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The Mott transition in a two-band Hubbard model involving subbands of different widths is studied as a
function of temperature using dynamical mean field theory combined with exact diagonalization. The
phase diagram is shown to exhibit two successive first-order transitions if the full Hund’s rule coupling is
included. In the absence of spin-flip and pair-exchange terms the lower transition remains first-order while
the upper becomes continuous.
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The nature of the metal-insulator transition in materials
involving subbands of different widths has been intensively
debated during recent years [1–12]. This issue is relevant
for the understanding of the effect of strong local Coulomb
interactions in systems such as Ca2�xSrxRuO4. In this
perovskite layer the partially filled Ru t2g bands for x�2
consist of wide dxy and narrow dxz;yz bands [13]. As
pointed out in [14], the onsite Coulomb energy lies be-
tween the subband widths: Wxz;yz < U <Wxy. The usual
criterion with the parameter U=W as a measure of the
importance of correlations must then be generalized. The
pure Sr compound is superconducting below 1.5 K [15].
Isoelectronic replacement of Sr by Ca leads to an effective
band narrowing due to octahedral distortions [16] and a
metal-insulator transition [17]. As a consequence of non-
cubic crystal fields many other transition metal oxides also
involve nonequivalent partially occupied subbands.

A key question in these materials is whether the wide
and narrow subbands exhibit separate Mott transitions or
whether single-particle hybridization and interorbital
Coulomb interactions ensure a single transition for all
bands simultaneously. This issue was studied initially by
Anisimov et al. [1] and Liebsch [2] for Ca2�xSrxRuO4

using simplified band structure models which did not yet
include the full complexity due to Ca-induced octahedral
distortions. Correlations were treated in the dynamical
mean field theory [18] (DMFT) combined with the non-
crossing approximation (NCA) and quantum Monte Carlo
(QMC) method, respectively. Since the NCA calculations
(at T � 0) neglected interorbital Coulomb interactions the
results showed separate, ‘‘orbital-selective’’ Mott transi-
tions for the narrow and wide subbands [1]. In contrast, the
QMC calculations (at T � 0:125 eV) included interorbital
Coulomb interactions and suggested a common transition
for all t2g bands [2].

Recent theoretical studies of the Mott transition in a
paramagnetic two-band model system have led to apparent
contradictions [3–11]. Including the full Hund’s rule cou-
pling Koga et al. [4] found orbital-selective metal-insulator
transitions at T � 0. Neglecting spin-flip and pair-
exchange terms Liebsch [5] obtained at T > 0 a single
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first-order transition, followed by a bad-metallic–non-
Fermi-liquid (NFL) phase. As we argue below, the various
results and conclusions are consistent provided that the
choice of crucial parameters such as temperature and
Hund’s rule coupling is properly taken into account.

In the present work we combine finite temperature
DMFT with exact diagonalization [19] (ED) to determine
the T=U phase diagram of a two-band system consisting of
nonhybridizing, half-filled subbands with semicircular
density of states of width W1 � 2 eV and W2 � 4 eV.
The subbands interact via intraorbital and interorbital
Coulomb matrix elements U and U0 � U� 2J, where J
is the Hund’s rule exchange integral. In contrast to the
multiband QMC approach, which includes only Ising-like
exchange terms to avoid sign problems at low temperatures
[20], ED permits also the consideration of spin-flip and
pair-exchange interactions. To be specific we take J �
U=4 which is approximately satisfied in several transition
metal oxides.

The main result of this work is that the T=U phase
diagram in the presence of the full Hund’s rule exchange
exhibits two successive first-order phase transitions, with
separate hysteresis loops and coexistence regions. The
intermediate region corresponds to the T > 0 analog of
the orbital-selective Mott (OSM) phase obtained at T � 0
in [4]. On the other hand, if spin-flip and pair-exchange
terms are omitted, we find a single first-order transition
succeeded by a non-Fermi-liquid phase, in agreement with
previous QMC results [5]. Both trends are consistent with
those obtained by several groups [4,6,8–10] for the same
two-band model at T � 0.

The ED/DMFT results are derived from a two-band
generalization of the approach employed for single bands
[18,19,21]. Since at T > 0 all states of the impurity
Hamiltonian are used in the construction of the subband
Green’s functions Gi�i!n�, two bath levels per impurity
level are taken into account (ns � 6 per spin). To check the
accuracy of this approximation we have evaluated the T=U
phase diagram of a single band for ns � 3; . . . ; 6. As shown
in Fig. 1, the stability boundaries Uc1�T� and Uc2�T� for
ns � 3 are slightly too low. Nevertheless, the overall shape
2-1 © 2005 The American Physical Society
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FIG. 1. Phase diagram for a one-band Hubbard model, calcu-
lated within ED/DMFT for ns � 3; 4; 6. symbols 	 at T � 0:
results obtained in [35].
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of the phase diagram agrees qualitatively with the con-
verged results for ns � 6 [22]. Thus, we are confident that
in the two-band case ns � 6 also yields a reasonable
picture of the phase diagram. Preliminary results for ns �
8 will also be presented.

To analyze the metal-insulator transition we study the
quasiparticle weights Zi � 1=�1� dRe�i�!�=d!j!�0�,
which in the metallic range can be represented as Zi �
1=�1� Im�i�i!0�=!0�, where �i�i!0� is the subband
self-energy at the first Matsubara frequency. Figure 2(a)
shows Zi�U� for J0 � J � U=4, where J0 denotes spin-flip
and pair-exchange terms [23]. Two critical regions can be
identified, each with hysteresis loops characteristic of first-
order phase transitions. The coexistence areas are
U<
c1�T�<U <U<

c2�T� near 2.0 eV and U>
c1�T�<U <

U>
c2�T� near 3.0 eV, where U<

cn�T� and U>
cn�T� are the

stability boundaries obtained for increasing (n � 2) and
decreasing (n � 1) U. Let us denote the true critical en-
ergies of these transitions as U<

c �T� and U>
c �T�. Below
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FIG. 2. Zi�U� of nonisotropic two-band Hubbard model, calculated
(dashed) curves: narrow (wide) band. Results for different T are dis
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U<
c �T� both bands are metallic while aboveU>

c �T� both are
insulating. At the lower transition both bands undergo first-
order transitions—but in fundamentally different ways:
Z1�U� becomes very small while Z2�U� drops to a finite
value. The narrow band therefore undergoes a ‘‘complete’’
metal-insulator transition, whereas the wide band exhibits
an ‘‘incomplete’’ transition to a new, considerably more
correlated phase. This band becomes fully insulating near
3.0 eV, where it exhibits a weak second hysteresis loop. To
our knowledge this is the first time that sequential first-
order transitions are identified in the T=U phase diagram of
a Hubbard model involving nonequivalent bands [24]. If
such a material could be encountered experimentally, the
conductivity as a function of pressure would show two
consecutive jumps.

Figure 2(b) shows Zi�U� for J0 � 0, J � U=4, i.e., in the
absence of spin-flip and pair-exchange terms. The results
are similar to those in Fig. 2(a), with the important ex-
ception that the wide band above the lower transition is
even more correlated and the upper transition is now
continuous at smaller U [25]. The lower transition remains
first-order for both subbands. In this case the conductivity
shows a jump at U<

c �T� but a change of slope at U>
c �T�.

The results in Fig. 2(b) confirm the picture obtained pre-
viously within the QMC for T > 0, J0 � 0 [5,26], showing
a single first-order transition near U � 2:1 eV followed by
a mixed insulating/bad-metallic phase which becomes
fully insulating at U � 2:7 eV [27]. Figure 2(b) also dem-
onstrates that the two-band ED/DMFT for ns � 6 is quali-
tatively accurate [28].

The phase diagrams deduced from the ED results for
T � 2:5 meV are shown in Fig. 3. For J0 � J as well as
J0 � 0 the transition at U<

c �T� is first order for both sub-
bands. The subsequent transition of the wide band at
U>
c �T� is first order for J0 � J but continuous for J0 � 0.

At U<
c �T� the metal-insulator transition is complete only
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FIG. 3. Phase diagram for nonisotropic two-band Hubbard model, calculated within ED/DMFT. (a) J0 � J � U=4, (b) J0 � 0, J �
U=4. Solid dots in (a), (b) stability boundaries of both subbands near lower first-order transition. Open dots in (a): stability boundaries
of wide band near the upper first-order transition. Dashed line in (b): approximate location of continuous transition of wide band.
symbols (	): T � 0 transitions obtained in [4,6,10]; (+): results for T � 31 meV obtained in [5,11]. Lines are guides to the eye.
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for the narrow band. The wide band first undergoes a
transition to a more strongly correlated phase and becomes
truly insulating at the second transition at U>

c �T�. The
overall shape of the phase diagram for J0 � J agrees
with the one recently obtained by Inaba et al. [24].

Figure 3 also shows the critical Coulomb energies ob-
tained at T � 0 [4,6,10] and T � 31 meV [5,11]. As illus-
trated in Fig. 1 for the one-band case, the ED scheme with
small ns underestimates the critical Coulomb energies by
about 0.1 to 0.2 eV. Preliminary results for ns � 8 indicate
similar shifts in the two-band case. Taking these displace-
ments into account the ED results shown in Fig. 3 are in
excellent correspondence with those obtained at T � 0 and
T � 31 meV. Evidently the conflicting conclusions
reached in [1–6,8–11] concerning the nature of the Mott
transition in multiband systems were caused by different
behaviors obtained for T � 0 vs T > 0 and J0 � J vs J0 �
0. Accounting for these different parameter choices, the
DMFT treatments are consistent.

Quasiparticle spectra derived within the QMC/DMFT
for J0 � 0 [5] showed that in the intermediate phase the
self-energy of the wide band at small !n deviates signifi-
cantly from metallic 
!n behavior [29]. Accordingly, the
quasiparticle spectra show a pseudogap which for larger U
gets more pronounced [30], indicating progressive bad-
metal–non-Fermi-liquid properties. A true gap opens at
U>
c �T�. Thus, Z2�U�> 0 in the region U<

c �T�<U <
U>
c �T� does not imply existence of quasiparticles. As in-

dicated in Fig. 3(b), in the absence of spin flip and pair
exchange the intermediate phase is a mixed insulating/NFL
phase and not an OSM phase with coexisting insulating and
FL-metallic subbands. The same trend is found using the
T > 0 ED/DMFT [31].

For J0 � J, the low-frequency analysis of �2�i!n� is
more intricate. As shown in Fig. 4(a) for ns � 6, �2�i!n�
reveals deviations from metallic
!n variation, giving rise
to small pseudogaps in the quasiparticle spectra. This
behavior is incompatible with Im�2�!� 
!2 and suggests
that, as for J0 � 0, in the intermediate phase the wide band
at T > 0 violates Fermi-liquid theory. The extension of the
11640
present ED approach to ns � 8 indicates, however, that the
additional bath levels are important for the low-!n varia-
tion of �2�i!n�. As shown in Fig. 4(b), the deviations are
absent and the 
!n variation is consistent with metallic
behavior. In fact, the shoulder near !0 � 0:06 suggests
that Fermi-liquid properties persist to about T � !0=� �
20 meV. Thus, the OSM phase in Fig. 3(a) is the T > 0
analog of the orbital-selective Mott phase identified first by
Koga et al. [4] at T � 0. A more complete discussion of the
results for ns � 8 will be given elsewhere [31]. Because of
finite size limitations of the present ED/DMFT scheme
associated with the small number of bath levels, a precise
determination of low-temperature properties is not pos-
sible. Nevertheless, an approximate extrapolation of
�2�i!n� indicates that the T ! 0 limit for J0 � J with
Z2 � 0:1 agrees with previous T � 0 studies [4,6,8–10].

In view of the importance of spin-flip and pair-exchange
terms for the Mott transition in multiband materials [32] it
is desirable to investigate the T=U phase diagram by
methods which permit adequate treatment of the complete
Hund’s rule matrix, for instance, a two-band extension of
T > 0 numerical renormalization group studies [33]; see
also [24]. Because of sign problems, recent QMC exten-
2-3
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sions including spin-flip and pair-exchange terms are lim-
ited to T � 1=6 eV� Tc [7] or T � 0 [10]. Also, other
recent works [8,9] employing a variety of quantum impu-
rity methods deal so far mainly with T � 0 and do not yet
allow the identification of the multiband Mott transition at
general T;U values.

In summary, the T=U phase diagram of the Hubbard
model involving half-filled, nonequivalent subbands is
shown to be remarkably rich. The competing kinetic en-
ergy scales, coupled via Coulomb and exchange energies,
give rise to sequential first-order phase transitions. The
lower transition separates a purely metallic phase from a
phase with insulating narrow and strongly correlated, me-
tallic wide subbands. The wide band becomes insulating at
the second first-order transition. Omission of spin-flip and
pair-exchange terms enhances the correlations in the wide
band in the intermediate phase so that it no longer satisfies
Fermi-liquid criteria, and modifies the upper phase transi-
tion from first-order to continuous.

For the analysis of experimental data of materials such
as Ca2�xSrxRuO4 it is necessary to account also for hy-
bridization between orbitals. Preliminary studies of this
effect within two-band models for T � Tc [7] and T � 0
[9,12] suggest significant changes. Moreover, spatial fluc-
tuations [34] and deviations from half-filling might play a
decisive role close to the Mott transition. More work is
needed to investigate whether both first-order transitions
persist in the presence of these effects, or whether the weak
first-order behavior of the upper transition disappears and
only the dominant lower transition survives as the common
first-order Mott transition for all bands.
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