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We consider the system of an electronic quantum dot with a base set of discrete single-particle levels due to
guantization effects in an arbitrarily given attractive potential. Intradot electron-electron interaction is de-
scribed employing the full many-particle Coulomb interaction Hamiltonian in second quantization. Interaction
effects arising from a capacitive response of the environment is incorporated within the framework of a
classical interaction term. Hereby the environment consists of thermodynamical electron reservoirs coupled to
the quantum dot system via weak tunnel barriers. Using this quantum dot model Hamiltonian we present a
many-particle density-matrix approach in order to describe the thermodynamical state of the many-electron
system and calculate expectation values of observables such as particle number and total spin. In the following
we assume that exactly one reservoir dominates concerning a very weak particle injection. The other reservoirs
are thought of as negligible tunneling probes. Especially the system of a laterally confinganstdsonant
tunneling diode in the single-electron tunneling regime for the case of strong barrier asymmetry will be
discussed as an example. Numerical results for realistic diode parameters suggest the definition of a capacitive
and atomic regime of such an interacting quantum dot system.

[. INTRODUCTION gree. Thus mean-field approximations are commonly em-
. . A . . ployed. For example, a Hartree self-consistent approach re-
Continuously ongoing downscaling in conventional semi- ) . o
. . . sembles a first-order mean-field approximation of electron-
conductor microelectronics and the design of novel quantum ; . . . .
; : . . electron interaction terms. This semiclassical approach to
effect based nanosized devices stimulate the theoretical re-

. . ) . interaction terms corresponds to a description within the
search in the field of interacting few-electron systems and :
. . “scope of a capacity model, the so-called orthodox th&by.
single-electron transport. Quantum dots represent an idea

. ._ very successful equilibrium approach to the special case of a
model system to study quantum effects due to size quantiza-
. . . . guantum dot system dt=0 represents the Hartree-Fock ap-
tion, tunneling, electron-electron interaction, and exchangé

I . . proximation where many-particle correlations are
and correlation in mesoscopic many-particle systems. neglected12
These quantum dots have been realized experimentally in geected. -
In this paper we focus on a description of the electron-

a variety of semiconductor heterostructures and metallic sys- . Lo )
. .- electron interaction inside a quantum dot in the framework of
tems. To name a few examples, mesoscopic systems withih

_ ; ; iatinal3,14
two-dimensional2D) electron gases, laterally confined sub—tmh:?rﬁggrgglriiiq;a;gren iglicl)():msljﬁatltz?jci us-tla—h:f agenr(ca)er:te d
um resonant tunneling diodd&®TD) or epitaxially grown y y proj

islands have been investigated extensively many-particle density matrix in second quantization. Hereby
Various physical principles contribute to the electronic Ve restrict ourselves to the case of a quantum dot, which is

properties of such a quantum dot system, which are manpe_arly in equilibrium wit_h a yveakly coupled electron reser-
fested in phenomena such as single-electron tunneling stai¥©ir- T0 @ good approximation we can assume an equilib-
case characteristics and Coulomb blockade effeEisst of  fium form of the density matrix with a given temperature and
all we have to account for discrete single-particle levels dughemical potential. Additionally coupled reservoirs in an ex-
to size quantization effects. Furthermore the electronPerimental setup must represent very weak tunnel probes for
electron interaction together with the fermion nature of thed characterization of electronic properties via electronic
electron(the Pauli principle roughly spokgplays an impor-  transport. Their influence on the quantum dot state therefore
tant role. should be negligible with regard to a large class of observ-
Electronic transport through a quantum dot, which isables such as particle number, spatial charge density distri-
coupled to electron reservoirs via tunnel barriers, implies dution, and total spin. Obviously the current operator does
nonequilibrium state of the whole system, which is reflectechot belong to this class. F&T>I" (where —I'/2 denotes
in form of an electrical current between reservoirs of differ-the total imaginary part of the coupling self-energy induced
ent chemical potentidl.A general approach consists of a by all reservoirswe can neglect level broadening inside the
many-particle nonequilibrium description by use of real-timequantum dot. The subsequent sections present a short de-
Green’s functioné-® Tunnel barriers often are described scription of our approach followed by some numerical re-
within the scope of tight binding modefs® Furthermore the  sults for the special case of a laterally confined gubeso-
intradot electron-electron interaction can be accounted fonant tunneling diode in the strong accumulation single-
from a quantum field theoretical point of view to some de-electron regime.
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II. MANY-PARTICLE QUANTUM DOT MODEL TABLE I. Interaction terms for a coupled reservoir-dot system.

The whole system under consideration consists of an inl—] andv denote capacitive Hartree matrix elemer@@sdenotes the

teractina quantum dot and a number of electron reservoir many-particle Coulomb terni\ the total electron number of the
. 949 . . stem,n the intradot electron number.
which are coupled to the dot system via tunnel barriers. Eac

re_servoir is assumed to be in a thermodynamical state with Bharge Approach Model term
given temperature and chemical potential. Obviously, the
coupled system is in a nonequilibrium state for nonuniform_ , N(N—1)
temperature and chemical potential. This implies an elec?€!lium-Jellium Hartree o
tronic transport between the quantum dot and the adjacent

. L . . . (N=n)(N—-n-1)
reservoirs, which inject particles. In general, the state of sucReservoirReservoir Hartree —
a system is given by a many-particle density matrix. Note_ _ 2
that the Fock space dimension of the matrix s ®hereNis  Jellium— Reservoir Hartree vN(N=n)
the total number of included single-electron states. In ordePOt—Dot Full Q(n)
to obtain a numerically practicable algorithm we will make POt Jellium Hartree —unN
some simplifying assumptions in the following consider- Dot— Reservoir Hartree vn(N—n)
ations. A comparable Green’s function approach incorporat=
ing all correlation effects, which are included in the density-
matrix approach, would require a huge amount of Green’s 1 na(X) Ng(x’)
functions of higher order and therefore lead to comparable v= f d3xf d3x’ — (2.4

Amege, Ix—x'|

numerical efforts.

for the Hartree term between semiclassical charge distribu-
A. Thermodynamical state tionsn, andng (normalized to &) in two regionsA andB,
We are primarily interested in expectation values of ob-respectively. Note that we make a Hartree approximation
servables concerning the quantum dot alone, especially tHehly for those interacting subsystems where reservoir
total electron number and the total spin. Thus we only neegharges are involved. Charges inside the reservoirs are ther-

to know the projected density matrix malized and therefore correlation and exchange terms can be
neglected, so that a description within the scope of the Har-
pdotETrdot(p) (2.1 tree approximation is adequate.

Summarizing these terms we can write for the total inter-

of the quantum dot, where denotes the matrix of the whole action energyE, of a quantum dot and one reservoir in our
reservoir-dot system. In the following we will assume two model

reservoirsL and R (for left and righ}. Then our approach

reads 1 1 2
E; = sVt (§v—f))n + Q(n).
~~ S————
p?°'=a p{§'+ arpRy with ax:ﬁ’ 22 -n —7 ~e
L R

where —TI'y/2 is the imaginary part of the coupling self-
energy of reservoilX. Let us consider the casBr<TI .
Then we have

In the following section we will refer to the prefactors as
andy,. The quantization of the first semiclassical expression
consists in the introduction of particle number operators,

dot_ dot, s dot 2.3 whereas the last many-pa}rticle term will be determined by a
P = PLo T PR ' Coulomb tensolC expression.

with the equilibrium formp?S'. We assume that the small

pertubationsp%’! gives rise only to second-order corrections C. Model Hamiltonian

in expectation values of the considered observable class. The total model Hamiltonian for the quantum dot thus
reads

B. Interaction

We will first discuss all the interaction terms arising from - E € bi‘rbj + ),1N+ y2N2_|_ E 2 Ciju binijkbl
i

Coulomb repulsion and attraction of dot electrons, reservoir i 27Kkl

electrons, and the positively charged backgroutie so- (2.6)
called jellium inside the reservoirs. Since the intradot
electron-electron interaction plays a crucial role concernin
many-particle exchange and correlations effects we will ac-
count for these terms in a fully quantum-mechanical treat-

ith single-particle matrix elements; and with the Cou-
omb tensor

2
ment in second quantization. The remaining terms will be Ci = € z f d3xf d3x’¢-*(>z,a) ¢?<()Z’,g’)
described in a semiclassical picture with a constant Hartree T 4mege, " ' !
interaction energy. See Table | for a summarydenotes
reservoir-reservoir terms andreservoir-dot terms. Here we X;(ﬁk(;',a') (X, 0). (2.7)

consider expressions of the form Ix—x'|
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Hereb; andb! denote annihilation operators referring to an Note that anticommutation symmetries drastically reduce the
arbitrary but numerically suitable set of single-particle statesyumber of independent elements. . . .
{¢;}. The indexi includes spin and spatial degrees of free- Now we can write down the many-particle density matrix

N i i dotfor the temperatur@ (with B8:=1/kgT) and the chemical
dom.N is the particle number operator. Note that p p B B

potential w:
Cijii % Ospingi)spind) Ospin(i)spin() - (2.9
1 .
For an arbitrarily given attractive potentigl and an ex- pd"‘:Z— exd —B(H—uN)], (2.15
ternal magnetic fieldin the z direction with cyclotron fre- o

quencyw, the Rashb® single-particle matrix elements in a
semiconductor heterostructure are taken to be

€ij :< bi,
- In the following we will use the abbreviatiohl :=— B(H
. * N
—|hwcx®+§m we X —uN). In order to calculate the exponential function we
diagonalizeH with a unitary(Fock spacgtransformatiorQ:

with the particle number operatdN=3b’/b/ and the
grand-canonical partition function

h? R
_EM V(X,y) Zge=Tr{exd — B(H—uN)]}. (2.16

+1* §><*+—g*m*fmC
za (SXm) 2m, S,

). 2.9 n n
¢J> 29 Haiag=Q ' Hgr Q. (2.17)

S denotes the electron spin operat&rthe Rashba coupling Then we have
coefficient, = the kinetic momentum, anth* the electron
effective mass. . » exp(Hg) = Q exlHaiag) Q 7,

For numerical reasons we restrict ourselves to a finite sub-
set B:={¢; | E;<Ena¢ Of the energetically lowest-lying . -
single-particle states. First of all we diagonalize the single- (exp(Hdiag))1a= 13 €XH (Haiag)u 1. (2.18
particle matrixe;; and obtain the orthonormalized eigenvec- . _ _ .
tor set B':={¢/} by use of a unitary transformation Note that exf(Hgiag)i] is a real number. Finally we obtain
P (P 1=P"):

Zg=2, extl (Haiagh] (2.19
, , gr iag
o =; Pji¢ja bj:zi Pjibi . (2.10 [
Sl . ., and
Then we havee=Pe'P™~ with the diagonal matrixey,

= yq€p - The Coulomb tensor transforms as 1
Per =5 QexpHaiag) Q™ (2.20

gr

Cé’q”:i%| PPl P PitCiji - (211

D. Resonant tunneling diode

In order to keep the Fock space dimensioha® small as . . . .
P P A resonant tunneling diod& consists of a double barrier

possible for numerical reasons we truncBteto a new re- . : . ;

. " b oo , semiconductor heterostructure, that is, a one-dimensional
stricted base sd”={¢j eB' [ &/ <Emac< Enad CB'. Note (1, quantum well with electron reservoirs coupled to both
that we have to ensure that the choice Bf,, does not  sides via tunnel barriers. Let us denote this direction ag the
change the expectation values significantly for a giverdirection. If one applies an additional confinement by use of
chemical potential. Here one must keep in mind that thean attractive potential in the laterat,) directions a three-
interaction is repulsive and therefore energetically raises thgimensional(3D) binding potential arises!’ On a mesos-

electron filling of the quantum dot. copic length scale such a system represents a quantum dot
For this given single-particle badg” we construct or-  with two directly coupled reservoirs. In order to have one
thonormalized field states dominating reservoir we just have to choose a strong barrier
Lt e et thickness asymmetry in the heterostructure.
P=(b'y_p)™ 1 (D)0 )0 Do (212 Since in most experimental RTD situations of a disklike

shaped quantum dot the spatial extent of the wave functions
between the two barriers is about one order of magnitude
smaller than the lateral dimensions, we only consider the
My =(®;,b'Tbi®)) (2.13  ground staten,=0 referring to the 1D quantum well in tfe
direction. In this case a suitable orthonormalized single-
and further electron base seB consists of 2D harmonic oscillator
5 state$® with the characteristic lengthg = \/(w, ;m*) and
M= (®;,b" o’ Ibybl,®)). (2149 y,=hl(w,,m*) and Hermite polynomialst,:

starting from the vacuum state, ... Then we have to evalu-
ate Fock space matrix elemeritk;, of the form
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¢nx Ny vﬂZZO,S(X'y!Z! O-) S T T T T (G)
2D harmonic oscillator 1

1 4L electron number characteristics
example: Ely= 1 meV, T =60mK

=9,

TS

V2 gl xo Yo

ol *3l 3
Xexp — 5| —| +|— z
2|\ %o Yo ol corrected interaction

RN NEES
X_OHnY% Z—OSII"IZ—O. (22]) 1L

Note that these are not eigenfunctions of the single-particle
part of the Hamiltonian in general. In the next section we 0
will employ these base functions for numerical simulations.

Xan

411 (meV)

IIl. NUMERICAL RESULTS 2D harmonic oscillator e (b)

Based on the quantum dot model and the density-matrix 19f interaction energies / =
description of the previous section we now discuss some N ) /'/ o
basic aspects of electron filling characteristics inside RTD % | copacitive regime & atomic regime
guantum dots. In order to study charging effects we assume % ./:;u/n
diode with strong barrier asymmetry under bias conditions o1
where electrons accumulate inside the @oat is, the emitter
barrier must be thinngrAs can be seen from Green’s func-
tion calculations, the successive filling of the quantum dot —=— Coulomb term (ground stote)
with varying bias voltaggi.e. varying chemical potentigl o L -7 e E
can be observed directly in the form of single-electron cur- - S .
rent steps. Thus there is a simple experimental means to E _(meV)
measure electron occupation inside the quantum dot under lat
the strong accumulation condition as a function of the chemi- FIG. 1. Simulation overview(a) Particle numbem, versus
cal potential, which can be deduced directly from the appliedthemical potentiaje characteristics with a definition for the cor-
bias voltage between the two reservoirs for a given magnetigected interaction energg;,. (b) Interaction energie€,.. as a
field. For the influence of the external magnetic field on thefunction of the lateral quantization energy,,. Solid squares indi-
chemical potential inside a reservoir, see Ref. 17. cate the Coulomb terr@y,q, of the single-particle ground state and

In order to visualize the main aspects of the electron-open squares the corrected interaction enéigy
electron interaction we first consider a GaAs RTD with a N o ]
quantum well width ofzy= 17 nm (Al :Ga -As barriers qther hand, capacitive reservoir interaction terms can be es-
and a 2D lateral harmonic potential witho, o=% w, o. Fur- timated to be at least one order of magnitude smaller than the

ther we assumen* =0.067m,, g* =0.44, ¢,=13.1, and a  intradot terms for the RTD under consideraion

temperature off =30 mK. For the ground state and the first  Figure & shows a simulated particle number versus
excited state of the quantum well in taelirection one easily ~chemical potential characteristics, whéig is defined as the
obtains E, ;=20 meV andE,;=72 meV, respectively. “;orrected |r_1tera_ct|on energy” of f[he first two electrons. _In
Therefore we can consider a chemical potential range ofig. 1(b) varlpus'mteractlon energies are plotted for varying
Au=52 meV if we restrict ourselves to a single-particle lateral quantization energs ;=7 wo.

base set with the-well ground state in the following. Inthe ~ First we consider the behavior @go00. We haveE,
numerical part we take 18 single-particle base stére®)  =72/(M*x5)x, , wherex, denotes the lateral characteris-
and a 512-dimensional Fock subspace. A comparison bdic length, and furtheCogscX, * for largex, (that is, small
tween 1024 and 2048 dimensions shows that the deviatiorfs,;). ThereforeCgos EfZ2, which can be seen in Fig. 1.

in the electron numbers are less than 5%. The Coulomb ma- For E,;;>Cgooo the Coulomb repulsion is larger than the
trix elements have been computed using Monte Carlo techsingle-particle level spacing and thus it is energetically fa-
nigues, all single-particle matrix elements using standard nuvorable for the first two electrons to occupy the ground state
merical integration techniques. We will refer to the ground-with opposite spins. Hence we see that the corrected interac-
state Coulomb interaction energy as the “Coulomb matrixtion energyE,~ Cggqofor this case. We will call this regime
element” Cygqg in the following. the “atomic regime.”

Constant capacitive energy terms arising from the reser- On the other hand, foE,,;<Cgqo it is favorable to oc-
voirs and spin-orbit interaction terms will be set to zero incupy a mixture of higher excited single-particle states be-
our examples since the major effects of many-particle correeause their interaction tensor elements diminish for growing
lation we are interested in arise from the intradot interactionquantum numbers. Therefore we obseBg< Cyggo due to
(The Rashba terms only provide minor corrections to themany-particle effectgFig. 1). We will call this regime the
filling step positions concerning the chemical potential for“capacitive regime” since we observe a behavior analogous
the considered AGa,_,As/GaAs heterostructure. On the to a classical capacitor: Electrons tend to distribute their total
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FIG. 3. Atomic regime.(a) Simulated positions of single-
electron steps at chemical potentialas a function of an external
magnetic fieldB. (b) Total electron spin in the direction repre-
sented as a gray-scale plot in the vicinity of a degeneracy point of
single-particle levels.

FIG. 2. Capacitive regime(a@) Simulated positions of single-
electron steps at chemical potenjalas a function of an external
magnetic field with cyclotron enerdy.,. (b) Total electron spin
in z direction represented as a gray-scale fi8teplike borders are
due to the simulation step width B,. A bright structure in the varying magnetic field. The difference in chemical potential
region of spin 5/2 is an artifact due to the finite Fock subspacdor adjacent steps is quite similar over the full field range.
dimension). This behavior is typical for the capacitive regime where the

repulsion energy is larger than the single-particle level spac-
charge on the surface of the confining potential, which caring. Thus even in this system of a few strong interacting and
readily be seen from the extentx;o J2j+1 of an excited- ~ correlated electrons one obtains a semiclassical filling behav-
state wave function for quantum numberin the next two  ior equivalent to a capacitor. The orthodox theBiiith the
subsections we will discuss some electron filling details ofabove-defined;, as the effective interaction enejgthere-
each quantum dot regim@nalogous to Hund'’s rules for fore can be applied to some degree for the description con-
atoms. cerning the total particle number. Hence we are able to de-
fine an intradot interaction capaci€y,,= e?/E, for use with
the orthodox theory based dfy,.

Obviously the density-matrix approach provides complete

This regime requires a large amount of computationainformation about the quantum-mechanical state and the dis-
power since with diminishing,,; we have to include a lot of cussed class of observables. An interesting feature of the
single-particle levels within the interaction enerGy,,,to  capacitive regime can be seen in Figb2where the total
add one additional electron to the quantum dot systemelectron spin in the direction is plotted in a gray-scale dia-
Therefore the dimension of the Fock subspace grows exparam. Due to exchange-correlation effects we observe a po-
nentially. Now we will consider the above mentioned RTD larization of the electron system in the applied magnetic
quantum dot withE;;;=1 meV (=Cyyp~3.8 meV, E;, field.
~2.6 me\). Hereby we have taken 50 single-particle levels Experimental evidence for such a capacitive behavior of
as a base set and a Fock space dimension of 512 up to 10Zingle-electron steps in an external magnetic field can be

In Fig. 2@) one can see the position of single-electronfound in various publication® Here laterally confined RTD
steps as a function of an externally applied magnetic field irstructures have been investigated for the case of strong bar-
the z direction with cyclotron energy Ecyc=fiw rier asymmetry similar to the numerically simulated quantum
=#eB/m*. For the first step at the lowest chemical potentialdot in this example. By use of a Schottky gate for a variable
we observe the typical magnetic field dependence of théateral confinement the electronic filling of a RTD quantum
ground state of a 2D harmonic oscillatSrFurthermore we  dot has be investigatétas a function of the lateral potential
observe a nearly parallel shift of all following steps with (with fixed chemical potentiak). For an arbitrarily given

A. Capacitive regime
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lateral potentiaV (i.e., single-particle matrix elements as a as a gray-scale plot. Only in the center of the anticrossing
function of the gate voltagein the Hamiltonian equation does one observe a parallel spin alignment due to small en-
(2.6) a numerical treatment of such systems should be posergy lowering electron exchange terms. At all other points
sible within the scope of the density matrix approach even irthe system shows a tendency to minimize the total spin in the
the case of strong intradot correlations due to many-particle direction for small magnetic fields. Some primitive orbital
interaction effects. figures show an atomlike behavior.

B. Atomic regime IV. CONCLUSION

In contrast to the capacitive regime we now consider the Based on a many-particle density-matrix approach with
case where the single-particle level spacig, is larger  an underlying interaction Hamiltonian in second quantization
than the first Coulomb tensor eleme@pge,. This regime  we have been able to describe the electron filling character-
can be reached in semiconductor systems only in the case @ftics of an interacting quantum dot system. Especially intra-
quantum dots on a characteristic length scale smaller thandot exchange and correlation effects have been incorporated.
few tens of nanometers. Figure 3 shows a typical filling be-Employing numerical results for the case of a single-electron
havior of an artifical quantum dot witk,,;=10 meV and RTD in the strong accumulation regime we define a capaci-
Cooog=2 meV. Again the first lowest-lying step exhibits the tive and atomic quantum dot depending on the ratio between
characteristicB-field dependence followed by the secondsize quantization energies and interaction matrix elements,
spin-degenerate electron @tw,,=Cgooo. Higher single- that is, the geometrical dimensions. We presented a fully
particle leveld® still can be recognized with an interaction- quantum-mechanically based definition of an intradot inter-
induced splitting of the spin degeneracy. As an interestingaction capacity. A subsequent paper is planned to present
feature we now focus on the four-level anticrossing pointexperimental results on a RTD quantum dot system and a
that is visualized in Fig. ®). Hereby the total spin is shown comparative analysis based on the density-matrix model.
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