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Abstract

We calculate the nucleon and the delta mass to fourth order in a covariant formulation of the
small scale expansion. We analyze lattice data from the MILC collaboration and demonstrate that
the available lattice data combined with our knowledge of the physical values for the nucleon and
delta masses lead to consistent chiral extrapolation functions for both observables up to fairly large
pion masses. This holds in particular for very recent data on the delta mass from the QCDSF
collaboration. The resulting pion-nucleon sigma term is σπN = 48.9 MeV. This first quantitative
analysis of the quark-mass dependence of the structure of the ∆(1232) in full QCD within chiral
effective field theory suggests that (the real part of) the nucleon-delta mass-splitting in the chiral
limit, ∆0 = 0.33 GeV, is slightly larger than at the physical point. Further analysis of simultaneous
fits to nucleon and delta lattice data are needed for a precision determination of the properties of
the first excited state of the nucleon.
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1. The ∆(1232) is the most important baryon resonance. It is almost degenerate in mass with the
nucleon and couples strongly to pions, nucleons and photons. It was therefore argued early that
spin-3/2 (decuplet) states should be included in baryon chiral perturbation theory [1], which is the
low-energy effective field theory of the Standard Model. In Ref.[1] and subsequent works use was made
of the heavy baryon approach, which treats the baryons as static sources. However, due to the fact
that the nucleon-delta mass splitting ∆ = m∆−mN stays finite in the chiral limit and thus introduces
an additional low energy scale, in chiral effective field theories (ChEFT) special care has to be taken
about the decoupling of resonances in the chiral limit [2]. This requirement can be systematized by
counting the nucleon-delta mass splitting as an additional small parameter [3], which ensures that
at each order in the chiral expansion enough counterterms are present to guarantee decoupling and
renormalization [4]. The corresponding power counting was called the “small scale expansion” (SSE)
[3]. The heavy baryon approach has been successfully applied to a variety of processes, for reviews see
[5, 6], and a status report on chiral effective field theories with deltas is given in [7]. More recently, it
was realized that for certain considerations/processes a Lorentz-invariant formulation of baryon chiral
perturbation theory is advantageous. A particularly elegant scheme to perform covariant calculations
is the so–called “infrared regularization” (IR) of [8]. The renormalization of relativistic baryon chiral
perturbation theory has been discussed in detail in [9]. In Ref.[10] we gave a consistent extension of
the infrared regularization method in the presence of spin-3/2 fields. It was in particular shown that
in the covariant formulation of the SSE the contribution of the non-propagating spin-1/2 components
of the Rarita-Schwinger field can be completely absorbed in the polynomial terms stemming from the
most general effective chiral Lagrangian, analogous to the situation in the non-relativistic SSE [3]. In
this letter, we apply the covariant SSE formalism to the nucleon and the delta mass#5 as well as the
πN sigma term. We perform a fourth order calculation in the small parameter ε, where ε collects
small external momenta, the pion mass and the N∆ mass splitting. These explicit representations of
mN and m∆ serve as chiral extrapolation functions to analyze lattice simulations for nucleon and delta
masses involving dynamical fermions#6, as for example reported by the CPPACS [14] and JLQCD
collaboration [15]. While a detailed (combined) analysis of these and forthcoming data [16] analogous
to the work reported in Ref.[17] certainly also needs to take into account the observed finite volume
dependences [14, 15], in this letter#7 our aim is more modest. We attempt to connect the lattice data
for nucleon and delta masses as reported by the MILC collaboration [19] with the known results at the
physical point. The MILC data have the exciting feature that they cover unphysical pion masses as
low as Mπ ≃ 350 MeV on a relatively large lattice with L = 2.6 fm, although there is still considerable
discussion within the lattice QCD community about the technical details of the employed (staggered)
fermion actions, see e.g. [20]. Clearly, such extrapolation functions based on chiral perturbation theory
cease to make sense at too large values of the quark (pion) masses, but as we will demonstrate later,
we can nicely capture the trend of these data#8. More lattice results also at lower pion masses are
clearly needed, and these should be analyzed utilizing the (infinite volume) extrapolation functions

#5For the substantial literature on this topic analysed within the heavy baryon approach we refer to the most recent
work [11] and the literature cited therein. For related early work on the problem of chiral extrapolation functions for
∆(1232) properties see [12].

#6For a discussion of the chiral extrapolation of nucleon and delta masses in quenched QCD see [13].
#7Some of our results have been reported previously [18].
#8The bulk of the MILC data have been obtained in simulation runs with three active flavours, while our chiral

extrapolation functions apply to a scenario with only two light quark flavours. However, at the (still relatively large)
quark masses studied in Ref.[19], corresponding to pion masses Mπ > 350 MeV, the MILC collaboration reported no
significant differences between their two and three flavour runs for the observables considered here. Note that they
published a single two-flavor run at one quark mass that showed no sizable deviations from the three-flavor runs in [19].
We will therefore treat the MILC data as if they constituted dynamical two flavor results. This is further corroborated
by our analyses of the nucleon mass in SU(2) and SU(3) heavy baryon CHPT - no large effects were found when going
from two to three flavors, see [21] and [22], respectively.
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given here.

2. Our calculations are based on the effective Lagrangian of nucleons and deltas coupled to external
sources. The various contributions to S-matrix elements and transition currents are organized in
powers of the small parameter ε, where ε collectively denotes small pion four-momenta, the pion
mass, baryon three momenta and the nucleon-delta splitting, ∆ = m∆ − mN (more precisely, the
difference in the chiral limit). The expansion in powers of ε is called the small scale expansion. In
what follows, we will consider the nucleon and the delta mass to fourth order in the SSE. Consider
first the pion-nucleon Lagrangian. The terms pertinent to the observables calculated here read (for
details, see [4, 5, 23]),

L(1)
πN = ψ̄N

[

i 6D −m0 +
gA

2
6 uγ5

]

ψN , (1)

L(2)
πN = ψ̄N

[

c1〈χ+〉 −
c2

4m2
0

{〈uµuν〉DµDν + h.c.} +
c3
2
〈u2〉 + . . .

]

ψN , (2)

L(3)
πN = ψ̄N

{

B23 ∆0 〈χ+〉 +B32 ∆3
0 + ...

}

ψN , (3)

L(4)
πN = ψ̄N

{

e38 〈χ+〉2 + e115
1

4
〈χ2

+ − χ2
−〉 − e116

1

4

(

〈χ2
−〉 − 〈χ−〉2 + 〈χ2

+〉 − 〈χ+〉2
)

+E1 ∆4
0 + E2 ∆2

0 〈χ+〉 + . . .
}

ψN . (4)

Here, ψN denotes the nucleon spinor, gA is the axial-vector coupling constant (in the chiral limit),
m0 the chiral limit value of the nucleon mass, χ+ contains the external scalar fields which contains
the quark mass matrix and 〈. . .〉 denotes the trace in flavor space. The ci are low-energy constants
(LECs). Their values can e.g. be determined in the analysis of pion-nucleon scattering in the delta-full
EFT [24]. It is known that in particular c2 and c3 are largely saturated by ∆-exchange [25], thus the
remaining contributions in an EFT with explicit spin-3/2 fields are expected to be very small. The

counterterms B23, B32, E1, E2 in L(3,4)
πN appear naturally in SSE (∆0 ∼ O(ǫ)) and are required for

the renormalization of the loop graphs at O(ǫ3,4). Furthermore, their finite parts are chosen in such
a way that in the limit mπ/∆0 → 0 the O(ǫn) SSE result recovers the O(pn) result of heavy baryon
chiral perturbation theory (HBCHPT). The fourth-order LECs ei contribute to the nucleon mass in
the combination e1 = 16e38 + 2e115 + e116/2 (for details, see [23, 21]). The relevant terms from the
covariant πN∆ Lagrangian read [26]

L(1)
πN∆ = cAψ̄

i
αO

αβ
A wi

βψN + h.c. , (5)

L(2)
πN∆ = ψ̄i

αO
αµ
A

{

b3 i w
i
µν γ

ν +
b6
m0

i wi
µν iD

ν + . . .

}

ψN + h.c. , (6)

with wi
µ = 〈τ iuµ〉/2 and wi

µν = 〈τ i [Dµ, uν ]〉/2, where τ i, i = 1, 2, 3 denote the Pauli matrices in

isospin space. The tensor OA
αβ = gαβ + 2 A

d γαγβ takes care of the “point-invariance” of the spin-
3/2 theory [3]. Here, ψµ

i denotes the spin-3/2 field in Rarita-Schwinger notation with an additional
isospin-index i and the constraint τ i ψµ

i = 0 [3]. The LEC cA represents the leading axial-vector N∆
coupling constant (frequently called gπN∆ in the literature). At second order, we have two relevant
couplings, parameterized by the LECs b3 and b6. We note that in the non-relativistic theory the
leading contribution of b6 can be absorbed in the coupling b3 to O(ε2) [3]. In the non-relativistic
SSE b6 therefore only appears as an independent coupling at O(ε3) . Finally, we list the terms of the
Lagrangian that describe the delta propagation and its coupling to pions and external sources. The
pertinent covariant structures up to O(ε2) have been constructed in [26], here we add further terms
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needed up O(ε4) in close analogy to the nucleon case (see also [24]). Specifically, we employ

L(1)
π∆ = −ψ̄i

αO
αµ
A

{[

i 6Dij −m0
∆ξ

ij
3/2 +

g1
2
6uijγ5

]

gµν − γµγλ

4

(

i 6Dij −m0
∆ξ

ij
3/2

)

γλγν

}

Oνβ
A ψj

β, (7)

L(2)
π∆ = − ψ̄i

αO
αµ
A

{[

a1〈χ+〉δij − a2

4m2
0

{

〈uαuβ〉Dα
ikD

β
kj + h.c.

}

+
a3

2
〈u2〉δij + . . .

]

gµν + . . .

}

Oνβ
A ψj

β, (8)

L(3)
π∆ = − ψ̄i

αO
αµ
A

{

B∆
1 ∆0 〈χ+〉 +B∆

0 ∆3
0 + . . .

}

gµνδ
ijOνβ

A ψj
β (9)

L(4)
π∆ = − ψ̄i

αO
αµ
A

{

e∆38 〈χ+〉2 + e∆115
1

4
〈χ2

+ − χ2
−〉 − e∆116

1

4

(

〈χ2
−〉 − 〈χ−〉2 + 〈χ2

+〉 − 〈χ+〉2
)

+E∆
1 ∆4

0 + E∆
2 ∆2

0 〈χ+〉 + . . .
}

gµνδ
ijOνβ

A ψj
β (10)

with Dij
µ = Dµδ

ij − iǫijk 〈τkDµ〉, uij
µ = uµδ

ij and ξij
3/2 denotes the isospin 3/2 projector, ξij

3/2 =

δij − τ iτ j/3. Further, g1 denotes the axial ∆∆ coupling constant (in the chiral limit), whereas m0
∆

refers to the ∆(1232) mass (in the chiral limit). The LECs ai correspond#9 to the ci in Eq. (2) and so
on. The B∆

i and E∆
i are taken such that the values of m∆

0 and a1 in the chiral limit are not affected
by loop corrections.

3. Choosing A = −1 the propagator for a spin-3/2–isospin-3/2 particle in the Rarita-Schwinger
formalism has the general form#10

Sij
µν(p) = −i 6 p+m0

∆

p2 − (m0
∆)2

[

gµν − 1

d− 1
γµγν − (d− 2) pµpν

(d− 1) (m0
∆)2

+
pµγν − pνγµ

(d− 1)m0
∆

]

ξij
3/2 . (11)

The Dirac-tensor Sµν can be written as a linear superposition of spin-3/2 and spin-1/2 projection

operators P
3/2
µν , P

1/2
µν :

− i S∆
µν(p) = − 6 p+m0

∆

p2 − (m0
∆)2

P 3/2
µν − 1√

d− 1m0
∆

(

(P
1/2
12 )µν + (P

1/2
21 )µν

)

+
d− 2

(d− 1) (m0
∆)2

(6 p+m0
∆) (P

1/2
22 )µν . (12)

For details regarding the properties of the projectors we refer to [10]. As can be clearly seen from
Eq.(12) only the spin-3/2 components are associated with a propagation, whereas the (spurious) spin-
1/2 components correspond to local contact operators. Given that the chiral effective field theory
for a coupled nucleon-delta system contains the most general set of local contact operators allowed
by chiral symmetry, it was argued in [10] that in chiral EFT one only needs to take into account
the propagation of the spin-3/2 degrees of freedom. The effects of the spurious/off-shell spin-1/2

#9We note that while only three of the ci LECs are contributing to the mass functions considered here, there are
actually 9 different LECs ai that should be taken into account. However, it can be shown that there are only three
different linear combinations of them contributing to the masses. We therefore take a1, a2, a3 as representatives of these
three independent structures.
#10The small scale expansion constitutes one possible form of an effective low energy theory of QCD for low lying baryon
resonances. Its range of validity and applicability therefore clearly lies in the low energy domain with momenta below
the chiral symmetry breaking scale Λχ. All physics connected with higher energies, e.g. the field theoretical deficiencies
of the Rarita-Schwinger approach discussed in the literature [27], is therefore mandated to be accounted for only via the
counterterms/local operators of the theory. Gauge invariance can be shown to hold perturbatively for all forms of the
propagators addressed in this work, see Ref.[28]. For alternative approaches to spin-3/2 particles in ChEFT see [29, 30].
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components are already completely accounted for by the counterterms of the theory. In [10] we have
therefore proposed to utilize the propagator form A

Gij
µν |AIR(p) = −i 6 p+m0

∆

p2 − (m0
∆)2

P 3/2
µν ξij

3/2 , (13)

with the spin-3/2 projector

P 3/2
µν = gµν − 1

d− 1
γµγν − 1

(d− 1) p2
(6 pγµpν + pµγν 6 p) − (d− 4)

(d− 1)

pµpν

p2
. (14)

In the meantime it was realized in practical applications that it is advantageous to use a different form
for the propagator than the one given in Eq.(13) (see also the related work in [31]). In Ref.[10] it was
shown that due to the extra 1/p2 structure in Eq.(14) the standard rules of infrared regularization had
to be modified for a consistent treatment of the low-energy modes, making loop-calculations in this
covariant field theory more tedious. Here we propose another separation of the general Dirac-tensor:

S∆
µν = −i 6 p+m0

∆

p2 − (m0
∆)2

p2

(m0
∆)2

P 3/2
µν + iRµν (15)

Once more it can be shown that the remainder

Rµν =
6 p+m0

∆

(m0
∆)2

[

gµν − 1

d− 1
γµγν

]

+
1

(d− 1) (m0
∆)2

[pµγν − γµpν] (16)

is not connected with the spin-3/2 propagation, that it is local and that it cannot generate any
contributions which are not already contained in the counterterms of the effective field theory. As an
alternative to Eq.(13) we therefore propose#11 the propagator form

Gij
µν |BIR(p) = −i 6 p+m0

∆

p2 − (m0
∆)2

p2

(m0
∆)2

P 3/2
µν ξij

3/2 . (17)

We note that in form B there is no more 1/p2 structure, making the evaluation of loop diagrams
containing spin-3/2 degrees of freedom in the IR-scheme a lot simpler. However, we emphasize that
in a low-energy (chiral) effective field theory the finite/renormalized results obtained via Eq.(13) or
Eq.(17) are identical#12—it is merely a matter of practicability which method is chosen for a particular
observable. In what follows, we will work with form B. We note explicitly that one could also work
with the full Rarita-Schwinger propagator of Eq.(11), however, form A or form B have the advantage
that the results can be directly mapped to the known couplings of the heavy-baryon formulation of
SSE where also only the spin-3/2 components are part of the propagator [1, 3]. Finally we remark that
for low energies the width of ∆(1232) can be treated perturbatively in the covariant SSE, analogous
to the situation in the non-relativistic theory. Throughout this work we will therefore not address
this issue, applications of the covariant SSE in the resonance region will be discussed in a forthcoming
paper [28].

4. Armed with the effective Lagrangian, we are now in the position to calculate the nucleon and the
delta self-energy to fourth order in the covariant SSE. The covariant formalism allows in particular to
resum the contributions from kinetic energy insertions. The nucleon mass can be written as

m = m0−4c1M
2
π −4M2

π∆0B23−B32∆
3
0−4e1(λ)M4

π −E1∆
4
0−4M2

π∆2
0E2 +mN−loop +m∆−loop , (18)

#11We note that this form of the spin-3/2 propagator is also employed when the interactions of the spin-3/2 field are
constructed according to the rules of gauge symmetry for a massless spin-3/2 field, e.g. see [30].
#12Obviously the high-energy behavior between the two propagator expressions is different, leading to different numerical
values for the associated counterterms to yield the same total result.
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Figure 1: Fourth order contributions to the nucleon (left panel) and the delta mass (right panel). Solid,
double and dashed lines denote nucleons, deltas and pions, in order. The corresponding dimension
two (ai, bi, ci) and four (ei) LECs are also given at the pertinent vertices.

with the corresponding fourth-order tree and one-loop graphs shown in Fig. 1. The contributions from
the nucleon and delta loop graphs, which start at O(ε3), take the form

mN−loop = − 3g2
A

2F 2
π

m0M
2
πI

(0,0)
11 (m2

0,m
2
0) −

3M2
π

F 2
π

(

−2c1 +
c2
d

+ c3

)

∆π , (19)

m∆−loop =
2c2A (d− 2)

F 2
π

m2
0

(m0
∆)2

{(

m+m0
∆

)

I
(2,0)
11 (m2

0, (m
0
∆)2) −m0I

(3,1)
11 (m2

0, (m
0
∆)2)

}

− b3
cA

2F 2
π (m0

∆)2
d− 2

d− 1

{[

−(m2
0 − (m0

∆)2)2 +M2
π

(

4
d− 1

d
m2

0 − 4
m0m

0
∆

d
+M2

π

)]

∆π

− [(m2
0 − (m0

∆)2)2 +M2
π(M2

π − 2(m2
0 + (m0

∆)2))]

×
[

(m2
0 − (m0

∆)2 −M2
π)I

(0,0)
11 (m2

0, (m
0
∆)2) + 2m0m

0
∆I

(1,1)
11 (m2

0, (m
0
∆)2)

]}

− b6
m0

cA
2F 2

π (m0
∆)2

{[

−(m2
0 − (m0

∆)2)2 +M2
π

(

2
d− 2

d
m2

0 + 2(m0
∆)2

)

−M2
π ](m0 +m0

∆)

− 2

d
M2

πm0(−2M2
π −m2

0 + (m0
∆)2)

]

∆π − [(m2
0 − (m0

∆)2)2 +M2
π(M2

π − 2(m2
0 + (m0

∆)2)

× (m2
0 − (m0

∆)2 +M2
π)((m0 +m0

∆)I
(0,0)
11 (m2

0, (m
0
∆)2) −m0I

(1,1)
11 (m2

0, (m
0
∆)2)]

}

. (20)

Here, Fπ is the pion decay constant and λ the scale of dimensional regularization. Throughout, we
set λ = 1.232 GeV. The loop functions which appear here and for the delta mass discussed below are
defined as:

1

i

∫

d4k{1, kµ, kµkν , kµkνkρ}
1

(M2
π − k2)(m2 − (p− k)2)

=

{

H
(0,0)
11 (p2,m2) ,

pµH
(1,1)
11 (p2,m2), gµνH

(2,0)
11 (p2,m2) + . . . , (pρgµν + pµgρν + pνgµρH

(3,1)
11 (p2,m2) + . . .

}

. (21)

Their irregular parts are given by:

I
(0,0)
11 (p2,m2) = −p

2 −m2 +M2
π

2p2

1

16π2

(

ln
M2

π

p2
− 1

)

− J̄0 (22)
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with

J̄0 =
1

32π2p2

√

λ(p2,m2,M2
π) ln

p2 −m2 +M2
π +

√

λ(p2,m2,M2
π)

p2 −m2 +M2
π −

√

λ(p2,m2,M2
π)

+ i

√

λ(p2,m2,M2
π)

16πp2
, (23)

if λ(p2,m2,M2
π) > 0. Otherwise, we have

J̄0 =
1

16π2p2

√

−λ(p2,m2,M2
π) arccos

(

−p
2 −m2 +M2

π

2Mπ

√

p2

)

. (24)

The other relevant loop functions can be expressed as

I
(1,1)
11 (p2,m2) =

1

2p2

(

(p2 −m2 +M2
π)I

(0,0)
11 +

1

2
∆π

)

, (25)

I
(2,0)
11 (p2,m2) =

1

4(d − 1)p2

(

λ(p2,m2,M2
π)I

(0,0)
11 − (p2 −m2 +M2

π)∆π

)

, (26)

I
(3,1)
11 (p2,m2) =

1

2p2

(

(p2 −m2 +M2
π)I

(2,0)
11 +

M2
π

d
∆π

)

. (27)

We also employ the standard definition of ∆π,

∆π =
1

i

∫

ddk

(2π)d
1

M2
π − k2

. (28)

Using these, the ∆-loop contribution can be written as an infinite series in Mπ (modulo chiral logs):

m∆−loop
N = l0 + l1M

2
π + l2M

4
π + . . . , (29)

with l0, l1 being infinite series in ∆0 starting at O(ε3) and O(ε), respectively. Note that the decoupling
theorem is automatically fulfilled here since there is no nonanalytic contribution ∼ M3

π . Now as a
minimal way of determining the LECs B23, B32, E1 and E2 one can choose B23 + ∆2

0E2 = l1/4, and
B32 + ∆0E1 = l0/4, which means that the ∆ contribution will first occur at order M4

π .

The chiral expansion of the delta mass can be written in a way similar to the case of the nucleon
Eq. (18) (the corresponding tree and loop graphs that contribute at O(ε4) are collected in Fig. 1),

m∆ = m0
∆−4a1M

2
π−4M2

π∆0B
∆
1 −B∆

0 ∆3
0−4e∆1 (λ)M4

π−E∆
1 ∆4

0−4M2
π∆2

0E
∆
2 +mN−loop

∆ +m∆−loop
∆ , (30)

with

mN−loop
∆ =

c2A
F 2

π

{(

m0
∆ +m0

)

I
(2,0)
11 ((m0

∆)2,m2
0) −m0

∆I
(3,1)
11 ((m0

∆)2,m2
0)
}

+ b3
cA
F 2

π

M2
π

d

{

∆π + [(m0
∆)2 −m2

0 −M2
π ]I

(0,0)
11 ((m0

∆)2,m2
0) + 2m0m

0
∆I

(1,1)
11 ((m0

∆)2,m2
0)

}

+
b6
m0

cA
F 2

π

M2
π

d

{

∆π(m0 +m0
∆) + [(m0

∆)2 −m2
0 +M2

π ]

×
[

(m0 +m0
∆)I

(0,0)
11 ((m0

∆)2,m2
0) −m0

∆I
(1,1)
11 ((m0

∆)2,m2
0)

]}

(31)

and

m∆−loop
∆ = − 5h2

A

6(m0
∆)2F 2

π

{

m0
∆

[

M2
π∆π

(

1 − 4

d(d − 1)

)

−M2
π(m0

∆)2I
(0,0)
11 ((m0

∆)2, (m0
∆)2)

+
1

d− 1
(4(m0

∆)2 + (d− 4)M2
π)I

(2,0)
11 ((m0

∆)2, (m0
∆)2)

]

+m0
∆

[

4

d− 1
(m0

∆)2I
(3,1)
11 ((m0

∆)2, (m0
∆)2)

− M2
π

d
∆π

]

− 1

d(d− 1)
M2

π∆π

}

− 3M2
π

F 2
π

(

−2a1 +
A

d
+B

)

∆π , (32)
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Figure 2: The nucleon mass (dot-dashed line) and the (real part of the) delta mass (solid line) as a
function of the pion mass. The filled diamonds denote their physical values at the physical pion mass.
The dashed line is the chiral extrapolation for the ∆ based on SU(6) as explained in the text. The
filled squares and circles are the MILC data [19]. The filled triangles are the recent data from QCDSF
[16].

with A = a2 + . . . and B = a3 + . . .. It can easily be verified that m∆−loop
∆ starts as M3

π whereas, as

in the case of the nucleon mass, mN−loop
∆ has a constant and a piece ∼M2

π :

mN−loop
∆ = l0 + l1M

2
π + l2M

4
π + · · · (33)

As before, we will choose B∆
0 , B∆

1 , E∆
1 E∆

2 in such a way that mN−loop
∆ starts to contribute only at

M4
π , that is B∆

0 + ∆2
0E

∆
2 = l1/4 and B∆

1 + ∆0E
∆
2 = l0/4. Note that we did not take into account the

difference between the chiral limit value of the pion mass and its physical value [32]. This effect is
known to be small, see e.g. the three-flavor calculation [22].

5. We are now in the position to analyze the nucleon and delta mass formulae given in Eqs. (18,30).
They contain a certain number of LECs, some of which are (not very accurately) known from the study
of pion-nucleon scattering in the heavy baryon SSE [24]. Here our aim is modest#13: In addition to
the known values at the physical point we take the data from MILC [19] for the nucleon and the delta
as function of the pion mass and try to describe these with LECs of natural size. Such a description
is indeed possible, as shown in Fig. 2. So we do not intend detailed least-square fits here but rather
try to find out whether the existing data shown in the this figure can be consistently described by
our mass formulas with LECs of natural size. We stress again that a more refined analysis of e.g.
pion-nucleon scattering in the covariant SSE is mandatory to put stringent constraints on certain
combinations of the LECs (see also the extensive discussion in Refs.[21, 33] on this issue). We have 11
(combinations of) parameters to determine, these are c1, c2/4+c3, a1, e1, e

∆
1 , cA, hA, b3, b6, A/4+B and

∆0. (i) constrained parameters: cA and ∆0 are fixed from the mass and width of the delta. We note
that the N∆ mass splitting in the chiral limit, ∆0 = 0.33GeV, indicates a slightly larger N∆ mass
splitting in the chiral limit than at the physical point. A similar observation was made in the case of

#13Ultimately global, simultaneous fits of several nucleon and delta observables calculated within covariant SSE to
next-to-leading one-loop order need to be undertaken to obtain reliable information on LECs from lattice QCD.
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quenched QCD, see [13] (for discussion about the difference between the mass splitting in the quenched
approximation and full QCD, see also [34]). The LECs from the pion-nucleon Lagrangian, Eqs. (2,4)
can be estimated from pion-nucleon scattering in the presence of the delta. We use c1 = −0.8GeV−1

(which is within the uncertainty of the values determined in e.g. [35]) and e1 = c2 = 0, c3 = 0.5GeV−1.
The small values of c2,3 are consistent with resonance saturation studies of [25] and the fits in [24]. (ii)
Fit parameters: The remaining parameters are fit to the masses. We find for the two axial dimension
two N∆ LECs the values b3 = 0.75 GeV−1 and b6 = −0.75. The axial ∆∆ coupling is found to be
hA = 2, which is not far from the SU(6) or large-NC value hA = 9gA/5 = 2.28. Furthermore we get
e∆1 = −1GeV−3, a1 = −0.3GeV−1, A = 0 and B = 0.5GeV−1. These are all natural values. It is
interesting to note that a1 is markedly smaller than c1, although both couplings should be equal in
the SU(6) limit. We refrain here from a detailed study of the theoretical errors that will be given in
a forthcoming publication. Still, it is interesting to study the strict SU(6) limit. In that case, one
would have a1 = c1 = −0.8GeV−1 and hA = 2.28. As can be seen from the dashed line in Fig. 2, the
assumption of strict SU(6) symmetry is clearly at odds with the MILC data, indicating that a1 and c1
indeed seem to have different values. Also shown in Fig. 2 are the recent QCDSF data for m∆, which
were not used in the fit but are nicely consistent with our extrapolation function. Note also that the
QCDSF data are based on two-flavor simulations and are not very different from the MILC data in
the region of overlap. This further supports our assumption on the treatment of the MILC data. We
stress again that the resulting values of the LECs are to be considered indicative and a more analysis
employing also contraints from other physical processes should follow.

From the small value of the LEC a1 one immediately deduces that the π∆ sigma term appears to
be significantly smaller than its nucleon cousin because at leading order in the quark mass expansion
we have σπN = −4c1M

2
π + ... and σπ∆ = −4a1M

2
π + .... It is clear that this interesting observation

deserves further study. Finally we note that the sigma term for the nucleon resulting from this “rough”
fit is found as

σπN = 48.9 MeV , (34)

to order ε4. We note that this value is consistent with the classical result of Ref. [36], which was
confirmed in [35] in a HBCHPT analysis of pion-nucleon scattering and in [33] in a ChEFT analysis
of lattice data in a formalism without explicit delta degrees of freedom. It is also in agreement with
the recent CHPT analysis of the three–flavor MILC data, see [22]. For the π∆ sigma term we get
σπ∆ = 20.6MeV. Again, these results need to be refined and bolstered by more detailed precise fits
to the lattice data including also error and correlation analysis including also lattice data on other
observables - the mass data alone are not sufficient to precisely pin down all parameters. Such an
analysis, however, goes beyond the scope of this paper.

6. In this letter, we have presented a covariant extension of the small scale expansion, extending
our earlier work [10]. We have analyzed the nucleon and the delta mass in view of the lattice data
from MILC. These data seem to indicate sizeable SU(6) breaking effects that can be interpreted as
a reduced pion cloud contribution in the resonance field (the delta) as compared to its ground-state
(the nucleon). Our results obtained from fits to full QCD lattice data further indicate that the N∆
mass splitting can be larger in the chiral limit than at the physical point, analogous to observations in
quenched QCD. We have also calculated the pion-nucleon sigma term and found good agreement with
earlier determination from pion-nucleon scattering and the analysis of SU(2) and SU(3) lattice data
for the nucleon. The recent QCDSF data for m∆ are also consistent with our chiral extrapolation. It
would be very valuable to have more (2 flavor) lattice results for the delta preferably at small pion
masses to further sharpen these conclusions.
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