Sensitivity of the asymmetry AT ′ to the changes of Gn
M for the four-momentum transfer

squared Q2= 0.1 (GeV/c)2. Three groups of curves with 0.9Gn
M , 1.0Gn

M and 1.1Gn
M are shown for

PWIA (dotted), FSI23 (dashed) and FSI+MEC+3NF (solid). In each case the upper curve is for

0.9, the middle one for 1.0 and the lower one for 1.1.

The resulting values for Gn
M extracted in [142] are shown in Fig. 35 together with the

values extracted from the deuteron [144, 145]. The agreement between the two totally

independent approaches is very good, though one should keep the above remarks in mind.

The analysis of the AT ′ data at Q2= 0.3–0.6 (GeV/c)2 also measured in [142] is outside

the present theoretical framework and we refer the reader to [147], where Gn
M -values were

extracted under the assumption of a plane wave impulse approximation. This work uses
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FIG. 34: The asymmetry data from [142] against theory for two different four-momentum transfers

squared Q2= 0.1 (GeV/c)2 (left) and 0.2 (GeV/c)2 (right). PWIA (double-dot-dashed), FSI23

(dot-dashed), FSI with NN forces alone (dotted), FSI with NN forces alone + MEC (dashed) and

adding in the 3NF (solid).
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FIG. 35: Gn
M -values extracted from different measurements on the deuteron ( [144] (▽), [145] (△))

and on 3He ([146] (◦), [142] (×)). For the sake of visibility the two deuteron results (▽ and △) are

shifted sidewards but belong to Q2= 0.1 and 0.2 (GeV/c)2, respectively.

the concept of the spin dependent spectral function of the three-body system and employs

realistic forces [148]. The polarized responses RTL′ and RT ′ were evaluated with the aim

to minimize the model dependence in the extraction of the neutron electromagnetic form

factors. Thereby the prominent role of the proton contributions got illuminated.

The interplay of both response functions RT ′ and RTL′ in (201) has been investigated in
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[149] by choosing θ⋆ in a small range around 135◦. The resulting asymmetries A are shown

in comparison to our theoretical results for Q2= 0.1 and 0.2 (GeV/c)2 in Fig. 36. Again

MEC’s effects are quite important, and they are slightly modified by the addition of the

3NF. The agreement with the data is quite good.

Finally we want to draw attention to the question whether signatures of short-range

NN correlations can be extracted from inclusive responses. A nice general introduction

with appropriate references is given in [26], thus we shall not repeat it here. The key-

point is to regard the energy integral over the longitudinal response function (Coulomb

sum rule), which can be separated into nucleon form factor parts, the elastic charge form

factor of the nucleus, and a third part, which under the simplest assumption is the Fourier

transform of the proton-proton correlation function. As nicely shown in [150] that third

part is in addition strongly influenced by relativistic corrections and two-body pieces in the

density operator. Unfortunately that third part carries large experimental error bars due

to the strong cancellations of the Coulomb sum with the first two parts. That third part

would be an excellent piece of information on nuclear dynamics if the data base could be

improved, especially the high wings of the longitudinal responses. An older investigation of

our collaboration can be found in [151].
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FIG. 36: The asymmetry data from [149] against theory for two different four-momentum transfers

squared Q2= 0.1 (GeV/c)2 (left) and 0.2 (GeV/c)2 (right). Curves as in Fig. 34.

77



C. Electron induced pd breakup of 3He

There is a big group of data taken at NIKHEF [152], presented in [153] and communicated

to us by E. Jans [154]. The different kinematical conditions named as in [153] are shown

in Table II. The proton and deuteron momenta lie in the plane spanned by the electron

momenta. For the configurations T1, T2 and C1 data were taken for proton scattering

angles close to the photon direction, while for C2 and C3 the proton directions are further

off. The quasi free scattering condition Q0 =
~Q 2

2mN
is not covered by the data. We show

in Figs. 37-41 the angular distributions of the proton against the electron beam direction

for those five configurations. Since one is close to the quasi free nucleon knockout peak

the photon is absorbed mostly by one nucleon and in plane wave impulse approximation

the antisymmetrization plays no role, in other words the PWIA result is very close to the

PWIAS result. Also in all cases except C1 PWIA is totally insufficient. The MEC effects

are insignificant. For the similar kinematics T1 and C2 the 3NF effects are quite strong

and together with the NN force move the theory quite close into the data. Going to higher

energy transfers the situation changes and the 3NF effects are unimportant. This is seen for

the kinematics C3 and T2. Finally, in the case of C1, with a relatively small energy transfer

and for the high three momentum transfer like in the other cases the FSI, MEC and 3NF

effects are all small and all curves overshoot the data somewhat.

k0 θe ω Q

(MeV) (deg) (MeV) (MeV/c)

T1 367.1 85.0 107.1 431.0

T2 367.1 85.0 143.8 412.7

C1 390.0 74.4 66.1 434.8

C2 390.0 79.0 110.4 434.4

C3 390.0 83.0 145.1 434.5

HR 390.0 39.7 113.0 250.2

TABLE II: The NIKHEF electron kinematics specified by different kinematical quantities.

Another set of data under the HR kinematics from Table II is shown in Fig. 42. The data

are on the slopes of the proton and deuteron knockout peaks. The deuteron knockout peak
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FIG. 37: Proton angular distribution for the T1 configuration from Table II. The double-dot-

dashed curve represents the prediction based on PWIA. The dot-dashed curve is obtained under

the assumption of PWIAS (which overlaps with PWIA), the dotted curve takes the full FSI into

account but neglects MEC and 3NF effects. The π- and ρ-like two-body densities are accounted for

additionally in the dashed curve (which overlaps with FSI), and finally, the full dynamics including

MEC and the 3NF is given by the solid curve. Data are from [153].
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FIG. 38: Proton angular distribution for the C2 configuration from Table II. Curves as in Fig. 37.

Data are from [153].

lies around θp = 240◦. The figure shows nicely how in plane wave impulse approximation the

symmetrized version PWIAS deviates around 90◦ from the unsymmetrized version PWIA

and the absorption of the photon by the other two nucleons takes over and leads to a second

peak, the deuteron knockout peak. But the nuclear force effects in the final continuum are

extremely important there and shift theory downwards by about one order of magnitude.

Also in the slope of the proton knockout peak the final state interactions in the continuum
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FIG. 39: Proton angular distribution for the T2 configuration from Table II. Curves as in Fig. 37.

Data are from [153].
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FIG. 40: Proton angular distribution for the C3 configuration from Table II. Curves as in Fig. 37.

Data are from [153].

are important. In both cases the agreement with the data is quite good.

Now we concentrate on the deuteron knockout peak and compare the data from [155]

and the theory in Figs. 43-47. The PWIA result is extremely small and not displayed. In

all cases shown the 3NF effects on top of the NN force contributions in the continuum are

quite important and move theory close to the data. Note that for ω= 50 MeV, | ~Q |= 412

MeV/c and ω= 70 MeV, | ~Q |= 504 MeV/c the nuclear matrix elements are similar but

the electron kinematics are quite different, which weights the different response functions

differently. Thus in the case of ω= 70 MeV, | ~Q |= 504 MeV/c the MEC effects are

significant, while in the other case they are insignificant. In all deuteron knockout peaks the

theory clearly overestimates the data. Thus a renewed measurement concentrating on the
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FIG. 41: Proton angular distribution for the C1 configuration from Table II. Curves as in Fig. 37.

Data are from [153].
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FIG. 42: Proton angular distribution for the HR configuration from Table II. Curves as in Fig. 37.

Data are from [153].

missing momentum pm=0 would be very desirable.

Further kinematical configurations in search for the deuteron knockout are related to the

”D-kinematics” in [153]. In this case the direction of the deuteron has been chosen parallel

to the photon direction and the data were taken for k0= 390 MeV, | ~Q |= 380 MeV/c and

are displayed in Fig. 48 as a function of the relative kinetic energy Tpd of the proton and

the deuteron. The agreement is quite good and the effects of the nucleon interactions in the

continuum are decisive. None of those data points correspond exactly to the quasi free peak

position, where we experienced the discrepancies in Figs. 43-47.

Another set of data [156] in parallel deuteron knockout kinematics is compared to our
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FIG. 43: Deuteron knockout cross section as a function of the missing (i.e. proton) momentum

pm for the following electron kinematics: k0= 370 MeV, ω= 50 MeV, | ~Q |= 412 MeV/c. PWIAS

(dot-dashed line), FSI (dotted line), FSI+MEC (dashed line) and FSI+MEC+3NF (solid line)

results are compared to experimental data from [155]. Note that the PWIA result is very small

and therefore not displayed.
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FIG. 44: The same as in Fig. 43 for k0= 576 MeV, ω= 50 MeV, | ~Q |= 412 MeV/c. Data are from

[155].

theory in Figs. 49–53. Data were taken at three different | ~Q |-values (| ~Q |= 412, 504 and

604 MeV/c) and at two electron beam energies (Ee= 370 and 576 MeV). In all cases FSI is

quite important, whereas the addition of MEC’s and/or 3NF’s yields only marginal shifts,

at least in the range of pm values, which were covered by the data. The agreement with the

data is reasonably good.

Recently these data have been reanalyzed in [65] including a single ∆-isobar excitation.

The results, agreements and disagreements, are very similar to ours shown in Figs. 37-53.
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FIG. 45: The same as in Fig. 43 for k0= 576 MeV, ω= 70 MeV, | ~Q |= 504 MeV/c. Data are from

[155].
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FIG. 46: The same as in Fig. 43 for k0= 370 MeV, ω= 70 MeV, | ~Q |= 504 MeV/c. Data are from

[155].
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FIG. 47: The same as in Fig. 43 for k0= 576 MeV, ω= 100 MeV, | ~Q |= 604 MeV/c. Data are

from [155].
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FIG. 48: Deuteron knockout cross section as a function of the relative proton-deuteron energy Tpd

for the parallel kinematics with Ee= 390 MeV and | ~Q |= 380 MeV/c. Curves as in Fig. 43. Data

are from [153].

0 50 100 150 200
p

m
 [MeV]

10
-10

10
-9

10
-8

10
-7

10
-6

d
5σ/dk

^ ′dk′
0
dp

^

d
 [fm

2
 sr

-2
MeV

-1
]

FIG. 49: Deuteron knockout cross section as a function of the missing momentum pm for the

parallel kinematics with Ee= 370 MeV and | ~Q |= 412 MeV/c. Curves as in Fig. 43 but the PWIA

results are not displayed. Data are from [156].
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FIG. 50: The same as in Fig. 49 for Ee= 370 MeV and | ~Q |= 504 MeV/c.
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FIG. 51: The same as in Fig. 49 for Ee= 576 MeV and | ~Q |= 412 MeV/c.
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FIG. 52: The same as in Fig. 49 for Ee= 576 MeV and | ~Q |= 504 MeV/c.
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FIG. 53: The same as in Fig. 49 for Ee= 576 MeV and | ~Q |= 604 MeV/c.
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D. Nd radiative capture and the time reversed Nd photodisintegration of 3N

bound states.

Photon angular distributions for pd capture have been measured for a wide range of

energies. We show in Fig. 54 the cross section data in comparison to our theory with

different dynamical ingredients. We rely either on the explicit MEC’s for π− and ρ-like

exchanges or on the Siegert approach as described in section III B and show results either

for the NN force AV18 alone or together with the UrbanaIX 3N force. We see an overall

good agreement in the AV18 + UrbanaIX model together with explicit MEC’s. Also the

Siegert predictions for that choice of the interactions are similar. Since our MEC currents

are not fully consistent to the forces, one cannot expect equality of these two approaches.

At the higher energies the higher multipoles play a role. All the multipoles are kept in our

Siegert approach only on the level of the single nucleon current. Nevertheless for the cross

sections that Siegert approach does reasonably well in conjunction with the 3N force. This

is not the case for AV18 with Siegert, while AV18 together with MEC’s is much closer to

the data. We also would like to point out that the addition of the 3N force decreases the

cross section at the lower energies below ≈ 30 MeV and increases it at the higher ones. In

[157] we argued that this is not only a scaling effect with the 3N binding energy as often

claimed in the literature but at the higher energies it is also caused by the action of the 3N

force in the continuum.

In Fig. 55 we show photon angular distributions for nd capture around 10 MeV neutron

lab energy. The situation is very similar to the case of pd capture.

FIG. 54: The c.m. pd capture cross sections at various deuteron lab energies and four different

dynamical inputs: MEC + AV18 (dashed line), Siegert + AV18 (dot-dashed line), MEC + AV18

+ UrbanaIX (solid line), Siegert + AV18 + UrbanaIX (dotted line). Data at 10 MeV are from

[158], at 19.8 and 29.6 MeV from [159], at 95 MeV from [160], at 200 MeV circles from [161] and

x-es from [169], and at 400 MeV from [161].

Then there is a rich set of polarization observables in pd capture. Proton analyzing powers

Ay(p) at Ed= 10, 200, 300 and 400 MeV are shown in Fig. 56. At the deuteron lab energy
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FIG. 55: The c.m. nd capture cross sections at 9.0 and 10.8 MeV neutron lab energies. Curves as

in Fig. 54. Data at 9.0 MeV and 10.8 MeV are from [162].

of 10 MeV the choice MEC+AV18+UrbanaIX comes closest to the data but nevertheless

fails significantly at the smaller angles. For the three much higher energies the two curves

with explicit MEC’s come significantly closer to the data than the Siegert predictions but

are too high at Ed = 200 and 300 MeV in relation to the data. Maybe it is accidental that

there is a good agreement for the MEC predictions at Ed = 400 MeV.

Like for the proton analyzing power Ay(p) we face a serious discrepancy for the deuteron

vector analyzing power iT11 (in the spherical notation iT11 =
√

3
2

Ay(d) ). This is shown in

Fig. 57. Again the MEC+AV18+UrbanaIX model comes closest to the data for the deuteron

lab energies Ed = 10, 17.5, 29, 45, and 200 MeV. At Ed = 95 MeV all our predictions show a

strong slope not seen in the data. In view of the strong discrepancy and the relatively large

experimental error bars a renewed, more precise measurement at this energy would be very

useful to challenge improved theoretical approaches in the future.

Finally we look into the group of tensor analyzing powers. The spherical and cartesian

notations are connected as

Axx =
√

3T22 −
√

2

2
T20 (267)

Ayy = −
√

3T22 −
√

2

2
T20 (268)

Axz = −
√

3T21. (269)

The observables T20, T21 and T22 are displayed in Fig. 58. Overall there is a good agreement
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FIG. 56: The c.m. angular distributions for the proton analyzing powers Ay(p) in pd capture at

various deuteron lab energies. Curves as in Fig. 54. Data at 10 MeV from [158], at 200, 300 and

400 MeV from [161].

but the accuracy of the data does not allow a clear distinction among the four theoretical

predictions. T21, and to an even larger extent T22, turn out to be quite independent to the

dynamical input. In the case of T20 the explicit MEC picture reproduces the data at small

angles better than the Siegert approach.

Next we show Ayy in Fig. 59. The data at the two lowest energies are fairly well described

by the explicit MEC choice. In the case of 45 MeV theory is somewhat too low and especially

at very backward angles one misses the few data points totally. At 95 MeV all our predictions

are also too low. Finally, Fig. 60 shows Axx and Azz which agree fairly well with the explicit

MEC approach.

In [66] the two-body photodisintegration of the 3N bound state as well as the time reversed

process have also been studied including a ∆-isobar excitation. The selected results shown

there are very similar to the ones displayed above. The difference in Fig. 58 to Fig. 11 of [66]
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FIG. 57: The c.m. angular distributions for the deuteron vector analyzing power iT11 in pd capture

at various deuteron lab energies. Curves as in Fig. 54. Data at 10 MeV from [158], at 17.5 MeV

from [167], at 29 and 45 MeV from [168], at 95 MeV from [160], and at 200 MeV [169].

FIG. 58: The c.m. angular distributions for the tensor analyzing powers T20, T21 and T22 for pd

capture at low energies. Curves as in Fig. 54. Data at 10 MeV from [158], and at 19.8 MeV from

[170](circles) and form [41] (squares).

is due to a wrong choice of angles in [66]. If replotted the outcome in [66] is quite similar to
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FIG. 59: The c.m. angular distributions for the tensor analyzing power Ayy for pd capture at

various energies. Curves as in Fig. 54. Data at 17.5 MeV from [167], at 29 MeV from [37] (square)

and [168] (circles), at 45 MeV from [168] (circles) and [171] (squares) and at 95 MeV from [160].

the one shown above.

The pd and nd captures at very low energies ( 0-100 keV c.m. energies) have consider-

able astrophysical relevance for studies of stellar structure and evolution and of big-bang

nucleosynthesis. Since single nucleon currents are insufficient to connect the dominant S-

state components of the two- and three-body bound states, small components of the wave

functions acquire importance and even more the additional many-body currents. Therefore

these reactions deserve a careful study. We refer to [26] for an introduction to these very

low energy processes. In a series of papers [59, 92, 93, 163–166] these processes were inves-

tigated, experimentally and theoretically. In the most recent papers the two-body currents

have been supplemented such, that they fulfill exactly the continuity equation related to the

NN force AV18 and even three-nucleon currents have been added. We show in Fig. 61 the

cross section and spin observables for pd radiative capture at Ec.m. = 3.33 MeV obtained
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in [92, 93] with the AV18+UrbanaIX Hamiltonian model. These results document an im-

portant stride forwards, since the current used is fully consistent to the force model in the

sense, that the continuity equation is exactly fulfilled. Some discrepancies in Ay and iT11

remain.
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FIG. 60: The c.m. angular distributions for the tensor analyzing powers Axx and Azz for pd

capture at 17.5 MeV. Curves as in Fig. 54. Data from [167].

Finally, we address photodisintegration of 3He. In Figs. 62 and 63 we display the cross

section of the two-body (pd) breakup in the c.m. system at two fixed angles, one at θc.m.
d =

90◦ and one at θlab
d = 103.05◦. The first one is shown for lower photon energies and the

second one for higher ones, which beyond about Eγ = 150 MeV are strictly spoken outside

the region where our theoretical framework is adequate. For the low energy region we display

the predictions of Siegert and explicit MEC’s for NN and NN + 3NF, respectively, while

for the higher energy region only the explicit MEC predictions are shown. In both energy

regions the MEC+AV18 +UrbanaIX predictions are in reasonably good agreement with the

data except in the peak area around Eγ = 10 MeV. This photon energy corresponds to

Elab
d = 13.47 MeV in the time reversed pd capture reaction. As seen in Fig. 54, in that case

there is a good agreement with the data at θγd = 90◦. Thus we have to conclude that the

data in Figs. 54 and the lower ones in Fig. 62 are inconsistent. This calls for an experimental

clarification.

In the total pd breakup cross section given as a function of Eγ in Fig. 64 there is a big

spread in the experimental data, which makes any definite conclusion impossible.
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FIG. 61: The pd capture cross section and spin observables at Ec.m. = 3.33 MeV obtained with the

AV18+UrbanaIX Hamiltonian model [92, 93]. The dashed, dot-dashed and solid curves correspond

to the calculation with one-body only, with one- and two-body, and with one-, two- and three-body

currents. For details see [92, 93]. The data are from [158].
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FIG. 62: Deuteron angular distribution for the process 3He(γ, d)p at θc.m.
d = 90◦ as a function of

the photon lab energy Eγ . Curves as in Fig. 54. The dotted curve practically overlaps with the

solid one. Since the kinematical shift from the laboratory to the c.m. system is not significant, we

combine the data for the 90◦ laboratory angle (up triangles [172]) with the ones for the 90◦ c.m.

angle (circles [173]). The squares are the data from [181], pluses from [182], and down triangles

from [180].
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FIG. 63: Deuteron angular distribution for the process 3He(γ, d)p at θlab
d = 103.05◦ as a function of

the photon energy Eγ . Curves show results of calculations with the AV18 + UrbanaIX (solid) and

with the AV18 alone (dashed). Explicit π- and ρ-like MEC’s are included in the current operator.

Data are from [174] (x-es) and [175] (circles).
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FIG. 64: Total 3He(γ,p)d cross sections. Curves as in Fig. 54. The predictions with UrbanaIX

both for Siegert and MEC (dotted and solid, respectively) are practically overlapping. Data are

from: [176] (squares), [177] (up triangles), [159] (down triangles), [178] (full up triangles), [173]

(diamonds), [179] (crosses), [180] (x-es), [181] (full down), [183] (circles).
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E. Three-nucleon photodisintegration of the 3He

We display in Fig. 65 the total 3N breakup cross section as a function of the photon energy

in the lab system. There is again a big spread in the experimental data which precludes

any definite conclusion. Especially the quick decline of one group of 3N breakup data in

comparison to our theoretical predictions is challenging, both for experiment and theory.
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FIG. 65: Total 3He(γ,pp)n cross sections. Curves as in Fig. 54. Data are from: [184] (crosses),

[185] (circles), and [183] (squares).

In case of exclusive data we are only aware of two measurements. In Figs. 66 and 67

we show the four-fold differential 3N breakup cross sections d4σ
dΩ1dΩ2

for the detection of

two nucleons in coincidence. In Fig. 66 the dependence on the incoming photon energy

of the angular configurations, called LR-RL, LL-RR and LL-RL + LR - RR in [186], are

investigated and compared to two of our predictions. Unfortunately we lack the information

about angle acceptances of the detectors and therefore the comparison could be only a rough

and qualitative one.
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In Fig. 67 the four-fold differential cross sections are displayed as a function of the opening

angle between the outgoing neutron and a proton. Again the exact experimental conditions

were not accessible to us and therefore the comparison of our point geometry theory and

data has to be taken with care. These two experiments clearly demonstrate that data of

those types are accessible. Renewed measurements with experimentalists and theoreticians

working closely together would be very valuable to test the complex interplay of the dynam-

ical ingredients. Recently, in [187] the three-nucleon photonuclear reactions with ∆-isobar

excitation have been analyzed with similar results to the ones shown above.

To close this section, we would like to draw attention to a benchmark calculation of the

three-nucleon photodisintegration [188], where the LIT method has been compared to our

momentum space Faddeev treatment. The agreement was quite good. We think that due

to the very complex dynamics and the numerical challenges such benchmarks are necessary

to make sure that the theoretical predictions really reflect exactly the dynamical input and

justify the strong efforts of experimental groups.
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FIG. 66: The four-fold differential cross sections d 4σ
dΩ1 dΩ2

for the 3He(γ,pp)n process as a function

of Eγ in comparison to data from [186] for the angular configurations LR-RL (Θ1 = 81.0◦, Φ1 =

0.0◦, Θ2 = 80.3◦, Φ2 = 180.0◦) (a) , LL-RR (Θ1 = 92.2◦, Φ1 = 0.0◦, Θ2 = 91.4◦, Φ2 = 180.0◦) (b)

and LL-RL+LR-RR (Θ1 = 91.7◦, Φ1 = 0.0◦, Θ2 = 80.9◦, Φ2 = 180.0◦) and (Θ1 = 81.5◦, Φ1 =

0.0◦, Θ2 = 90.8◦, Φ2 = 180.0◦) (c). The solid curve is for AV18+UrbanaIX+MEC, the dashed

curve for AV18+MEC.
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FIG. 67: The four-fold differential cross sections d 4σ
dΩ1 dΩ2

against the opening angle at Eγ= 55 (a)

and 80 MeV (b) for the 3He(γ,pn)p process in comparison to data from [189]. The data in (b) were

taken at Eγ= 85 MeV. Curves as in Fig.66.
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VII. PREDICTIONS

The nuclear forces, on which we base our predictions in this review, AV18 and UrbanaIX,

describe the whole wealth of NN data and reproduce the 3H and the 4He binding energies with

high accuracy. This makes them a very often used tool for predictions in nuclear systems.

It is certainly the ”state-of-the-art” of the traditional approach to nuclear physics. We also

employ the π- and ρ-like two-body currents, which are linked to AV18 using the continuity

equation and in this sense consistent. These currents are considered the dominant ones.

These dynamical ingredients should already describe a wide range of processes. Obviously

it is important to challenge this scenario and to find its limitations. In this section we go

beyond the comparison to existing data and propose additional observables that will probe

the dynamics more stringently. This is, of course, an incomplete and a subjective list but

we hope that it can nevertheless guide future experimental efforts.

A. Inclusive electron scattering on 3He

In section VI B we showed data for the helicity asymmetries. They depend on the initial

3He spin direction and on the two response functions R̃T ′ and R̃TL′ . Their measurement by

itself appears to be interesting, since they show a great sensitivity to the dynamical input as

is illustrated in Figs. 68- 71. Especially interesting appears R̃TL′ for 3He, which in addition

exhibits a strong variation in shape from | ~Q |= 200 over 300 and 400 to 500 MeV/c.
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FIG. 68: The response function R̃T ′ of 3H. Curves as in Fig. 23.

102



10 20 30 40 50

-0.001

0.000

0.001

0.002
R
~

T′ [MeV
-1

]

40 80 120 160
-0.0008

0.0000

0.0008

0.0016

0.0024

40 80 120 160
ω [MeV]

0.000

0.001

0.002

40 80 120 160 200
ω [MeV]

0.0000

0.0004

0.0008

0.0012

0.0016

|Q
→

|=200 MeV/c

|Q
→

|=300 MeV/c

|Q
→

|=400 MeV/c |Q
→

|=500 MeV/c

FIG. 69: The response function R̃T ′ of 3He. Curves as in Fig. 23.
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FIG. 70: The response function R̃TL′ of 3H. Curves as in Fig. 23.
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FIG. 71: The response function R̃TL′ of 3He. Curves as in Fig. 23.
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B. Electron induced pd breakup of 3He

In view of the discrepancies between theory and data displayed in section VI C it appears

advisable to repeat measurements and to study that process more systematically. In the

case of proton knockout there are cases where FSI is negligible and the MEC’s we use do

not contribute either. Therefore the angular distribution of the proton around quasi-elastic

kinematics is determined by the simplest ingredients: the 3He wave function, the single

nucleon current and the deuteron wave function. It appears very natural to us that this

most simple scenario should be tested in the first place. To the best of our knowledge this

has not been done up to now. Further, in other cases FSI and/or 3NF effects show up. This

is illustrated in Figs. 72–74. The cross sections shown in Fig. 72 displays three electron

configurations (see figure caption). In the left one the FSI effect alone is insignificant and

is then strongly modified by the inclusion of MEC and the 3NF. In the middle one PWIA

is essentially sufficient and in the right one FSI is significant but the addition of the 3NF

has no further effect. This quite different behavior is of course present in the two dominant

response functions RL and RT displayed in Fig. 73. Finally for the sake of completeness the

two very small responses RTT and RTL are shown in Fig. 74.

The situation is different in the deuteron peak area corresponding to proton angles around

240 ◦. For our | ~Q |-values below about 500 MeV/c our theory tells that it is not possible to

knock out the deuteron without FSI. Though the effects of FSI and MEC’s decrease going

to higher | ~Q |-values, sizable effects remain. This is illustrated in Figs. 75–77. The cross

section shown in Fig. 75 exhibits very strong shifts from the PWIAS predictions to the full

results generated by FSI and 3NF. The detailed view into the underlying response functions

RL and RT in Fig. 76 show that the MEC contributions in RT are different in the three

configurations. Interesting is also the shift of the peak position in the third configuration for

the full against the PWIAS result. Note also that in the cases shown in Fig. 75 the effect of

the 3NF moves theory upwards while in Figs. 43–47 the 3NF effects cause a shift downwards.

Apparently, there is an intricate dependence on the kinematical conditions. Again for the

sake of completeness the two smallest response functions are displayed in Fig. 77. Precise new

measurements would be very helpful to test existing and future dynamical inputs. Having

the proton and the deuteron peak areas under control one would have covered essentially

the full angular range.
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FIG. 72: Proton angular distribution in the vicinity of the proton knockout peak as a function of

the lab proton angle θp (measured with respect to the electron beam) for three selected electron

configurations: k0= 854.5 MeV, ϑ= 27.9◦, k′
0= 750.9 MeV (left), k0= 854.5 MeV, ϑ= 35.5◦, k′

0=

754.5 MeV (center) and k0= 854.5 MeV, ϑ= 35.7◦, k′
0= 652.3 MeV (right). The different curves

are PWIA (double-dot-dashed line), PWIAS (dot-dashed line - overlaps with PWIA), FSI (dotted

line), FSI+MEC (dashed line) and FSI+MEC+3NF (solid line) predictions.
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FIG. 73: The longitudinal RL (left) and transversal RT (right) responses in the vicinity of the

proton knockout peak as a function of the lab proton angle θp for the same three electron configu-

rations as in Fig. 72: k0= 854.5 MeV, ϑ= 27.9◦, k′
0= 750.9 MeV (upper row), k0= 854.5 MeV, ϑ=

35.5◦, k′
0= 754.5 MeV (middle row) and k0= 854.5 MeV, ϑ= 35.7◦, k′

0= 652.3 MeV (bottom row).

Curves as in in Fig. 72.
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FIG. 74: The same as in Fig. 73 but for the RTT (left) and RTL (right) responses.
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FIG. 75: Deuteron angular distribution in the vicinity of the deuteron knockout peak as a function

of the lab deuteron angle θd for the same electron configurations as in Fig. 72 : k0= 854.5 MeV,

ϑ= 27.9◦, k′
0= 750.9 MeV (left), k0= 854.5 MeV, ϑ= 35.5◦, k′

0= 754.5 MeV (center) and k0= 854.5

MeV, ϑ= 35.7◦, k′
0= 652.3 MeV (right). Curves as in in Fig. 72 with the exception of PWIA, which

is too small to be visible.

FIG. 76: The longitudinal RL (left) and transversal RT (right) responses in the vicinity of the

deuteron knockout peak as a function of the lab deuteron angle θd for the same three electron

configurations as in Fig. 75: k0= 854.5 MeV, ϑ= 27.9◦, k′
0= 750.9 MeV (upper row), k0= 854.5

MeV, ϑ= 35.5◦, k′
0= 754.5 MeV (middle row) and k0= 854.5 MeV, ϑ= 35.7◦, k′

0= 652.3 MeV

(bottom row). Curves as in in Fig. 72.

FIG. 77: The same as in Fig. 76 but for the RTT (left) and RTL (right) responses.
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C. Semiexclusive nucleon knockout processes

The analysis of the process 3He(e, e′p)pn has often been done approximately using the

concept of the spectral function. The underlying picture is simple. The photon is assumed

to be absorbed by the knocked out proton and the remaining two nucleons are not involved

in the photon absorption process nor do they interact with the knocked out proton. The

only FSI kept is between the spectator neutron and proton. This is technically very easy

to calculate, since beside the single nucleon current only the 3He wave function and the NN

t-matrix enter. Then only the two processes inside the dashed box of Fig. 78 are kept. This

leads to the definition of the spectral function

S(k, E) =
mN p

2

1

2

∑

m

∑

m1,m2,m3

∫
dp̂

∣∣∣
√

6 〈ν1ν2ν3 | 〈m1m2m3 | 〈~p~k | (1 + tG0) | Ψim 〉
∣∣∣
2
.(270)

The arguments of S are the magnitude k of the missing momentum

k ≡| ~Q− ~kp | (271)

and the excitation energy E (missing energy) of the undetected np pair. Nonrelativistically

E ≡ p2

mN

, (272)

where p is the relative momentum of the undetected nucleons. In addition we completed

the notation by adding the isospin quantum numbers νi. That strongly reduced treatment

of FSI restricted only to the spectator nucleons 2 and 3 has already been introduced and

denoted as FSI23 (t ≡ t23). One finds the relations [190]

S(k, E) =
1

2
mN p

1

(GE)2

∫
dp̂RL(FSI23)

=
1

2
mN p

2m2
N

| ~Q |2(GM)2

∫
dp̂RT (FSI23). (273)

This form is convenient to compare to the treatment including the complete FSI and we

define the quantities

SL(Full) =
1

2
mN p

1

(GE)2

∫
dp̂RL(Full)

ST (Full) =
1

2
mN p

2m2
N

| ~Q |2(GM)2

∫
dp̂RT (Full), (274)

which enter directly into the semiexclusive cross section.
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FIG. 78: Diagrammatic representation of the nuclear matrix element for the three-body electrodis-

integration of 3He. The open circles and ovals represent the two-body t-matrices. Three horizontal

lines between photon absorption and forces, and between forces describe free propagation. The

half-moon symbol on the very right stands for 3He.

Using that simple picture of FSI23 the cross section factorizes into a kinematical factor,

the electron proton cross section, and into the spectral function as shown below in (275).

We performed very recently a thorough investigation [190] on the validity of that ap-

proximation in the domain of nonrelativistic kinematics. We assumed the most favorable

condition of parallel kinematics (~kp ‖ ~Q). The result was that only for very small missing

momenta k ≡ pm and missing energies E the use of the spectral function is quantitatively

justified. To each (k, E) pair under parallel condition, ω ≡ Q0 and | ~Q | are connected

by a quadratic equation. Then we found that there is a domain of (k, E)-values where, at

least with increasing | ~Q |, SL(Full) and ST (Full) approach S. But unexpectedly for our

present insight even for quite small k-values but increasing E values that simplified picture

is invalid. We refer the interested reader for details to [190]. In any case again there are

clear cut cases, where the concept of the spectral function is valid and they should be tested
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against precise data. Like in the quasi elastic proton peak for pd breakup, also in this case

the theoretical ingredients are quite simple: just the 3He wave function, the NN t-matrix,

and the single nucleon current. The quantitative validity of this simple picture should be

tested in the first place. But then it is also very interesting to probe the FSI, MEC and

the 3N force effects if one takes other (k, E) pairs. We illustrate two of various cases from

[190] in Fig. 79. The quantities (274) together with the spectral function are plotted as a

function of the ejected proton energy E1 for parallel kinematics ~k1 ‖ ~Q. We see in the left

part of the Fig. 79 that at the upper end of E1 the three curves approach each other, thus

the spectral function concept works very well. The corresponding decreasing values of k and

E for increasing E1 are also indicated. A counter example is shown in the right part of the

Fig. 79, where the use of the spectral function would be a very poor approximation.

In the case of the process 3He(e, e′n)pp the concept of the spectral function is useful only

for RT but not for RL. In the case of RL it is a totally insufficient approximation. The

reason is of course the smallness of Gn
E and the strong interference of the photoabsorption

on the protons.

If the approximation leading to the spectral function was valid, it could be quite reliably

used to extract electromagnetic nucleon form factors. The cross section factorizes as [190]

d6σ

dk′0dk̂
′dk̂1dE1

= σMott


vL(GE)2 + vT

| ~Q |2(GM)2

2m2
N


 S(k, E)mN k1. (275)

This should be experimentally tested for Gp
E and Gp

M since the proton form factors are

known and then be applied to Gn
M .

Since our investigation in [190] was restricted to the nonrelativistic domain, it does not

provide information for the relativistic region. In [148, 191] the spectral function concept has

been studied at higher ω and | ~Q |-values. The verification of such an assumption requires

a full-fledged relativistic framework including on top of FSI 3N forces and MEC’s.

Now let us regard the semiexclusive process
−−→
3He(~e, e′n)pp for an initially polarized 3He

and polarized electron. The asymmetries (199) for parallel, A‖, and perpendicular, A⊥,

orientation of the 3He spin in relation to the photon direction are proportional to (Gn
M)2

and Gn
E G

n
M , respectively, under the simplifying assumptions of PWIA and the restriction of

the 3He state to the principal S state [140, 141, 192]. If that sensitivity survives for the full

dynamics one can extract the neutron form factors. In Figs. 80 and 81 we provide A‖ and

A⊥ as a function of the ejected neutron energy for two kinematical conditions using different
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dynamical assumptions. We choose the most favorite configuration, where the neutron is

ejected parallel to the photon. In both figures five curves are shown, PWIA, FSI23, FSI,

FSI+MEC and FSI+MEC+3NF. For ω = 50 MeV, | ~Q |= 300 MeV/c, Q2 = 0.087 (GeV/c)2

shown in Fig. 80, A‖ for PWIA and FSI23 stays far off the results gained under FSI and with

the further ingredients MEC and 3NF. Thus the extraction of (Gn
M)2 under the simplifying

assumptions of PWIA or FSI23 would require big corrections. In the case of A⊥ that is

also the case but A⊥ is anyhow very small. Only out of curiosity we add the corresponding

results for the proton ejection. Since the polarization of the proton inside polarized 3He

is very small, PWIA is of course far away from the other results. Then, in Fig. 81, for

ω = 150 MeV, | ~Q |= 500 MeV/c, Q2 = 0.228 (GeV/c)2 the situation is quite different. All

curves for A‖ coincide at the upper end of the neutron energy. This should allow one to

extract (Gn
M)2 without big corrections. However, for A⊥ large corrections remain. In the

case of the proton ejection the energy dependence of both asymmetries is totally different

from the neutron ones what would be interesting to check experimentally. Also proton

asymmetries reveal sizable 3NF effects. For the sake of completeness and orientation about

the magnitudes of the cross sections we also include their values in the Figs. 80–81. These

two examples just illustrate that both processes, neutron as well as proton emission, provide

interesting tests of the dynamical inputs if accurate data can be gained.

In [141] the process
−−→
3He(~e, e′n)pp has been applied to extract Gn

E for Q2 ≈ 0.35 (GeV/c)2.

As expected, it turned out that the full FSI was required. The resulting Gn
E-value was quite

different from the one extracted under the assumption that polarized 3He is just a polarized

neutron target [193]. Despite the inclusion of FSI the theoretical analysis in [141] was a bit

overstretched since we relied on a nonrelativistic framework. The extracted value for Gn
E

might have differed a bit if relativity and MEC’s had been included.

At higher Q2-values the situation appears to be more favorable for the application of the

theoretically simple approach offered by FSI23 as argued in [194, 195].

The cross section for the semi-exclusive ~e
(−−→

3He, e′N
)

reaction can also be cast in the

following general form [196]

σ(h, ~A) = σ0

[
1 + ~S · ~A 0 + h

(
Ae + ~S · ~A ′

)]
, (276)

where σ0 is the unpolarized cross section, Ae is the electron analyzing power, ~A 0 the 3He

target analyzing power and ~A
′

are the spin correlation parameters. The target analyzing
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FIG. 79: The spectral function S(k,E) for the proton knockout (dotted line) for two fixed (ω− | ~Q |)

pairs: ω= 100 MeV, | ~Q |= 500 MeV/c (left) and ω= 100 MeV, | ~Q |= 200 MeV/c (right) as a

function of the ejected proton energy E1 for the parallel kinematics ~p1 ‖ ~Q. The corresponding

values of k and E are also indicated. The dashed line is the result based on the full treatment of

FSI but neglecting MEC and 3NF effects in the form of Eq. (10) in [190] for the response functions

RL and the solid line is the corresponding result for the response functions RT .

power is accessible in experiments where unpolarized electrons are scattered on the polarized

3He. Due to the symmetry properties only the component of ~A 0 perpendicular to the

electron plane (usually denoted as A 0
y ) is different from zero. This observable provides

direct information on the importance of FSI because it vanishes for calculations neglecting

totally (PWIA and PWIAS) or partly (FSI23) the final state interactions among the three

outgoing nucleons.

A 0
y was measured at MAMI [195] and this experiment supplied very interesting insight

into the reaction mechanism, even though the experimental conditions required a lot of

integrations over the relevant parts of the phase space. It turned out that at Q2= 0.37

(GeV/c)2 the analyzing power A 0
y (e,e′n) results from a coupling of the virtual photon followed
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FIG. 80: The dependence of A‖, A⊥, and the cross section on the energy of the outgoing neutron

(left column) and proton (right column) in the ~3He(~e, e′N)NN reaction for Ee = 854.5 MeV, ω =

50 MeV, | ~Q |= 300 MeV/c. The double-dot-dashed, dot-dashed, dotted, dashed, and solid curves

are based on PWIA, FSI23, FSI, FSI+MEC, and FSI+MEC+3NF, respectively.

by proton-neutron rescattering. Also a different sensitivity to MEC for A 0
y (e,e′n) and A 0

y (e,e′p)

was confirmed in [195].
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FIG. 81: The same as in Fig. 80 but for Ee = 854.5 MeV, ω = 150 MeV, | ~Q |= 500 MeV/c.
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D. The electron induced complete 3N breakup process

The process 3He(e,e’pp)n has been measured in the NIKHEF facility [197]. Unfortunately

the kinematical conditions were outside of the nonrelativistic domain and the comparison

to our theory was generally unsuccessful. Discrepancies up to factors of 4-5 showed up.

Possibly the neglecting of the ∆-degrees of freedom was the strongest theoretical defect

(see [67]). Such a theoretical analysis requires a close interaction of theory and experiment

since the data are taken in a regime far off from the point geometry, where the two protons

are detected at fixed angles and fixed energies and this in coincidence with the electron,

also detected point-wise. Due to the smallness of the cross section, quite large portions

of the phase space have to be covered with large energy and angular bins to arrive at

breakup observables with reasonably small error bars. Nevertheless, we would like to show

in Figs. 82–85 some examples of eightfold differential cross sections along the kinematical

locus for selected breakup configurations. In Fig. 82 three final state interaction peaks

are shown where the individual contributions of FSI, MEC and 3NF differ quite strongly

from one peak to the other. Quasi free scattering with one final nucleon momentum zero

is shown in Fig. 83. Again the individual contributions of the three dynamical ingredients,

FSI, MEC and 3NF among each other and against the PWIAS prediction differ significantly.

The space star configuration is shown in Fig. 84 for two electron kinematics. Very strong

dynamical effects beyond PWIA(S) and FSI23 are seen. Finally cross sections for two

electron kinematics are shown in Fig. 85 where two nucleons emerge back to back collinear

with the photon momentum ~Q.

A second exclusive 3He(e,e’pn)p experiment was performed at MAMI and is presently

analyzed [198]. But again the kinematics is outside of our nonrelativistic domain.

Insight into the NN correlations in a nucleus is an old issue. In a recent measurement [199]

an idea proposed also in [200] has been realized. The idea is that the photon is assumed

to be absorbed by one nucleon alone, which is knocked out in the direction of the photon.

The other two spectator nucleons leave 3He back to back and are assumed not to interact

with the knocked out nucleon. This is the same picture as the one underlying the spectral

function. But now one regards the fully exclusive process and aims at the relative momentum

distribution of the two spectator nucleons. If they did not interact also with each other, one

would see directly the relative momentum distribution of the two nucleons inside 3He. In
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our notation using Jacobi momenta this quantity is

C(p) = 3
∑

m

∑

m1,m2,m3

|Ψ(~p, ~q = 0)|2 . (277)

We investigated that scenario allowing for the complete FSI, for the interaction just

among the two spectator nucleons (FSI23), and for the case of no FSI at all and no anti-

symmetrization in the final state (PWIA). It is easy to see [200] that the only two response

functions surviving for parallel kinematics are related to C(p) in PWIA as

C(p) =
1

2

∑

m

∑

m1,m2,m3

RPWIA
L /G2

E

C(p) =
1

2

∑

m

∑

m1,m2,m3

2m2
N R

PWIA
T /

(
~Q2G2

M

)
(278)

Therefore we investigated 1
2

∑
m

∑
m1,m2,m3

RL/(GE)2 and 1
2

∑
m

∑
m1,m2,m3

2m2
N RT /

(
~Q2G2

M

)
as

a function of p for different | ~Q |-values and for a fixed sequence of the isospin magnetic

quantum numbers. In PWIA this is just C(p) and the question is whether, at least with

increasing | ~Q |, FSI looses importance for this geometry and C(p) can be extracted. It

turned out that this does not happen. Interestingly, with increasing | ~Q |-values and for

proton knockout the FSI23 and FSI predictions approach each other. However, there still

remains a noticeable shift toward the result which in addition includes the 3NF’s. Thus

one has no direct access to C(p). If one is satisfied, however, with a less quantitative result

and does not pay attention to the shift caused by that additional 3NF effect, one has access

to a modified C(p) quantity, where the two spectator nucleons, while leaving 3He, interact

strongly by the NN t-matrix. Therefore since the t-matrix is rather well under control one

can at least approach the momentum distribution inside 3He modified only by that additional

final state interaction. This is illustrated in Fig. 86. Note that this final state interaction

leads to a reduction by a factor 10 and more. The curves in Fig. 86 refer to a fixed angle of

90◦ between ~p and ~Q, but for other angles qualitatively the situation is unchanged. It would

be very interesting if these configurations could be measured in our nonrelativistic domain.

In the case when a neutron is knocked out 1
2

∑
m

∑
m1,m2,m3

RL/(G
n
E)2 behaves differently and

the FSI23 approximation is unjustified. It is only for 1
2

∑
m

∑
m1,m2,m3

RT/(
~Q 2

2m2
N

(Gn
M)2) that the

situation is as favorable as for the proton knockout [200]. This is displayed in Fig. 87. For

larger | ~Q |-values (| ~Q | = 600 MeV/c), however, we found that also for RL/(G
n
E)2 the

situation resembles the one for the proton.
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FIG. 82: The eightfold full breakup cross section d8σ/(dk̂ ′dk′
0dk̂1dk̂2dS) along the arc-length S

of the kinematically allowed locus in the E1-E2 plane for three different electron configurations:

k0= 854.5 MeV, ϑ= 27.9◦, k′
0= 750.9 MeV (left), k0= 854.5 MeV, ϑ= 35.5◦, k′

0= 754.5 MeV

(center) and k0= 854.5 MeV, ϑ= 35.7◦, k′
0= 652.3 MeV (right). PWIA (double-dash-dotted line),

PWIAS (double-dot-dashed line - overlaps with PWIA), FSI23 (dot-dashed line), FSI (dotted line),

FSI+MEC (dashed line) and FSI+MEC+3NF (solid line) predictions are shown. Particles 1 and

2 are protons. The angles of the outgoing nucleons in the system where ~Q ‖ ẑ (θ1=60.0◦, φ1=0.0◦,

θ2= 51.0◦, φ1= 180.0 ◦ (left), θ1=60.0◦, φ1=0.0◦, θ2= 34.0◦, φ1= 180.0 ◦ (center), θ1=60.0◦,

φ1=0.0◦, θ2= 59.0◦, φ1= 180.0 ◦ (right)) are chosen in such a way that the peaks correspond to

the kinematical condition ~k2 = ~k3 (the final state interaction condition).

FIG. 83: The eightfold full breakup cross section d8σ/(dk̂ ′dk′
0dk̂1dk̂2dS) along the arc-length S of

the kinematically allowed locus in the E1-E2 plane for three different electron configurations: k0=

854.5 MeV, ϑ= 27.9◦, k′
0= 750.9 MeV (upper row), k0= 854.5 MeV, ϑ= 35.5◦, k′

0= 754.5 MeV

(middle row) and k0= 854.5 MeV, ϑ= 35.7◦, k′
0= 652.3 MeV (lower row). Curves as in Fig. 82. In

the left panel particles 1 and 2 are protons while in the right panel particles 1 and 2 are neutron

and proton, respectively. The angles of the outgoing nucleons in the system where ~Q ‖ ẑ (θ1=60.0◦,

φ1=0.0◦, θ2= 37.0◦, φ1= 180.0 ◦ (upper row), θ1=30.0◦, φ1=0.0◦, θ2= 34.0◦, φ1= 180.0 ◦ (middle

row), θ1=60.0◦, φ1=0.0◦, θ2= 49.0◦, φ1= 180.0 ◦ (lower row)) are chosen in such a way that the

quasi free kinematical condition ~k3 = 0 is fulfilled for one central point on the locus.
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FIG. 84: The eightfold full breakup cross section d8σ/(dk̂ ′dk′
0dk̂1dk̂2dS) along the arc-length S of

the kinematically allowed locus in the E1-E2 plane for two different electron configurations: k0=

854.5 MeV, ϑ= 27.9◦, k′
0= 750.9 MeV (left), and k0= 854.5 MeV, ϑ= 35.7◦, k′

0= 652.3 MeV (right).

Curves as in Fig. 82. Particles 1 and 2 are protons. The angles of the outgoing nucleons in the

system where ~Q ‖ ẑ (θ1=57.0◦, φ1=0.0◦, θ2= 57.0◦, φ1= 120.0 ◦ (left), θ1=61.5◦, φ1=0.0◦, θ2=

61.5◦, φ1= 120.0 ◦ (right)) are chosen in such a way that in the c.m. system all particles momenta

are equal and form the so called “Mercedes star” in a plane perpendicular to ~Q for one point on

the locus (the space-star kinematical condition).

FIG. 85: The eightfold full breakup cross section d8σ/(dk̂ ′dk′
0dk̂1dk̂2dS) along the arc-length S of

the kinematically allowed locus in the E1-E2 plane for two different electron configurations: k0=

854.5 MeV, ϑ= 27.9◦, k′
0= 750.9 MeV (left), and k0= 854.5 MeV, ϑ= 35.5◦, k′

0= 754.5 MeV (right).

Curves as in Fig. 82. Particles 1 and 2 are protons. The momentum of particle 1 is parallel to ~Q

and the momentum of particle 2 is anti-parallel to ~Q.
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FIG. 86: The quantities from (278) in the case of proton knockout for different dynamical assump-

tions for | ~Q| = 500 MeV/c as functions of the relative momentum ppn in the spectator proton-

neutron subsystem. For the description of the curves see Fig. 80.
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FIG. 87: The quantities from (278) in the case of neutron knockout for different dynamical assump-

tions for | ~Q| = 500 MeV/c as functions of the relative momentum ppp in the spectator proton-proton

subsystem. Curves as in Fig. 80.
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E. Spin dependent momentum distributions of polarized proton-deuteron clusters

in polarized 3He

We address the question whether momentum distributions of polarized ~d~p clusters in

spin oriented 3He are accessible through the
−−→
3He(e, e′~p)d or

−−→
3He(e, e′~d)p processes. Optimal

kinematical conditions are that the polarization of 3He and the polarization of the knocked

out proton (deuteron) together with the momenta ~kp and ~kd of the final proton and deuteron

are collinear to the photon momentum. The spin dependent momentum distribution of

proton-deuteron clusters inside 3He is defined as

Y(m,md, mp; ~q0) ≡
〈

Ψm

∣∣∣∣|φdmd〉|~q0
1

2
mp〉〈~q0

1

2
mp|〈φdmd|

∣∣∣∣Ψm
〉
, (279)

where ~q0 is the c.m. proton momentum (the deuteron momentum is −~q0) and mp, md, and

m are spin magnetic quantum numbers for the proton, deuteron, and 3He. This can be

expressed as [201]

Y(m,md, mp; ~q0) =

∣∣∣∣∣∣
∑

λ=0,2

Yλ,m−md−mp(q̂0)C(1Iλ
1

2
;md, m−md, m)

C(λ
1

2
Iλ;m−md −mp, mp, m−md) Hλ(q0)

∣∣∣∣
2

, (280)

in terms of the auxiliary quantity Hλ(q0)

Hλ(q0) ≡
∑

l=0,2

∫ ∞

0
dp p2 φl(p) 〈pq0αlλ|Ψ〉 , λ = 0, 2. (281)

Here λ is the relative orbital angular momentum of the proton with respect to the deuteron

inside 3He. φl(p) and 〈pqα | Ψ〉 are wave function components of the deuteron and 3He,

respectively. Thus the dependence on the direction q̂0 and the magnetic quantum numbers

is nicely separated.

We display Hλ(q0) in Fig. 88. This shows that λ=0 dominates the momentum distribution

Y for small relative angular momenta and H0 has a node around q0= 400 MeV/c. Near

and above that value the s- and d-wave contributions are comparable. The momentum

distribution itself is shown in Fig. 89 for the case that q̂0 points into the direction of the

spin quantization axis and 3He is polarized with m = 1
2
. The polarizations of the proton

and the deuteron are chosen as md = 0, mp = 1
2

and md = 1, mp = −1
2
, respectively. We see

an interesting shift in the minima from q0 = 300 to q0 = 500 MeV/c, if the polarization of
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the proton (deuteron) switches from a parallel (perpendicular) to an anti-parallel (parallel)

orientation in relation to the spin direction of 3He. It is easily worked out [201] that the

two momentum distributions shown in Fig. 89 coincide in PWIA with the functions R̂L ≡
RL/(G

p
E)2 and R̂T ≡ RT/(

~Q 2

2m2
N

(Gp
M)2), when one fixes the spin projections corresponding

to the two combinations and chooses the deuteron lab momentum pd = q0. In [201] we

investigated these two quantities allowing for the complete FSI (without and with 3NF’s),

for antisymmetrization, and for the inclusion of MEC’s as a function of increasing | ~Q |.
The question is whether they approach the two momentum distributions. The results are

quite intricate within the range of | ~Q |-values we took into account (| ~Q |≤ 800 MeV/c).

We show in Fig. 90 R̂L and in Fig. 91 R̂T in comparison to the PWIA results, which are

directly the momentum distributions for the two magnetic quantum number combinations.

This illustration refers to two deuteron momenta pd = 200 and 600 MeV/c. For pd= 200

MeV/c R̂L and R̂T have a tendency to approach Y(m,md, mp; ~q0) within our momentum

range | ~Q|, but the 3NF effects are quite noticeable. For pd = 600 MeV/c, however, this is

not the case. It turned out when looking into several pd-values that the two momentum

distributions could be accessed in our restricted | ~Q |-range at its upper end only for very

small deuteron momenta. For the higher deuteron momenta the FSI and MEC effects

precluded that approach. We refer to [201] for a more detailed discussion. The measurement

of that polarized setup would be very interesting since all the dynamics comes into the play.
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FIG. 88: Absolute value of Hλ(q0) defined in (281) for λ = 0 (solid) and λ = 2 (dashed) calculated

with the 3He bound state including the UrbanaIX 3N force. Corresponding curves neglecting 3N

force effects (dotted for λ = 0 and dot-dashed for λ = 2) are also shown. Note H0(q0) < 0 for q0 >

400 MeV/c, while H2(q0) remains always positive for the shown q0-values.
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FIG. 89: Spin-dependent momentum distributions Y(m = 1
2 ,md = 0,mp = 1

2 ; |~q0|ẑ) (solid line)

and Y(m = 1
2 ,md = 1,mp = −1

2 ; |~q0|ẑ) (dashed line) defined in (280) for ~p~d clusters in 3He when

UrbanaIX 3NF is included. Corresponding curves neglecting 3N force effects are: dotted for mp = 1
2

and dot-dashed for mp = −1
2).
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FIG. 90: 1
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E
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RL as a function of the three-momentum transfer | ~Q | for pd= 200 MeV/c (upper

row) and pd= 600 MeV/c (lower row). Two left panel figures are for the m = 1
2 ,md = 1,mp = −1

2

and two right panel figures for the m = 1
2 ,md = 0,mp = 1

2 combination of the spin magnetic quan-

tum numbers. The curves correspond to the PWIA (double-dot-dashed), PWIAS (dot-dashed),

FSI (dotted), FSI+MEC (dashed) and FSI+MEC+3NF (solid) results.
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F. 3N Photodisintegration of 3He

The semiexclusive 3He(γ,N)NN reaction where only one nucleon is detected appears to

be rather easily accessible. We show in Figs. 92–94 the energy spectra of the outgoing nucleon

at several nucleon emission lab angles. The structures for proton and neutron emissions are

quite different. While the structures for Eγ=12 and 40 MeV are similar there is a quite

noticeable change in shapes when going to Eγ=120 MeV. The 3NF effects in the predictions

with explicit MEC’s are relatively small. Due to the semiexclusive character they are washed

out in relation to rather significant effects in the exclusive processes discussed below. Also

the Siegert approach including the 3NF is shown and it deviates, especially at 120 MeV,

from the explicit MEC predictions. We refer to [202] for discussions and insights into the

complex underlying interplays. In any case MEC effects are very strong at the two higher

energies and measurements would be very rewarding to test the theoretical predictions.

FIG. 92: The semiexclusive 3He(γ,N)NN processes for neutron or proton emissions at various lab

angles and Eγ=12 MeV. The solid curve corresponds to MEC+AV18+UrbanaIX dynamics, the

dashed curve to MEC+AV18, the dotted curve to Siegert+AV18+UrbanaIX and the dot-dashed

curve to AV18 with the single nucleon current only.

FIG. 93: The same as in Fig. 92 but at Eγ=40 MeV.

FIG. 94: The same as in Fig. 92 but at Eγ=120 MeV.

For the case of semiexclusive reactions with polarized γ and/or polarized
−−→
3He we calcu-

lated the spin observables of (211) in a range of outgoing nucleon lab angles from θ = 10o

to 170o. In Figs. 95 and 96 we show our predictions for the nucleon outgoing angle θ = 90o

at Eγ = 12 MeV and Eγ = 40 MeV, respectively. The Aγ
x analyzing power is large and its

magnitude approaches one at the higher neutron energies. It is practically insensitive to the
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inclusion of the 3NF both for outgoing neutron and proton. In contrast, the A
3He
y analyzing

power and spin correlation coefficients Cx,y(y,x) exhibit rather large sensitivity to the 3NF

at Eγ = 12 MeV when the outgoing neutron is measured. The 3NF effects modify the

magnitude of the three observables in a very similar way. Both spin correlation coefficients

are quite similar to each other and to A
3He
y . They are approximately of the same magnitude

but of opposite sign to A
3He
y . The effects of the 3NF extend over a large energy and angular

range of the outgoing neutron and in some cases are as large as ≈ 20%. Similar statements

are true when the outgoing proton is measured. In this case, however, the largest 3NF

effects appear in the region of high energies of the outgoing proton. At Eγ = 40 MeV the

3NF effects are drastically reduced. These results show that it would be very interesting to

measure such spin observables.

FIG. 95: The analyzing powers and spin correlation coefficients as a function of the outgoing

neutron (left) or proton (right) lab energy for the
−→

3He (~γ, n)pp (
−→
3He (~γ, p)pn) reaction at Eγ =

12 MeV and θlab = 90o. The dashed curve is the prediction based on MEC+AV18 and the solid

on MEC+AV18+UrbanaIX.

FIG. 96: The same as in Fig. 95 but at Eγ = 40 MeV.
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Then we come to the most informative process, the exclusive 3He(γ, pp)n reaction. We

scanned the full phase space and searched for 3N force effects by switching on and off the

3N force. To have a quantitative measure we defined

∆(Ω1,Ω2, S) ≡ | d 5σ
NN+3NF − d 5σ

NN | /d 5σ
NN × 100% , (282)

where Ω1, Ω2 are the directions of the two outgoing protons and S is the position on the

kinematical locus. In this manner we can associate ∆-values to all regions in phase space.

In order to locate phase space regions uniquely, we show three two-dimensional plots. The

first one is the Θ1 − Θ2 plane for the two polar angles of the proton detectors. The second

one is the Θ1 − Φ12 plane, where Φ12 ≡| Φ1 − Φ2 | is the relative azimuthal angle of these

two detectors. Finally, the third one is the E1-E2 plane for the correlated energies of the two

detected protons. To fill the three planes we proceed as follows. The whole phase-space is

filled with discrete points corresponding to certain grids in Θ1,Θ2,Φ1,Φ2, and E1. For Θ1

and Θ2 fixed we search for the maximal value of ∆ in the 3-dimensional subspace spanned by

Φ1,Φ2, and E1. Then we combine those maximal ∆-values into three groups and associate

certain grey tones to those group values. Next we choose a fixed Θ1 and Φ12 =| Φ2 | (one can

put Φ1 = 0◦) and search again for the maximal values of ∆ in the 2-dimensional subspace

spanned by Θ2 and E1. The same grey tones and groupings are then applied. Finally, in the

E1-E2 plane we search for the maximal ∆-values in the three dimensional subspace spanned

by Θ1,Θ2,Φ12 and repeat the procedure. For a larger number of groups see [112]. This

procedure has been applied and the results are shown in Figs. 97-99. We performed this

investigation for three photon lab energies Eγ= 12, 40 and 120 MeV. The results presented

in Fig. 97 are based on AV18+UrbanaIX and the explicit MECs. The choice of the border

values for the three groups is of course arbitrary. The group with the largest effects according

to those choices appear in dark tone and the group with the smallest effects appear in light

tone. The remaining group with 3NF effects in between is located in the white areas.

As an example let us regard Eγ = 120 MeV. Large 3NF effects are predicted for instance

for the detector angles θ1, θ2 ≤ 60◦ and all relative azimuthal angles φ12. The energies E1,

E2 lie on a kinematical locus and the 3NF effects are largest as displayed by the dark spots.

In addition there are smaller regions like θ1 as before but θ2 ≈ 180◦.

In order to plan experiments in the future the absolute values of the fivefold differential

cross sections are important. Therefore we show those values in Fig. 98 again arranged in
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FIG. 97: The 3NF effects spread over the full 3N breakup phase-space. It is mapped into the

Θ1 − Θ2, Θ1 − Φ12 and the E1 − E2 planes. The three rows refer to the three photon lab energies

Eγ = 12, 40 and 120 MeV. Regions where the effects are largest are shown in dark and regions with

smallest effects in light tone. In the white regions the effects lie between the two border values

given to the right of each row. These results are based on AV18+MEC and AV18+UrbanaIX+MEC

predictions.

FIG. 98: The distribution of the magnitudes of the cross sections over the full 3N breakup phase-

space for the three γ energies as in Fig. 97. Now the white areas belong to the smallest cross

section values and the light and dark tone regions to the cross section values as indicated on the

right for each row.

FIG. 99: The regions in the 3N phase-space where the breakup cross sections for Eγ = 120 MeV

are larger than 0.1 µb sr−2 MeV−1, the 3NF effects are larger than 20%, and the choice of the

two-body current between MEC and Siegert causes effects not greater than 10%.

three groups. Here the white area refers to the smallest cross section values. It is easily seen

investigating the kinematics, that the configurations corresponding to the darkest group are

of the type of FSI or close to it. We show two examples in Figs. 102-103.

Finally, we locate the regions in phase space for Eγ = 120 MeV where the cross sections

are measurable (larger than 0.1 µb sr−2 MeV−1) and the 3NF effects are larger than 20%.

Despite the fact that our Siegert approach is less suited for Eγ = 120 MeV we also performed

calculations and added the further condition, that the two choices of currents, explicit MEC

or Siegert, deviate at most by 10%. This selects configurations which are dominated by 3NF

effects and to a smaller extent by the choice of the current (among the ones we had at our

disposal). Those small groups of configurations in phase space are displayed in Fig.99.

Now we show some configurations for fixed angles along the S-curve displaying different
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situations. In Fig. 100 we see large two-body current and some 3NF effects. In contrast in

Fig. 101 only very small 3NF effects appear. Finally in Figs. 102 and 103 large 3NF effects

show up in FSI peaks. That variety of current and 3NF effects would be a fruitful and

detailed source of information on the dynamics and an experimental investigation appears

very worthwhile.
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FIG. 100: Fivefold differential cross sections for the angular configuration Θ1 = 88◦, Φ1 = 0◦,

Θ2 = 100◦, Φ2 = 11◦, at photon lab energy Eγ=120 MeV. The AV18 predictions with single-nucleon

current and with single nucleon current + MEC are given by the dot-dashed and dashed curves,

respectively. The corresponding AV18+MEC+UrbanaIX predictions are given by the dotted and

solid curves, respectively.

In actual experiments one is far away from our point geometry results and a certain

amount of integration over angular regions and energy intervals has to be accepted. As

an illustration we regard the two peaks in Fig. 103, which in point geometry exhibit 3NF

effects of ≈ 20 % (≈ 23 %) for the left (right) peak. Will they survive if the cross sections

will be summed up over certain angular and energy regions? To that aim we integrated

the cross sections over all four angles and single nucleon energy, allowing for deviations

up to 5◦ around the central values for the angles and 5 MeV in one of the single nucleon

energies, E1, where the S-curve in Fig. 103 is related to a kinematical locus in the E1-E2

plane. This summation is repeated replacing 5◦ in angles and 5 MeV in energy by 10◦ in

angles and 10 MeV in energy. The resulting cross section values are displayed in Table III

without and with 3NF. Their ratios around 1.20 show still a significant effect. From those

cross section values as well as from the magnitude of the effects an experimental realization

appears feasible [203].
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FIG. 101: Fivefold differential cross sections for the angular configuration Θ1 = 30◦, Φ1 = 0◦,

Θ2 = 145◦, Φ2 = 77◦, at photon lab energy Eγ=120 MeV. The AV18+MEC predictions are given

by the dashed curve and the corresponding AV18+UrbanaIX predictions are given by the solid

curve.
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FIG. 102: The same as in Fig. 101 but for Θ1 = 142◦, Φ1 = 0◦, Θ2 = 27◦, Φ2 = 180◦.

Note that in [112] the NN interaction was taken in the form of the np-interaction only,

while in the present work and in [202] we include pp and nn interactions by the ”2
3

+ 1
3
”

rule [110, 111]. We refer to [202] and [112] where several additional investigations are

displayed.

Often in the literature photodisintegration is treated by keeping only the lowest multipole

E1. This extreme low energy assumption would be quite insufficient for nearly all phase

space regions and for all three photon energies studied in this paper. This can again be

quantified and we find, that even at 12 MeV there are plenty of breakup configurations

where the electric multipole E1 alone would deviate by more than 20% from the result when
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FIG. 103: The same as in Fig. 101 but for Θ1 = 70◦, Φ1 = 0◦, Θ2 = 100◦, Φ2 = 180◦.

S=110 MeV choice I choice II S=30 MeV choice I choice II

without 3NF 0.683E-07 0.138E-05 without 3NF 0.234E-06 0.386E-05

with 3NF 0.824E-07 0.166E-05 with 3NF 0.280E-06 0.451E-05

ratio 1.21 1.20 ratio 1.20 1.17

TABLE III: Integrated cross sections ∆σ (in fm2) at Eγ= 120 MeV without and with 3NF for

the two choices of integration ranges (see text). This refers to the two peaks in Fig. 103 around

S = 110 and 30 MeV. The ratios are practically as large as for point geometry.

all multipoles are included. Again for detailed plots see [112, 202].
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VIII. ADDENDUM

We would like to add brief remarks on several issues also relevant in the 3N system and

which have not been addressed in this review: relativistic approaches, y-scaling and weak

processes. These remarks will mostly serve to provide recent references.

The covariant spectator theory includes relativity in a manifestly covariant way. It

restricts all but one of the particles to their mass shell, which leads to the technically welcome

property that all loop integrations are three-dimensional. Also the manifest covariance goes

with the property that all boosts are kinematic and the off-shell particle has negative energy

components. Cluster separability holds which in a Hamiltonian approach has been formally

solved in [204] but presents a big challenge in the practical application. The spectator

equations have been applied to the NN system including electromagnetic processes as well

as to the 3N bound state. Most recently a complete Feynman diagram expansion for the

electromagnetic form factors and the three-body photo- and electro-disintegration of the

three-body bound state has been derived. For the long list of references see the most recent

ones [205, 206]

Another approach including relativity is the relativistic Hamiltonian dynamics. The

seminal paper is by E.P. Wigner [207]. It lays the ground for the physical requirements of

special relativity in quantum mechanics leading to the necessary and sufficient conditions

for the existence of an unitary (ray) representation of the inhomogeneous Lorentz group

(Poincare group) in the quantum mechanical Hilbert space. Further seminal papers are by

P.A.M. Dirac [208] who introduced in the Hamiltonian formulation the ”point”,”instant”

and ”front” forms of dynamics. B. Bakamjian and L.H. Thomas [209] constructed the first

relativistic quantum mechanical model of two interacting particles in Dirac’s ”instant” form

of dynamics. L. Foldy [210] pointed to the importance of macroscopic locality (cluster sepa-

rability). F. Coester [211] extended the work by Bakamjian and Thomas to systems of three

particles with a scattering operator consistent with the principle of macroscopic locality. Fi-

nally S.N. Sokolov [212] generalized relativistic Hamiltonian dynamics to N particles under

the condition of macroscopic locality. Motivated by Sokolov’s work F. Coester and W.N.

Polyzou [204] treated cluster properties for any fixed number of particles in the instant-,

front- and point-forms of the dynamics. The review of relativistic Hamiltonian dynamics

by B.D. Keister and W.N. Polyzou [213] includes in addition to basic concepts the material
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specific for the three-body problem, on how to treat spin, and on matrix elements of tensor

and spin operators (currents). The most general treatment of the two-body problem in rela-

tivistic dynamics appeared in [214]. It is not limited to Diracs forms of dynamics. They are

replaced by representations of Poincare Clebsch Gordon coefficients. Special choices lead to

Diracs forms. This approach was generalized in [215] to many bodies. Particle production

was included in [216]. For relativistic variational Monte Carlo calculations of the N-body

bound states the paper [217] is suited. The Balian-Brezin method for treating angular mo-

mentum reduction in the Faddev equation [218] has been generalized to the relativistic case

in [219]. A very basic investigation [220] shows, that given a relativistic Hamiltonian dy-

namics it is possible to construct a conserved covariant current operator that satisfies cluster

properties and which will produce any kind of experimental form factors. In other words, it

shows, that Poincare invariance, current covariance and cluster properties do not constrain

form factors.

The above citations refer to basic formalisms and we refrain to list the various applications

of Hamiltonian dynamics to electron scattering, which are anyhow mostly carried through

for hadron form factors. This is outside the scope of this review. We restrict ourselves only

to a few recent ones, which provide references to earlier work and to studies by J. Carbonell

and collaborators: [221–224]. All that work briefly addressed opens the doors to generalize

what has been presented in this review into a relativistic Hamiltonian scheme.

The issue of y-scaling has been nicely discussed in [225] including a rich list of references,

among them the seminal work in [226] by G. West and the theoretical investigations based on

plane wave impulse approximation by the Rome and Rehovot groups [227, 228], to mention

just those two. Under PWIA it can be shown that the cross section in inclusive electron

scattering, which depends on | ~Q| and ω, at high momentum transfers, after the cross section

has been divided by an appropriately chosen single nucleon cross section, is a function of

a single variable y. This y-scaling variable is itself a function of | ~Q| and ω. Of course

the question is, whether the underlying assumptions are realized in nature and especially,

whether the interaction of the knocked out nucleon with the recoiling system can be neglected

or sufficiently well taken into account. That issue has been critically studied in two model

investigations, one in a nonrelativistic two-nucleon model [229], and one in a light front

formalism of relativistic quantum mechanics [230], where a conserved model hadronic current

operator has been used which is covariant with respect to a unitary representation of the
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Poincare group.

Weak processes have been discussed in [26] where also references to previous work

can be found. A more recent study [166] evaluated the decay rate for the process

µ− + 3He → 3H + νµ including angular correlation parameters. The total rate agreed

nicely with experiment and showed only a weak model dependence. The two-body currents,

which turned out to be significant, could be constrained in the tritium beta decay. This

paper also provides some clues on the induced pseudoscalar form factor Gps. The process

µ− + 3He → d + n + νµ has been studied in [231] using a Faddeev treatment for

bound and continuum states. Only the single nucleon current has been employed. Very

large effects of the final state interaction have been found, which brought theory into the

vicinity of the experimental decay rate dΓ/dEd [232, 233].
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IX. SUMMARY AND OUTLOOK

This review has been devoted to electron and photon induced processes in the 3N system,

restricted to a mostly nonrelativistic kinematical regime. We focused on the Faddeev scheme

which for the various processes has been outlaid in some detail. This guarantees rigorous

solutions of the 3N bound and scattering states for any type of NN and 3N forces. Naturally

the electromagnetic currents play a central role, too. Since this issue of current has been

dealt with at many places in the literature we were relatively brief and just described the

two-body currents which were used in our calculations on top of the standard single nucleon

current. These are the dominant π- and ρ-like currents related to the NN force AV18. Then

we provided expressions for the rich set of observables and explained in some detail how

the different algebraic elements in the formalism are prepared in an angular momentum

decomposition for the numerical implementation.

The bulk of the review has been devoted to a comparison of theory and experiment and

to theoretical predictions. The latter ones, if confronted with the data in the future, would

challenge the dynamical assumptions even more stringently and systematically than what

has been achieved up to now. Our theoretical results which are compared to data are based

on the AV18/UrbanaIX Hamiltonian model and one- and the dominant two-body currents

related to AV18. The rich set of data comprises elastic electron scattering on 3He and 3H,

inclusive electron scattering on 3He and 3H, nucleon-deuteron radiative capture and the time

reversed process of pd photodisintegration of 3He and finally the 3N photodisintegration of

3He. We tried to include as many as possible of the data situated in our nonrelativistic

regime, which we qualitatively defined by | ~Q| ≤ 500 MeV/c for the virtual photon and the

three-nucleon c.m. energy below the pion threshold. Clearly also in that kinematical domain

some effects of relativity will be visible but they are not dealt with in this review except for

a small study for the elastic electron scattering process on 3He.

The elastic form factors of 3He and 3H are rather well described in the low momentum

region q ≤ 3 fm−1. The presence of the 3NF is noticeable and its effect goes in the right

direction toward the data. Our results are very similar to the ones achieved by the Hanover

group, which rely on a single ∆-isobar admixture model instead of an explicit 3NF. They

are also similar to predictions of the Pisa group and collaborators, who apply the same

model Hamiltonian as used in this review, but include additional currents. These currents
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when applied in the higher | ~Q|-domain not studied in this review significantly improve the

agreement with the data.

The two inclusive response functions, RL and RT , in inclusive unpolarized electron scat-

tering on 3He and 3H show overall a good agreement between theory and experiment with

a slight underestimation, however, of RL in case of 3H. Interesting is the interplay of 3NF’s

and the two-body currents for RT , which have a tendency to cancel each other under our

(restricted) dynamical assumptions. When a comparison was possible the results by the

other groups are very similar to ours. The Pisa and Trento groups are able to include the

pp Coulomb force which is an important step forward. It will be very interesting to see its

quantitative effect in detailed future studies, especially in the low momentum regime.

If one allows for polarization of the incoming electron and the 3He target two more

response functions, RT ′ and RTL′, in inclusive electron scattering are accessible with related

asymmetries. We showed that the sensitivity to the magnetic form factor of the neutron

survives in the transversal asymmetry AT ′ despite the fact that all dynamical ingredients,

FSI, 3NF effects and MEC’s play an important role in the low momentum region. This has

been used to extract Gn
M for Q2 = 0.1 and 0.2 (GeV/c)2, which are in good agreement with

the Gn
M -values extracted using a deuteron target.

We also draw attention to the Coulomb sum rule which in principle is an excellent source

of information on two-body correlations modified by two-body density and relativistic effects.

Unfortunately, due to strong cancellations the part of the Coulomb sum which carries that

information has large error bars, thus an improved set of data would be very informative.

In case of the pd electrodisintegration of 3He we faced both, agreement and disagreement,

around the quasi elastic proton knockout peak. This is a quite unsatisfactory situation, espe-

cially since a renewed theoretical analysis by the Hanover group with a ∆-isobar admixture

and therefore with a different dynamics found very similar results. This deserves further the-

oretical studies. In case of the deuteron knock out peak we also face disagreement, namely a

severe overestimation of the data in the neighborhood of missing momentum pm = 0 despite

the fact, that the 3NF for the measured configurations moves theory significantly in the

direction of the data. For another set of data in parallel deuteron knockout kinematics the

agreement with the data looks better but does not include the situation with pm = 0. In

relation to both peak areas we think that the pd electrodisintegration of 3He requires further

efforts both in experiment and theory, as will be also addressed below.
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In radiative Nd capture the cross section data are rather well described over a wide range

of energies. This is not the case for the spin observables Ay(p), iT11 and the tensor analyz-

ing powers Tij . There remains much room for improvements in the dynamical inputs. An

important step forward in that direction has been done very recently by the Pisa group with

collaborators. They completed the current related to the AV18/UrbanaIX model Hamilto-

nian what indeed improved the agreement between the theory and experiment in the very

low energy regime. But also there some discrepancies remained in the two vector analyzing

powers. Since similar discrepancies are also present in pure Nd scattering [18] they might

have a common origin, presumably missing spin structures in the 3NF.

The experimental situation in pd photodisintegration of 3He is quite controversial as has

been displayed for the energy dependence of the cross section at a fixed angle and for the

integrated cross section.

The photon induced 3N breakup of 3He is still a rather unsettled issue. The total breakup

cross section data are severely controversial which precludes a conclusion about the validity

of the theory for that process. The very few more exclusive data for that complete breakup

unfortunately could not be analyzed properly by us since the experimental conditions about

angular and energy acceptances were not sufficiently well documented in the literature. In

any case, our point geometry results are at least in the neighborhood of those data given in

the form d4σ/dΩ1dΩ2.

In view of the existing data we think that more systematic measurements with possibly

improved accuracy are needed to get better insight into the validity of the dynamical as-

sumptions. For that aim we provided a few theoretical predictions, some of which at least

will hopefully be addressed in future experiments.

The two response functions R̃T ′ and R̃TL′ appearing with the helicity of the incoming

electron show a great sensitivity to the dynamical input and especially R̃TL′ for 3He shows

a strong variation in shape as a function of | ~Q|.
The electron induced pd breakup of 3He poses questions. For the proton knockout peak

region we have shown three quite different cases. One is affected separately by FSI and by

the 3NF, another one is predominantly just given by PWIA alone, and a third one just by

FSI with no effect of the 3NF. The second one would be especially important to be verified

by experiment, since only the simplest ingredients enter, the 3He state, the deuteron state,

and the single nucleon current. In all three cases the effects of MEC’s are negligible.
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In case of the deuteron knockout peak we also have selected three different situations in

relation to the strength of the FSI effect and the MEC contributions. Since the deuteron is

composite the mechanism of knockout is more complex than for the nucleon knockout.

Despite the fact that the concept of the spectral function has been widely used in the

literature we think that a more systematic approach to the situations where it is predicted

to be useful and where it fails would be adequate. We displayed two examples out of many

described before in [190].

The semiexclusive process
−−→
3He(~e, e′N)NN , where both initial particles are polarized,

would be also an interesting source of information about the interplay of dynamical ingre-

dients. We showed two kinematical conditions. In one the asymmetry A‖ for the upper

end of the knocked out neutron energy spectrum would be suitable to extract Gn
M , since

all curves, PWIA, FSI23, FSI, FSI + MEC and finally FSI+MEC+3NF coincide there. In

the other case the PWIA result differs strongly from the others and large corrections are

necessary. The asymmetry A⊥, which in PWIA is proportional to Gn
E · Gn

M , requires in

both chosen kinematical configurations always strong corrections from FSI. Since 3He car-

ries little proton polarization the corresponding asymmetries are strongly influenced by final

state interactions. For one kinematical condition we found that FSI23 alone would be quite

misleading for A‖ but completely sufficient for A⊥, while for the other kinematical condition

3NF effects are significant for both asymmetries except at the upper end of the proton en-

ergy spectrum, where all curves (except PWIA) coincide. We think that also these different

scenarios deserve a systematic experimental study.

We also investigated the question, whether the two-nucleon relative momentum distri-

bution inside 3He could be approached experimentally. We showed that in our kinematical

regime this is not possible but at least for proton knockout under parallel kinematics the

FSI23 dynamics is sufficient. Thus the relative momentum distribution folded with the NN

t-matrix would be accessible, except for an additional small shift caused by the action of the

3NF. In the case of the neutron knockout only the transversal response function exhibits

that feature. For high | ~Q|-values, however, also RL can be expected to behave similarly.

Finally, in the field of electrodisintegration we investigated the spin dependent momen-

tum distribution for polarized proton-deuteron clusters in polarized 3He. For the processes
−−→
3He(e, e′~p)d and

−−→
3He(e, e′~d)p under fully collinear condition it turned out, that only for

rather low pd momenta we found a tendency that the two responses RL and RT properly
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divided by the electromagnetic nucleon form factors approach the sought-for momentum

distributions for increasing | ~Q|-values; otherwise FSI and 3NF effects preclude that. Nev-

ertheless a measurement of that polarized setup would be quite interesting since all the

dynamics comes into the play.

3N photodisintegration of 3He comprises a lot of detailed dynamical information. We

found that the semiexclusive reactions 3He(γ, p)pn and 3He(γ, n)pp show quite a different

dependence on the emitted nucleon energy and the emission angles. In all cases the 3NF

effects are mostly washed out due to the integration over part of the phase space. To the

best of our knowledge no data are available, but they would be very informative.

If one allows for polarization for the incoming photon and/or 3He, analyzing powers and

spin correlation coefficients can be measured in the semiexclusive processes. We found that

at Eγ = 12 MeV, especially for neutron emission, 3N force effects are quite significant in

A
3He
y and in the spin correlation coefficients, while Aγ

x has no noticeable 3NF dependence.

At Eγ = 40 MeV the 3NF effects have essentially disappeared. No data are available to the

best of our knowledge.

Our last predictions in this review are for the most informative process, the exclusive

3He(γ, pp)n reaction. We scanned the full phase space for 3NF effects and located the

regions where they are as large as 20% and above. Even after averaging over certain angular

and energy intervals carried out in two examples, the magnitudes of these effects survived.

Precise and well documented data (for future analysis and possibly new dynamics) would

be very important.

The comparison of data and theory in this review clearly demonstrated that the chosen

dynamics, forces and currents, is more or less adequate. In most cases we encountered fair

to good agreement with the data but also in some cases clear discrepancies. Since for pure

hadronic processes in few-nucleon systems, especially in the well investigated 3N continuum,

the AV18/UrbanaIX Hamiltonian model leads to similar agreements and disagreements,

the reason for certain discrepancies in the electromagnetically induced processes cannot be

searched alone in the additional ingredient, the electromagnetic current operator, but also in

the deficiencies of that Hamiltonian model. Certainly additional spin structures in the 3NF

model are required. This has been already noticed in pure 3N scattering [18, 234–237] but

also in the description of spectra of light nuclei [26, 238]. Additional 3NF models introduced

recently [239] improved the theoretical spectra. Therefore, proceeding in this manner and
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allowing for corresponding additional currents and relativistic features might be one way to

go to achieve more quantitative results.

Another approach emerged in recent years based on effective field theory, either in the

pion-less form or explicitly including the pion degrees of freedom in a form constrained by

spontaneously broken chiral symmetry and including explicitly broken parts. This is a sys-

tematic approach which is controlled in the low momentum region by a smallness parameter.

Therefore the predictions can be improved systematically and theoretical errors can be es-

timated. This new approach to low energy nuclear physics is very promising. It relies on

effective Langragians, which allow for well defined couplings to electroweak fields, provides

internal connections between NN and many-nucleon forces, and generates systematically

relativistic corrections. Of course this approach is restricted to generic external momenta

below a certain mass scale.

We refer the reader to several reviews [240] on these kind of approaches and cite only

a short subjective list of papers out of very many, which we think are very relevant to

investigate few-nucleon systems without and with electroweak probes. More references can

be found there. The approach to nuclear forces based on effective field theory constrained

by chiral symmetry goes back to S. Weinberg [241]. First applications were pioneered in

[242]. This was followed up in an extended and improved manner in [243–245] pushing NN

forces to next-to-next-to-next-to leading order (N3LO) in the chiral expansion. Thereby it

has to be emphasized that the 3NF’s and beyond are consistent to the NN forces. Various

applications [76, 246] clearly demonstrated the success of that approach. In the pion-less

form, restricted to a lower momentum regime, also convincing successful strides have been

performed [247]. Coupling to electroweak fields has been investigated without and with

explicit pions [248–250]. We expect that these approaches will put low energy nuclear physics

including electroweak processes on a firm ground and will enable well founded applications

like for astrophysical issues.

This review has been closed in January 2005 . We would like to apologize to the authors

whose work has not been sufficiently well presented or whose work has not been cited at all.
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[143] G. Höhler et al., Nucl. Phys. B114 (1976) 505.

149



[144] H. Anklin et al., Phys. Lett. B336 (1994) 313.

[145] H. Anklin et al., Phys. Lett. B428 (1998) 248.

[146] H. Gao et al., Phys. Rev. C50 (1994) R546; H. Gao, Nucl. Phys. A631 (1998) 170c.

[147] W. Xu et al., Phys. Rev. C67 (2003) 012201.

[148] A. Kievski, E. Pace, G. Salme, M. Viviani, Phys. Rev. C56 (1997) 64.

[149] F. Xiong et al., Phys. Rev. Lett. 87 (2001) 242501.

[150] R. Schiavilla, R.B. Wiringa, J. Carlson, Phys. Rev. Lett. 70 (1993) 3856.
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