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I. INTRODUCTION

Three-nucleon forces (3NFs) are well established in nuclear
physics. Although small compared to the dominant two-
nucleon force (2NF), they are nevertheless needed to gain
a quantitative understanding of nuclei and nuclear physics.
A recent example in this context is the discussion of the
3NF effects in proton-deuteron scattering (see, e.g., [1,2]).
Other examples are the binding energy difference between 3H
and 3He or the saturation properties of nuclear matter. Only
in the past decade has a theoretical tool become available
to systematically analyze few-nucleon forces and consider
such fine but important aspects as isospin violation in such
forces and in systems made of a few nucleons. This tool is
the extension and application of chiral perturbation theory to
systems with more than one nucleon that require an additional
nonperturbative resummation to deal with the shallow nuclear
bound states and large S-wave scattering lengths. Although
3NFs in the isospin limit have been analyzed in some detail
(see, e.g., [3–6]), the question of isospin violation in the
3NF has not yet been addressed in this framework. The work
reported here is intended to fill this gap.

Without further ado, let us address the issues considered
here. First, we generalize the classification of the isospin
dependence of two-nucleon forces due to Henley and Miller [7]
to the case of A nucleons (A � 3), with particular emphasis
on the three-nucleon system (see Sec. II). This is essentially
a quantum-mechanical exercise and reveals no underlying
dynamics. The keywords here are isospin mixing, charge in-
dependence (breaking), and charge symmetry (breaking). We
stress that although such language, which precedes quantum
chromodynamics (QCD) and originates from Heisenberg’s
definition of isospin to account for the almost degeneracy of
the proton and the neutron combined with their almost equally
strong forces, is useful to categorize few-nucleon forces, in
QCD the underlying broken symmetry is isospin of the light up
and down quarks. This symmetry is broken in pure QCD by the
light quark mass difference and further by electromagnetism
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when external electroweak interactions are considered. Thus,
in the second part of this work, Sec. III, we derive the leading
and next-to-leading order isospin-violating contributions of
the 3NF based on chiral effective field theory (EFT).1 We
briefly recall the counting rules for the inclusion of strong
and electromagnetic isospin violation presented in [8] and
discuss the pertinent terms of the effective chiral Lagrangian in
Sec. III A. We present the leading and subleading isospin-
breaking contributions to the 3NF in momentum space in
Sec. III B, followed by a brief estimate of the relative strength
of these forces in Sec. III C. We end with a short summary.
The Appendix contains the coordinate space representation of
the isospin-violating 3NF.

II. GENERAL CONSIDERATIONS

This section deals with a novel classification scheme for
the isospin dependence of the A-nucleon forces. To derive
this scheme, one makes no assumption about the dynamics
underlying such forces but only utilizes their transformation
properties under isospin-symmetry and charge-symmetry op-
erations on the level of nucleons.

A. Definitions and notation

The nonrelativistic A-nucleon system is described by the
Hamilton operator H as follows:

H = H0 + V 2N + V 3N + · · · + V AN, (1)

where H0 is the nucleon kinetic energy and V nN represents
the potential corresponding to the n-nucleon force. The total
isospin operator T is given by the sum of the isospin operators
t of the individual nucleons as follows:

T =
A∑

a=1

t(a). (2)

1We eschew here pionless nuclear EFT as it is not the appropriate
tool to analyze this particular problem.
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The total isospin operator T as well as the operators
t(i) satisfy the Lie algebra of the SU(2) isospin group:

[Ti, Tj ] = iεijkTk,
(3)

[ti(a), tj (b)] = iδabεijk tk(a),

with i, j, k = 1, 2, 3. The single-nucleon isospin operators
ti(a) can be conveniently represented in terms of Pauli matrices
τi as follows:

ti(a) = 1
2τi(a). (4)

The charge operator Q is defined for the A-nucleon system
as follows:

Q = e

(
A

2
+ T3

)
. (5)

Because the baryon number and the charge are conserved in
nuclear reactions, the operator T3 commutes with H even if
isospin symmetry is broken.

Charge symmetry represents invariance under reflection
about the 1–2 plane in charge space. The charge symmetry
operator Pcs transforms proton and neutron states into each
other and is given by the following [7]:

Pcs = eiπT2 =
A∏

a=1

eiπt2(a) =
A∏

a=1

(iτ2(a)). (6)

Thus charge symmetry conservation means the equivalence
of nn and pp, nnn and ppp, . . . , forces. Obviously, charge
symmetry is valid if isospin is conserved, that is, if

[H, T 2] = [H, Ti] = 0. (7)

B. Two nucleons

The classification of the two-nucleon forces according to
their isospin dependence has been worked out by Henley and
Miller [7]. For the sake of completeness, we briefly remind the
reader of this classification scheme in what follows.

The two-nucleon forces fall into four classes:
� Class (I) forces, V 2N

I , are isospin invariant and can be
expressed as follows:

V 2N
I = α1 + α2 t(1) · t(2), (8)

where αi are space and spin operators.
� Class (II) forces, V 2N

II , maintain charge symmetry but break
charge independence (i.e., are not isospin invariant2):[

V 2N
II , T

] �= 0,
(9)[

V 2N
II , Pcs

] = 0.

The class (II) forces are proportional to the isotensor:

V 2N
II = α τ3(1) τ3(2). (10)

2Clearly, V 2N
II as well as all other considered isospin-violating

interactions still commute with the third components of the total
isospin for the reason explained before.

It is easy to verify that these forces do not mix isospin in
the two-nucleon system and thus satisfy, in addition, the
following relation: [

V 2N
II , T 2

] = 0. (11)

� Class (III) forces break charge symmetry but do not lead to
isospin mixing in the two-nucleon system:[

V 2N
III , T

] �= 0,[
V 2N

III , Pcs

] �= 0, (12)[
V 2N

III , T 2
] = 0.

Such forces have the following general structure:

V 2N
III = α(τ3(1) + τ3(2)). (13)

and are symmetric under the interchange of the nucleons 1
and 2.

� Finally, class (IV) forces break charge symmetry and cause
isospin mixing, that is,[

V 2N
IV , T

] �= 0,[
V 2N

IV , Pcs

] �= 0, (14)[
V 2N

IV , T 2
] �= 0.

They can be expressed as follows:

V 2N
IV = α1(τ3(1) − τ3(2)) + α2[τ (1) × τ (2)]3. (15)

The operator α2 has to be odd under a time reversal
transformation.

C. Three and more nucleons

Let us now generalize the above treatment to systems
with more than two nucleons. Considering the commutation
relations of the Hamilton operator H with the operators T 2

and Pcs , one can distinguish between four different cases for
isospin-violating forces: the Hamilton operator may commute
with both T 2 and Pcs , with one of those operators or with
none.3 The problem with such a classification scheme is that
conservation of T 2 depends on the number of particles. In
general, an A-nucleon force that commutes with the squared
total isospin operator in the A-nucleon system, T 2

A ≡ (t(1) +
t(2) + · · · + t(A))2, will not commute with the operator T 2

>A.
For example, all isospin-breaking two-nucleon forces, which
cause no isospin mixing in the two-nucleon system, lead to
isospin mixing in the three-nucleon system. Conversely, the
property of charge symmetry is independent on the number
of nucleons and suitable for generalization. Thus in systems
with more than two nucleons it is convenient to distinguish
between the following three classes of forces: class (I) isospin
symmetric forces; class (II) forces, which break isospin but
maintain charge symmetry; and class (III) forces, which break
both isospin and charge symmetry. For two nucleons, our class

3In case of two nucleons, only three of these four cases appear,
because there are no forces which commute with Pcs and do not with
the operator T 2.
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(III) interactions obviously include the class (III) and (IV)
forces in the classification by Henley and Miller.

Let us now concentrate on the 3NF and list all possible
isospin structures.
� Class (I) forces are isospin scalars and have the following

structure:

V 3N
I =

∑
i �=j �=k

(
α

ijk

I + β
ijk

I τ (i) · τ (j )

+ γ
ijk

I [τ (i) × τ (j )] · τ (k)
)
, (16)

where α
ijk

I , β
ijk

I , and γ
ijk

I are space and spin operators with
the superscripts being the nucleon labels.

� Class (II) forces satisfy the following:

[VII , T ] �= 0,
(17)

[VII , Pcs] = 0,

and can be expressed as follows:

V 3N
II =

∑
i �=j �=k

(
α

ijk

II t3(i)t3(j )

+ β
ijk

II [τ (i) × τ (j )]3τ3(k)
)
. (18)

The forces in Eq. (18) give rise to isospin mixing in the 3N
system except in the following two cases:

α123
II + α213

II = α132
II + α312

II = α231
II + α321

II ,
(19)

β123
II − β213

II = β312
II − β132

II = β231
II − β321

II .

� Class (III) forces satisfy the following:

[VII , T ] �= 0,
(20)

[VII , Pcs] �= 0.

There are four types of such isospin-breaking forces:

V 3N
III =

∑
i �=j �=k

(
α

ijk

III τ3(i) + β
ijk

III [τ (i) × τ (j )]3

+ γ
ijk

III τ3(i) τ (j ) · τ (k)

+ κ
ijk

III τ3(i) τ3(j ) τ3(k)
)
. (21)

The first three terms in Eq. (21) cause isospin mixing in the
3N system except in the following special cases:

α123
III + α132

III = α213
III + α231

III = α312
III + α321

III ,

β123
III − β213

III = β312
III − β132

III = β231
III − β321

III , (22)

γ 123
III + γ 132

III = γ 213
III + γ 231

III = γ 312
III + γ 321

III .

The last term in Eq. (21) does not lead to isospin mixing
in the 3N system. Notice further that the quantities βijk are
time reversal odd.

In what follows, we perform explicit calculation of the
dominant isospin-violating three-nucleon forces based on
chiral effective field theory.

III. ISOSPIN-BREAKING THREE-NUCLEON FORCE IN
CHIRAL EFFECTIVE FIELD THEORY

A. Power counting and effective Lagrangian

Isospin-breaking two-nucleon forces have been extensively
studied within effective field theory approaches (see, e.g.,
[9–15]), as well as using more phenomenological methods
(see, e.g., [16,17] for some recent references). In the standard
model, isospin-violating effects have their origin in both strong
(i.e., due to the different masses of the up and down quarks)
and electromagnetic interactions (due to different charges of
the up and down quarks). The electromagnetic effects can be
separated into the ones due to soft and hard photons. Although
effects of hard photons are incorporated in effective field theory
by inclusion of electromagnetic short distance operators in
the effective Lagrangian, soft photons have to be taken into
account explicitly.

Consider first isospin breaking in the strong interaction.
The QCD quark mass term can be expressed as follows:

LQCD
mass = −q̄ M q = −1

2
q̄ (mu + md )(1 − ετ3) q, (23)

where

ε ≡ md − mu

md + mu

∼ 1

3
. (24)

The above numerical estimation is based on the light quark
mass values utilizing a modified MS subtraction scheme at
a renormalization scale of 1 GeV [18]. The isoscalar term
in Eq. (23) breaks chiral but preserves isospin symmetry. It
leads to the nonvanishing pion mass, M2

π = (mu + md )B �= 0,
where B is a low-energy constant (LEC) that describes the
strength of the bilinear light quark condensates. All chiral-
symmetry-breaking interactions in the effective Lagrangian
are proportional to positive powers of M2

π . The isovector term
(∝τ3) in Eq. (23) breaks isospin symmetry and generates a
series of isospin-breaking effective interactions ∝(εM2

π )n with
n � 1. It therefore appears to be natural to count strong isospin
violation in terms of εM2

π . However, we note already here
that isospin-breaking effects are in general much smaller than
indicated by the numerical value of ε, because the relevant
scale for the isospin-conserving contributions is the chiral-
symmetry-breaking scale 
χ rather than mu + md .

Electromagnetic terms in the effective Lagrangian can be
generated using the method of external sources (see, e.g.,
[19–21] for more details). All such terms are proportional to
the nucleon charge matrix Q = e (1 + τ3)/2, where e denotes
the electric charge.4 More precisely, the vertices that contain
(do not contain) the photon fields are proportional to Qn

(Q2n), where n = 1, 2, . . .. Because we are interested here in
nucleon-nucleon scattering in the absence of external fields, so
that no photon can leave a Feynman diagram, it is convenient to
introduce the small parameter e2 ∼ 1/10 for isospin-violating
effects caused by the electromagnetic interactions. As dis-
cussed below, three-nucleon forces, because of virtual photon
exchange, do not contribute at the leading and subleading

4Or equivalently, one can use the quark charge matrix e (1/3 +
τ3)/2.
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orders. We therefore do not consider virtual photons in the
present work. Notice, however, that electromagnetic effects
might be enhanced at low energy due to the long range
of the corresponding interaction (see [8] for more details).
A systematic study of such effects should therefore be
performed in the future. For the first step in this direction see
Ref. [22].

In the present study we adopt the same power counting rules
for isospin-breaking contributions as introduced in Ref. [8].
Specifically, we count the following:

ε ∼ e ∼ q



, (25)

where q ∼ Mπ refers to a generic low-momentum scale and

 to the hard scale that enters the values of the corresponding
low-energy constants. In addition, we keep track of the
additional factors 1/(4π )2 arising from the photon loops by
counting the following:

e2

(4π )2
∼ q4


4
. (26)

Notice further that contrary to the standard practice in the
single-nucleon sector, the nucleon mass is considered as a
much larger scale compared to the chiral-symmetry-breaking
scale for reasons explained in Ref. [3]. In this work we adopt
the counting rule q/m ∼ (q/
)2, which has also been used in
Ref. [23]. Counting the nucleon mass in this way ensures that
all iterations of the leading-order NN potential contribute to
the scattering amplitude at leading order (q/
)0 and thus have
to be resummed. The N-nucleon force receives contributions
of the order ∼(q/
)ν , where

ν = −4 + 2nγ + 2N + 2L +
∑

i

Vii. (27)

Here, L and Vi refer to the number of loops and vertices of
type i and nγ is the number of virtual photons. Further, the
vertex dimension i is given by the following:

i = di + 1
2ni − 2, (28)

where ni is the number of nucleon field operators and di is
the q power of the vertex, which accounts for the number of
derivatives and insertions of pion mass, ε and e/(4π ) according
to Eqs. (25) and (26).

Let us now specify the relevant terms in the effective
Lagrangian. In the purely pionic sector, we have to take into
account the following structures:

Lππ = F 2
π

4
〈uµuµ + χ+〉 + C

〈
Q2

+ − Q2
−
〉
, (29)

where Fπ refers to the pion decay constant and the brackets
〈 〉 denote traces in the flavor space. We remark that various
LECs appearing in the effective Lagrangian correspond to bare
quantities in the chiral SU(2) limit. Throughout this manuscript
we do not specify this explicitly and use physical values for the
LECs to express our results for the 3NF. Mass and coupling
constant renormalization is detailed, for example, in Refs. [24,
25]. Further,

uµ = i(u†∂µu − u∂µu†) , u =
√

U , χ = 2BM ,
(30)

χ± = u†χu† ± uχ †u , Q± = 1
2 (u†Qu ± uQu†),

The unitary 2 × 2 matrix U in the flavor space collects the
pion fields. In the σ -model gauge, it takes the following form:

U = 1

Fπ

[√
F 2

π − π2 + iτ · π

]
. (31)

The pion mass resulting from Eq. (29) is given by the
following:

M2
π0 = B(mu + md ) ,

M2
π± = B(mu + md ) + 2

F 2
π

e2C. (32)

The experimentally known pion mass difference Mπ± −
Mπ0 = 4.6 MeV allows us to fix the value of the LEC
C,C = 5.9 · 10−5 GeV4. Notice that the natural scale for this
LEC is F 2

π
2/(4π )2 ∼ 3 · 10−5 GeV4 if one adopts 
 ∼ Mρ .
Utilizing the heavy baryon framework, the relevant struc-

tures in the single-nucleon Lagrangian are [26] (for a more
detailed discussion, see, e.g., the review [27]) as follows:

LπN = N̄v

[
iv · D + gA S · u + c1〈χ+〉 + c3

2
〈u · u〉

+ c4

2
[Sµ, Sν][uµ, uν] + c5χ̂+ + f1F

2
π

〈
Q2

+ − Q2
−
〉

+ f2F
2
π 〈Q+〉Q+ + f3F

2
π 〈Q+〉2

]
Nv, (33)

where Nv refers to the field operator of a nucleon moving
with the velocity vµ; c1,3,4,5 and f1,2,3 are the strong and the
electromagnetic LECs, respectively; and

Dµ = ∂µ + �µ, �µ = 1
2 [u†, ∂µu],

(34)
χ̂+ = χ+ − 1

2 〈χ+〉, Sµ = 1
2 iγ5σµνv

ν.

Keeping the terms with at most two pion fields and switching
to the nucleon rest-frame system, the Lagrangian density in Eq.
(33) can be expressed in a more convenient form:5 as follows:

LπN = N †
[
i∂0 − m + gA

2Fπ

τ 	σ · 	∇π − 1

4F 2
π

τ · (π × π̇ )

− 2c1

F 2
π

M2
ππ2 + c3

F 2
π

(∂µπ · ∂µπ )

− c4

2F 2
π

εijk εabc σiτa(∇j πb)(∇k πc)

− c5

F 2
π

εM2
π (π · τ )π3 + f1 e2

(
π2

3 − π2
)

+ 1

4
f2 e2((π · τ )π3 − π2τ3)

]
N. (35)

Notice that at the order we are working, there is no need
to distinguish between Mπ0 and Mπ± in Eq. (35). We have

5Notice that only terms with three and more pion fields depend on
the specific parametrization of the matrix U.

024001-4



ISOSPIN DEPENDENCE OF THE THREE-NUCLEON FORCE PHYSICAL REVIEW C 71, 024001 (2005)

therefore used the same symbol Mπ for both charged and
neutral pion masses. The nucleon mass shift m in the above
equation is given by the following:

m = −4c1M
2
π − 1

2F 2
πe2(2f1 + f2 + 2f3)

− 1
2τ3

(
4c5εM

2
π + f2 e2F 2

π

)
. (36)

The isospin-invariant shift given by the first two terms in
Eq. (36) is of no importance and can be absorbed by a
redefinition of the bare nucleon mass. The proton-to-neutron
mass difference δm ≡ mp − mn fixes the values of the LECs
c5 and f2 through the following:

(δm)str. ≡ (mp − mn)str. = −4c5εM
2
π

= (−2.05 ± 0.3) MeV,

(δm)em. ≡ (mp − mn)em. = −f2 e2F 2
π

= (0.7 ± 0.3) MeV. (37)

These values are taken from Ref. [28]. The electromagnetic
shift is based on an evaluation of the Cottingham sum rule.
In principle, this contribution could also be evaluated in chiral
perturbation theory, including virtual photons. Although the
formalism exists (see, e.g., [19–21]), there are still some
subtleties to be addressed [29]. Therefore, we consider the
electromagnetic mass shifts for the ground state baryon octet
collected in Ref. [28] the best values available. Notice that
according to the counting rules of Eqs. (25) and (26), the
strong and electromagnetic shifts in Eq. (37) are effects of
order q3 and q4, respectively. Although the constants c5 and
f2 can be fixed from Eq. (37), the value of the LEC f1,
which contributes to the isospin-violating ππNN vertex [see
Eq. (35)], is unknown. This term plays an important role in
the analysis of isospin violation in pion-nucleon scattering
and the evaluation of the ground state characteristics of pionic
hydrogen (see [26] and [31], respectively). In the two-nucleon
sector, it leads only to an isospin-invariant contribution to the
TPEP at NNLO, which has so far not been considered (it
can be absorbed in the normalization of the term ∼c1). On
the contrary, the resulting contribution to the 3NF is isospin
breaking. It, however, does not violate charge symmetry and,
therefore, does not contribute to the binding-energy difference
of 3H and 3He. We further stress that the f1 term has not been
included in the Lagrangian used in Refs. [17,30,32] because
another power counting for the electromagnetic effects was
employed (see the discussion in Ref. [9]).

In the few-nucleon sector we need only the following
isospin invariant structures:

LNN = − 1
2CS(N̄vNv)(N̄vNv) + 2CT (N̄vSµNv)(N̄vS

µNv)

− 1
2D(N̄vNv)(N̄vS · uNv)

− 1
2E(N̄vNv)(N̄vτNv) · (N̄vτNv). (38)

where CS,T ,D, and E are the corresponding low-energy
constants. The Lagrangian density defined in Eq. (38) gives
rise to the following relevant terms in the nucleon rest-frame

(a) (b) (c)

FIG. 1. Leading contribution to the 3NF at the order (q/
)2 that
vanish, as discussed in the text. Solid and dashed lines are nucleons
and pions, respectively. Heavy dots denote the leading-order vertices
with i = 0.

system:

LNN = −1

2
CS(N †N )(N †N ) − 1

2
CT (N † 	σN )(N † 	σN )

− D

4Fπ

(N †N )(N † 	στN ) · 	∇π

− 1

2
E (N †N )(N †τN ) · (N †τN ). (39)

B. Three-nucleon force in momentum space

We are now in the position to discuss the leading and
subleading isospin-breaking contributions to the 3NF.6 For
the sake of completeness, we briefly remind the reader of
the structure of the isospin-conserving 3NF. The leading 3NF
contribution of the order (q/
)2 represented by the graphs
in Fig. 1 is well known to vanish. More precisely, the first
two graphs [(a) and (b)] in this figure vanish in the static
limit if one adopts an energy-independent formalism such
as the method of unitary transformation [34]. Alternatively,
one can use old-fashioned perturbation theory to derive a
corresponding energy-dependent 3NF potential. The latter
is known to cancel out the recoil corrections to the 2N
potential iterated in the scattering equation [4,35]. It should
be understood that the first two diagrams shown in Fig. 1
only specify the topology and do not correspond to Feynman
graphs. Clearly, the corresponding contributions to the 3NF
do not include the pieces generated by the iteration of the
2NF. We remind the reader that the operators associated with
these diagrams depend on the scheme and on the definition of
the potential. In the method of unitary transformation, these
graphs subsume both irreducible and reducible time-ordered
topologies. However, the reducible diagrams do not contain
anomalously small energy denominators, which correspond to
the purely two-nucleon intermediate states in old-fashioned
perturbation theory. The last diagram in Fig. 1 is suppressed
by a factor of q/m because the time derivative entering the
Weinberg-Tomozawa vertex in Eq. (35).

6After submission of our manuscript, related work on charge
symmetry breaking in the 3N system by Friar, Payne, and van
Kolck [33] appeared.
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(a) (b) (c)

FIG. 2. Subleading contribution to the 3NF at the order (q/
)3.
Solid rectangles refer to vertices with i = 1. For remaining notation,
see the legend to Fig. 1.

The first nonvanishing 3NFs arise at order (q/
)3 from
the diagrams shown Fig. 2 with one subleading vertex of
dimension i = 1. The contribution from the first graph in
Fig. 2 is also incorporated in various phenomenological models
such as, for example, the TM99 3NF [36] and given by Ref. [4]
(see also Ref. [5] for a related discussion):

V 3N
2π =

∑
i �=j �=k

1

2

(
gA

2Fπ

)2 (	σi · 	qi)(	σj · 	qj )(	qi
2 + M2

π

)(	qj
2 + M2

π

)F
αβ

ijk τ
α
i τ

β

j ,

(40)

where 	qi ≡ 	p′
i − 	pi ; 	pi ( 	p′

i) are initial (final) momenta of the
nucleon i and

F
αβ

ijk = δαβ

[
−4c̃1M

2
π

F 2
π

+ 2c3

F 2
π

	qi · 	qj

]

+
∑

γ

c4

F 2
π

εαβγ τ
γ

k 	σk · [	qi × 	qj ].

Here and in what follows, we use the usual notation to express
the nuclear force: the quantity V 3N

2π is an operator with respect
to spin and isospin quantum numbers and a matrix element
with respect to momentum quantum numbers. Notice also that
we have changed the notation of Sec. II and write the nucleon
labels as subscripts of the spin and isospin matrices [i.e., use
τ i and 	σi instead of τ (i) and 	σ (i)], whereas the superscripts
denote corresponding vector indices. Further,

c̃1 = c1 + e2F 2
πf1

2M2
π

. (41)

Note that this renormalization of the sigma-term related LEC
c1 by the electromagnetic LEC f1 was already discussed
in the analysis of pion-nucleon scattering [26]. Clearly, this
electromagnetic shift of the LEC c1 represents a higher-order
effect and only needs to be taken into account at order (q/
)5

and higher. The remaining contributions from graphs (b) and
(c) in Fig. 2 are given by [6] the following:

V 3N
1π = −

∑
i �=j �=k

gA

8F 2
π

D
	σi · 	qi

	qi
2 + M2

π

(τ j · τ i)(	σj · 	qi),

V 3N
cont = 1

2

∑
j �=k

E (τ j · τ k), (42)

First isospin-conserving corrections to the 3NF arise at
order (q/
)4, where one has to consider tree diagrams

(a) (b) (c) (d)

FIG. 3. (Color online) Leading isospin-violating contribution to
the 3NF at the order (q/
)4. Crossed circles refer to isospin-breaking
vertices with i = 2. For remaining notation, see the legend to Fig. 1.

with one vertex of the dimension i = 2 as well various
one-loop diagrams with the leading vertices. Derivation of
these corrections to the 3NF will be published elsewhere. The
main focus of the present work is related to isospin-breaking
corrections that first appear at the same order (q/
)4 and are
given by the graphs in Fig. 3. The first two diagrams (a) and
(b) and the last one (d) are due to strong nucleon mass shift
and of the order ε(q/
)3 ∼ (q/
)4. It should be understood
that the proton-to-neutron mass difference has to be taken
into account not only for intermediate but also for incoming
and outgoing nucleon states. The corresponding corrections to
the two-nucleon force have been recently studied in [14,15].
In what follows, we do not separate the electromagnetic and
strong shifts in the nucleon mass and express the result in terms
of the proton-to-neutron mass difference δm = mp − mn. We
use the method of unitary transformation as detailed in Ref.
[37] to calculate the relevant 3NF contributions. Utilizing
the notation of this reference, the corresponding two-pion
exchange potential can be written as follows:

V2π = η′
[

1

2
H1

λ1

(H0 − Eη′)
H1 η̃ H1

λ1

(H0 − Eη̃)(H0 − Eη′ )
H1

− 1

8
H1

λ1

(H0 − Eη′)
H1 η̃ H1

λ1

(H0 − Eη̃)(H0 − Eη)
H1

+ 1

8
H1

λ1

(H0 − Eη′)(H0 − Eη̃)
H1 η̃ H1

λ1

(H0 − Eη̃)
H1

− 1

2
H1

λ1

(H0 − Eη)
H1

λ2

(H0 − Eη)

×H1
λ1

(H0 − Eη)
H1

]
η + h.c. (43)

Here η, η′, and η̃ denote the projectors on the purely nucleonic
subspace of the Fock space, whereas λi refers to the projector
on the states with i pions. Further, H1 is the leading πNN

vertex corresponding to the third term in the first line of
Eq. (35), H0 denotes the free Hamilton operator for pions
and nucleons corresponding to the density

H0 = 1
2 π̇2 + 1

2 ( 	∇π)2 + 1
2M2

ππ2 + 1
2N †δmτ3N, (44)

and Eη,E
′
η, and Eη̃ refer to the energy of the nucleons in

the states η, η′, and η̃, respectively. Notice that the first three
terms in Eq. (43) subsume the contributions of the reducible
graphs, whereas the last term refers to the irreducible topology.
Neglecting the proton-to-neutron mass difference in Eq. (44)
one recovers the isospin symmetric result of [37]:
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V2π = η′
[

1

2
H1

λ1

(ω)2
H1 η̃ H1

λ1

ω
H1 + 1

2
H1

λ1

ω
H1 η̃ H1

λ1

(ω)2
H1

− H1
λ1

ω
H1

λ2

ω1 + ω2
H1

λ1

(ω)2
H1

]
η, (45)

where ω denotes the pionic free energy. We remark that
Eq. (43) can also be used to calculate relativistic 1/m

corrections to the two-pion exchange potential if one keeps
the nucleon kinetic energy term in Eq. (44). An additional
unitary transformation should, however, be performed to end
up with the potential used in Ref. [8].

Explicit evaluation of the 3NF using Eq. (43) leads to the
following result:

V 3N
2π =

∑
i �=j �=k

2δm

(
gA

2Fπ

)4 (	σi · 	qi)(	σj · 	qj )(	qi
2 + M2

π

)2(	qj
2 + M2

π

)
× {

[	qi × 	qj ] · 	σk [τ i × τ j ]3 + 	qi · 	qj

× [
(τ i · τ k)τ 3

j − (τ i · τ j )τ 3
k

]}
. (46)

Notice that we have expanded the energy denominators in
powers of δm in Eq. (43) and kept only the linear terms.
Similarly to the case of the two-nucleon potential [14], the
resulting 3NF is entirely due to irreducible diagrams. As a
cross-check of our approach, we have also calculated the two-
pion exchange 2NF corresponding to Eq. (43) and recovered
the results of Ref. [14]. The contribution of the one-pion
exchange diagram (b) in Fig. 3 is given by the following
operators:

V1π = η′
[
− 1

2
H1

λ1

(H0 − Eη)(H0 − Eη̃)
H1 η̃ H2

+ 1

2
H1

λ1

(H0 − Eη)
H2

λ1

(H0 − Eη)
H1

]
η + h.c., (47)

where H2 corresponds to the first two terms in Eq. (39).
Similarly to the previously considered case, we recover the
result of Ref. [37] in the limit δm → 0:

V1π = η′
[
− 1

2
H1

λ1

(ω)2
H1 η̃ H2 − 1

2
H2 η̃ H1

λ1

(ω)2
H1

+ H1
λ1

ω
H2

λ1

ω
H1

]
η. (48)

We find the following expression for the isospin-breaking one-
pion exchange 3NF:

V 3N
1π =

∑
i �=j �=k

2 δm CT

(
gA

2Fπ

)2

× 	σi · 	qi(	qi
2 + M2

π

)2 [τ k × τ i]
3 [	σj × 	σk] · 	qi. (49)

Notice that V 3N
1π can be rewritten in an equivalent form making

use of the following relation:

[τ k × τ i]
3 [	σj × 	σk] · 	qi = (

(τ i · τ j )τ 3
k

− (τ i · τ k)τ 3
j

)
(	σj · 	qi), (50)

which holds true when the corresponding operators act on
antisymmetrized states with respect to j and k.

The diagram in Fig. 3(c) is due to the c5 term in Eq. (35)
and of the order ε(q/
)3 ∼ (q/
)4 as well. Denoting the
interaction ∝ c5 by H3, the contribution of this graph is given
by the following:

V2π = η′
[
H1

λ1

ω
H3

λ1

ω
H1 + H1

λ1

ω
H1

λ2

(ω1 + ω2)
H3

+ H3
λ2

(ω1 + ω2)
H1

λ1

ω
H1

]
η. (51)

Alternatively, one can use the Feynman graph technique to
evaluate the corresponding 3NF. We find the following:

V 3N
2π =

∑
i �=j �=k

(δm)str.

4F 2
π

(
gA

2Fπ

)2

× (	σi · 	qi)(	σj · 	qj )(	qi
2 + M2

π

)(	qj
2 + M2

π

) (τ i · τ k)τ 3
j . (52)

Notice that all leading (i.e., ∼(q/
)4) isospin-violating 3NFs
given by Eqs. (46), (49), and (52) are charge-symmetry-
breaking, that is, of class (III) in the notation of Sec. II C.
We further point out that although the Mπ± �= Mπ0 corrections
to the graphs in Fig. 1, given by the first three graphs, (a), (b),
and (c), in Fig. 6, are formally also of the order (q/
)4, they
lead to 1/m-suppressed contributions to the 3NF for the same
reason as do the corresponding isospin-conserving terms.

The contribution of the last diagram (d) in Fig. 3 is given
by the following:

V2π = 1

2
η′

[
H1

λ1

(H0 − Eη)
H1

λ2

(H0 − Eη)
H WT

1

+ H WT
1

λ2

(H0 − Eη)
H1

λ1

(H0 − Eη)
H1

+ H1
λ1

(H0 − Eη)
H WT

1
λ1

(H0 − Eη)
H1

]
η + h.c., (53)

where H WT
1 refers to the Weinberg-Tomozawa vertex. Explicit

evaluation of this graph can be performed expanding the above
expression in powers of δm and keeping the terms ∝ δm.
Alternatively, one can use the Feynman graph technique. In
that case one should use for the energy transfer of the nucleon
i: q0

i = (p′
i)

0 − p0
i = m + O(m−1), where m denotes the

nucleon mass difference in the final and initial state. We find
the following:

V 3N
2π =

∑
i �=j �=k

δm

4F 2
π

(
gA

2Fπ

)2 (	σi · 	qi)(	σj · 	qj )(	qi
2 + M2

π

)(	qj
2 + M2

π

)
× [

(τ i · τ k)τ 3
j − (τ i · τ j )τ 3

k

]
. (54)

The first corrections to the leading isospin-breaking 3NFs
arise from diagrams (a), (b), and (e) in Fig. 4 and are of the
order (e/4π )2q/
 ∼ (q/
)5. Notice that the contributions of
the graphs (c), (d), and (f) in this figure are already included
in Eqs. (46), (49), and (54). The first two graphs in Fig. 4
represent isospin-violating corrections to graphs (a) and (b)
in Fig. 2 because of the pion mass difference and lead to the
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(a) (b) (c) (d) (e) (f)

FIG. 4. (Color online) Subleading isospin-violating contribution to the 3NF at the order (q/
)5. Crossed rectangles refer to isospin-breaking
vertices with i = 3. For remaining notation, see the legend to Fig. 1.

following:

V 3N
2π =

∑
i �=j �=k

δM2
π

(
gA

2Fπ

)2 (	σi · 	qi)(	σj · 	qj )(	qi
2 + M2

π

)2(	qj
2 + M2

π

)
×

{
τ 3
i τ 3

j

[
−4c1M

2
π

F 2
π

+ 2c3

F 2
π

(	qi · 	qj )

]

+ c4

F 2
π

τ 3
i [τ j × τ k]3 [	qi × 	qj ] · 	σk

}
(55)

V 3N
1π = −

∑
i �=j �=k

δM2
π

gA

8F 2
π

D
	σi · 	qi(	qi

2 + M2
π

)2 τ 3
i τ 3

j (	σj · 	qi),

where we have defined

δM2
π = M2

π± − M2
π0 . (56)

Notice that at this order [i.e., at (q/
)5] one has to distinguish
between the charged and neutral pion masses in the pion
propagators in Eqs. (40) and (42). Isospin-violating corrections
in Eq. (55) are consistent with taking Mπ± in the pion
propagators in Eqs. (40) and (42). The contribution of diagram
(e) can be obtained from Eq. (51) as follows:

V 3N
2π =

∑
i �=j �=k

(
gA

2Fπ

)2 (	σi · 	qi)(	σj · 	qj )(	qi
2 + M2

π

)(	qj
2 + M2

π

){
(δm)em.

4F 2
π

× (
(τ i · τ j )τ 3

k − (τ i · τ k)τ 3
j

) + f1e
2 τ 3

i τ 3
j

}
. (57)

The 3NFs resulting from Mπ± �= Mπ0 in graphs (a) and (b)
of Fig. 4 are charge symmetry conserving (i.e., class (II)),
whereas diagram (e) in this figure gives rise to both charge-
symmetry-conserving (∝f1) and charge-symmetry-breaking
[∝(δm)em.] 3NFs. We stress again that the contribution ∼f1

is considered here for the first time. Notice further that the
charge-symmetry-breaking 3NFs in Eqs. (52), (54), and (57)
can be combined into the following:

V 3N
2π =

∑
i �=j �=k

(δm)str.

4F 2
π

(
gA

2Fπ

)2 (	σi · 	qi)(	σj · 	qj )(	qi
2 + M2

π

)(	qj
2 + M2

π

)
× [

2(τ i · τ k)τ 3
j − (τ i · τ j )τ 3

k

]
. (58)

The coordinate space representation of the obtained 3NFs is
given in the Appendix. Notice that there exist further diagrams
at this order which, however, lead to vanishing contributions
and are not considered in the present work.

Let us now comment on the obtained results. First, we
notice a (formally) larger relative size of the isospin-breaking

corrections compared to the two-nucleon sector. Indeed,
isospin-breaking 3NFs are suppressed by q/
 compared to
the isospin-conserving 3NFs, whereas the suppression factor
in the case of the 2NF is (q/
)2. Second, the leading isospin-
breaking corrections to the 2N and 3N forces arise from
different sources. In particular, the dominant contribution to
the 3NF is governed by the proton-to-neutron mass difference,
which only gives a sub-subleading isospin-breaking correction
to the 2N force. Further, charge dependence of the pion-
nucleon coupling constant does not show up in the 3NF at the
considered order. Similarly, the leading isospin-breaking 3N
contact interaction is of the order εM2

π (q/
)3 ∼ (q/
)6 and
therefore does not need to be included. Last but not least, we
notice that the hierarchy of isospin-violating forces observed in
the two-nucleon system (i.e., charge-independence-breaking
forces are stronger than charge-symmetry-breaking forces [9])
is not valid for three-nucleon forces.

C. Estimation of the size of the isospin-breaking 3NFs

Having derived the dominant isospin-breaking 3NF correc-
tions it would be very interesting to see how large the effects
actually are. This, however, requires explicit calculations of
few-nucleon observables, which goes beyond the scope of the
present study. Here we restrict ourselves to the following very
rough estimation. Consider the two-pion-exchange correction
given in Eq. (46). Approximating 1/(	qi

2 + M2
π ) ∼ 1/M2

π we
obtain the same spin-space structures as the ones that enter
the leading isospin conserving 3NF in Eq. (40). Neglecting
the isospin structure one observes that the strength of the
isospin-breaking terms in Eqs. (46), (52), and (54) reaches a
few percentages of the strength of the corresponding isospin-
conserving pieces in Eq. (40). Based on the above estimates
and on the fact that two-pion exchange 3NFs typically
contribute several hundred kiloelectron volts to the binding
energy of 3H and 3He,7 one might expect the contribution of the
isospin-breaking 3NF in Eq. (46) to the 3He-3H binding-energy
difference to reach 10 . . . 20 keV. Conversely, the relative

7In [38] contributions of various pieces of the Tucson–Melbourne
3NF to the 3H are considered. While the so-called a term (it
corresponds to the c1 term in the chiral 3NF) was found to provide
only a tiny contribution, the b(∝c3) and d terms (∝c4) give about
250 . . . 300 keV each. In the analysis [6] based on chiral EFT, the
expectation value of the two-pion exchange 3NF for 3H (with the
reduced values of the LECs c3,4) was found to be 390 . . . 730 keV
depending on the cutoff chosen.
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(a) (b) (c) (d)

FIG. 5. (Color online) Isospin-violating contribution to the 3NF
due to intermediate -excitation (double lines), which are not
considered explicitly in the present work. The effect of such diagrams
is hidden in certain contact operators that originates from integrating
out the delta in the approach considered here. For remaining notation,
see the legend to Fig. 1.

strength of the formally subleading two-pion exchange terms
in Eqs. (55) and (57) reaches even 2δM2

π/M2
π ∼ 15%. This

surprisingly large size of the subleading isospin-breaking cor-
rections compared to the leading ones is due to the LECs c1,3,4,
which enter Eq. (55) and are numerically large (the physics be-
hind this enhancement of the LECs is well understood [39]).8

Notice that a similar situation occurs for the isospin-conserving
two-pion exchange 2N force, where the numerically dominant
contributions are provided by subleading terms. One should,
however, keep in mind that the isospin-breaking 3NFs ∝ c1,3,4

do not lead to charge symmetry breaking and thus do not
contribute to the 3He-3H binding-energy difference. The
leading charge-symmetry-breaking one-pion-exchange 3NF in
Eq. (49) is numerically smaller in size than the correspond-
ing subleading charge-symmetry-conserving contribution in
Eq. (55) as well, although the reason is now completely
different. The 3NF in Eq. (49) is proportional to the LEC
CT , which is numerically small [40].9 It should be noted
in this context that the size of the isospin-breaking 3NFs
would be more natural if one would treat the  isobar as
an explicit degree of freedom. In that case a large portion of
the subleading 3NFs ∝ c3,4 and D because of graphs (a) and
(b) in Fig. 5 would be promoted to the leading order. Note
also that such an approach with explicit deltas is much more
complicated because one has to deal with more structures

8In that article it was shown that the smallness of the N mass
splitting enhances certain pion-nucleon LECs when one integrates out
the δ. Furthermore, scalar and vector mesons make large contributions
to c1 and c4, respectively.

9In EFT without or with perturbative pions, one has CT = 0 in the
limit when both NN S-wave scattering lengths go to infinity [41].

and also needs to reanalyze pion-nucleon scattering (for an
attempt see, e.g., Ref. [42]). Further, one should keep in
mind that the above numerical estimates are very rough. In
particular, taking into account the neglected isospin structure
will change the numbers by several times depending on the
process considered. Thus, only explicit calculation of various
few-nucleon observables will provide quantitative insights on
the size of the derived 3NFs.

Finally, we point out that there are many 1/m corrections
to the obtained results, some of which are depicted in Fig. 6.
Because we consider the nucleon mass as a larger scale
compared to 
, such relativistic corrections are irrelevant
at the order considered in this work. Notice, however, that
if one would adopt the counting rule m ∼
, various 1/m

corrections (including the ones due to virtual photons) would
have to be included at the subleading order (q/
)5. Some 3NF
diagrams due to virtual photon exchange have been considered
by Yang and found to provide relatively small contributions of
the order of ∼7 keV to the 3He-3H binding-energy difference
[43,44]. Furthermore, we remind the reader that the long-range
electromagnetic 3NFs might, in principle, give rise to large
contributions to scattering observables under certain kinematic
conditions [8].

IV. SUMMARY

Here we summarize the pertinent results of this investiga-
tion:

i. We have given a classification scheme for A-nucleon forces
according to their isospin dependence. In the 3N system,
one finds three different classes of forces, according to
their transformation properties under isospin and charge-
symmetry transformations.

ii. We have worked out the leading and subleading isospin-
violating 3NFs. The leading contributions are generated by
one- and two-pion exchange diagrams with their strength
given by the strong neutron-proton mass difference. The
subleading corrections are again given by one- and two-pion
exchange diagrams, driven largely by the charged-to-neutral
pion mass difference and also by the electromagnetic
neutron-proton mass difference and the dimension two
electromagnetic LEC f1, that plays an important role in
the pion-nucleon system.

iii. We have estimated the relative strength of the leading and
subleading corrections compared to the isospin-conserving
3NF at the same order. Isospin-violating 3NFs are expected

(a) (b) (c) (d) (e)

FIG. 6. (Color online) Selected 1/m corrections to the isospin-violating 3NF, which are not considered in the present work. Wavy lines
refer to photons, and open circles denote vertices with photons. For remaining notation, see the legend to Fig. 1.
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to provide a small but nonnegligible contribution to the
3He-3H binding-energy difference.

In the future, these isospin-breaking forces should be used
to analyze three- and four-nucleon systems based on chiral
EFT, extending, for example, the work presented in Ref. [6].
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APPENDIX: COORDINATE SPACE REPRESENTATION

The leading and subleading 3NFs are local and can easily
be transformed into coordinate space. We first define the
following operators:

O1
ijk =

∫
d3qi

(2π )3

d3qj

(2π )3
ei 	qi ·	rik ei 	qj ·	rjk

× (	σi · 	qi)(	σj · 	qj )(	qi
2 + M2

π

)2(	qj
2 + M2

π

) [	qi × 	qj ] · 	σk

= (	σi · 	∇ik)(	σj · 	∇jk)[ 	∇ik × 	∇jk] · 	σk

×h2(rik) h1(rjk)

= 1

32π2

e−xik

rik

e−xjk

r3
jk

(
(	σi · 	̂rik)(	σj · 	̂rjk) [	̂rik × 	̂rjk] · 	σk

× (1 + xik)
(
3 + 3xjk + x2

jk

) + [	σi × 	σj ] · 	σk (1 + xjk)

− (	σi · 	̂rik) [	̂rik × 	σj ] · 	σk (1 + xik)(1 + xjk)

− [	σi × 	̂rjk] · 	σk (	σj · 	̂rjk)
((
3 + 3xjk + x2

jk

)))
+ 1

24π

e−xik

rik

δ3(rjk)
(
(	σi · 	̂rik) [	̂rik × 	σj ] · 	σk

× (1 + xik) − [	σi × 	σj ] · 	σk

)
(A1)

O2
ijk =

∫
d3qi

(2π )3

d3qj

(2π )3
ei 	qi ·	rik ei 	qj ·	rjk

× (	σi · 	qi)(	σj · 	qj )(	qi
2 + M2

π

)2(	qj
2 + M2

π

) (	qi · 	qj )

= (	σi · 	∇ik)(	σj · 	∇jk)( 	∇ik · 	∇jk) h2(rik) h1(rjk)

= 1

32π2

e−xik

rik

e−xjk

r3
jk

(
(	σi · 	̂rik)(	σj · 	̂rjk) (	̂rik · 	̂rjk)

× (1 + xik)
(
3 + 3xjk + x2

jk

) + (	σi · 	σj ) (1 + xjk)

− (	σi · 	̂rik) (	σj · 	̂rik) (1 + xik)(1 + xjk)

− (	σi · 	̂rjk) (	σj · 	̂rjk)
(
3 + 3xjk + x2

jk

))
+ 1

24π

e−xik

rik

δ3(rjk) ((	σi · 	̂rik) (	σj · 	̂rik)

× (1 + xik) − (	σi · 	σj )) (A2)

O3
ijk =

∫
d3qi

(2π )3

d3qj

(2π )3
ei 	qi ·	rik ei 	qj ·	rjk

× (	σi · 	qi)(	σj · 	qj )(	qi
2 + M2

π

)(	qj
2 + M2

π

)
= −(	σi · 	∇ik)(	σj · 	∇jk) h1(rik) h1(rjk)

= 1

16π2

e−xik

r2
ik

e−xjk

r2
jk

(	σi · 	̂rik)(	σj · 	̂rjk

× (1 + xik)(1 + xjk) (A3)

O4
ijk =

∫
d3qi

(2π )3

d3qj

(2π )3
ei 	qi ·	rik ei 	qj ·	rjk

× (	σi · 	qi)(	σj · 	qj )(	qi
2 + M2

π

)2(	qj
2 + M2

π

)
= −(	σi · 	∇ik)

(	σj · 	∇jk

)
h2(rik) h1(rjk)

= 1

32π2
e−xik

e−xjk

r2
jk

(	σi · 	̂rik)

× (	σj · 	̂rjk) (1 + xjk) (A4)

O5
ijk =

∫
d3qi

(2π )3

d3qj

(2π )3
ei 	qi ·	rik ei 	qj ·	rjk

× (	σi · 	qi)(	qi
2 + M2

π

)2 (	σj · 	qi)

= −(	σi · 	∇ik)(	σj · 	∇ik) h2(rik) g(rjk)

= − 1

8π

e−xik

rik

δ3(rjk)
(
(	σi · 	̂rik)(	σj · 	̂rik)

× (1 + xjk) − (	σi · 	σj )
)
. (A5)

Here 	rij is the relative distance between the nucleons i and j,
rij = |	rij |, 	̂rij = 	rij /rij , and xij = Mπrij . Further,

h1(r) =
∫

d3q

(2π )3

ei 	q·	r(	q 2 + M2
π

) = 1

4πr
e−Mπ r ,

h2(r) =
∫

d3q

(2π )3

ei 	q·	r(	q 2 + M2
π

)2 = 1

8πMπ

e−Mπ r , (A6)

g(r) =
∫

d3q

(2π )3
ei 	q·	r = δ3(r).

The isospin-violating 3NF in Eqs. (46), (49), (52), (55), and
(57) can now be expressed in terms of the operators O1...5

ijk

defined above:

V 3N =
∑

i �=j �=k

(
gA

2Fπ

)2
{

(τ i · τ j )τ 3
k

[
−2

(
gA

2Fπ

)2

δm O2
ijk
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− 1

4F 2
π

(δm)str.O3
ijk + 2δm CT O5

ijk

]
+ (τ i · τ k)τ 3

j

×
[

2

(
gA

2Fπ

)2

δm O2
ijk + 1

2F 2
π

(δm)str. O3
ijk

− 2δm CT O5
ijk

]
+ [τ i × τ j ]3

(
gA

2Fπ

)2

2δm O1
ijk

+ τ 3
i [τ j × τ k]3 1

F 2
π

δM2
π c4 O1

ijk + τ 3
i τ 3

j

×
[

2

F 2
π

δM2
πc3O

2
ijk + f1e

2O3
ijk − 4

F 2
π

c1M
2
πδM2

πO4
ijk

− 1

2gA

DδM2
πO5

ijk

] }
(A7)

Notice that the expressions for the operators O1...5
ijk in

Eqs. (A1)–(A5) are singular at short distance and need to be
regularized. If one chooses to work with the local regulating
functions, the regularized expressions can easily be obtained
by an appropriate modification of the functions h1(r), h2(r),
and g(r).
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