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Many-particle density-matrix approach to a quantum dot system for the strong electron
accumulation case

K. M. Indlekofer and H. Lu¨th
Institut für Schicht- und Ionentechnik, Forschungszentrum Ju¨lich GmbH, 52425 Ju¨lich, Germany

~Received 18 April 2000!

We consider the system of an electronic quantum dot with a base set of discrete single-particle levels due to
quantization effects in an arbitrarily given attractive potential. Intradot electron-electron interaction is de-
scribed employing the full many-particle Coulomb interaction Hamiltonian in second quantization. Interaction
effects arising from a capacitive response of the environment is incorporated within the framework of a
classical interaction term. Hereby the environment consists of thermodynamical electron reservoirs coupled to
the quantum dot system via weak tunnel barriers. Using this quantum dot model Hamiltonian we present a
many-particle density-matrix approach in order to describe the thermodynamical state of the many-electron
system and calculate expectation values of observables such as particle number and total spin. In the following
we assume that exactly one reservoir dominates concerning a very weak particle injection. The other reservoirs
are thought of as negligible tunneling probes. Especially the system of a laterally confined sub-mm resonant
tunneling diode in the single-electron tunneling regime for the case of strong barrier asymmetry will be
discussed as an example. Numerical results for realistic diode parameters suggest the definition of a capacitive
and atomic regime of such an interacting quantum dot system.
i
tu
l
n

de
tiz
ng

ly
sy
ith
b-

ic
an
ta

u
on
th

is
s
te
r
a
e

d

fo
e

m-
re-

on-
to

the

of a
p-
re

n-
of

ted
by

h is
r-

lib-
nd
x-
for

nic
fore
rv-
stri-
es

ed
he
t de-
re-

le-
I. INTRODUCTION

Continuously ongoing downscaling in conventional sem
conductor microelectronics and the design of novel quan
effect based nanosized devices stimulate the theoretica
search in the field of interacting few-electron systems a
single-electron transport. Quantum dots represent an i
model system to study quantum effects due to size quan
tion, tunneling, electron-electron interaction, and excha
and correlation in mesoscopic many-particle systems.

These quantum dots have been realized experimental
a variety of semiconductor heterostructures and metallic
tems. To name a few examples, mesoscopic systems w
two-dimensional~2D! electron gases, laterally confined su
mm resonant tunneling diodes~RTD! or epitaxially grown
islands have been investigated extensively.1

Various physical principles contribute to the electron
properties of such a quantum dot system, which are m
fested in phenomena such as single-electron tunneling s
case characteristics and Coulomb blockade effects.2 First of
all we have to account for discrete single-particle levels d
to size quantization effects. Furthermore the electr
electron interaction together with the fermion nature of
electron~the Pauli principle roughly spoken! plays an impor-
tant role.

Electronic transport through a quantum dot, which
coupled to electron reservoirs via tunnel barriers, implie
nonequilibrium state of the whole system, which is reflec
in form of an electrical current between reservoirs of diffe
ent chemical potential.3 A general approach consists of
many-particle nonequilibrium description by use of real-tim
Green’s functions.4–6 Tunnel barriers often are describe
within the scope of tight binding models.7–9 Furthermore the
intradot electron-electron interaction can be accounted
from a quantum field theoretical point of view to some d
PRB 620163-1829/2000/62~19!/13016~6!/$15.00
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gree. Thus mean-field approximations are commonly e
ployed. For example, a Hartree self-consistent approach
sembles a first-order mean-field approximation of electr
electron interaction terms. This semiclassical approach
interaction terms corresponds to a description within
scope of a capacity model, the so-called orthodox theory.10 A
very successful equilibrium approach to the special case
quantum dot system atT50 represents the Hartree-Fock a
proximation where many-particle correlations a
neglected.11,12

In this paper we focus on a description of the electro
electron interaction inside a quantum dot in the framework
many-particle ~quantum field! statistics.13,14 The general
thermodynamical state is formulated by use of a projec
many-particle density matrix in second quantization. Here
we restrict ourselves to the case of a quantum dot, whic
nearly in equilibrium with a weakly coupled electron rese
voir. To a good approximation we can assume an equi
rium form of the density matrix with a given temperature a
chemical potential. Additionally coupled reservoirs in an e
perimental setup must represent very weak tunnel probes
a characterization of electronic properties via electro
transport. Their influence on the quantum dot state there
should be negligible with regard to a large class of obse
ables such as particle number, spatial charge density di
bution, and total spin. Obviously the current operator do
not belong to this class. ForkBT.G ~where2G/2 denotes
the total imaginary part of the coupling self-energy induc
by all reservoirs! we can neglect level broadening inside t
quantum dot. The subsequent sections present a shor
scription of our approach followed by some numerical
sults for the special case of a laterally confined sub-m reso-
nant tunneling diode in the strong accumulation sing
electron regime.
13 016 ©2000 The American Physical Society
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II. MANY-PARTICLE QUANTUM DOT MODEL

The whole system under consideration consists of an
teracting quantum dot and a number of electron reservo
which are coupled to the dot system via tunnel barriers. E
reservoir is assumed to be in a thermodynamical state w
given temperature and chemical potential. Obviously,
coupled system is in a nonequilibrium state for nonunifo
temperature and chemical potential. This implies an e
tronic transport between the quantum dot and the adja
reservoirs, which inject particles. In general, the state of s
a system is given by a many-particle density matrix. N
that the Fock space dimension of the matrix is 2N, whereN is
the total number of included single-electron states. In or
to obtain a numerically practicable algorithm we will ma
some simplifying assumptions in the following conside
ations. A comparable Green’s function approach incorpo
ing all correlation effects, which are included in the densi
matrix approach, would require a huge amount of Gree
functions of higher order and therefore lead to compara
numerical efforts.

A. Thermodynamical state

We are primarily interested in expectation values of o
servables concerning the quantum dot alone, especially
total electron number and the total spin. Thus we only n
to know the projected density matrix

rdot[Trdot~r! ~2.1!

of the quantum dot, wherer denotes the matrix of the whol
reservoir-dot system. In the following we will assume tw
reservoirsL and R ~for left and right!. Then our approach
reads

rdot.aLrL0
dot1aRrR0

dot with aX5
GX

GL1GR
, ~2.2!

where 2GX/2 is the imaginary part of the coupling sel
energy of reservoirX. Let us consider the caseGR!GL .
Then we have

rdot5rL0
dot1drR

dot ~2.3!

with the equilibrium formrL0
dot . We assume that the sma

pertubationdrR
dot gives rise only to second-order correctio

in expectation values of the considered observable class

B. Interaction

We will first discuss all the interaction terms arising fro
Coulomb repulsion and attraction of dot electrons, reserv
electrons, and the positively charged background~the so-
called jellium! inside the reservoirs. Since the intrad
electron-electron interaction plays a crucial role concern
many-particle exchange and correlations effects we will
count for these terms in a fully quantum-mechanical tre
ment in second quantization. The remaining terms will
described in a semiclassical picture with a constant Har
interaction energy. See Table I for a summary.v denotes
reservoir-reservoir terms andṽ reservoir-dot terms. Here w
consider expressions of the form
-
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1

4pe0e r
E d3xE d3x8

nA~xW ! nB~xW8!

uxW2xW8u
~2.4!

for the Hartree term between semiclassical charge distr
tions nA andnB ~normalized to 1e) in two regionsA andB,
respectively. Note that we make a Hartree approximat
only for those interacting subsystems where reserv
charges are involved. Charges inside the reservoirs are
malized and therefore correlation and exchange terms ca
neglected, so that a description within the scope of the H
tree approximation is adequate.

Summarizing these terms we can write for the total int
action energyEI of a quantum dot and one reservoir in o
model

~2.5!

In the following section we will refer to the prefactors asg1
andg2. The quantization of the first semiclassical express
consists in the introduction of particle number operato
whereas the last many-particle term will be determined b
Coulomb tensorC expression.

C. Model Hamiltonian

The total model Hamiltonian for the quantum dot th
reads

H5(
i , j

e i j bi
†bj1g1N̂1g2N̂21

1

2 (
i , j ,k,l

Ci jkl bi
†bj

†bkbl

~2.6!

with single-particle matrix elementse i j and with the Cou-
lomb tensor

Ci jkl 5
e2

4pe0e r
(
s,s8

E d3xE d3x8f i* ~xW ,s! f j* ~xW8,s8!

3
1

uxW2xW8u
fk~xW8,s8! f l~xW ,s!. ~2.7!

TABLE I. Interaction terms for a coupled reservoir-dot syste

v and ṽ denote capacitive Hartree matrix elements,Q denotes the
many-particle Coulomb term,N the total electron number of the
system,n the intradot electron number.

Charge Approach Model term

Jellium↔Jellium Hartree v
N~N21!

2

Reservoir↔Reservoir Hartree v
~N2n!~N2n21!

2
Jellium↔Reservoir Hartree -vN(N2n)
Dot↔Dot Full Q(n)
Dot↔Jellium Hartree 2 ṽnN
Dot↔Reservoir Hartree ṽn(N2n)
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Herebi andbi
† denote annihilation operators referring to

arbitrary but numerically suitable set of single-particle sta
$f i%. The indexi includes spin and spatial degrees of fre
dom. N̂ is the particle number operator. Note that

Ci jkl }dspin(i )spin(l ) dspin(j )spin(k) . ~2.8!

For an arbitrarily given attractive potentialV and an ex-
ternal magnetic field~in the z direction! with cyclotron fre-
quencyvc the Rashba15 single-particle matrix elements in
semiconductor heterostructure are taken to be

e i j 5K f i , F2
\2

2m*
D1 V~x,y!

2 i\vc x
d

dy
1

1

2
m* vc

2 x2

1
1

\
aW •~SW 3pW !1

g* m* \vc

2me
Sz G f j L . ~2.9!

SW denotes the electron spin operator,aW the Rashba coupling
coefficient,pW the kinetic momentum, andm* the electron
effective mass.

For numerical reasons we restrict ourselves to a finite s
set Bª$f i u Ei,Emax% of the energetically lowest-lying
single-particle states. First of all we diagonalize the sing
particle matrixe i j and obtain the orthonormalized eigenve
tor set B8ª$f i8% by use of a unitary transformatio
P (P215P†):

f i85(
j

Pji f j , bj5(
i

Pji bi8 . ~2.10!

Then we havee5Pe8P21 with the diagonal matrixepq8
5dpqep8 . The Coulomb tensor transforms as

Cpqrt8 5 (
i , j ,k,l

Pip* Pjq* PkrPltCi jkl . ~2.11!

In order to keep the Fock space dimension 2N as small as
possible for numerical reasons we truncateB8 to a new re-
stricted base setB95$f i8PB8 u e i8,Ẽmax,Emax%#B8. Note

that we have to ensure that the choice ofẼmax does not
change the expectation values significantly for a giv
chemical potential. Here one must keep in mind that
interaction is repulsive and therefore energetically raises
electron filling of the quantum dot.

For this given single-particle baseB9 we construct or-
thonormalized field states

F I5~b8N21
† !nN21

•••~b81
†!n1~b80

†!n0 Fvac ~2.12!

starting from the vacuum stateFvac . Then we have to evalu
ate Fock space matrix elementsMJI of the form

MJI5~FJ ,b8x
†bx8F I ! ~2.13!

and further

M̃ JI5~FJ ,b8x
†b8y

†bz8bw8 F I !. ~2.14!
s
-

b-

-

n
e
e

Note that anticommutation symmetries drastically reduce
number of independent elements.

Now we can write down the many-particle density mat
rdot for the temperatureT ~with bª1/kBT) and the chemical
potentialm:

rdot5
1

Zgr
exp@2b~H2mN̂!#, ~2.15!

with the particle number operatorN̂5( ib8 i
†bi8 and the

grand-canonical partition function

Zgr5Tr$exp@2b~H2mN̂!#%. ~2.16!

In the following we will use the abbreviationĤª2b(H
2mN̂). In order to calculate the exponential function w
diagonalizeĤ with a unitary~Fock space! transformationQ:

Ĥdiag5Q21 ĤB9 Q. ~2.17!

Then we have

exp~ĤB9!5Q exp~Ĥdiag! Q21,

„exp~Ĥdiag!…IJ5d IJ exp@~Ĥdiag! II #. ~2.18!

Note that exp@(Ĥdiag)II# is a real number. Finally we obtain

Zgr5(
I

exp@~Ĥdiag! II # ~2.19!

and

rB9
dot

5
1

Zgr
Q exp~Ĥdiag! Q21. ~2.20!

D. Resonant tunneling diode

A resonant tunneling diode16 consists of a double barrie
semiconductor heterostructure, that is, a one-dimensio
~1D! quantum well with electron reservoirs coupled to bo
sides via tunnel barriers. Let us denote this direction as thz
direction. If one applies an additional confinement by use
an attractive potential in the lateral (x,y) directions a three-
dimensional~3D! binding potential arises.2,17 On a mesos-
copic length scale such a system represents a quantum
with two directly coupled reservoirs. In order to have o
dominating reservoir we just have to choose a strong bar
thickness asymmetry in the heterostructure.

Since in most experimental RTD situations of a diskli
shaped quantum dot the spatial extent of the wave funct
between the two barriers is about one order of magnit
smaller than the lateral dimensions, we only consider
ground statenz50 referring to the 1D quantum well in thez
direction. In this case a suitable orthonormalized sing
electron base setB consists of 2D harmonic oscillato
states18 with the characteristic lengthsx05A\/(vx 0m* ) and
y05A\/(vy 0m* ) and Hermite polynomialsHn :
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fnx ,ny ,nz50,s~x,y,z,s!

5ds s

1

A2(nx1ny) nx! ny! p x0 y0

3expH 2
1

2 F S x

x0
D 2

1S y

y0
D 2G J

3HnxS x

x0
D HnyS y

y0
DA2

z0
sinS pz

z0
D . ~2.21!

Note that these are not eigenfunctions of the single-part
part of the Hamiltonian in general. In the next section
will employ these base functions for numerical simulation

III. NUMERICAL RESULTS

Based on the quantum dot model and the density-ma
description of the previous section we now discuss so
basic aspects of electron filling characteristics inside R
quantum dots. In order to study charging effects we assum
diode with strong barrier asymmetry under bias conditio
where electrons accumulate inside the dot~that is, the emitter
barrier must be thinner!. As can be seen from Green’s fun
tion calculations, the successive filling of the quantum
with varying bias voltage~i.e. varying chemical potential!
can be observed directly in the form of single-electron c
rent steps.9 Thus there is a simple experimental means
measure electron occupation inside the quantum dot u
the strong accumulation condition as a function of the che
cal potential, which can be deduced directly from the appl
bias voltage between the two reservoirs for a given magn
field. For the influence of the external magnetic field on
chemical potential inside a reservoir, see Ref. 17.

In order to visualize the main aspects of the electr
electron interaction we first consider a GaAs RTD with
quantum well width ofz05 17 nm (Al0.3Ga0.7As barriers!
and a 2D lateral harmonic potential with\vx 05\vy 0. Fur-
ther we assumem* 50.067me , g* 50.44, e r513.1, and a
temperature ofT530 mK. For the ground state and the fir
excited state of the quantum well in thez direction one easily
obtains Ez 0520 meV and Ez 1572 meV, respectively.
Therefore we can consider a chemical potential range
Dm552 meV if we restrict ourselves to a single-partic
base set with thez-well ground state in the following. In the
numerical part we take 18 single-particle base states~in B)
and a 512-dimensional Fock subspace. A comparison
tween 1024 and 2048 dimensions shows that the deviat
in the electron numbers are less than 5%. The Coulomb
trix elements have been computed using Monte Carlo te
niques, all single-particle matrix elements using standard
merical integration techniques. We will refer to the groun
state Coulomb interaction energy as the ‘‘Coulomb ma
element’’ C0000 in the following.

Constant capacitive energy terms arising from the re
voirs and spin-orbit interaction terms will be set to zero
our examples since the major effects of many-particle co
lation we are interested in arise from the intradot interacti
~The Rashba terms only provide minor corrections to
filling step positions concerning the chemical potential
the considered AlxGa12xAs/GaAs heterostructure. On th
le
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other hand, capacitive reservoir interaction terms can be
timated to be at least one order of magnitude smaller than
intradot terms for the RTD under consideration!.

Figure 1~a! shows a simulated particle number vers
chemical potential characteristics, whereE12 is defined as the
‘‘corrected interaction energy’’ of the first two electrons.
Fig. 1~b! various interaction energies are plotted for varyi
lateral quantization energyElat[\v0.

First we consider the behavior ofC0000. We haveElat

5\2/(m* x0
2)}x0

22, wherex0 denotes the lateral characteri
tic length, and furtherC0000}x0

21 for largex0 ~that is, small
Elat). ThereforeC0000}Elat

1/2, which can be seen in Fig. 1.
For Elat.C0000 the Coulomb repulsion is larger than th

single-particle level spacing and thus it is energetically
vorable for the first two electrons to occupy the ground st
with opposite spins. Hence we see that the corrected inte
tion energyE12'C0000 for this case. We will call this regime
the ‘‘atomic regime.’’

On the other hand, forElat!C0000 it is favorable to oc-
cupy a mixture of higher excited single-particle states
cause their interaction tensor elements diminish for grow
quantum numbers. Therefore we observeE12,C0000 due to
many-particle effects~Fig. 1!. We will call this regime the
‘‘capacitive regime’’ since we observe a behavior analogo
to a classical capacitor: Electrons tend to distribute their to

FIG. 1. Simulation overview.~a! Particle numberNe versus
chemical potentialm characteristics with a definition for the cor
rected interaction energyE12. ~b! Interaction energiesEe-e as a
function of the lateral quantization energyElat . Solid squares indi-
cate the Coulomb termC0000 of the single-particle ground state an
open squares the corrected interaction energyE12.



a

o
r

na
f

em
p
D

ls
0

on
i

ia
th

th

ial
e.
he
ac-
nd
av-

on-
de-

ete
dis-
the

-
po-
tic

of
be

bar-
m

ble
m
l

-
l

t of
-
l

ac

13 020 PRB 62K. M. INDLEKOFER AND H. LÜTH
charge on the surface of the confining potential, which c
readily be seen from the extentDxj}A2 j 11 of an excited-
state wave function for quantum numberj. In the next two
subsections we will discuss some electron filling details
each quantum dot regime~analogous to Hund’s rules fo
atoms!.

A. Capacitive regime

This regime requires a large amount of computatio
power since with diminishingElat we have to include a lot o
single-particle levels within the interaction energyCxyyx to
add one additional electron to the quantum dot syst
Therefore the dimension of the Fock subspace grows ex
nentially. Now we will consider the above mentioned RT
quantum dot withElat51 meV (⇒C0000'3.8 meV, E12
'2.6 meV!. Hereby we have taken 50 single-particle leve
as a base set and a Fock space dimension of 512 up to 1

In Fig. 2~a! one can see the position of single-electr
steps as a function of an externally applied magnetic field
the z direction with cyclotron energy Ecycl[\vc
[\eB/m* . For the first step at the lowest chemical potent
we observe the typical magnetic field dependence of
ground state of a 2D harmonic oscillator.19 Furthermore we
observe a nearly parallel shift of all following steps wi

FIG. 2. Capacitive regime.~a! Simulated positions of single
electron steps at chemical potenialm as a function of an externa
magnetic field with cyclotron energyEcycl . ~b! Total electron spin
in z direction represented as a gray-scale plot.~Steplike borders are
due to the simulation step width inEcycl . A bright structure in the
region of spin 5/2 is an artifact due to the finite Fock subsp
dimension.!
n

f

l

.
o-

24.

n

l
e

varying magnetic field. The difference in chemical potent
for adjacent steps is quite similar over the full field rang
This behavior is typical for the capacitive regime where t
repulsion energy is larger than the single-particle level sp
ing. Thus even in this system of a few strong interacting a
correlated electrons one obtains a semiclassical filling beh
ior equivalent to a capacitor. The orthodox theory10 ~with the
above-definedE12 as the effective interaction energy! there-
fore can be applied to some degree for the description c
cerning the total particle number. Hence we are able to
fine an intradot interaction capacityC125e2/E12 for use with
the orthodox theory based onE12.

Obviously the density-matrix approach provides compl
information about the quantum-mechanical state and the
cussed class of observables. An interesting feature of
capacitive regime can be seen in Fig. 2~b! where the total
electron spin in thez direction is plotted in a gray-scale dia
gram. Due to exchange-correlation effects we observe a
larization of the electron system in the applied magne
field.

Experimental evidence for such a capacitive behavior
single-electron steps in an external magnetic field can
found in various publications.20 Here laterally confined RTD
structures have been investigated for the case of strong
rier asymmetry similar to the numerically simulated quantu
dot in this example. By use of a Schottky gate for a varia
lateral confinement the electronic filling of a RTD quantu
dot has be investigated21 as a function of the lateral potentia
~with fixed chemical potentialm). For an arbitrarily given

FIG. 3. Atomic regime.~a! Simulated positions of single
electron steps at chemical potentialm as a function of an externa
magnetic fieldB. ~b! Total electron spin in thez direction repre-
sented as a gray-scale plot in the vicinity of a degeneracy poin
single-particle levels.

e
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lateral potentialV ~i.e., single-particle matrix elements as
function of the gate voltage! in the Hamiltonian equation
~2.6! a numerical treatment of such systems should be p
sible within the scope of the density matrix approach even
the case of strong intradot correlations due to many-part
interaction effects.

B. Atomic regime

In contrast to the capacitive regime we now consider
case where the single-particle level spacingElat is larger
than the first Coulomb tensor elementC0000. This regime
can be reached in semiconductor systems only in the cas
quantum dots on a characteristic length scale smaller th
few tens of nanometers. Figure 3 shows a typical filling b
havior of an artifical quantum dot withElat510 meV and
C0000'2 meV. Again the first lowest-lying step exhibits th
characteristicB-field dependence followed by the seco
spin-degenerate electron atDm12[C0000. Higher single-
particle levels19 still can be recognized with an interaction
induced splitting of the spin degeneracy. As an interest
feature we now focus on the four-level anticrossing po
that is visualized in Fig. 3~b!. Hereby the total spin is show
t,

.

ci

,

pl.

e,

r,
s-
n
le

e

of
a

-

g
t

as a gray-scale plot. Only in the center of the anticross
does one observe a parallel spin alignment due to small
ergy lowering electron exchange terms. At all other poi
the system shows a tendency to minimize the total spin in
z direction for small magnetic fields. Some primitive orbit
figures show an atomlike behavior.

IV. CONCLUSION

Based on a many-particle density-matrix approach w
an underlying interaction Hamiltonian in second quantizat
we have been able to describe the electron filling charac
istics of an interacting quantum dot system. Especially int
dot exchange and correlation effects have been incorpora
Employing numerical results for the case of a single-elect
RTD in the strong accumulation regime we define a capa
tive and atomic quantum dot depending on the ratio betw
size quantization energies and interaction matrix eleme
that is, the geometrical dimensions. We presented a f
quantum-mechanically based definition of an intradot int
action capacity. A subsequent paper is planned to pre
experimental results on a RTD quantum dot system an
comparative analysis based on the density-matrix model
ev.

nd

e,

ci.
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