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The dynamical behavior of vesicles is investigated in simple shear flow. A simulation technique is presented
that combines a three-dimensional particle-based mesoscopic model �multiparticle collision dynamics� for the
solvent with a dynamically triangulated surface model for the membrane. In this model, thermal fluctuations of
the solvent and of the membrane are consistently taken into account. The membrane viscosity can be varied by
changing the bond-flip rate of the dynamically triangulated surface. Vesicles are found to transit from steady
tank-treading to unsteady tumbling motion with increasing membrane viscosity. At small reduced volumes, the
shear induces a transformation from a discocyte to a prolate shape at low membrane viscosity. On the other
hand, at high membrane viscosity, the shear induces a transformation from prolate to discocyte, or tumbling
motion accompanied by shape oscillations between these two states. Thermal fluctuations induce intermittent
tumbling and smooth out the transitions. This effect can be understood from a simplified stochastic model.
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I. INTRODUCTION

Vesicles are closed bilayer membranes, which show a rich
variety of different morphologies depending on the lipid ar-
chitecture as well as their environment. In thermal equilib-
rium, vesicle shapes have been investigated intensively on
the basis of a curvature-elastic model and are now under-
stood very well �1,2�. In comparison, the behavior in non-
equilibrium situations is much less explored. The behavior of
vesicles in flow fields is a paradigmatic example for the rich-
ness of dynamical phenomena out of thermal equilibrium.
For example, the formation of very long tubular vesicles �3�
and the lifting of a vesicle from a wall �4–6� have been
observed in shear flows.

Synthetic lipid-bilayer vesicles are very nice model sys-
tems to study the effect of flow fields on the behavior of soft
mesoscopic particles. The results obtained for these systems
will help to understand more complex systems, like the be-
havior of cells in blood vessels. For example, red blood cells
have been found to form parachute shapes in microvessel or
capillary flow �7–10�. Some diseases, such as diabetes mel-
litus and sickle cell anemia, reduce the deformability of red
blood cells, and the cells often block microvascular flow
�11,12�. Thus, the deformability of cells and vesicles is an
important subject not only of fundamental research but also
in medical applications.

The dynamical behavior of vesicles in simple shear flow
has been studied experimentally �11–15�, theoretically
�16–19�, and numerically �20–22�. The vesicle shape is de-
termined by the competition of the curvature elasticity of the
membrane, the constraints of constant volume V and constant
surface area S, and the external hydrodynamic forces. One of
the difficulties in theoretical studies of the hydrodynamic
effects on vesicle dynamics is the boundary condition for the
embedding fluid on the vesicle surface, which changes its
shape dynamically. In some previous studies, a fluid vesicle

was therefore modeled as an ellipsoid with fixed shape �16�.
More recently, the time evolution of the shape was studied
numerically using a boundary integral method in three spa-
tial dimensions �5,20� or an advected-field method in two
dimensions �21,22�. Red blood cells have a spectrin network
attached to their plasma membrane, which helps to retain the
integrity of the cell in strong shear gradients or capillary
flow. Due to the spectrin network, the red blood cell mem-
brane has a nonzero shear modulus, and has therefore been
modeled as an elastic capsule of discocyte shape. The defor-
mation of spherical capsules has been studied, both analyti-
cally and numerically, with various elastic laws without
bending resistance �23,24�. discocyte capsules with bending
resistance have been investigated numerically with the
boundary integral method �25,26�. It is important to point out
that there are fundamental differences between the flow be-
haviors of fluid vesicles and red blood cells, which are due to
the shear elasticity of the spectrin network.

Two types of dynamics have been found in these studies,
a steady state with a tank-treading motion of the membrane
and a finite inclination angle with the flow direction, and an
unsteady state with a tumbling �flipping� motion. For fluid
vesicles, the transition from tank-treading to tumbling mo-
tion with increasing viscosity of the internal fluid has been
studied in Refs. �16,22�.

The membrane viscosity is an important factor for vesicle
dynamics in shear flow. For example, the membrane of red
blood cells becomes more viscous on aging �18,27� or in
diabetes mellitus �9�. Experiments indicate that the energy
dissipation in the membrane is larger than that inside a red
blood cell �18,19�. Furthermore, it has been shown recently
that vesicles can be made not only from lipid bilayers, but
also from bilayers of block copolymers �28�. The membrane
viscosity of these “polymersomes” is several orders of mag-
nitude larger than for liposomes, and can be changed over a
wide range by varying the polymer chain length �29�.

Theoretically, the model of Keller and Skalak �16� for
vesicles of fixed ellipsoidal shape has been generalized to
describe the effects of membrane viscosity �18�. The behav-
ior of liquid drops with surface viscosity and variable shape
has been studied numerically by the boundary integral
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method �30�. However, the effect of the membrane viscosity
on the behavior of deformable vesicles with fixed surface
area has not been investigated so far.

Several particle-based simulation techniques for fluid flow
have been developed in recent years, such as direct simula-
tion Monte Carlo �31,32�, smooth particle hydrodynamics
�33,34�, and dissipative particle dynamics �35,36�. In order
to investigate vesicle hydrodynamics, we recently proposed a
combination of a mesoscopic model for the solvent and a
coarse-grained, dynamically triangulated surface model for
the membrane �37�. This approach has four main advantages:
�i� The membrane is described explicitly, so that its proper-
ties like viscosity or composition can be varied easily; �ii�
thermal fluctuations of both the solvent and the membrane
are fully and consistently taken into account; �iii� the method
can easily be generalized to more complex flow geometries;
and �iv� no numerical instabilities can occur. We employ a
particle-based hydrodynamics method �38–53� to simulate
the solvent, which is called multiparticle collision dynamics
�MPCD� �42,50,52� or stochastic rotation dynamics
�41,45,48�. This method was applied, for example, to flow
around a solid obstacle �42,43,53�, to polymer dynamics in
thermal equilibrium �40,50�, and to ternary amphiphilic
fluids �44�.

With this model, we study the dynamics of fluid vesicles
with viscous membranes in simple shear flow. We describe
the model and the simulation procedure in detail in Sec. II.
Our results for the vesicle shape, the tank-treading frequency,
the inclination angle between the vesicle axis and the flow
direction, and the transitions between discocyte, prolate, and
stomatocyte vesicle shapes are presented in Sec. III. In Sec.
IV, we derive a simplified stochastic model, which can be
used to understand the simulation results. In particular, we
discuss the effect of thermal fluctuations on vesicle shape,
shape transitions, tank treading, and tumbling.

II. METHOD AND MODEL

A. Multiparticle collision dynamics of the solvent

In multiparticle collision dynamics, the solvent is de-
scribed by Ns pointlike particles of mass ms moving in a
rectangular box of size Lx�Ly�Lz. The algorithm consists
of alternating streaming and collision steps. In the streaming
step, the particles move ballistically and the position of each
particle ri is updated according to

ri�t + �tCD� = ri�t� + vi�t��tCD, �1�

where vi is the velocity of particle i and �tCD is the time
interval between collisions. In the collision step, the particles
are sorted into cubic cells of lattice constant a. The collision
step consists of a stochastic rotation of the relative velocity
of each particle in a cell,

vi
�new��t� = vcm�t� + �����vi�t� − vcm�t�� , �2�

where vcm is the velocity of the center of mass of all particles
in the cell. The matrix ���� rotates velocities by a fixed
angle � around an axis, which is chosen randomly for each
cell �39�. In our simulation, the angle �=� /2 is employed.

The momentum and energy are conserved in this procedure.
We apply a random-shift procedure �41� before each colli-
sion step to ensure Galilean invariance.

In experimental conditions of red blood cells and lipo-
somes in shear flow with usual shear rates �̇, the Reynolds
number Re= �̇�R0

2 /�0 is very small, typically Re�10−3.
Here, R0=�S /4� is the effective vesicle radius, � is the mass
density of the solvent, and �0 is the solvent viscosity. It has
been shown in Ref. �50� that the description of hydrodynam-
ics at low Reynolds numbers and large Schmidt numbers in
MPCD requires small mean free paths �=�tCD

�kBT /ms,
where kB is the Boltzmann constant and T is the temperature.
Therefore, we choose � /a=0.025. For the employed particle
density of �=10ms /a3 the viscosity of solvent fluid is then
found to be �47,48�

�0 = �n − 1

18

a

�
+

n�2n + 3�
6�n − 1�

�

a
��mskBT/a2 = 20.1�mskBT/a2

�3�

where n is the number of particles in a cell. This implies a
reasonably small Reynolds number of Re	0.1 for the simu-
lated vesicle size of R0 /a=5.68.

To induce a shear flow, we employed Lees-Edwards
boundary condition �48,54�, which gives a linear flow profile
�vx ,vy ,vz�= ��̇z ,0 ,0� in the MPCD fluid. We simulated the
vesicle dynamics in a simulation box with Lx=50a and Ly
=Lz=30a. With �=10ms /a3, this implies a total number Ns
=450 000 of solvent particles.

B. Triangulated-surface model of the membrane

For the membrane, we employ a dynamically triangulated
surface model �55,56�, in which the membrane is described
by Nmb vertices which are connected by tethers to form a
triangular network of spherical topology. The vertices have
excluded volume and mass mmb. In the current simulations,
we consider Nmb=500 and mmb=10ms. The shapes and fluc-
tuations of the membrane are controlled by curvature elastic-
ity, with the Hamiltonian �57�

Ucv =
	

2

 �C1 + C2�2dS , �4�

where 	 is the bending rigidity and C1 and C2 are the prin-
cipal curvatures at each point of the membrane.

The curvature energy is discretized as �58,59�

Ucv =
	

2 �
i

1


i
��

j�i�


i,jri,j

ri,j
2

, �5�

where the sum over j�i� is over the neighbors of a vertex i
that are connected by tethers. The bond vector between the
vertices i and j is ri,j, and ri,j = �ri,j�. The length of a bond in
the dual lattice is 
i,j =ri,j�cot��1�+cot��2�� /2, where the
angles �1 and �2 are opposite to bond ij in the two triangles
sharing this bond. Finally, 
i=0.25� j�i�
i,jri,j is the area of
the dual cell of vertex i. We use 	=20kBT, which is a typical
value for lipid bilayers.

In contrast to previous Monte Carlo simulations of dy-
namically triangulated surfaces, we employ a Stillinger-
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Webber potential �60� for bond �Ubond� and excluded-volume
�Urep� interactions between vertices. These smooth potentials
make the model amenable for molecular dynamics simula-
tions. Vertices connected by a tether interact via the attractive
bond potential

Ubond�ri,j� = � b exp�1/�lc0−ri,j��
lmax−ri,j

�ri,j� lc0� ,

0 �ri,j lc0� ,
 �6�

while all vertices repel each other at short distances via the
excluded-volume potential

Urep�ri,j� = � b exp�1/�ri,j−lc1��
ri,j−lmin

�ri,j� lc1� ,

0 �ri,j� lc1� .
 �7�

In the Hamiltonian, the potentials Ubond and Urep are summed
over all bonds and over all vertex pairs, respectively. In Eqs.
�6� and �7�, lmax=1.33a is the maximum bond length, and
lmin=0.67a is the minimum distance between any two verti-
ces. We use b=80kBT, and the cutoff lengths lc0=1.15a and
lc1=0.85a. These potentials are smoothly connected at the
cutoff lengths, with dnUbond�r� /drn=0 at r= lc0 for all n, and
similarly for Urep�r� at r= lc1. Newton’s equations of motion
for the vertices are integrated by the velocity-Verlet algo-
rithm with time steps �tMD.

To model the fluidity of the membrane, tethers can be
flipped between the two possible diagonals of two adjacent
triangles. A number �Nb of bond-flip attempts is performed
with the METROPOLIS Monte Carlo method �59� at time in-
tervals �tBF, where Nb=3�Nmb−2� is the number of bonds in
the network, and 0���1 is a parameter of the model. The
flat region around ri,j =a of the total potential between neigh-
boring vertices allows a sufficiently large acceptance rate �
=10−2 of the bond-flip procedure.

In the absence of external forces and without coupling to
the solvent, the average area of a triangle is well approxi-
mated by the area �3a2 /4 of an equilateral triangle with edge
length a. Fluctuations of the area are small �59�. In general,
however, the enclosed volume V and the surface area S of a
vesicle are affected by the competition of the curvature en-
ergy of the membrane, thermal fluctuations, the pressure dif-
ference between the internal and external fluids, and forces
induced by shear flows. Therefore, in order to keep the sur-
face area S and the volume V constant and the densities of
interior and exterior solvents the same to high accuracy, in
particular in the presence of external forces, we add con-
straint potentials

US =
1

2
kS�S − S0�2, �8�

UV =
1

2
kV�V − V0�2 �9�

to the Hamiltonian. Here we use the parameters kS=1, kV
=0.5, and S0=0.41a2Ntri with the number of triangles Ntri
=2�Nmb−2� on the vesicle. With these potentials, the volume
V and surface area S=405a2 of a vesicle are kept constant

with a deviation of less than 1% of the target values for all
simulated systems.

The bond flips provide a very convenient way to vary the
membrane viscosity �mb, which increases with decreasing
probability � for the selection of a bond for a bond-flip at-
tempt. We have determined the membrane viscosity quanti-
tatively from a simulation of a flat membrane in two-
dimensional Poiseuille flow. The triangulated membrane is
put in a rectangular box of size Lx�Ly with periodic bound-
ary conditions in the x direction. The edge vertices at the
lower and upper boundary �y= ±Ly /2� are fixed at their po-
sitions. A gravitational force �mmbg ,0� is applied to all
membrane vertices to induce a flow. Rescaling of relative
velocities is employed as a thermostat. We study a membrane
with Nmb=1860 vertices, total area S=0.41a2Ntri, and Lx /a
=55.2. Then, the membrane viscosity is calculated from
�mb=�mbgLy /8vmax, where �mb is average mass density of
the membrane particles, and vmax the maximum velocity of
the parabolic flow profile. The membrane viscosity �mb,
which is obtained in this way, is shown in Fig. 1. As �
decreases, it takes longer and longer for a membrane particle
to escape from the cage of its neighbors, and �mb increases.
This is very similar to the behavior of a hard-sphere fluid
with increasing density. Finally, for �=0, the membrane be-
comes solid.

The vesicle is kept at the center of the simulation box by
shifting the positions of the vesicle and solvent particles with
finite time steps �tBS to keep the vesicle far from the Lees-
Edwards boundaries. The relative velocities in the collision
cells are rescaled after time steps �tCD in order to keep the
temperature constant. The fluids in the interior and exterior
of the vesicle are taken to be the same, in particular to have
the same viscosity �0.

C. Interaction between membrane and mesoscopic solvent

For membrane viscosity �mb�0, we let solvent particles
interact with the membrane in two ways to obtain nonslip
boundary conditions. First, the membrane vertices are in-
cluded in the MPCD collision procedure, as suggested for
polymers in Ref. �40�. Second, the solvent particles are scat-
tered with a bounce-back rule from the membrane surface.

We have investigated two types of membrane-solvent in-
teractions to prevent solvent particles from penetrating the

FIG. 1. Dependence of the membrane viscosity �mb on the prob-
ability � for the selection of a bond for a bond-flip attempt.
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membrane. The first method is to place hard spheres on the
membrane vertices. The radius of the spheres is chosen to be
large enough for the spheres to overlap and to completely
cover the whole membrane surface. It turns out quickly that
this method does not work for the vesicle sizes of a few
hundred vertices we are currently able to simulate. The rea-
son is that the surface area accessible to the interior solvent
particles is much smaller than the surface area exposed to the
exterior solvent. A simple estimate shows that this area dif-
ference �S is approximately 2S0� /R0, where � is the effec-
tive membrane thickness and R0 the vesicle radius. This area
difference implies that at the same solvent density inside and
outside the vesicle, which corresponds to an ideal-gas pres-
sure p, there is a strong compressive force p�S. This force
acts to increase the interior solvent density until the number
of solvent collisions on both sides of the membrane are the
same. This density difference �� implies a total expansive
force of ��kBTS0. By equating these two forces, we find
�� /�=2� /R0.

In order to avoid this difficulty, we introduce a second
model in which the membrane triangles have a finite but very
small thickness �=2lBS. For the bounce-back collisions of
the solvent with the membrane, we use a similar procedure
as suggested in Ref. �49� for a spherical particle embedded in
a MPCD solvent. The scattering process is performed at dis-
crete time steps �tBS. Therefore, scattering does not occur
exactly on the membrane surface, but the solvent particles
can penetrate into the membrane film. We distinguish the
solvent particles inside �1 iNin� and outside �Nin� i
Ns� of the vesicle. Particles that enter the membrane film,
i.e., which have a distance to the triangulated surface smaller
than lBS, or interior particles which reach the exterior vol-
ume, and vice versa, are scattered at the membrane triangle
with the closest center of mass. Explicitly,

vs
�new��t� = vs�t� −

6mmb

ms + 3mmb
�vs�t� − vtri�t�� , �10�

vtri
�new��t� = vtri�t� +

2ms

ms + 3mmb
�vs�t� − vtri�t�� , �11�

when �vs�t�−vtri�t�� ·ntri�0, where vs�t� and vtri�t� are the
velocities of the solvent particle and of the center of mass of
the membrane triangle, respectively, and ntri is the normal
vector of the triangle, which is oriented toward the outside
�inside� for external �internal� particles.

With the algorithm described above, it is very difficult to
investigate the limit of vanishing membrane viscosity �mb
=0, because �mb has a lower bound for the bond-flip proce-
dure of a dynamically triangulated surface �compare Fig. 1�.
Thus, we employ a different solvent-membrane interaction
for the case �mb=0. Instead of bounce-back collisions, the
solvent particles are scattered elastically from the membrane
triangles, and the vertices are not included in the MPCD
collision procedure. In this way, only normal forces act on
the membrane; no tangential stress is transferred. The mem-
brane can be considered as a mathematical surface, which
separates the inside of the vesicle from the outside, but has
no tangential motion. The boundary condition of zero slip

between inside and outside fluid still holds, because the col-
lision boxes in the MPCD collision step are large enough to
strongly couple the two fluids close to the membrane.

The number of solvent particles, which is placed inside
the vesicle initially, determines an average volume V. This
can be much smaller than the volume of a sphere of equal
area, if the number of inside solvent particles is sufficiently
small. However, since the MPCD fluid is compressible, the
volume V is not constant, but changes with bending rigidity
or shear forces. Thus, the volume constraint introduced in
Sec. II C is necessary to control the volume to high accuracy.

D. Parameters

The parameters of the mesoscopic solvent model have
already been specified in Sec. II A above.

We use the time steps �tCD=�tBF=20�tMD and �tBS
=5�tMD. �tCD and �tBF should be larger than �tBS and
10�tMD, respectively, to obtain thermal fluctuations
correctly.

The average penetration of the solvent particles into the
membrane film can easily be calculated from the Maxwell-
Boltzmann distribution of velocities. The result is very well
approximated by 0.6��tBS/�tCD. With the parameters men-
tioned above, the typical penetration depth is 0.005a.

We used lBS=0.05a. The vesicle dynamics is not sensitive
to the scattering distance lBS, as long as lBS�a. We have
investigated lBS/a=0.006, 0.05, 0.1, and 0.15, and checked
that the lBS dependence is less than the statistical error.

The results are conveniently expressed in terms of dimen-
sionless variables, the reduced volume V*=V / �4�R0

3 /3�, the
intrinsic time scale �=�0R0

3 /	, the reduced shear rate �̇*

= �̇�, and the relative membrane viscosity �mb
* =�mb/�0R0.

The relative membrane viscosity can also be written as

�mb
* = ��mba ��mmbkBT��mmb/ms�a/R0��mskBT � ��0a2�

= 0.0277�mba ��mmbkBT ,

which is helpful to calculate �mb
* from the membrane viscos-

ity shown in Fig. 1. The error bars of the data presented
below are typically estimated from the standard deviations of
three or four independent runs.

Our membrane only behaves as a viscous fluid if there is
a sufficient number of bond flips, which allow a relaxation of
mechanical stresses. As a rough estimate, we require that
there be at least one flip per bond within an average tank-
treading period, which is larger than 2�� in our simulations,
so that �tBF/���2��. With �=�0R0

3 /	 and expression �3�
for �0 in the collisional regime � /a�1, we find

2���
n − 1

18

kBT

	
�R0

a
�3� a

�
�2

� 1. �12�

For � /a=0.025, R0 /a=5.68, a bond-flip acceptance rate �
=10−2, and	 /kBT=20, this implies ��0.002, so that all runs
are done in the viscous regime.

E. Free energy of vesicle shapes

For the description of the effect of shear flow on a vesicle
on the basis of a simplified model, we need the free energy
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of vesicles in thermal equilibrium. Therefore, we calculate
the free energy F using a version of the generalized-
ensemble Monte Carlo method �see Appendix A�. Figure 2
shows the free energy as a function of the asphericity �.
The asphericity is the degree of deviation from a spherical
shape �61�,

� =
��1 − �2�2 + ��2 − �3�2 + ��3 − �1�2

2Rg
4 , �13�

where �1�2�3 are the eigenvalues of the moment-of-
inertia tensor �with corresponding eigenvectors u1, u2, and
u3� and the squared radius of gyration Rg

2=�1+�2+�3. This
is a convenient measure to distinguish oblate and prolate
shapes, where �=0 for spheres, 1 for thin rods, and 0.25 for
thin disks �62�. Figure 2 shows that at reduced volume V*

=0.78, only prolate shapes are stable; no metastable shapes
exist. At V*=0.66, in addition to the stable prolate shape, a
biconcave discocyte shape appears as a metastable state. At
V*=0.59, the biconcave discocyte shape is stable, and prolate
and stomatocyte shapes are metastable. A list of stable and
metastable shapes for the various reduced volumes is given
in Table I.

These stabilities agree well with previous studies �2,63�
based on the minimization of the curvature energy. The stud-
ies show that the lowest-energy state is a stomatocyte for
V*�0.59, a discocyte for 0.59�V*�0.65, and a prolate
shape for V*�0.65 �63�. Our simulation method has the ad-
vantage that it gives information not only about the minima
of the free energy, but as well about the transition states

between these minima. Furthermore, it properly takes into
account thermal fluctuations, which for a bending rigidity of
	=20kBT have a small effect at the free-energy minima, but
are important near the saddle points.

III. SIMULATION RESULTS

A. Vesicle shapes in shear flow

At membrane viscosity �mb
* =0, a vesicle exhibits tank-

treading motion for all simulated reduced volumes in the
range 0.59V*0.96. A tank-treading vesicle has a finite
inclination angle � with the flow direction as shown in Figs.
3 and 4. The inclination angle is given by �=arctan�u3

x /u3
z�,

where u3= �u3
x ,u3

y ,u3
z� is the eigenvector of the moments-of-

inertia tensor with the largest eigenvalue. Figure 4 shows
average angles ��� and tank-treading angular velocities ���
at �mb

* =0. These angles and angular velocities agree very
well with the predictions of the theory of Keller and Skalak
�KS�. The KS theory is based on the approximations of a
fixed ellipsoidal shape and a simple velocity field on the
surface �16,18� �see Appendix B�. A similarly good agree-
ment with the KS theory was obtained in the simulation of
vesicles by the boundary integral method �20�. KS theory
therefore provides a very good quantitative description of
inclination angles and tank-treading frequencies at �mb

* =0.
The dependence of the inclination angle ��� on the size of

the simulation box is discussed in Appendix C. We find that
for our standard simulation box, finite-size effects are suffi-
ciently small to be less than or on the order of the statistical
accuracy.

TABLE I. Stable and metastable shapes of vesicles, with the shape transitions induced by shear flow as obtained in the simulations.

Reduced volume V* Shapes without shear Shape transitions in shear flow

0.78, 0.91, 0.96 Prolate None

0.66 Prolate, discocyte discocyte to prolate, shape oscillations

0.59 discocyte, stomatocyte, prolate discocyte to prolate, stomatocyte to prolate, prolate to
discocyte, shape oscillations between prolate and discocyte

FIG. 2. �Color online� Free energy F��� as a function of the
asphericity � for the reduced volumes V*=0.59 �solid line�, 0.66
�dashed line�, and 0.78 �dash-dotted line� in the absence of shear
flow. Error bars are shown for a few data points.

FIG. 3. �Color online� Snapshot of a discocyte vesicle under
simple shear flow at the reduced shear rate �̇*=0.92 and �mb

* =0.
The arrows represent the velocity field in the xz plane.
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With increasing membrane viscosity �mb
* , the inclination

angle ��� decreases, as shown in Fig. 5. The qualitative fea-
tures of the simulation data are reproduced quite well by the
KS theory. In the KS theory, the vesicle transits from tank-
treading to tumbling motion when the angle � reaches zero.
In contrast, we find that for small reduced volumes, the
vesicle starts to tumble intermittently already for nonzero
���. An example of tumbling motion at V*=0.78 is shown in
Fig. 6. The origins of this occasional tumbling motion are
thermal fluctuations of the orientation of the long axis of the
vesicle, which are included in our simulations. Figure 7
shows the critical membrane viscosity �mb

c , where intermit-
tent tumbling is first observed. This intermittent tumbling
motion smoothes out the decrease in ��� around the transition
point �compare Fig. 5�. At larger �mb

* , tumbling becomes
more periodic.

Deviations from the KS predictions are also observed for
large reduced volumes. For quasispherical vesicles, with re-
duced volumes V*=0.91 and 0.96, the inclination angle ���
decreases more slowly than predicted by KS theory �see Fig.
5�, although the tank-treading frequency ��� shows only
slight deviations �compare Fig. 8�. We believe that the physi-
cal origin of the deviations in the inclination angle in this
case is shape fluctuations of the sheared vesicle, since the
eigenvectors of the moment-of-inertia tensor of a quasi-
spherical vesicle can change their direction without a mem-
brane rotation. For example, a fluctuation that elongates the
vesicle in the u2 direction and shrinks it in the u3 direction
corresponds to a discrete � /2 jump of the inclination angle

at �2=�3. In shear flow, the shrinkage of the long axis during
tumbling can lead to a � rotation in the opposite direction of
tank treading �see tumbling at t /�=75 in Fig. 6�. This occurs
more frequently at larger V*; for V*=0.78, the long axis
jumps to a different orientation only in about 10% of tum-
bling events, while this is the case in 90% of �attempted�
turns for V*=0.91 �at �̇*=0.92�. Since this motion of the
shape deformation is normal to the membrane surface, it
should be little affected by the membrane viscosity �mb

* , and
thus reduce the �mb

* dependence of ���.
Our two different models for membranes with vanishing

and nonvanishing membrane viscosity �mb have been de-
scribed in Sec. II C above. It is very nice to see now that
these two models give consistent results; the data for ��� and
��� at �mb=0 agree very well with the extrapolation of the
results for nonslip boundary conditions on the membrane
with �mb�0 �compare Figs. 5 and 8�.

FIG. 4. �Color online� Dependence of the average inclination
angle ����−� /2��� /2� and average angular velocity ��� on the
reduced volume V* at the reduced shear rate �̇*=0.92 and �mb

* =0.
Circles and squares represent prolate and discocyte vesicles, respec-
tively. The solid and dashed lines are calculated by KS theory for
prolate and oblate ellipsoids, respectively.

FIG. 5. �Color online� Dependence of the average inclination
angle ��� on the membrane viscosity �mb

* for �̇*=0.92 and various
volumes V*. Circles and squares represent prolate and discocyte
vesicles at V*=0.59, respectively. Triangles, diamonds, crosses, and
pluses represent vesicles at V*=0.66, 0.78, 0.91, and 0.96. The solid
and dashed lines are calculated by KS theory for prolate �V*

=0.59, 0.66, 0.78, 0.91, and 0.96� and oblate ellipsoids �V*=0.59�,
respectively. The dash-dotted lines are calculated by KS theory and
Eq. �19� with rotational Péclet number �=600, for V*=0.66 and
0.78.
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B. Shear-induced shape transformation

As a function of shear rate, reduced volume, and
membrane viscosity, we observe several types of phase
transformation. We have studied two reduced volumes in de-
tail, V*=0.59, where the free-energy function of a vesicle has
three minima, and V*=0.66, where two minima exist �com-
pare Fig. 2�. The results are summarized in Table I and the
phase diagram of Fig. 9.

For reduced volume V*=0.59, the discocyte is stable in
the absence of shear flow. In our simulations with membrane
viscosity �mb

* =0, we find that the discocyte is destabilized
and transforms into a prolate shape at shear rates �̇*�1.66.
However, for a smaller shear rate of �̇*=0.92, the discocyte
vesicle retains its shape. At an intermediate shear rate of
�̇*=1.38, some discocytes transform into prolate shapes,
while others keep their original shape.

The inclination angle ��� of prolates decreases faster than
that of discocytes with increasing �mb

* , as shown in Fig. 5 for

�̇*=0.92. For membrane viscosities �mb
* �0.49, the prolate

shape enters the tumbling phase �compare Fig. 7�, while the
discocyte remains in the tank-treading state. The reason is
that the discocyte has a flat dimple region and is less affected
by the membrane viscosity than the prolate shape. In this
regime, the tank-treading prolate starts tumbling intermit-
tently and then transforms into a discocyte, as shown in Fig.

FIG. 6. �Color online� Time dependence of asphericity � and
inclination angle �, for V*=0.78, �mb

* =1.62, and �̇*=0.92. The
dashed lines are obtained from Eqs. �18� and �19� with ��

* =100,
��

*=30, A*=18, and B���=1.0.

FIG. 7. Relative membrane viscosity �mb
c , at which tumbling

motion is first observed for �̇*=0.92. The simulation data ��� are
compared with the results of KS theory �solid line� for prolate
shapes.

FIG. 8. �Color online� Dependence of the average angular ve-
locity ��� on the membrane viscosity �mb

* for shear rate �̇*=0.92
and various volumes V*. Circles and squares represent prolate and
discocyte vesicles at V*=0.59, respectively. Triangles, diamonds,
crosses, and pluses represent vesicles at V*=0.66, 0.78, 0.91, and
0.96. The solid and dashed lines are calculated by KS theory for
prolate �V*=0.59, 0.66, 0.78, 0.91, and 0.96� and oblate ellipsoids
�V*=0.59�, respectively.

FIG. 9. �Color online� Dynamical phase diagram of a vesicle in
shear flow, for reduced volume V*=0.59. Symbols show simulated
parameter values, and indicate tank-treading discocyte and tank-
treading prolate ���, tank-treading prolate and unstable discocyte
���, tank-treading discocyte and tumbling �transient� prolate ���,
tumbling with shape oscillation ���, unstable stomatocyte �+�,
stable stomatocyte ���, and near transition ���. The dashed lines
are guides to the eye.
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10 for �mb
* =0.87. At membrane viscosity �mb

* =0.87, the dis-
cocyte is a stable tank-treading state for �̇*�1.7. For larger
shear rates, however, the discocyte transforms into a prolate
shape and the vesicle exhibits tumbling accompanied by
shape oscillations between discocyte and prolate. For �̇*

=0.92, the lifetime of the metastable tank-treading prolate is
�70±40�� and �40±20�� at �mb

* =0.49 and 0.87, respectively.
At a larger membrane viscosity �mb

* =1.62, the tank-treading
discocyte is stable even at �̇*=1.84 �37�.

The transformation of a stomatocyte vesicle requires
much higher shear rates than for a discocyte. Figure 11
shows the dynamics of stomatocyte with V*=0.59 and �mb

*

=0.34. A shear flow with �̇*=1.84 elongates the stomatocyte
into an ellipsoidal shape, but the vesicle retains its inside
bud. At a higher shear �̇*=3.68, the stomatocyte is found to
transform into a prolate shape, for both �mb

* =0 and �mb
*

=0.34. The snapshot in Fig. 11 captures the vesicle in a state
where the inside is just pulled open. It is interesting to note
that in the stomatocyte state, the neck is preferentially ori-
ented in the vorticity direction �normal to the flow and gra-
dient directions�. This orientation is clearly favorable in or-
der to minimize dissipation in the internal fluid, because in
this case the bud position is stationary. At high membrane
viscosity �mb

* =0.87 and 1.62, the stomatocyte retains its
shape even for �̇*=3.68. Thus, a high membrane viscosity
also stabilizes stomatocytes under shear.

For reduced volume V*=0.66, the discocyte is a meta-
stable state in the absence of shear flow. The threshold in the
shear rate to induce the transformation into a prolate shape is
�̇*	0.2 at �mb

* =0. This is a much smaller shear rate than for
V*=0.59. At �mb

* �0.49, prolate vesicles enter the tumbling

phase, see Fig. 7. In contrast to the case of V*=0.59, the
vesicle continues its tumbling motion with shape oscillations
between prolate and discocyte shapes even at a small shear
rate of �̇*=0.92, since there is no metastable tank-treading
discocyte for V*=0.66.

Thus, we find that the threshold in the shear rate for the
discocyte-to-prolate transformation depends on the reduced
volume V*. In a previous study �20� of vesicles in shear flow
with the boundary integral method, tank-treading prolates
were found as the only stable shape for all investigated shear
rates �̇*�1.0 and all reduced volumes V*�0.52; a tank-
treading discocyte was not observed. We believe that the
results of Ref. �20� and our simulations are not inconsistent,
and predict that calculations with the boundary-integral
method should also yield stable discocytes for shear rates
smaller than �̇*=0.1…1.

IV. SIMPLIFIED STOCHASTIC MODEL

A. The model

The theory of Keller and Skalak �16� and Tran-Son-Tay et
al. �18� qualitatively explains the �mb

* dependence of the sta-
bility of tank-treading �compare Fig. 5�. However, KS theory
cannot be employed to describe morphological changes, and
does not take into account thermal fluctuations. Therefore,
we suggest a simplified phenomenological model, which is
defined by the stochastic equations

FIG. 10. �Color online� Time dependence of asphericity � and
inclination angle �, for V*=0.59, �mb

* =0.87. The dashed lines are
obtained from Eqs. �18� and �19� with B���=1.12−0.14�. The
other parameters are set to the same values in Fig. 6. Snapshots of
the vesicle cross section in the xz plane are also shown.

FIG. 11. �Color online� Time dependence of asphericity � and
inclination angle �, for V*=0.59 and �mb

* =0.34. The dashed and
solid lines represent the vesicle at �̇*=1.84 and 3.68, respectively.
Snapshots of vesicles �a tank-treading stomatocyte at t /�=45, and a
vesicle during the stomatocyte-to-prolate transformation at t /�=23�
are also shown.
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��
d

dt
� = − �F/�� + A�̇ sin�2�� + ��g��t� , �14�

d

dt
� =

1

2
�̇�− 1 + B���cos�2��� + g��t� , �15�

with Gaussian white noises g� and g�, which are determined
by

�g��t�� = �g��t�� = �g��t�g��t��� = 0,

�g��t�g��t��� = 2D���t − t�� ,

�g��t�g��t��� = 2D���t − t�� , �16�

friction coefficients �� and ��, and diffusion constants D�
=kBT /�� and D�=kBT /��. Note that �� does not appear in
Eq. �15�; it drops out because the shear force is also caused
by friction.

The form of the stochastic equations �14� and �15� is mo-
tivated by the following considerations. The first term in Eq.
�14�, �F /��, is the thermodynamic force due to bending en-
ergy and volume constraints; it is calculated from the free
energy F��� of Fig. 2. The second term of Eq. �14� is the
deformation force due to the shear flow. Its � dependence can
be deduced from the shape equations of Ref. �20�. Those
shape equations are obtained under the assumption of mirror
symmetry of vesicle shape with respect to a plane defined by
the long axis of the vesicle, and imply that the hydrodynamic
force which induces local membrane deformation is propor-
tional to sin�2��. Since our model contains only global vari-
ables of vesicle shape, the force on � in principle has to be
found by integrating the local force over the membrane sur-
face. While this cannot be done explicitly, it implies that the
force on � should depend linearly on sin�2��. The amplitude
A is assumed to be independent of the asphericity � to lead-
ing order. Equation �15� is adapted from Eq. �B3� of KS
theory �see Appendix B�. In KS theory, B is a constant which
depends on the ratio �in /�0 of internal and external viscosi-
ties, the membrane viscosity �mb, and the ellipsoid shape. In
general, B decreases with increasing �in /�0 as well as �mb
�compare Eq. �B4��, and also with increasing asphericity. For
B�1, tank-treading motion occurs, while for B�1, tum-
bling motion is predicted.

We introduce dimensionless variables

��
* =

��
	�

, ��
* =
��
	�

, A* =
A

	�
, t̃ = t/� ,

D�
* =

kBT

	��
* = D��, D�

* =
kBT

	��
* = D�� . �17�

This implies

��
*�̇ = − 	−1 � F/�� + A*�̇*sin�2�� + ��

* g̃��t̃� , �18�

�̇ =
1

2
�̇*�− 1 + B���cos�2��� + g̃��t̃� , �19�

where �̇�d� /dt̃, and the rescaled Gaussian white noises
satisfy

�g̃��t̃�g̃��t̃��� = 2D�
*��t̃ − t̃�� ,

�g̃��t̃�g̃��t̃��� = 2D�
*��t̃ − t̃�� . �20�

B. Shape transitions

For prolate vesicles with reduced volume V*=0.78, whose
shape changes little during tumbling ��	0.34; compare Fig.
2�, the dynamics is reproduced very well with constant B
=1 �see Fig. 6�. At V*=0.59 and 0.66, however, the vesicle
shape can vary strongly, so that the dependence of B on the
asphericity � has to be taken into account. For simplicity, we
assume a linear relation B���=B0−B1�. To obtain tank-
treading discocytes and tumbling prolate shapes, the condi-
tions B�0.2��1 and B�0.7��1 are needed in the absence of
stochastic forces. With the deterministic version of Eqs. �18�
and �19�, we were able to reproduced the vesicle dynamics at
V*=0.59 and �mb

* =1.62 very well �compare Fig. 4 in Ref.
�37��. However, the deterministic version cannot describe the
finite lifetime of tank-treading prolates �see Fig. 10�.

For the stochastic equations �18� and �19�, tumbling can
already occur for B slightly larger than unity, because the
actual inclination angle can become negative by thermal
fluctuations. This is the situation shown in Fig. 10, where the
prolate vesicle is in the tank-treading state for a while, before
it starts tumbling and transforms into a discocyte. Further-
more, the results of the stochastic model reproduce the simu-
lated vesicle dynamics better than the deterministic version
�compare Figs. 6 and 10�. Thus, the intermittent tumbling is
caused by thermal fluctuation.

In the absence of thermal fluctuations, both transitions
�from a tank-treading to a tumbling prolate shape, and from a
tank-treading discocyte to a tank-treading prolate shape� are
saddle-node bifurcations. The vesicle changes its behavior
when the stable fixed point in �� ,�� space, which describes a
tank-treading state, is annihilated by the unstable fixed point
�21,64�. In the transition from tank-treading to tumbling pro-
late shape, these fixed points are located at �
= ±0.5 arccos�1/B�. In the transition from a tank-treading
discocyte to tank-treading prolate shape, the fixed points cor-
respond to the free-energy minimum of the discocyte, and
the free-energy barrier between discocyte and prolate shapes.
In the case of tumbling, no stable fixed point exists and limit
cycle occurs. Thermal fluctuations change both transitions
into continuous crossovers.

Our results show that the dynamical behavior in various
parts of the phase diagram, Fig. 9, can be explained qualita-
tively on the basis of the phenomenological model �18� and
�19�. For a more quantitative comparison, analytical expres-
sions for the parameters ��

* , A*, and B��� are required. This
is straightforward for B���, which could be determined from
KS theory, as explained in Appendix B. The difficult parts
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are ��
* and A*, which in general depend on � and �mb. A

single shape parameter � is sufficient to describe the shape
transitions between discocyte and prolate shape. However, a
single shape parameter is not always sufficient. For example,
the transformation from stomatocyte to prolate does not
progress through a discocyte shape in Fig. 11. Two shape
parameters are necessary to describe this dynamics in a sim-
plified model. Therefore, with our current phenomenolog-
ical approach, the full phase diagram cannot be reproduced
quantitatively.

C. Importance of thermal fluctuations

We want to discuss now the effect of thermal fluctuations
in Eq. �19� with constant B, i.e., for fixed vesicle shapes. This
corresponds to the original Keller-Skalak theory with ther-
mal noise. The smoothing effect of thermal fluctuations on
��� around the tank-treading to tumbling transition, which we
see in the simulations, is captured very well by the stochastic
model �19�, as demonstrated in Fig. 5 for V*=0.78.

The importance of thermal fluctuations depends on the
rotational Péclet number �= �̇ /D�= �̇�� /kBT. In terms of the
dimensionless variables �17�, the rotational Péclet number is
given by �= �̇ /D�= �̇* /D�

*= �̇*��
*	 /kBT. The results are

shown in Figs. 12 and 13. The steady probability distribution
of � only depends on B and �. For B�1, the probability
distribution of � is symmetric for �=�. Thermal noise makes
the distribution asymmetric and ����0. For B�1, intermit-

tent tumbling decreases the value of ���. Furthermore, a
lower relative shear rate � induces more tumbling �see Figs.
12�b� and 13�. This result, which at first is very surprising, is
due to the suppression of thermal fluctuations with increas-
ing shear rate.

Kraus et al. �20� argue for �mb
* =0 that thermal fluctua-

tions become important when the rotational Péclet number
��1, i.e., for shear rates �̇��kBT /	, where the typical ro-
tational diffusion time �0R0

3 /kBT becomes comparable to the
inverse shear rate. This is different, however, for the tank-
treading to tumbling transition. The effects of thermal fluc-
tuations are most pronounced around the transition point B
=1. It can be seen in Fig. 12 that thermal fluctuations cannot
be neglected for rotational Péclet numbers as large as �
=1200. We approximate the rotational friction coefficient by
that of a sphere with radius R0, which is given by ��

*

=8��0R0
3 /	�=8�	30. This should be a reasonable ap-

proximation as long as the vesicle is not too elongated. It is
a lower bound for elongated shapes, since �� increases with
the third power of the long axis for large ellipticity. In the
quasispherical approximation, the relative shear rate is �
	30�̇�0R0

3 /kBT. Thus, �=600 corresponds to �̇�=20kBT /	.
A more detailed understanding of the tank-treading to

tumbling transition can be obtained from Eq. �19�. The force
due to the flow field can be integrated to obtain a �dimen-
sionless� effective potential for the motion of �, which is
found to be

Veff��� =
1

2
��

*�̇*�� − 0.5B sin�2��� . �21�

Thus, the trapping energy for tank treading, i.e., the differ-
ence of the maximum and the minimum of the effective po-
tential, is given by 0.5��

*�̇*�−arccos�1/B�+�B2−1�. When
the trapping energy is smaller than kBT, the vesicle escapes
from the minimum �which describes the tank-treading state�
and starts intermittent tumbling. As B approaches unity, this
trapping energy decreases as �B−1�3/2, and intermittent tum-
bling can be induced at even larger values of �.

Note that we predict two different scenarios for a transi-
tion �or crossover� from tank treading to tumbling.

FIG. 12. �Color online� Dependence of �a� the mean angle
����−� /2��� /2� and �b� the tumbling frequency f tmb on B ob-
tained from Eq. �19� with various relative shear rates �. The errors
are less than �a� 0.0003� and �b� 0.2.

FIG. 13. �Color online� Dependence of the dimensionless tum-
bling frequency �f tmb� /D� on the rotational Péclet number �, for
different values of B close to the transition point, as obtained from
Eq. �19�. The errors are less than 0.1.
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�i� At constant shear rate, increasing membrane viscosity
makes tank treading unstable and leads to a periodic tum-
bling state �compare Fig. 5�.

�ii� For a fixed membrane viscosity, which is sufficiently
small so that B�1, increasing shear rate �corresponding to
increasing �� reduces the effect of rotational fluctuations,
suppresses intermittent tumbling, and stabilizes the tank-
treading state.

D. Comparison with experiments

A shear-induced transition from tumbling to tank treading
with increasing shear rate has already been observed in ex-
periments with red blood cells �13� and with liposomes �15�.
However, KS theory cannot explain this transition. We pro-
pose that the suppression of thermal fluctuations with in-
creasing shear rate is responsible for the observed behavior.

In the intermittent tumbling region, the tumbling fre-
quency decreases and the lifetime of tank treading increases
with increasing shear rate, as shown in Fig. 13. The transi-
tion from intermittent tumbling to tank treading occurs at �
=103–104. Although large vesicles are less affected by ther-
mal fluctuations ���R0

3�, the thermal-fluctuation effect is
significant even for micrometer-sized vesicles. Goldsmith
and Marlow �13� reported that red blood cells in water �with
�0=0.001 Pa sec� are tumbling in shear flow, while in 30%
Dextran solution �with �0=0.05 Pa sec� a shear-induced
transition from tumbling to tank treading occurs at �̇
	1 sec−1. They also observed an intermediate motion be-
tween tumbling and tank treading around the transition shear
rate. We interpret this intermediate behavior as intermittent
tumbling with a long lifetime of the tank-treading state. For
their experimental values �R0=3 �m, �0=0.05 Pa sec, and
�̇=1 sec−1�, we obtain a critical shear rate of �c=104. Thus,
their observations are consistent with our results for B
=1.01.

V. DISCUSSION

A simple scaling argument shows that shear should affect
the vesicle shape for shear rates �̇��1, where the hydrody-
namic forces on the vesicle shape ���̇�0R0

3� become similar
to the force of vesicle curvature ��	�. Since the critical
shear rate for the shape transition is a factor 	 /kBT larger
than the estimate for shear rate where rotational diffusion
becomes important, thermal fluctuations should have little
effect on the shear-induced discocyte to prolate transition.
The estimate �̇�	1 indeed agrees quite well with our simu-
lation results for the shear-induced discocyte to prolate tran-
sition, where we find �̇*=0.1–2.

The essential factor for the shear-induced shape transfor-
mations of Sec. III B is the � dependence of the external
shear force on the membrane. Shear flow elongates or
shrinks a vesicle for 0���� /2 or −� /2���0, respec-
tively. These opposite directions of the shear force induce the
two types of transformations between discocyte and prolate
shapes. When the shear is sufficiently small at V*=0.59 and
�mb

* �0.49, the shear forces become too small to push the
vesicle across the free-energy barrier. Thus, the tumbling
prolate should keep its shape and not transform into a disco-

cyte. We have not been able to investigate this part of the
phase diagram by simulations. However, we estimate from
Eq. �18� that this behavior occurs for �̇*�0.1.

In Eq. �19�, only the angular fluctuations in the xz plane
are taken into account. This is a reasonable assumption for
��1. However, at rotational Péclet numbers ��1, where
the transition occurs from random rotational diffusion to tank
treading or tumbling, fluctuations in the y direction become
important. Thus, our simplified stochastic model is no longer
applicable at Péclet numbers ��1.

It is interesting to compare the effects of membrane vis-
cosity �mb and internal viscosity �in. It was concluded from
the analysis of the behavior of both liquid drops �30� and
fluid vesicles of fixed elliptical shape �16� in shear flow that
an increase of the surface viscosity has the same qualitative
effect as an increase of the internal liquid viscosity �16,30�.
Indeed, we find for vesicles that an increase of the viscosity
induces in both cases a decrease of the inclination angle �
and a transition from tank treading to tumbling. However, the
apparent viscosity obtained from KS theory depends on the
vesicle shape, as explained in Appendix B. Therefore, the
dependence of the vesicle behavior on �mb and �in can be
qualitatively and quantitatively different when shape trans-
formations occur. The effect of the internal viscosity �in is
less dependent on the vesicle morphology. KS theory �16�
shows that the tank-treading phase of an oblate vesicle is
destabilized a little faster than that of a prolate one with
increasing �in at �mb

* =0, but a little slower than that of a
prolate at �mb

* =0.5 �compare Fig. 14�. Thus, a sufficiently
high membrane viscosity �mb

* is necessary to induce
the transformation from prolate vesicle to tank-treading
discocyte.

When the viscosities �mb
* or �in /�0 are very large, both

prolate and discocyte vesicles are in the tumbling phase. On
the basis of our simulation results, we expect the following
behavior. At large shear rates �̇*, tumbling with oscillations
between the two shapes should occur. At an intermediate
shear rate �̇*, there should be a transformation from a tum-
bling prolate shape to a tumbling discocyte at V*=0.59, and
from a tumbling discocyte to a tumbling prolate shape at
V*=0.66. At a small shear rate �̇*, no shape transformation
should occur, and a tumbling vesicle should keep its initial

FIG. 14. �Color online� Dependence of the inclination angle �
on the viscosity �in of an internal fluid at V*=0.59 and �mb

* =0 or
0.5 in KS theory. The solid and dashed lines represent prolate and
oblate ellipsoids, respectively.
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shape. Another factor is that larger viscosities make the
shape-transformation rate slower. If the sign of the shear
force on the membrane changes during tumbling before the
vesicle can overcome the free-energy barrier between disco-
cyte and prolate, the vesicle cannot change its shape. This
certainly happens in the asymptotic regime �mb

* →� or
�in /�0→�, where the vesicle behaves like a solid object.

It would certainly be interesting to extend the present
study of vesicles with homogeneous membranes to the case
of inhomogeneous membranes, such as phase-separated
multicomponent vesicles. If the mechanical properties of the
membrane are inhomogeneous in the xz plane, the shape de-
formation and the inclination angle � would oscillate with
the tank-treading frequency � /�. Chang and Olbericht �65�
report that synthetic capsules exhibit oscillations of the ellip-
soidal shape and of the inclination angle � in tank-treading
motion. These oscillations are likely caused by the inhomo-
geneity of the membrane.

Since red blood cells have a viscoelastic membrane, their
free-energy landscape is different from that of a fluid vesicle
�Fig. 2�. The shear elasticity suppresses shape changes and
prevents the formation of prolate and stomatocyte shapes in
the absence of external forces. Pozrikidis �25,26� reported
periodic deformation of a tumbling red blood cell in shear
flow by the boundary integral method but no shape transi-
tions were obtained.

VI. SUMMARY

We have applied a mesoscale simulation technique �mul-
tiparticle collision dynamics� to the study of the dynamical
behavior of vesicles with viscous membranes under shear
flow. The membrane viscosity changes the vesicle dynamics
from tank treading to tumbling. The shear also induces a
discocyte to prolate or prolate to discocyte transformation at
low or high membrane viscosity, respectively. Thermal fluc-
tuations modify these transitions. We have explained this ef-
fect using a simplified stochastic model based on Keller-
Skalak theory.

Our model has the advantage that it can easily be adapted
to a variety of other problems of vesicle dynamics in flow,
like multicomponent vesicles or vesicles with nonzero spon-
taneous curvature in shear flow, flow of vesicles through cap-
illaries, or vesicles with shear elasticity.
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APPENDIX A: GENERALIZED-ENSEMBLE MONTE
CARLO METHOD

The free energy F of a vesicle is calculated by an order-
parameter version of the multicanonical Monte Carlo method
�66�. We employ an additional weight potential Uw to obtain

a flat distribution of the order parameters. Here, the reduced
radius of gyration Rg

*=Rg /R0 and the asphericity � are used
as order parameters. Since the weight potential Uw is not
known a priori, it has to be estimated by an iterative proce-
dure used in the multicanonical method �67–69�. After this
simulation, the canonical distribution is obtained by a re-
weighting procedure �70�, Pcan�Pmu exp�Uw/kBT�.

When the vesicle has only one free-energy minimum
�V*=0.78�, the free-energy profile F��� is obtained by a one-
dimensional weight potential Uw�Rg

*� or Uw��� �see Fig. 2�.
At V*=0.59, however, the vesicle has a complex free-energy
landscape between discocyte and prolate shape, and the one-
dimensional weight potential does not work. At V*=0.59 and
0.66, we therefore employ a partial two-dimensional weight
potential Uw�Rg

* ,��. At V*=0.66, the two-dimensional
weight is more efficient, although the one-dimensional
weight also works.

For reduced volume V*=0.59, the free energy has three
minima, which correspond to stomatocyte, discocyte, and
prolate shapes �see Figs. 2 and 15�. The vesicle travels be-
tween stomatocyte and discocyte shapes with the one-
dimensional weight, since the free-energy valleys are con-
nected by a single saddle point. On the other hand, the
discocyte does not transform into a prolate vesicle and vice
versa with the one-dimensional weight. There are free-
energy barriers of about 8kBT between an elongated disco-
cyte and a banana-shaped prolate vesicle at Rg

*	1.18, al-
though they have the same free energy �see inset of Fig. 15�.
The traffic between these two regions is necessary to esti-
mate the free-energy difference between discocyte and pro-
late shape. We employ the two-dimensional weight potential
Uw�Rg

* ,�� in the small region of 1.165Rg
*�1.2 and �prol

����disk, where �prol and �disk are the � values of the
free-energy minima at each Rg

*. This two-dimensional weight
connects free-energy valleys and enables free-energy
estimation.

FIG. 15. �Color online� Asphericity � of free-energy minima
with each radius of gyration Rg /R0 at V*=0.59. The solid and
dashed lines are the deepest and second minima, respectively. The
inset shows the free energy of the asphericity � at Rg /R0=1.1825
�along the thick vertical line�.
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APPENDIX B: KELLER-SKALAK THEORY

In the theory of Keller and Skalak �16�, the vesicle is
assumed to have a fixed ellipsoidal shape,

�x1/a1�2 + �x2/a2�2 + �x3/a3�2 = 1, �B1�

where the ai are the semiaxes of the ellipsoid, and the coor-
dinate axes xi point along its principal directions. The x1 and
x2 axes, with a1�a2, are chosen to lie in the xz plane. The
velocity field on the membrane is assumed to be

vm = �um = �„− �a1/a2�x2,�a2/a1�x1,0… . �B2�

Although this velocity field does not satisfy the local area
conservation of membrane, it can be analyzed more easily
than the area-conserving velocity field of Ref. �17�. The en-
ergy Wex supplied from the external fluid has to be balanced
with the energy dissipated in the vesicle, Wex=Din+Dmb,
where Din and Dmb are the energies dissipated inside the
vesicle and on the membrane, respectively. The motion of
the vesicle is derived from this energy balance:

d

dt
� =

1

2
�̇�− 1 + B cos�2��� ,

B = f0� f1 +
f1

−1

1 + f2��in/�0 − 1� + f2f3�mb
*  , �B4�

� =
0.5f1

−1�̇cos�2��
1 + f2��in/�0 − 1� + f2f3�mb

* . �B5�

The membrane-viscosity term has been derived by Tran-Son-
Tay et al. �18�. The factors appearing in Eqs. �B3�–�B5� are
given by

f0 = 2/�a1/a2 + a2/a1� ,

f1 = 0.5�a1/a2 − a2/a1� ,

f2 = 0.5g��1
2 + �2

2� ,

f3 = 0.5EsR0/�f1
2V� ,

g = 

0

�

��1
2 + s�−3/2��2

2 + s�−3/2��3
2 + s�−1/2ds ,

�i = ai/�a1a2a3�1/3,

Es = � ẽijẽijdS ,

ẽij = eij − 0.5 Pij ,

eij = 0.5PikPjl��uk
m/�xl + �ul

m/�xk� ,

 = Pij � ui
m/�xj ,

Pij = �ij − ninj ,

where Es is an integral over the membrane surface, and n is
the normal vector of the surface.

For B�1, a steady tank-treading angle �
=0.5 arccos�1/B� is obtained. A simple model, which has
been derived by Kraus et al. �20� under the assumption of
mirror symmetry of the vesicle shape in the xz plane, gives
the same tank-treading angle �=arctan�a2 /a1� of KS theory
with �in=�0 and �mb

* =0.
We calculate the inclination angle � and tank-treading fre-

quency � by KS theory for prolate �a2=a3�a1� and oblate
�a2�a3=a1� ellipsoids. Note that there are no adjustable
parameters.

The membrane viscosity �mb and the internal viscosity �in
have a similar effect in KS theory. Therefore, an effective
internal viscosity can be defined as �eff

* =�in /�0+ f3�mb
* from

Eqs. �B3�–�B5�. Note that the factor f3 in �eff
* depends on the

vesicle shape. This is a significant effect for vesicles of vari-
able shape, in particular for shape transformations between
prolate and oblate vesicles �see Fig. 14 and discussion in
Sec. V�.

APPENDIX C: FINITE-SIZE EFFECTS

We usually employ a simulation box with Lx=50a and
Ly =Lz=30a in our simulation. In order to check for finite-
size effects, we have also done a few simulations for other
box sizes, 32aLx80a and 20aLy =Lz36a. For a
large reduced volume of V*=0.91, no significant finite-size
effects are observed, since the vesicle is almost spherical and
sufficiently far away from its periodic images. On the other
hand, for the smallest reduced volume of V*=0.59 in our
simulations, the long axis of the vesicle reaches about 2R0,
and the finite-size effect in the flow �x� direction becomes
larger. The dependence of the inclination angle ��� on R0 /Lx

in this case is shown in Fig. 16. The inclination angle is
found to increase slightly with increasing Lx. This size de-
pendence agrees qualitatively with the results for a two-
dimensional system in Ref. �22�. It implies that we may un-
derestimate the inclination angle by about 10% for the
smallest reduced volume considered. Since this is compa-
rable to our statistical error bars, our box size is sufficiently
large for the accuracy of our simulation.

FIG. 16. Finite-size effects of the inclination angle ��� for V*

=0.59, �mb
* =0, and �̇=0.92 in the prolate phase. Circles, diamonds,

squares, and triangles represent simulation results for R0 /Ly

=R0 /Lz=0.24, 0.28, 0.19, and 0.16, respectively.
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