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Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established

as a powerful surface analytical method for local elemental analysis on metallic, ceramic,

geological or biological sample surfaces. Here we show a new way of nanometre scale analysis of

elements on sample surfaces by near-field LA-ICP-MS (NF-LA-ICP-MS). This technique uses the

near-field enhancement effect on the tip of a thin silver needle in a laser beam (Nd:YAG laser,

wavelength 532 nm) on the sample surface. The thin silver needle was etched electrolytically in an

electrochemical cell using a droplet of citric acid as electrolyte. For nanolocal analysis by NF-LA-

ICP-MS on soft matter (e.g., on 2-D gels and biological samples) a small volume transparent

laser ablation chamber was constructed and coupled to a double-focusing sector field inductively

coupled plasma mass spectrometer (ICP-MS). A small amount of soft sample material is ablated

at atmospheric pressure by a single laser shot in the near-field of the silver tip in the defocused

Nd:YAG laser beam. The ablated material is transported with argon as carrier gas into the

inductively coupled plasma (ICP) ion source of the sensitive double-focusing sector field mass

spectrometer with reverse Nier–Johnson geometry. By single-shot analysis on 2-D gels and

biological surfaces doped with uranium in the mg g�1 range using NF-LA-ICP-MS an

enhancement of ion intensities of transient signals in comparison with the background signal of

up to factor 60 was observed. In gels doped with isotopically enriched 65Cu and 67Zn spikes by

NF-LA-ICP-MS (single shot analysis) ion intensities up to the n � 105 cps range and isotope

ratios (235U/238U, 65Cu/63Cu and 67Zn/64Zn) were measured at a lateral resolution in the

nanometre scale. Using the near-field effect in LA-ICP-MS, it was demonstrated that nanolocal

analysis is possible in single-shot measurements of elements on biological samples and on a gel

surface with spatial resolution at the hundreds of nanometres range. This first experiment on

near-field LA-ICP-MS opens up a new, challenging path for future applications in nanoimaging

of elements in life science, biology and medicine, e.g., for analyses of single cells, cell organelles or

biological structures at nanometre range in order to detect neurodegenerative diseases, but also in

material science, nanotechnologies and nanoelectronics.

Introduction

Surface analytical techniques with lateral resolution on the

nanometre scale are indispensable for nanoimaging in many

fields of the life sciences, medicine, biology, engineering and

materials research, e.g., for the characterization of nanoelec-

tronics with respect to trace impurities.1–4 Nanoimaging—that

is, elemental, chemical and structural analysis on the nano-

metre scale—is required today especially for the quantitative

analysis of elemental distribution on the nanometre scale in

single cells or cell organelles for studies in modern medicine

and would help to clear up a multitude of relevant open

questions in the detection and treatment of diseases (e.g.,

neurodegenerative diseases such as Parkinson’s or Alzheimer’s,

where phosphorus and metal ions play an important role).5

Microscopic analytical techniques such as scanning tunnel-

ling microscopy (STM), atomic force microscopy (AFM) 6 and

scanning near-field optical microscopy (SNOM)1,7–9 have been

developed for the investigation of specimens with lateral

resolution in the nanometre range. In STM or AFM, a sharp

tip is raster-scanned across the surface to map the topography.

A surface-enhanced Raman scattering (SERS) based nano-

imaging probe is capable of chemical imaging with spatial

resolution on the nanometre scale.3 The probes in SNOM and

SERS consist mostly of an etched tapered coherent optical

fibre that has been coated with a metallic layer. An analogous

near-field optical fibre probe coated with aluminium (SNOM
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tip) was applied in the atmospheric pressure laser ablation of

organic compounds combined with quadrupole-based mass

spectrometry in Zenobi’s group.2 Laser ablation on the surface

of an anthracene crystal and bis(phenyl-N,N-diethyltriazene)

was achieved using pulsed laser irradiation with a Nd:YAG

laser at a wavelength of 355 nm coupled to the back end of

SNOM tip. This particular tip had 170 nm diameter aperture,

creating laser ablation craters with about the same diameter.2

As a nanosampling interface for the introduction of atmo-

spheric laser ablated organic material in the high vacuum of an

electron impact ion source of the quadrupole mass spectro-

meter, a heated stainless steel capillary was applied. The

authors demonstrated on bis(phenyl-N,N-diethyltriazene)

three laser ablated craters with a spatial resolution of about

200 nm and a depth of 20 nm.2

None of these analytical techniques with high spatial resolu-

tion is able to perform a quantitative determination of trace

elements.

As a surface analytical technique, secondary ion mass

spectrometry (SIMS),10,11 for example with a gallium liquid

metal primary ion source, possesses multielemental capability

and allows distribution analysis of elements in small areas of

the sample surface (some hundred mm � some hundred mm)

with lateral resolution down to 50 nm.12 However, the possi-

bility of quantifying measured ion intensities in SIMS in a

similar way to other solid state mass spectrometric techniques

(such as glow discharge mass spectrometry—GDMS, spark

source mass spectrometry—SSMS, or laser ablation induc-

tively coupled plasma mass spectrometry) via relative sensitiv-

ity factors is very difficult if no suitable matrix-matched

reference material with known analyte concentrations is avail-

able. In addition, because of a huge matrix effect of up to six

orders of magnitude in SIMS (other solid mass spectrometric

techniques possess significantly smaller matrix effects) a quan-

tification of analytical results is often impossible due to the

lack of standard reference materials. Other surface analytical

techniques with lateral resolution in the nanometre range, such

as soft X-ray microscopy at a spatial resolution better than

15 nm,4 Auger electron spectroscopy (AES), electron energy

loss spectrometry (EELS) or secondary neutral mass spectro-

metry (SNMS), are not sensitive enough for the determination

of trace element concentration and also have difficulties in

analysing non-conducting materials and problems with the

quantification of element distribution.13

Laser ablation inductively coupled plasma mass spectro-

metry (LA-ICP-MS) has been established as a promising

powerful and sensitive multielement analytical technique for

the quantitative determination of trace elements in quite

different materials such as biological,14 medical15,16 and geo-

logical17 samples or high-purity materials.18 In comparison

with SIMS, a larger area of interest in the cm2 range can be

investigated using LA-ICP-MS, as demonstrated by quantita-

tive imaging of copper and zinc in thin sections of human and

rat brain samples for hippocampus and tumor analysis, re-

spectively.15,16 At present, the lateral resolution of microlocal,

isotope and element distribution analysis by LA-ICP-MS is

possible in the low mm range. The microlocal analysis of

biological tissues or cell compartments down to single cells

and cell organelles (such as mitochondria), which requires a

lateral resolution on the nanometre scale, would be possible by

the application of near-field (NF) sampling techniques in LA-

ICP-MS. Furthermore, the opportunities offered by NF-LA-

ICP-MS for precise and accurate isotope ratio measurements19

can be applied to tracer experiments using high-enriched stable

isotopes on biological systems and for studying isotope varia-

tion on natural samples (e.g., for age dating).

We propose the use of near-field effect in LA-ICP-MS as an

atomic mass spectrometric technique, which is commercially

widely available and well established using inductively coupled

plasma mass spectrometry (ICP-MS) with an atmospheric

pressure ion source coupled to a suitable laser ablation system

(LA) for the direct analysis of solid samples. In comparison

with dynamic SIMS10 or nano-SIMS,20 NF-LA-ICP-MS

would be some orders of magnitude more sensitive (in SIMS

the detection limits are in the ng g�1 range,13 whereas in LA-

ICP-MS detection limits down to the pg g�1 range have been

measured21), less expensive and would open up the possibility

of quantitative determination of elements at nanometre range.

Furthermore, the disadvantages of SIMS—the huge matrix

effects, limits by the analysis of non-conduction materials and

the disturbing high molecular and cluster ion formation—are

significantly reduced in LA-ICP-MS.

The aim of our work is the development of near-field LA-

ICP-MS proposed in a patent script by Becker et al. in 200322

for local analysis at the nanometre scale on soft matter, such

as biological tissues or two-dimensional gels, for future appli-

cations in the life sciences and in proteomics.

Physical principles of near-field LA-ICP-MS

As an alternative to the aperture SNOM-based probes in the

laser ablation of organic substances developed in Zenobi’s

group2 we propose the use of an approach described by

Stockmann in 198923 for the laser ablation of sample at the

nanometre scale. The idea of this approach consists in the

formation of radiation intensity singularities by means of very

small conductive objects immersed in the light radiation field.

The resulting electric (linear or non-linear) polarization of

such objects causes a considerable enhancement of the radia-

tion intensity in the region, comparable with the curvature

radius of the object (near-field enhancement). Such an object

can itself therefore be treated as a very small but intensive

source of secondary evanescent near-field radiation, which can

be much more intensive than the field of the primary beam. If

this source is brought so close to the target surface that this

secondary radiation cannot diverge to any great degree, it can

cause local laser-induced surface effects (e.g., local desorption

or ablation of sample) limited only by the object size rather

than by diffraction effects. The factor of the electrical field

enhancement depends, on the one hand, on the form and the

material of the field-enhancing object, and on the other hand,

on the wavelength and polarization of the light. This factor

can theoretically reach 104 for a probate spheroid or a long

sharp needle made of silver, provided the light wavelength

belongs to the green or red spectral region and its electrical

vector lies parallel to the major axis of the metallic object.24,25

In experiments the needle should be positioned very close to

the sample surface in the region of the optical near field,
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whereby the near field enhancement of the thin silver needle

depends on the distance to the sample surface, shape and

diameter of tip, the field concentration at the tip and the

resonant excitation of collective electron oscillations (plas-

mons) in the metal. The theoretical background of the near

field enhancement effect can be found in the ESIw.

Experimental

The experimental arrangement of near-field laser ablation

ICP-MS (NF-LA-ICP-MS), developed at the Research Centre

Juelich, is shown in the schematic part of Fig. 1(a). For

sensitive microlocal analysis on small soft sample surfaces,

and to control the positioning of the silver needle on the

sample surface, a small transparent laser ablation chamber of

PMMA was constructed. To observe the position of the silver

needle on the sample surface a video camera was installed, as

shown in Fig. 1(b). The performance of this laser ablation

chamber (inner diameter and height of chamber each 2 cm)

was tested with a frequency-doubled Nd:YAG laser (Surelite

II-10, Continuum, Santa Clara) at a wavelength of 532 nm,

coupled to a double-focusing sector field ICP-MS with reverse

Nier–Johnson geometry (ELEMENT 1, Thermo Electron

Corporation, Bremen). If a copper foil was hit by only a single

laser pulse focused on the sample surface (without the silver

needle) an ion intensity for 63Cu1 of 1010 cps (at laser power

density of about 5 � 109 W cm�2) was measured mass

spectrometrically using this small laser ablation chamber. In

order to demonstrate the near field effect in LA-ICP-MS in all

experiments presented below, the laser beam was unfocused

(at laser power density of 3 � 106 W cm�2) whereby (without

needle) only the background signals of analyte were measured.

The experimental parameters (summarized in Table 1) are

optimized with respect to a maximum ion intensity of 238U1.

For NF-LA-ICP-MS experiments the thin silver needle is

mounted on a stainless steel holder combined with a precise

XYZ manipulator (ULTRAlignt 461, Newport Corporation,

USA) on the outside of the laser ablation chamber for fine

control of the silver needle movements, as shown in Fig. 1(b).

In all near-field experiments (observed with a video camera)

only single shot measurements were performed. The mass

spectrometric measurements of 63Cu1, 65Cu1, 64Zn1, 67Zn1

and 238U1 transient signals is performed at low mass resolu-

tion (m/Dm = 300).

Preparation of thin tip of silver needle

Silver needles (from a 0.5 mm 99.9% Ag wire) were etched

electrolytically in an electrochemical cell (at a dc voltage of

200 V) using a droplet of citric acid as the electrolyte, as

described by Gorbunoff et al. in 1993.26 In our laboratory only

30 min are required for the etching of the silver needle from

wire. The tip diameter at hundred nanometre range can be

determined by scanning electron microscopy (SEM). The tip

of the silver needle creates laser ablation craters with approxi-

mately the same diameter.

Samples and sample preparation

In order to demonstrate the figures of merit and the potential

of NF-LA-ICP-MS on biological tissues, a leaf from an

Fig. 1 (a) Experimental arrangement of near-field LA-ICP-MS. (b)

Photograph of experimental arrangement with small volume laser

ablation chamber (in the middle), the precise XYZ manipulator (on

left) and holder for the silver needle and video camera (on right) for

observation of needle position on the sample surface.

Table 1 Optimized experimental parameters of NF-LA-ICP-MS

ICP-SFMS Laser ablation system (home made)

Rf power 1200 Laser system (Nd:YAG) Continuum
Cooling gas flow rate 18 L min�1 Wavelength 532 nm
Auxiliary gas flow rate 1 L min�1 Laser power density 3 � 106 W cm�2

Nebulizer (carrier) gas flow rate 1.2 L min�1 Laser energy per pulse B150 mJ
Mass resolution (m/Dm) 300 Repetition frequency 1 Hz
Number of runs (pass) 150 (1) Spot diameter B150 nm
Number of laser shot 1 Pulse length 10 ns
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African violet, a rose petal and a small piece of a 2-D gel

used for separation of human proteins27 were doped with a

uranium solution at 1000 mg g�1 overnight. For the first

experiments uranium was selected as analyte due to its very

high sensitivity in sector field ICP-MS.28 In further experi-

ments parts of gels were doped overnight with an enriched
65Cu and 67Zn isotopic tracer (concentration in the tracer

solution was several thousand mg g�1). The isotopic ratios
65Cu/63Cu and 67Zn/64Zn and abundances of isotope enriched
65Cu and 67Zn in tracers and in nature are summarized in

Table 2. Furthermore, homogeneous acrylamide gels with

uranium isotope standard reference material (NIST U020,

uranium concentration of 46 mg g�1) and natural uranium

(4, 10 and 20 mg g�1) were prepared.

Small pieces of dried gel samples (5 mm � 5 mm) doped

with uranium or 65Cu and 67Zn isotopic enriched tracers,

respectively, were fixed in the small volume laser ablation

chamber of home-made laser ablation system.

The homogeneous distribution of, for example, uranium in

the doped gel at the mm range was confirmed by depth profile

analysis of analyte using a commercial laser ablation ICP-

QMS (Elan 6000, SCIEX, coupled to CETAC LSX 200) with

a spatial and depth resolution at mm range.

Results and discussion

The first experiment concerned the nanolocal analysis of

doped 2-D gels as soft matter which could be of relevance

for future applications in screening very small protein spots

with respect to an analysis of phosphorus- and metal-contain-

ing proteins.5,27,29 A small piece of the 2-D gel blank27 doped

with a uranium solution overnight (1000 mg g�1) was investi-

gated by NF-LA-ICP-MS. Figs. 2a and 2b demonstrate the

position of the silver needle far away from the sample surface

and on the gel surface investigated. In Fig. 2c a SEM micro-

graph of a silver tip after use in NF-LA-ICP-MS is shown. The

tip diameter is in the several hundred nanometre range. A tip

diameter at about 150 nm range was measured on a freshly

etched silver needle by SEM before NF-LA-ICP-MS measure-

ments (see Fig. 2d); this tip creates laser ablation craters with

approximately same diameter. Smaller tip diameters and con-

sequent better lateral resolution of NF-LA-ICP-MS at the

nanometre scale range are possible.

Fig. 3 presents six single shot measurements each of the

background signals (transient signals 1–6, silver needle is far

away from sample surface). Also in Fig. 3 six enhanced

transient ion signals (7–12, needle is positioned much closed

to the sample surface) measured on gel surface doped with

uranium are shown. In this experiment transient-enhanced
238U1 ion signals of high intensity (up to about 10 000 cps)

due to the near-field effect during laser ablation in a defocused

laser beam in comparison with background signals of several

hundred cps are observed. A maximum intensity of 238U1 ions

was measured in a separate experiment (not shown in the

figure) of 30 000 cps when analyzing the uranium-doped gel.

This corresponds to an increase in ion intensity of a factor of

60 in a single laser shot measurement in comparison with

Table 2 65Cu/63Cu and 67Zn/64Zn and abundances of 65Cu and 67Zn
in isotope enriched tracers and in nature

Isotope ratio
(enriched tracer)

Tracer
(abundance)

Nature
(abundance)

65Cu/63Cu 8.25 0.45
(65Cu) (96.4%) (30.8%)
67Zn/66Zn 1.2 0.15
(67Zn) (39.8%) (4.1%)

Fig. 2 Photograph of position of silver needle (a) far away from gel surface, (b) on the sample surface, and (c) and (d) SEM micrographs of a

silver tip.
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transient background signals. Such significant signal enhance-

ment is undoubtedly related to the near-field effect in LA-ICP-

MS. These first measurements demonstrate the great advan-

tage of near-field laser ablation ICP-MS, with only single shot

measurements during a very short time with a spatial resolu-

tion in the hundred nanometre range.

Another experiment focused on the quantification possibi-

lities of NF-LA-ICP-MS. In Fig. 4 a transient signal of the
238U1 on the gel sample doped with the natural uranium tracer

solution, with different concentrations, measured by the devel-

oped NF-LA-ICP-MS method is shown. In shots 1–4 the

needle is positioned far away from the gel surface and back-

ground intensity is measured. In shots 5–13 the needle is

placed on the surface of gel samples with different uranium

concentrations (transient signals 5–7: U concentration 4 mg
g�1; transient signals 8–10: U concentration 10 mg g�1; and

transient signals 11–13: U concentration 20 mg g�1). A cali-

bration curve for 238U1 in gels with a correlation coefficient of

0.96 was measured by NF-LA-ICP-MS. During the laser shot

13 the tip of the silver needle was deformed, therefore the shot

13 was been not considered in the calibration curve. The

detection limit for uranium determination in gel by NF-LA-

ICP-MS (in one single laser shot) was determined in this

experiment to be in the sub mg g�1 range.

The results of 235U1/238U1 isotope ratio measurements on a

gel doped with isotope standard reference material NIST U020

are summarized in Fig. 5. The 235U1/238U1isotope ratio

(average of seven single shot measurements) was determined

to be 0.017 � 0.002 by NF-LA-ICP-MS measurements on the

nanometre scale.

Further experiments concerned isotope ratio measurements

of copper and zinc in gels doped with enriched 65Cu and 67Zn

isotopic tracers. The transient 65Cu1 and 67Zn1 ion signals of

enriched tracers measured in doped gel are shown in Figs. 6(a)

and 7(a), respectively. Whereas in the left part of the figures

background signals in the defocused Nd:YAG laser beam are

measured, the transient signals with high ion intensities in the

right part can be explained only as a result of the near-field

enhancement effect in laser ablation. In all experiments (laser

shots 8–15) the thin silver needle is quite close to the gel

surface, whereby each transient signal corresponds to only a

single laser shot measured by near-field laser ablation coupled

to a sensitive double-focusing ICP mass spectrometer. Both

figures for transient signals with maximum ion intensities of

about 8 � 10 5 cps for 65Cu1 are similar. Ion intensities of
67Zn1 are about one order of magnitude lower. A serious

problem in our experiments was insufficient control of the

distance between the tip and sample surface. Therefore, a

variation of ion intensities from laser shot to laser shot was

observed. Furthermore, an inhomogeneous analyte distribu-

tion in the nanometre scale range is also possible. A significant

improvement of the needle approach control is required in

future experiments. The capability of 65Cu/63Cu and
67Zn/64Zn isotope ratio measurements in doped gels by NF-

LA-ICP-MS is demonstrated in Figs. 6(b) and 7(b): the

experimental results are compared with isotope ratios in

isotope enriched tracers and in nature (for IUPAC table

value,30 see Table 2). The measured isotope ratios for
65Cu/63Cu and 67Zn/64Zn of 4.61 and 0.94, respectively, in

comparison with the isotope enriched tracer ratios of 8.25 and

Fig. 3 Six transient 238U1 background signals (left) in defocused

laser beam (needle is far away from the sample surface) and six signals

measured by NF-LA-ICP-MS (needle is on the sample surface)

analysing a 2-D gel doped with uranium as a function of measurement

time.

Fig. 4 a, Transient signals of 238U1 measured in gel doped with

natural uranium. Transient signals 1–4: background signals; transient

signals 5–7: U concentration 4 mg g�1; transient signals 8–10:

U concentration 10 mg g�1; transient signals 11–13: U concentration

20 mg g�1 (spot 13: tip of silver needle was damaged). b, Calibration

curve for 238U1.

Fig. 5
235U/238U isotope ratios in gel doped with NIST U20 mea-

sured by NF-LA-ICP-MS.
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1.2, respectively, demonstrate a quantification possibility via

the isotope dilution technique for future application. NF-LA-

ICP-MS can be also used to study the formation of metal-

containing proteins separated by two dimensional gel electro-

phoresis via isotopic-enriched tracer experiments, as described

by J. Su. Becker et al.31

In another experiment, a biological sample—a small piece of

a rose petal doped with uranium —was analyzed by NF-LA-

ICP-MS. Three transient signals with 238U1 ion intensity of

15 300 cps, 6200 cps and 700 cps, respectively, decreasing from

laser shot to shot, were measured. The reason for the sig-

nificant decrease in ion intensity from shot to shot during the

NF-LA-ICP-MS measurements observed can be explained by

deformation of the tip of silver needle.

Furthermore, a biological sample with a rough sample

surface was investigated. Fig. 8 shows the photograph of a

side view of the biological sample (leaf of an African violet

with hairs on the leaf surface) together with a silver needle at a

distance from the tissue surface. In the right insert the mea-

sured transient signals of 238U1 ions are drawn. If the Ag

needle is far away from the leaf surface the defocused laser

beam is fired at the sample surface. Background signals of

about 500 cps and below were measured. During NF-LA-ICP-

MS measurements the Ag needle is positioned directly on the

biological sample surface and a significant enhancement of
238U1 ion intensity (right transient signal) was observed.

Owing to the very rough sample surface of the African violet

leaf with hairs (as shown in Fig. 8) and therefore quite

different ablation conditions from shot to shot of the laser

beam a variation of ion signals would be expected. In our

experiments on the analysis of an African violet leaf doped

with uranium, two enhanced transient ion signals with similar

intensity (enhancement factor 30) were measured.

During all experiments we observed a decrease in near-field

enhancement with increasing distance of the needle from the

sample surface, which results also in a lower spatial resolution

as discussed by Rasmussen and Deckert.2 The near-field

enhancement effect, which depends on the tip diameter of

needle, the positioning of the needle on the surface and the

distance between silver tip and sample surface using an

improved precise distance control, will be studied in forth-

coming work.

Fig. 6 (a) Transient 65Cu1 background signals in defocused laser

beam (needle is far away from the sample surface) and enhanced

transient signals measured by NF-LA-ICP-MS (needle is on the

sample surface) analysing a gel doped with enriched 65Cu isotope

spike. (b) 65Cu/63Cu isotope ratios in gel doped with enriched 65Cu

isotope spike measured by NF-LA-ICP-MS.

Fig. 7 (a) Transient 67Zn1 background signals in defocused laser

beam (needle is far away from the sample surface) and enhanced

transient signals measured by NF-LA-ICP-MS (needle is on the

sample surface) analysing a gel doped with enriched 67Zn isotope

spike. (b) 67Zn/64Zn isotope ratios in gel doped with enriched 67Zn

isotope spike measured by NF-LA-ICP-MS.

Fig. 8 Photograph of a thin silver needle and leaf surface with hairs

(African violet); the right insert shows two transient 238U1 back-

ground signals and one enhanced signal measured by NF-LA-ICP-MS

(the needle being on the sample).
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In comparison with the experimental arrangement in Zeno-

bi’s laboratory2 using a SNOM probe together with a nano-

sampling interface for the introduction of atmospheric laser-

ablated organic material into the high vacuum of an electron

impact ion source on a quadrupole mass spectrometer, our

proposed experimental arrangement with the etched silver

needle in laser ablation of soft matter is significantly easier

when using the commercially available sensitive double-focus-

ing sector field instrument consisting of an atmospheric pres-

sure ICP ion source and a well designed interface to the high

vacuum of the mass spectrometer. In addition, our experimen-

tal arrangement also allows a sensitive and powerful elemental

analysis of difficult to determine elements (such as Fe, Cr, Se or

As) due to isobaric interferences at medium and high mass

resolution (m/Dm = 4000 and 12 000, respectively) of double-

focusing sector field LA-ICP-MS at the nanometre scale.

Furthermore, quantification procedures for analytical data

(using certified standard reference materials, synthetic labora-

tory standards by external calibration or isotope dilution

analysis, including the solution-based calibration established

at our laboratory) and the possibility of isotope ratio measure-

ments in NF-LA-ICP-MS as a challenging analytical tool for

future application in life science will be investigated in more

detail in future.

Conclusions

In our experiments, we found evidence that the near-field

enhancement effect together with LA-ICP-MS when applied

to soft surfaces of 2-D gels and to biological samples (leaf of

African violet and rose petal) doped with uranium results in a

powerful laser ablation of sample material with lateral resolu-

tion on the hundred nanometre scale. Isotope ratio measure-

ments of uranium, copper and zinc are possible using NF-LA-

ICP-MS at nanometre range. Using the near-field effect com-

bined with sensitive LA-ICP-MS in single shot measurements

a significant enhancement of signal intensity compared with

the background signal for uranium was observed. Dependent

of the tip diameter of the thin etched silver needle a lateral

resolution in the 30–40 nm will be possible.

We anticipate that our developed NF-LA-ICP-MS will be

the start of nanolocal analysis and multielemental nano-

imaging in the life sciences (including proteomics), biology

and medicine but also in materials science (for micro- and

nanoelectronics) and other applications. For example, the

nanoimaging of elements by NF-LA-ICP-MS in tissues for

the detection of disease, in single cells or cell organelles will be

relevant.
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and G. Rödel (TU Dresden) and M. Przybylski (University of

Konstanz) for discussion of the patent idea in 2003. In

addition, we acknowledge H.-J. Dietze and C. Pickhardt

(Juelich) for their valuable discussions, as well as G. Drechsler

(Dresden) and H. P. Bochem (Juelich) for the SEM measure-

ments on silver tips.

References

1 A. Rasmussen and V. Deckert, Anal. Bioanal. Chem., 2005, 381,
165.
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