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Exact time-dependent correlation functions for the symmetric exclusion process
with open boundary
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As a simple model for single-file diffusion of hard core particles we investigate the one-dimensional sym-
metric exclusion process. We consider an open semi-infinite system where one end is coupled to an external
reservoir of constant densify* and which initially is in a nonequilibrium state with bulk densjiy. We
calculate the exact time-dependent two-point density correlation funct@n(t)=(n(t)n(t))
—(n(t)){n(t)) and the mean and variance of the integrated average net flux of paNifies N(0) that
have enteredor left) the system up to timé We find that the boundary region of the semi-infiniédaxing
system is in a state similar to the bulk state of a fisitationarysystem driven by a boundary gradient. The
symmetric exclusion model provides a rare example where such behavior can be proved rigorously on the level
of equal-time two-point correlation functions. Some implications for the relaxational dynamics of entangled
polymers and for single-file diffusion in colloidal systems are discussed.
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[. INTRODUCTION For a more detailed understanding of the role of correla-
tions in nonequilibrium states of the symmetric exclusion
The simple symmetric exclusion proce(3EP [1] is a  procesg25], we compute here the time-dependent two-point
Markov process describing the diffusive motion of identicaldensity correlation function in an one-dimensional semi-
hard-core particles on a lattice. Particles hop randomly tdnfinite system with one open boundary, connected to a res-
nearest-neighbor sites with an exponential waiting-time diservoir of constant densityg™. In the polymer context this is
tribution with meanr,, provided the chosen site is empty. If equivalent to an entropic tensile force acting at the end seg-
it is occupied, the attempt to move is rejected. A considerabl@ents of an entangled polymer ch4ltg].
body of exact results, particularly for the one-dimensional '€ Paper is organized as follows. In order to overcome
case(see[2,3] for reviews, has led to a thorough under- some of the technical dlfflcult|es connected with the cou-
standing of many fundamental properties of this model. Appllng to bounFjary reservoirs we formulate the SEP in terms
plications to specific problems include interface growth inOf the dynamical matrix product ansgt7—-19 (Sec. I). In

the universality class of the Edwards-Wilkinson e uationsec' lll we derive a functional equation for the two-point
Aty ) q density correlation function that is solved by a Bethe wave
[4,5], reptation dynamics of entangled polymdr8], or

inale-file diffusion i lecular-sized ch I h as bi function. From this we derive in Sec. IV the scaling form in
single-fiie diitusion in molecuiar-sized channels Such as bi0igmg of error functions. The details of these rather involved
logical membrane channel3] or zeolite poreq8], and in

X X i calculations are presented in the appendixes. In Sec. V we
one-dimensional colloidal systerfs]. focus on the fluctuations in the total number of particles
From a theoretical and also experimental point of VieWQ(t):N(t)—N(O) that enter and leave the system that ini-
the main quantities of interest afe) the equilibrium and  tjally is prepared in an uncorrelated random state with a den-
stationary nonequilibrium properties of the system with openity po. We obtain the (expectedl universal asymptotic
boundaries where particles can enter and lda@ and(b)  growth law(Q?)—(Q)2=A\lt/7, and the nonuniversal am-
the time evolution of the local particle denSity and their Cor-p”tude A(pO:p*) relevant to reptation dynamics_ We con-
relations in a system that relaxes after it has been prepared glude with some brief remarks on the nature of the evolving
some far-from-equilibrium initial state. For instance, in the nonequilibrium statéSec. V.
study of kinetic roughening of an initially flat interface in a
two-phase Ising system one obtains from the SEP exact uni-
versal scaling functions for the roughng44]. In the inves- Il. DYNAMICAL MATRIX PRODUCT ANSATZ
tigation of the reptation dynamicil2,13 of an initially We first consider the symmetric exclusion process on a
stretched DNA chain, flourescence microscopy allows for &nain ofL sites. At the boundary sitde=1. L particl .
direct measurement of the relaxation of the tube lefgt cha " % St esi 'teh OLtJ ary s ’I tpa ¢ e? 316
which in the lattice gas approa¢h5] is proportional to the injec '(ta' (ex :ac ed W'f ra efct”“- t(yl",-)t'h n terrr;]s ?. de_
number of particles in the one-dimensional exclusion procesgans.I 'O.n ratésvy s Irom staten to n ) € stochastic dy
with open boundary. Not only universal power laws, but alsg1@mics is described by a master equation
nonuniversal amplitudes are of interest, e.g., for estimating

the sensitivity of the coarse-graining involved in the lattice d
gas description to the microscopic properties of the polymer 5 P(n;t)= > [WonP(N ;) =Wy P(N;D)] (D)
dynamics in a dense soluti¢6,16]. - nex T T 7 T
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for the probabilityP(n;t) of finding, at timet, a configura-
tion n of particles on a lattice ofL sites. Heren

={n1,_n2, i
particle occupation numbers at siteln what follows it is
convenient to set the microscopic time umj=1. In these
units the single-particle diffusion coefficient is given Dy

=1/2.

.,n.}, where n;=0,1 are the integer-valued

PHYSICAL REVIEW E 64 036107

tained from the master equation, but refer the read¢B}o

The matrixC as well as the vector§ W| and|V)) may be

chosen to be time-independdi®]. The dynamical problem
is then solved by introducing Fourier transforms

Dp<t>=; ePD,(1). (6)

Inserting the transition rates as described above, one

readily obtains the equations of motion farpoint joint
probabilities (ny, . .
coupled equations where the time derivatives ofrthpoint
joint probabilities are coupled ton{—1)-point joint prob-

.,nkm>. These form a hierarchy of

They have the simple time-dependence
Dy(t)=e 'Dy(0) )

in terms of the initial matrixD,(0) and the inverse relax-

abilities. In principle, this allows for a recursive solution, ation timese,=1—cosp. These diffusive single-particle re-
which, however, is difficult to obtain fan>1. More impor-  |axation modes reflect the random walk nature of the dynam-
tant, unlike in a periodic system, the lack of translationalics. For calculating the local expectation valg@sand(4) it
invariance makes it difficult to obtain exact results even foris useful to separate the statip£0) and dynamical [§
m=2 that we study in this paper. Hence we reformulate the£0) parts in the Fourier expansion Bf, and to write the
dynamics in terms of the dynamical matrix product ansatanverse Fourier transform in the form

[17-19. This ansatz leads to a decoupling of the joint prob-
abilities and splits the many-body dynamical problem into a
(trivial) dynamical single-particle part and @ontrivial)
many-body part that is time-independent and can be solved

'd _
Dk(t)=(1—k)po+z+f %DP(O)e"pk’fpt. (8)

using the Bethe ansatz.

In the semi-infinite system that we will be considering, the

The dynamical matrix product ansatz is reviewed in detailprimed integral is to be understood as a contour integral in
in [3]. Here we discuss only the main features relevant to théhe variablez=e™'?, where the contour is chosen in a way

SEP. One represents an occupigdcanj site by a time-
dependent matriD (E) in a stringDDDEDEE... of L
such matrices. The configurational probabilitieén;t) are
obtained by sandwiching the product of thésenatricesD
or E between suitably chosen vectoféW| and |V)) and
normalizing byZ, =({W|C"|V)), whereC=D +E. [Notice
that expanding thé.th power of C automatically gives the

such that the values of the joint probabilities obey the correct
initial conditions att=0. The matricesD, andZ are time-
independent and yield all stationary expectation values. The
time-dependent integral contains the relaxational paB,of

The master equation not only determines the time evolu-
tion of Dy(t), which is given by Eq(7), but also requires the
Fourier components d,(t), as given by Eq(8), to satisfy

sum of all un-normalized configurational probabilities andvarious relations among themselves and with the vectors

hence yields the correct normalization fackoFhe time-

((WJ, [V)). The dynamical part, where bothy, andp, are

dependent matrices satisfy algebraic relations that are deteronzero, satisfies
mined by requiring the matrix product state to satisfy the

master equatiofil). Expectation values of local observables

DpleZZ S(plypz)ppzppl 9

are obtained by sandwiching suitable products of the matri-

cesD,E with C. Defining formallyD,=C* *DC ¥ one ob-
tains for the local particle densiy(t) =(n.(t)) at sitek,

p(=((W|C**DC " MV))iZ, 2
=((WID\CHV))/Z, &)

and for the joint probabilityGy (t) = (n,(t)n,(t)) of finding
particles at site,,

Gii() =((W|DD,CHV))/Z, . 4

From these quantities one obtains the two-point density cor-

relation function

Cii (1) = (N ()N (1)) = (i (1) )(ny (1)). 5

with

1+ elP1tiP2_2giP2

S(p1.p2)=— L+ aPiriPr pgibr’ (10)
The relations involving static components read
[Dp,Do]=0, 1y
[D,.Z]=2D,D,, (12)
[Do.7]=D5. (13

These relations have their origin in the bulk exclusion inter-
action between particles.
The boundary conditions determine the actionZgf on

Higher-order joint probabilities are obtained analogously.the vectorg(W| and|V)). One finds

The initial probability distribution is encoded in the matrices

D(0).

0=((WH{Do+2(as+ y1)I—2ay}, (14

We do not review here how the matrix relations and the

corresponding relations for the vectaf@n/|, |V)) are ob-

0=((W|{D,+e?PBy(p)D_,} (p#0), (15
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0={(2a +2y, —1)Dg+2(a + y)I—2a.}|V)), of the uncorrelated initial and final distributions, respec-
tively. Here 8, is the Kronecker delta-function. Hence

0={BL(pP)Dp+D_}|V)) (p#0). 17 k=p(1—p), (23

with wherep=pg or p*, respectively.

20;+2y—1+e P A. Density profile and current
I I

Bi(p)= 2ai+2y—1+eP (18) The evolving density profile was computed exactly in
: : Ref.[17]. If a;=a =p*/2, y,=v,.=(1—p*)/2, one has

Notice that in the relationg9)—(17) the time-dependence 'dp
drops out. The set of relation(@), (9)—(18) provides an al- pr(t)=p* +J —((Dp»e“pk‘fpt, (24)
ternative mathematical formulation of the symmetric exclu- 2m

sion process with open boundaries. where we use the abbreviation

lll. CORRELATION FUNCTIONS (WIDp,, . .. Dy, CHV))
({(Dpys - Dp )= 7 (25)

For the equilibrium choice of boundary parameters
=a1=a =p*/2 andy=y;=y =(1—p*)/2 the boundary
relations(14)—(17) and the function8;(p) simplify consid-
erably. With these rates, modeling the connection to particl
reservoirs of density*, the (unique invariant measure of
the process is a product measure with dengityi.e., there

in order to make the formulas more compact. Using Egs.
15) and(17) with B;(p) =B (p) =€ 2P, one can show that
(%(Dp» obeys the functional equatiof{D,))=—({D_p)).
with the solution

are no density correlations between different sites. Choosing L
as initial state an uncorrelated state with dengify p* {(Dp))= > a, (elPko—g~iPko), (26)
leads to a nontrivial time evolution as the system starts to fill k=1 °

u <p*) or deplete(respectivelyp,>p*). Correlations . o .
a?e(ﬁk))%iltpul)a in thep transieﬁt regin')llgobe?or)e the equilibriumWhere the constants, are determined by the initial condi-
state is attained. In a semi-infinite system this will take anfions. Furthermore, Eq$15) and(17) impose constraints on
infinite amount of time, and the “transient” regime is the the set of allowed momenta, given ley'P~*V=1. In the

only relevant one. For finite systems withsites[10] the ~ thermodynamic limit. —c, the momentg form a continu-
system is transient for timés< 7* «L2. This is the regime on  OUS set and this condition can be relaxed. For a system that is
which we focus our attention. Therefore we ignore the rightinitially in an uncorrelated state with densipp, one has
boundary site by considering the thermodynamic limit ak,= —Ap and one obtains in the thermodynamic limit, after
—o0, The only remaining length scaleesides the unit lat- substitution of Eq(26) in Eq. (24),

tice constantis then the dimensionless diffusion length

pr(t)=po+(p* —po)9k(1), (27)
L=L(t)= vat/m . (19 whereg,(t) is the lattice analog of the complementary error
This is a dynamical length scale playing the role of a Corre-funCtIon
lation length(see below w
Anticipating the importance of macroscopstatic initial gH=e"t1()+2 > Ip(t)} (28)
and equilibrium properties for the nonequilibrium relaxation p=k+1

process we introduce the basic quantities characterizing both o .
the nonequilibrium initial state with densitp, and the and wherl (1) are the modified Bessel functiogal). In

asymptotic equilibrium state with densip/ . These are the terms of the scaling variable
density gradient Y=K/T 29

Ap=p*=po 20 the long-time behavior of the density profile is given by the
error function, as is well-known for diffusive transport. In

the vicinity of the boundary, i.e., at distances<1l small
k= lim (N2 —(NY2)/L, (21)  compared to the diffusion length, the density profile is linear.
L—oo Associated with the spatial variation of the density there
is a diffusive relaxational currenj,=Dy(py(t) — prr1(t))
which is readily obtained from the static two-point correla-that is space-independent close to the boundary to lowest
tion function leading order in time. It is convenient to define the current

between bulk and boundary and the compressibility

Cri=p(1—p)dy, (22 J=]J/Dg (30)
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in units of the single-particle diffusion coefficiend, W p,(Ko:lo) =expipiko+ipalo) +S(Pp1,p2)explip2ke
=1/(27y). From the expansiofA2) of the Bessel function

one finds +ipylo) —exp —ipikotipalo)
. ~ —S(—p1,p2)expipzko—ipilo)
~ 20" —po) 2T =228p /(L) (531 —S(p1,p2)exp(—ipkotipilo)
B. Two-point correlation function: Exact expression +S(=P1.p2)expl pako Ipllo)
The density profilep,(t) and hence the time-dependent —S(—=P1,P2)S(P1,P2)eXNiP1Ko—ipP2lo)

equilibrium  two-point  correlation  functions Cg (t) _
=(n(t)n;(0))— (p*)? can be obtained in a straightforward (7 P1.P2)S(P1.P2)

manner from the solution of a lattice diffusion equation. The Xexp(—ip1kog—ipslg). (35
solution of the equations of motion for equal-time joint prob-

abilities, however, and hence the calculation of the timeUsing Eq.(24), one can write the two-point correlation func-
dependent two-point correlation functidf) is much more tion as

involved. A convenient way to circumvent an explicit inte-

gration of the coupled equations is to make use of the alge- Cy |(t)=J dp, d (« Dy )= (D, ))
braic representation of expectation values within the dynami- 2m 27 P17P2 P1
cal matrix product ansatz. Substituting E8) in Eq. (4) and

using the commutation relationgl1)—(13), one obtains, X((Dp2>))exp{—i(plk+pzl)—(ep1+epz)t],
whena;=a =p*/2, y1=y =(1-p*)/2, (36)
D) =p* 24 p* fg—i((Dp))eipkEpt where((D,, D)) is given by(34) and({D, )) by Eq.(26).

If we now choose the contour of integration such that at

'dp _ t=0 the integral ovet,, , (ko.lo) in Eg. (36) is equal to
—I—p*j %«Dp)}e"p"fpt Sk.k,91.1, then the condition that the initial state is uncorre-
lated Cy|(0)=0, givesay  =ay &, =(Ap)®. Substituting
J dp, d << ) this result in Eq.(34) and using this equation, together with
2w 2w p1Pr, Eg. (26) in Eqg. (36), we obtain for the semi-infinite system,
X exp —i(pak-+ Pol) — (ep,+ €p )t], whenl =z,

(32) ck,|<t>=<Ap>2[e2t[||+k<2t>—l|k(zm

where((Dp)) is given by Eq.(26). dp, d
Using Egs.(9) and (15), we can show tha((l)pl Dp2>> f f ! exp[ i(pik+p,l)
. . . |(0<|0 2’7T 2
obeys the following functional equation

—(€p, T €p )tI{S(P1.p2) — Lrexp(ip ko +ipalo)
—{S(—p1.P2) — 1}explipko—ip1lo) —{S(P1,P2)
—1texp(—ipoko+ipilo) +{S(—p1.p2) — 1}

<<Dple2>>: —S(— pl,p2)<<Dp2D— p1>> (33

together with similar equations involving all the possible ar-

rangements ofp; with p, or —p, and —p; with p, or Xexp(—ipoko—ipilog) —{S(—p1,p2)

—p,. Furthermore, in a finite system, these equations and i )

equation(17) determine the set of allowed momenta. These X S(p1,p2) — 1rexplip1ko—ipalo) +{S(—p1,p2)
equations are the equations obeyed by the Bethe wave func-

tion of a quantum spin 1/2 system with boundary figl2g] X S(p1,p2)—1yexp —ipiko—ipalo)1}, (37

and they have the solution

where the first term comes from the summation terms of
((Dp)){(Dy,)) with ko=1o. We remark that for noninteract-
ing particles(no hard-core repulsion and hence no exclusion,
but otherwise identical hopping dynamjcthe correlation

) o function has only this term, but with a different amplitude
where the constane | are determined by the initial con- ao=<n2>o_Pc2)_Po determined by the initial distribution
ditions and¥, . (Ko.lo) is the Bethe wave function, which only. The exclusion interaction gives rise to the double sum
is given by over kg,l o with the terms of the forn§—1, SS —1.

L
<<Dplpp2>>:k02|o ak0,|oqlpl,p2(k01|0)1 (34)
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To extract more detailed information from the exact ex- R
pression(37), one needs to perform the double sum over
ko,lp and to determine the contour of integration such that
Eq. (37) obeys the initial condition. This is shown in Appen- 0.2
dix B. As a result, we obtain the more compact expression g4 |

Crt()=—(Ap)?[Fies1— 1) k() + Fiesr s 2(D) 0
Pk (O = F ok +1(D] (39
with
de™ 2X rmj2 X 2 . ~ ~~ ~ o~ .
Frn(X)= J d60089j dp e2vcos® FIG. 1. Scaling partR=R(x,y)—R(—X,y) of the two-poTt
™ Jo 0 correlation function as a function of the scaled bulk coordinate
X1, (2(x—v)cosd)cod v sin(26) +na], and the scaled lattice distance'y—x (full lines). For visualization
purposes also the plafe=0 (equilibrium casgis shown(broken
(39 lines).

which will be used in the next section to obtain the scaling

behavior of the two-point correlation function and in Sec. V () — 2 \/; Y iy
t)=—(A —R —R(— 42
to determine the particle number fluctuations. CHO==(4p) t[ Y)=R(=xy)] - (42)

IV. SCALING BEHAVIOR OF THE TWO-POINT where
CORRELATION FUNCTION

RXY)=e 9 merfo(y=X)/\m) (43
The expressio38) is our starting point for analyzing the
particle number ﬂUCtU&tiOﬂSee next SeCti(jn For investi- and erfc(.) is the Comp|ementary error funct|dﬁ|g 1) As
gating local correlations it is more convenient to write Eq.time increases, the range of correlations increases propor-
(38) in another way tionally to \t, but the amplitude decreases in the same man-
~ ~ ~ ner. The negative sign of the correlation function signals an-
Cii()=—(Ap)[Fi —1() +Fyei(t) = F _;_1(1) ticorrelations typical of the exclusion effef2]. In a finite
. system with a fixed density gradient between the two bound-
—F k()] (40) aries imposed by the coupling to two different particle reser-
. voirs these anticorrelations perdi&0]. They extend over the
with whole lattice and have an amplitude inversely proportional to
the system size.

IA:m,n(x)=2tJ’ldv e~ vt g=2t(1-v) In the vicinity of the boundary (&x<y<1) one has
0 R(X,y)—R(—x,y)=4x(1—vy)/m. In terms of the current
X (1=0)"" ™ (1) (t(1—0)). (31) and the diffusion length.(t) (19) the boundary corre-

(41) lation function is thus given by

— _TAT1 Y
One can show that Eq40) holds if we use the integral C=-Lyx(1-y). (44)

representatioifAl) of the modified Bessel functions appear-
ing in the definition ofF, ,(x), as given by Eq(39). We
can then perform the integral over. Representing the
integral overd as a complex integral over an appropriate

contour we then obtain, after performing some expansions, . . .. L ; . .
P g P alstnbunon and the exclusion interaction, a comparison with

and using the identities(Al4) and (A8), Fn(X) . . . . o . ;

N . i " noninteracting particles is again instructive. The scaling form
;g(mﬁgrdls)/ié(gaa)l)m(x) which, when substituted in Eq. f he correlation function is similar in structure, but one has
Fort>1 the main contribution to the integral comes from R(x,y)=e "7 and a different amplituda, / V4t [see

small values ob . In order to obtain the scaling behavior we re.ma.rk after Eq($7)]. For the same uncorrelated initial dis-

) ) _ .~ tribution as considered for the exclusion process oneajas
define an analogy to Eq29) a second scaling variable =—p2<0. Remarkably, anticorrelations develop even
=I/L and substitute the integration variahle-vL. To lead-  though there is no exclusion. However, the amplitude is dif-
ing order in time one then has {Iv)< /=exd—u(x—Yy)].  ferent and, unlike in the exclusion process, these anticorrela-
With Eg. (A2) we obtain the scaling form of the correlation tions vanish in a finite system driven by a boundary gradient
function as time tends to infinity.

Corrections, which can easily be obtained from the exact
scaling function(42), are of third order in the scaling vari-
ables.

In order to disentangle the effects caused by the initial
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V. PARTICLE NUMBER FLUCTUATIONS

We define agQ(t)=N(t) —N(0) the net number of par-
ticles that have entered or left the system until tim&he
mean(Q(t)) is evaluated using Eq$A3), (A4), and (A6)
and one gets

<Q<t)>=Apk§1 gk<t>=Ape—‘k§1 (2k— 1)1, (1)

_at
~ap|te U0 0]~ 510 g

The mean grows asymptotically with the power law

2t
(Q()~Aap \f; (46)

characteristic of diffusive processes.
The variance

a?(1)=(Q%(1))—(Q(1))? (47)
may be split into three different parts
(1) =(N2(1)) =(N(1))*+(N*(0)) =(N(0))?
—2[{N(t)N(0)) —(N(t)){N(0))]. (48)

PHYSICAL REVIEW E 64 036107

COOO00O
oabwroo

FIG. 2. AmplitudeA of the particle number fluctuations as a
function of the boundary densify* and the initial bulk density,,.

4t
K()~(3-2y2) \E (53)

~ 4t
> gE<t>~<ﬁ—1>\ﬁ, (54)
k=1 T
and therefore

o2 (H)=A(po,p* )Nt (55)

with

Since the initial state is a product state one has A(POaP*)Z\E[K0+K*+(3—2\E)(AP)Z]- (56)

(N(H)N(0)) —(N(t){N(0)) = ko(d/dpo)(N(1)), where g
[see Eq.(23)] is the compressibility of the system in the
initial state.

The amplitudeA is symmetric under interchange of the mac-

On the other hand, because of the exclusion principle, onE?Scopic quantitiep,,p* and convex in the physical domain

can write

(NZ(t))—(N(1))?= —<Ap>2r<<t>+k§1 [p(t) = pZ(1)]

(49
with the double sum
—(Ap)’K(D)=22 > Cy(b). (50
k=1 I=Kk+1
Using
d
d_p0<nk(t)>:l_gk(t) (51)

we rewrite Eq.(48) in the form

02<t)=k§l [{ko+ &* +(Ap)2}gu() — (Ap)2 gE(1)]

—(Ap)?K(t) (52

0<pg,p*,<1 with a local maximum apy=p* =1/2 (Fig.

2). For an initially completely filled lattice dy=1) we re-
cover the result presented previougly|. For the trivial case
of noninteracting particles one hagq— 1),;3 instead of the
gradient term in Eq(56).

Within the Rubinstein model for reptatiofi5] and its
extensior| 6] the particle number of the symmetric exclusion
process is proportional to the tube length of a polymer and
hence proportional to the experimentally accessible visual
length of a fluorescence marked entangled macromolecule
such as DNA. A nonequilibrium initial densityy,>p* cor-
responds to a stretched conformation that may be approxi-
mated by dragging a molecule through a dense solution with
optical tweezerg14]. It has been shown that the relaxing
tube length calculated from the symmetric exclusion process
is in good agreement with experimental data in the universal
initial-time regime[6]. The particle number fluctuatiorithe
lattice sum over the two-point density correlation function
that we obtain yield the evolution of the tube length fluctua-
tions of the polymer chain. For an initially fully stretched
polymer (po=1) the result, Eqs(55) and (56), has been
discussed in a recent publicatiph6]. We see here that a
partially stretched chain displays qualitatively similar relax-

convenient for studying its asymptotic behavior. The sumational behavior. In contrast to the Langevin approach used

overg, has been calculated in E@5). The evaluation of the
other sums is rather technical, the details are presented
Appendix B. One finds the following asymptotics:

in Rouse-based standard reptation theldr§] where A de-
jrends solely on the equilibrium tube length fluctuations, the
exclusion model predicts a dependence also on the initial
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state(via the compressibilityc;) and the amount of stretch- in [9]. In such an experiment the influence of direct particle
ing Ap. These features arise from the static interactions beinteractions in addition to pure hard-core repulsion can be
tween particleghard-core, in our cagehat are neglected in studied.
the purely entropic Rouse model.
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nonequilibrium behavior of the model is largely determined

by the dynamical diffusion length and by three static mac- APPENDIX A: MODIEIED BESSEL FUNCTIONS
roscopic quantities, viz., the compressibilitieg, «* of the AND ELLIPTIC INTEGRALS

initial and equilibrium states resp., and the density gradient

Ap between théequilibrium) boundary and thénitial) bulk 1. Modified Bessel functions

density. With regard to polymer reptation this re<6B) sup- Here we list some useful propertiésee, e.g.[21]) of the

ports our previous conclusiofil6] that standard reptation ,ogified Bessel functions
theory is an oversimplified model of the relaxation process of
stretched, entangled polymers. 1 (= .
On a local level we find an inverse relationship between In(t)= EJ’,wd‘f’ ol $n+ cospt (A1)

the ranget=L of (anti-correlations and their strengthl/L.

It is interesting to quantitatively compare the expressibt) with integer indexn.

for the correlation function in the boundary region of the (i) Asymptotic behavior {—«, u=n?/t finite)
system with thestationarynonequilibrium correlation func-

tion C* of a finite system oL sites with two different res- .
ervoir densitiesp” =p*, p"=p, as considered in the Sec. e n(t)~
Il. The external density gradient imposes a stationary current

that is given by}* =Ap/L. In terms of the scaling variables (ji) Recursion relations
x=k/L, y=I/L one finds C*=—L(J*)%x(1-y) [Refs.

[10,19] that is of the same form as E@44). This result (D) =1_n(1), (A3)
suggests that the state of the open system in the boundary

region (i.e., at distances small compared to the diffusion 2nl, ()=t - 1(t) =14 1(1)), (A4)
lengthL) is similar to the nonequilibrium steady state of a d

finite system of siz¢. =L. Hence we can identify three dis- Z&In(t): o1 (t) + e q (). (A5)
tinct length scales where the system displays different behav-

ior. On the scale of the lattice constamt 1 the systenin
the boundary regionis in local equilibrium as is the bulk
state of the finite stationary systeft0]. On intermediate ©

scalesa<r<L the system is locallyi.e., in the boundary E el (t)=1, (AB6)
region stationary, but not in equilibrium. On large scales n=-=

>L the system is neither in equilibrium nor stationary, but w

displgys relaxat?onal behavior and _dynamical scaling. 2 (O] s (D=1 1(20). (A7)
It is no surprise that the qualitative features of the relax- n=—o

ation process in simple symmetric exclusion can be de- .

scribed in terms of dynamical scaling with the diffusion (iv) Integrals: Fom,n integers, one has

lengthL (t) and the universal power lawt characteristic for 2 (i

diffus.iv.e dynamics. Yet it is gratifying to have a simple, but (D)1 a(1)= —f décog (nFm) o]l +m(2t cosh).

nontrivial model, where not only scaling theories can be mJo

verified explicitly, but also scaling functions can be calcu- (A8)

lated. An interesting open problem remains the question i ) ) )

whether these results can be obtained from more widely ap- ©One defines22] the functionsf «(t), whereq is a posi-

plicable coarse-grained hydrodynamic approadhied for ~ tVe inteéger ands is an integer, as

e n2/(2t)_ (A2)

Tt

(iii) Summation formulas

stochastic interacting particle systems. A direct experimental o g1
study of _the quegtions aqldres;ed here appears to be feasible fos(t)= 2 ptq >2q(_ 1)Pl g esap®).  (AD)
by studying colloidal particles in a setup similar to that used ' p=0
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One can also show, using the integral representation of thimitial condition, namely, C,;(0)=0. In order to per-
modified Bessel functions, that fe=0, one has form the first step, the key point is to realize that one can
. write the factors S(pi,p2)—1, S(—pi1,p2)—1 and
f du Ig(u)(t—u)a-1, (A10) S(—p1,P2)S(p1,p2) —1 that appear in Eq(37) in a way
0 such that the sums ovég coming from each of these terms
can be written as the difference of two sums starting at
neighboring arguments, e.do=ko+1 andly=ky+2, and

_
(q-1)!

The following useful equalities also hold:

fq,s(t):

_1 can thus be easily performed using the telescopic property of
fas(t) =2l Tqr1ora( + Tgraoa(V)] (ALY) sums. Furthermore, after some tedious but straightforward
td algebraic manipulations one can show that the sums layer
far11()=Fqo(t)— qr (A12)  can also be performed in the same way, i.e., using the tele-
' scopic property. When performing this second sum, one also
td generates one extra term that cancels exactly the first term of
farr—1(D)=Fgot) + q (A13)  Eq. (37). One obtains, after interchanging and p,, the

following result:
where the first equality follows from the integral representa-
tion of f 4(t), the second follows from integration by parts

of EQ. (A10) and the third follows from the two above. , [ ['dp dp2

One can also shoy23], that the following identity holds: Cri()==2(Ap) S 27 XA (e ep)t]

* 1 1 —ip

> |p+m(X)yp=Xf dv(l—v)meX% — =Xyv?+xyv x( 1.+e 1_ __aipgk—ipyl

p=0 0 2 1—2e P14 P17IP2

le—l(x(l_v))v (A14) 1+e—ip1 i
— —IpoK—Ip

wherem is a positive integer. 1—2e P14 e*ip1+ipze uE BD

2. Elliptic integrals
The following relationg24] are used in the calculation of ~ Now we need to determine the appropriate contour of

Laplace transforms: integration in Eq.(B1). But in fact, one does not need to
determine it explicitly. Assuming that the contour includes
/2 sirfe the origin, one can use the identityx¥ [;da e~ ** to rep-
fo de(l_az Sir?6) V1— K2 siro resent each of the denominators of ER1) as an integral
over « and then formally expand the resulting exponentials
m(1—Ao(¢.K)) under the integration sign in powers ef P+ ande™P1~P2

(A15)  for the first denominator, and~P1 and e 'P1*P2 for the
second denominator. If one then performs the integrals over

where k<a, sing=\(1—ad)/(1-Kk?) and Ao(¢,k) is Pi. P2, anda, one obtains the following result fay (t):
given in terms of elliptic functions by

T 2J(1-ad) a2k

2 ©
Ao(¢.k)=—[E(KF(¢.k") +K(K)E(¢ k') C(h=—(Ap)2e 2 Y, (p;q)zqﬂ(_l)p
p.q=0
~KOF(.K], (AL6) X1 k(D g (D F Dl g 1(D)
whereK (k) andE(k) are the complete elliptic integrals and _ _
F(é,k'), E(¢,k’) are the elliptic integrals of first and sec- o=k Dlp g1~ lp-Olprqrani(B)].
ond kind, withk’ = J1—K2. (B2)

APPENDIX B: DERIVATION OF THE EXACT Notice that the exist ‘i ons deends on th
EXPRESSION FOR THE TWO-POINT CORRELATION otice that the existence ot tné expansions depends on the

FUNCTION convergence of the resulting series, which implicitly fixes the
contour. It can be easily checked from the properties of the
In order to derive the exact expression for the two-pointmodified Bessel functions that this expression does indeed
correlation function from Eq(37), one needs, as stated obey the initial conditiorC, ;(0)=0 (notice thatk<l).
above, to perform the double suaf _; 3| _y 11 in Eq.(37) This expression is still rather cumbersome to use. If we
and then to determine the contour of integration of theapply (A8) to products of two modified Bessel functions, we
double integral in this equation which will yield the correct will obtain, with m=1—k, n=1+k, r=q+2p
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Cri(t)y=—

6>, desired result. An alternative route to derive EB5) is to

2 - > them into products of modified Bessel functions yields the
2(Ap) e*ZtJ' 12 (p+q)2q+l(_1)p P y
0 P.q=0 use the representatigB4) and the equalitiefA11) to (A13).

X{Iy+1+(n-1)(2t cosh)cog (q+m) 6]

2
~lri14(m-1)(2tcosd)cog (q+n)f] 1. Sum overgi(t)
This expression arises in the summation oyeg(t))?
—lry11m(2t cos®)cod (q+1+n)6]}. B3 that forms part of the “dynamical compressibilitfN2(t))
One can now writéB3) in terms of thef, ((t) functions —(N(F))z_enterlng the expression for’(1). It is convenient
that were defined above. One has @ to split this sum into three different parts. One has
o0 oo e 2
2(Ap)? . 2 —2t 2 —2t
- _ - t)=—e I (t)—2e I (t
Cui(t) ——e 2 90 2 1k 2 1
/2 * “ - ”
x| 405, {fq.1y a2t c0s0) +4e72% 3 D 1(0igh. (€D
0 q=0 ' k=1 p=k q=k

xXcog(q+I—k)o]+f (2t cosh)
2 I+ faraie The first part can be evaluated by using E@s3) and (A7),

Xcog(q+I—k+1)6] the second part by using EGAG). To evaluate the third part
~fqias-k_1(2t cOsB)cOg (q+1+K) 6] we rewrite the summation as

—fqs1)-k(2t cosf)cog (q+1+k+1)0]}. k—1

_ 2
(B4) kzl pgk qzk Ip(t)lq(t)—gl k |k(t)+2p20 P 1p(D1(t)

Using the integral representatiof®10) and summing (C2)
over g one obtains, after the substitutiorn=2(t—wv)cosé in
the integral overu, the solution(38) where the functions and apply Eqs(A3), (A4), (A6), and(A7). One obtains
Fmn(x) are given by Eq(39).

Since the steps that led from E®1) to Eq.(B2) are only

formal, one should check explicitly that E(R8) is indeed a S L

solution of the equations of motion for the joint probabilities .Zl F,Z:k qzk p(D1a(0=Z[e{1o(+11(V}
(n(t)ny(t)). This is trivial forl #k+ 1. Forl =k+1 one can

show that the unphysical amplitude; ,(t), Ci1xs1(t) —{lo(20) +11(20)}].  (C3)

that are generated by the time derivative{nf(t)n,. (t)),
obey the following identity:

Ck,k(t) + Ck+ 1k+ 1(t) - 2Ck,k+ 1(t)

Putting everything together yields

=~ (8O (0T, B9 5 giv=2te o +1x(0]-e 2 [1o(20)+120)]]
=1
which cancels exactly the unphysical contribution coming
from the term[ p,(t) — prs1(t)]? [see Egs.(27) and (28)] —[1-2e " Uy(t)+e 2y(2t)]/2. (CH

that also appears in the equation far(t)n, (1)), thus

showing that(n,(t)n,, 1(t)) obeys the correct equation of . L L
motion. This identity can be proved by considering the ex-The second part of this expression is subleading in time and

pression for the lefi-hand side of E(B5) as given in terms can be ignored in the study of the asymptotic behavior.
of the integral representatiai38). After some cancellations
between the terms, one uses the identity 2. Laplace transform of K(t)

d In order to perform the sum on the right-hand side of Eq.
a(exp[v[lJrCOS(ZG)]}COiv sin(26) +s0)] (50), we consider the Laplace transform of the correlation
function Cy (t) as given by Eq(38). Since the expression
=2 exduv[1+cog26)]}codv sin(20)+(s+1)6] (39 involves a convolution of two functiong hdv f(t
(B6) —v)d(v), such transformation simplifies considerably the
calculations, because the Laplace transform of such a convo-
to integrate the resulting expression by parts. Applying thdution is the product of the Laplace transforms of the two
identity (A8) to the remaining integrals, in order to transform functions. Writing the Laplace transform &g (s), one has
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- __4(Ap)2 /2 cosf
Cr(s)= T fo d J(s+2)°—4 coge

1
><(s+ 1)2—2(s+1)cog26)+1

+ Frerti—k+1(8) = Ak 1xr1(8) = Fi_wks1+1(S) ],

[Frs1-11-k(S)

(CH)
where the functionsq,, ,(s) are defined by
s+2—(s+2)>°—4cos6\"
Fnn(S)= > o [(s+1)cogno)
—coq(n—2)6}]. (Co)

An additional advantage d¢fC5) with respect to Eq(38)
is that the sums ovek and| now reduce to summing two
geometric series, due to the form &, ,(s). Performing

PHYSICAL REVIEW E 64 036107

~ 2 \Js+4 3 4(3s+4)
K(S):_ST/Z<\/S+_2_ 4 +£+m
/2 sirté
xf de - -
0 [1- a?(s)sir?0]y1—Kk3(s)siP6
B 8
m(s+2)?
jw/Z sirfe
X deo - - ,
0 [1—a'?(s)sirfd]V1—k3(s)sirte
(C7)

where a?(s)=4(s+1)/(s+2)?, a'?(s)=2/(s+2), and
k?(s)=4l/(s+2)?. Since the last two terms are of the form
(A15), one can now expand the elliptic integrals at snsall
[24]. The most singular terms of this expansion, i.e., the
terms that diverge as €92 at smalls diverge like\/t at large

such sums, one obtains after computing some standard intein the time-domain, i.e., after inverting the Laplace trans-
grals using the residue theorem, the following expression foformation. Collecting all these leading-order terms in the ex-

the Laplace transforri (s) of K(t):

pansion ofK(s) yields the result given in E¢53).
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