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We presentab initio calculations of low-dimensional systems with complex magnetic ground
states. The computational method and its efficient implementation on massively-parallel su-
percomputing architectures is outlined and characteristic examples from the field of ultra-thin
magnetic films and nanowires on stepped surfaces are given. These calculations allow not only
the description of the ground state properties, they may be also exploited for the prediction of
finite-temperature properties of this technologically important class of materials.

1 Introduction

The miniaturization of magnetic data storage devices forces modern technology to store a
bit of information on increasingly smaller units of magnetic material. In the limit of a few
hundred atoms that are supposed to represent this bit on a microscopic level, the stability
of the magnetic structure is pushed to its limits. External fields or thermal fluctuations may
destroy the magnetic order easily and thus render the storage device unuseful for many
applications. The magnetic boundary between individual bits may become larger than the
bits themselves. Such technological problems call for the development of new materials
that are able to overcome the limitations of conventional magnetic storage materials. The
Institute for Solid State Research (IFF) investigates various possible candidates for new de-
vice technology including ferroelectric materials, tunneling magnetoresistance structures,
and improved magnetic material combinations. In the following examples, we will focus
on the latter.

An understanding of the magnetic properties on a microscopic level can only be gained
on a quantum-mechanical level. The institute Theory I in theIFF has, therefore, developed
computational methods to investigate theoretically theseproperties based on quantum-
mechanics. Such methods that require no experimental inputparameters are often referred
to asab initio methods. The computational effort of anab initio investigation of “real”
materials can be tremendous and it is the combination of high-performance computing and
theoretical material science that lies on the basis of success. In this respect, only the close
collaboration between the Central Institute for Applied Mathematics (ZAM) and the IFF

151



in the Research Centre Jülich made it possible to perform leading-edge material science
calculations.

2 Method & Computational Scheme

Density functional theory provides the framework of mostab initio methods used in solid-
state physics. The quantum-mechanical equations at the basis of this theory are differential
equations similar to the Schrödinger equation. They determine the wavefunctions, from
which all further properties of the studied system are derived, most important of which
is the electron densityn entering the density functional theory. If these wavefunctions
are expanded in basis-functions, the differential equation can be recast in the form of a
standard problem of linear algebra, the eigenvalue problem

H[n]c = εSc (1)

where the matricesH andS are of the dimension of the number of the used basis-functions.
The problem is to determine the eigenvectorc, that specifies the wavefunction and the
scalarε that is the eigenvalue corresponding to the wavefunction. In general the ground
state densityn is unknown. Giving a start density, the solution of Eq. (1) determines the
density entering again in Eq. (1). Obviously, this defines a selfconsistency problem in
which Eq. (1) is solved during each self-consistency step.

In an infinite periodic system the number of basis-functions, that have to be used, is
of course infinite. But the translational symmetry of the periodic crystal allows to block-
diagonalize the matricesH andS into an infinite number of finite matrices that are labeled
by a vector, thek-point. The size of one such matrix is determined by the chemical and
structural complexity of the system at study, i.e. the larger the unit-cell of the crystal,
the larger the size of the matrix. Of this infinite number of matrices, only a subset is
actually calculated and then an interpolation is done, to account for the remainder. Here, a
small unit-cell (or periodicity) requires a larger set of samples that have to be taken for the
interpolation.

In summary, the (main) computational problem consists of either the solution of a few
large eigenvalue problems or the solution of many small ones. Both tasks can be paral-
lelized, the latter one very simple and efficiently by distributing the small eigenvalue prob-
lems over individual nodes of a parallel-computer. Distribution of a single, large eigenvalue
problem over many nodes can be handled by optimized libraries like ScaLAPACK. This
kind of parallelization requires more communication than the previous one, but reduces
the memory requirements on a singe node, thus enabling calculations of systems with very
large unit cells. Our parallelization scheme, employed in the FLEUR-code1 relies on a
combination of both strategies to optimize the performancefor all types of problems (cf.
Fig. 1)

Compared to non-magnetic problems, the accurate treatmentof magnetic systems
in density functional theory is a computationally much moredemanding task: non-
collinearity (i.e. if the magnetic order is not simply ferro-, ferri- or antiferromagnetic)
and/or spin-orbit coupling effects increase the dimensionof the eigenvalue problem by
a factor of two. The magnetic unit cell is usually larger thanthe chemical one, and its
size is generally not known in advance. The symmetry, that can be exploited in these cal-
culations is normally reduced (e.g. changing a real symmetric eigenvalueproblem into a
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Figure 1. Combined parallelization used in theFleur-code: depending on the problem, either a large number of
small matrices or a small number of large matrices have to be diagonalized. In the former case, the “k-point paral-
lelization” is most efficient, the latter case calls for “eigenvector parallelization”. Both schemes can be combined
as indicated on the left. Performance tests (right) allow tofind optimized ways, how both parallelizations should
be combined for specific problems.

complex hermitian one) and the involved energy scales are very small. Not manyab initio
methods worldwide are suited for such complex calculations. The full-potential linearized
plane wave method, as implemented in the FLEUR-code, provides a powerful tool for the
computational investigation of general, non-collinear magnetic structures2.

3 Applications

Low-dimensional magnetic systems differ in many respects from what is known from bulk
structures: the magnetic order, the ordering temperature,the magnetization direction, the
magnetic domains and their separating walls are not only different in a thin film or a wire,
they can also depend on different physical parameters than in a three-dimensional solid.
While in bcc Fe, hcp Co, or fcc Ni the magnetic properties are mainly determined by
the elements interaction with its 8 or 12 nearest neighbor atoms, in low dimensions the
coordination is reduced (2 – 6 nearest neighbors) and a more “atomic like” behavior can
be observed: the magnetic moment is higher, orbital magnetism becomes important, the
ordering temperatures (in the ferromagnetic case the Curietemperature) is lowered. Since
the thin film or wire has usually to be stabilized on a supporting surface, interactions with
this substrate can further influence the magnetic properties.
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3.1 Thin Magnetic Films

Thin films of iron or manganese on a transition-metal substrate illustrate the peculiarities
met in low-dimensional systems: the spin moment of Fe, whichis 2.2µB in bcc Fe, in-
creases to2.7µB for a Fe monolayer on Cu(111) and even3.2µB on Ag(111). On the
weakly interacting close-packed surfaces of the coinage metals Cu and Ag, that only pro-
vide a template on which the Fe atoms are grown, the magnetic (spin) moment increases to
almost atomic-like values (4µB). Also on the (001) surface of Cu, Fe has a large magnetic
moment, and in all these examples Fe forms a ferromagnetic film. Unfortunately, this fer-
romagnetic order, which is technologically desirable, is not very stable against temperature
fluctuations. The weak interaction with the substrate, which on the one hand increases the
magnetic moment, on the other hand does nothing to increase the Curie temperature, which
is – in these systems – determined both by the (exchange) interactions to the neighboring
atoms and by the magnetic anisotropy, a relativistic effect. The latter effect is strong for
heavy atoms, but the atoms at the bottom of the periodic tabledo not easily form magnetic
moments in the condensed state. Therefore, combinations oflight magnetic species and
heavy substrate atoms become technologically more and moreimportant.

If one tries to increase the interaction with the substrate and the magnetic anisotropy by
e.g. replacing copper by the heavier element tungsten, surprisingly also the magnetic order
is changed: a monolayer of Fe on W(001) is no longer ferromagnetic, but shows instead
a checkerboard like magnetic structure (cf. Fig. 2). This unexpected change of magnetic
order was not only predicted by our calculations, it was alsoconfirmed experimentally3.
But further calculations revealed more surprises: many magnetic elements change their
magnetic ground state on the W(001) substrate, Co becomes antiferromagnetic, but Cr and
Mn, normally antiferromagnetic, turn into ferromagnets with large spin moments4. Using
different substrates, it is possible to tune the magnetic interactions to form a variety of
magnetic structures in a way unknown in bulk systems.

Beautiful examples of complex magnetic structures are formed, when the magnetic
interactions are on the border between antiferromagnetic and ferromagnetic and for cer-
tain topologies of the crystal lattice: e.g. we have predicted a complex, three-dimensional
magnetic structure for Mn on Cu(111), which is formed from four chemical unit cells5.
Recently, a magnetic structure consisting of at least 15 chemical unit cells was found ex-
perimentally for Fe/Ir(111)6. Theoretical considerations have shown, that such a magnetic
structure can arise from an even more complex non-collinearstate, which is currently under
investigation. The unit cells required for such a study contain 150 atoms and the matrices,
that have to be diagonalized numerically require not only more than 10 GB of memory, but
also computing time that is only available on massively parallel supercomputers.

While these magnetic superstructures are probably only stable at low temperatures,
other complex magnetic patterns are formed when the temperature is above zero. A snap-
shot of an (e.g. ferro-) magnetic material at finite temperatures will show a superposition
of various elementary magnetic excitations, or magnons, which form a non-collinear mag-
netic state.Ab initio calculations of these snapshots allow – in conjunction withstatistical
methods – to access important material properties like the Curie temperature7. As we
pointed already out, the ordering temperature of two-dimensional systems depends not
only on the interactions between the neighboring spins in the lattice, but also on the in-
teraction of the spin with the field of the crystal lattice itself. This arises from spin-orbit
interaction and our method allows us to investigate this tiny relativistic effect (which be-

154



Fe/Cu(001)

Fe/W(001)

Mn/Cu(111)

Fe/Ir(111)

Figure 2. Magnetic structures of thin Fe and Mn films on different substrates: on a square lattice, like Cu(001),
collinear magnetic order is common, on triangular lattices, like Cu(111), more complex, non-collinear magnetic
ground states can be obtained. The magnetic ground-state ofFe on Ir(111) (lower right) is currently under
investigation.

comes important on a large scale) from first principles. To determine this effect accurately,
a large number ofk-points has to be sampled, requiring that many eigenvalue-problems
have to be solved.

3.2 Magnetic Nanostructures

Even more exotic properties can be encountered in magnetic materials, when the dimen-
sionality is lowered further to one or zero dimensions. Of course, in practice these wires or
clusters have to be supported on some substrate again, so that strictly speaking only quasi-
lowdimensional structures are obtained. But experimentaltechniques have been refined in
the last years, to produce well-defined magnetic nanostructures and to characterize their
magnetic properties in some detail.

One way to stabilize a one-dimensional magnetic structure is to grow magnetic atoms
along the step-edges that occur on surfaces. E.g. a Pt(997) surface has rather smooth
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Figure 3. Left: Schematic picture of a single Co chain on a stepped Pt substrate (top) and chains of different width
(n = 1−6) on a step-edge. The magnetization direction (indicated byred arrows) oscillates as the wires increase
in width. Right: Magnetocrystalline anisotropy energy (MAE, full diamonds) and average orbital moment on Co
(empty circles) for Co chains of different width (denoted byn) on Pt(664). Note the different scales for MAE
(left) and orbital moments (right).

step-edges that are separated by about2nm and close-packed Pt(111) terraces in between.
Experimentally, it was possible to grow not only a singe Co-wire along these edges, but
also thicker wires consisting ofn strands (n = 2, 3, 4, ...). The magnetic measurements
of these wires revealed a peculiar behavior8: While the magnetization of the single wire is
perpendicular to the wire-axis and points towards the upperterrace, for thicker wires the
direction of the magnetization changes towards the lower terrace and finally – for a closed
Co overlayer – stands perpendicular to the vicinal surface.The magnetic anisotropy also
oscillates from large (n = 1), to very small (n = 2) then rises again forn = 4, and finally
settles down to the value known for Co layers on Pt(111).

To explain this surprising magnetic behavior, we performedab initio calculations of
Co wires on a Pt(664) surface9, 10. On this surface, the step-edges are a little bit denser
packed than on Pt(997), nevertheless the unit-cells required to calculate this surface has
to include already 45 atoms. In such a calculation the surface is modeled by a film of
finite thickness, so that the innermost layer of this film has already bulk-like properties. In
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the present case this thickness corresponds to about 7 Pt(111)-type layers. We studied the
effects of relaxation for the case of a single Co wire on this surface9. To compensate for
the loss of coordination, these relaxations tend to decrease the distance of the step-edge
atoms to their nearest neighbors, restoring partially a bulk-like magnetic behavior (e.g.
smaller orbital moments and a smaller magnetic anisotropy). But this effect seems to be
counteracted by the increasing importance of correlationsin low-dimensional materials, so
that experimentally the signatures of low-dimensional magnetism are clearly seen.

Our calculations of thicker Co wires not only revealed the same oscillatory behavior
of the magnetization direction and magnetic anisotropy as was found experimentally (cf.
Fig. 3), with the help of our calculations we can also proposea simple physical model that
accounts for the experimental observations10: If we decompose the overall magnetic prop-
erties into contributions of the individual strands of the multi-wires, we can identify four
different types of strands, which show a characteristic behavior of the magnetic proper-
ties on the magnetization direction (which we can choose freely in the calculation). Since
exchange-coupling requires all the magnetic moments of thewires to point in a common
direction, this can lead to frustration effects: Properties, like the magnetic anisotropy of
the multi-wire can get very small as compared to a single wire, due to a compensation of
contributions of different strands. This explains e.g. thetiny anisotropy of the double-wire,
but also the increase of the anisotropy in thicker wires.

4 Conclusion

We presented examples of calculations of magnetic monolayers of Fe and Mn on different
substrates, as well as Co wires on stepped surfaces. Due to their complexity, these cal-
culations quickly go beyond the limits of conventional computational resources and call
for supercomputers as provided by the John von Neumann Institute for Computing (NIC)
and the Central Institute for Applied Mathematics (ZAM) in the Research Centre Jülich.
The close connection to experimental institutes within andoutside the Research Centre
in combination with a critical amount of CPU time on supercomputers gives us a cutting
edge in responding to the challenging questions in the physics of modern magnetism and
on magnetic materials with technological relevance where the investigation byab initio
calculations can lead to deeper understanding and the prediction of new promising materi-
als.
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