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ABSTRACT 
 

The methods of Euler angles and unit quaternions are typically used to represent the rotations and 
the orientation of a rigid body in space. Based on some algebraic manipulations, the alternative 
formula, called axis-rotation, which describes the rotation around a given axis with an arbitrary 
angle, is derived. The use of some of its applications in several fields of molecular modelling is 
introduced. Although we present the use of the axis-rotation formula only in some fields of the 
molecular simulation, it is applicable in any other domain where object rotation is employed. 

  

1. INTRODUCTION  

Molecules are composed of numbers of atoms, ranging from dimers, e.g. HF, to very big complex 
systems of hundred thousands of atoms, e.g. big proteins or DNA. Atoms are bound to molecules by 
intra-atomic potentials, which give rise to mutual atomic motions like vibrations, bending motions or 
torsions. In the case of dynamical calculations, the applied time step has to be chosen small enough 
in order resolve the fastest motions in the systems. For the case of molecular dynamics simulations, 
where electronic degrees of freedom are neglected and the motion of atoms is described classically, 
the timestep of integration is usually in the range of ≈1fs. On the other hand, in the case of Monte 
Carlo simulations, the number of trial moves has to be chosen large enough in order to sample the 
configuration space, accessible by the molecule. However, often one is not interested particularly in 
short time but in long time dynamics of a molecule or a whole system composed of molecules, e.g. 
folding of a protein into a native state or transport phenomena in liquids. Taking into account the 
fastest vibrational motions in the system explicitly implies a computational burden. Therefore, as a 
first approximation, the fastest degrees of freedom are often frozen and mutual distances between 
neighboured atoms are fixed to their average distance1 (further approximations may also freeze 
bending or torsional motions). If all degrees of freedom in a molecule are constrained, the dynamics 
is described as rigid body motion (we note that handling constant distances between objects is also 
an important item in very much different areas, e.g. computer graphics, computer games, spacecraft- 
and car-simulations or robotics). The motion of a rigid body can naturally been splitted into 
translational motion of the center of mass and rotational motion around its principal axes, i.e. all 
atoms belonging to the same molecule rotate an angle dϕ  around the same axis and have the same 
angular velocity ωωωω . The equations of translational and rotational motion thereby describe the 
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reaction of the rigid body to external forces. The motion will be constant, conserving total energy 
and angular momentum if no external forces act on the body. 

The graphical interfaces allow the interactive modification of the atomic structures by selecting 
fragments of structures and manipulating them by translation, rotation, projection and scaling. The 
rotation is a fundamental tool in building and merging of the atomic structures as molecules, clusters, 
crystals and surfaces. It can be used also in the conversion from internal coordinates to cartesian 
coordinates, which are required by some codes of the different branches of the molecular 
simulations. 

In order to describe the orientation and rotation in space of a rigid body, two mathematical tools are 
usually used: the Euler angles and the quaternions.2,18 The method of Euler angles consists of three 
successive rotations around the x-, y- and z-axes, with three angles φ, θ and ψ, called Euler angles. 
Different sets of Euler angle rotations exist and the three rotations may be applied in any order. 
Quaternions are mathematical objects that generalize the complex numbers and obey the Pawley 

algebra.3 Formally, a quaternion ( )T

0= q ,q qv is a vector with four components, one scalar 

component, 0q , and a vectorial one T
1 2 3=(q ,q ,q )vq .4 The quaternion with the form 

T=(cos( /2), sin( /2)) ϕ ϕq n is normalized 2 2 2 2
0 1 2 3q +q +q +q 1=  and is associated to the rotation of the 

angle ϕ around the unit axis T
1 2 3=(n ,n ,n )n .5 The components of the quaternions are expressed as 

products of sine and cosine functions of the Euler angles and Euler angles and quaternions can be 
mutually transformed into each other.18  

The equations of motion based on Euler angles contain terms with singularities for some particular 
orientations. This problem may be overcome either by some successive rotations of smaller angles or 
by changing the coordinate system when approaching the singularity. Both solutions require some 
additional statements in the algorithm and introduce some computational overhead. The advantage of 
the quaternion description is that there are no special cases for the orientation of a molecule, but the 
method is not free of problems, as the norm of the quaternions is not conserved along the evolution 
in time.6 The accumulation of the numerical errors may be prevented by normalization of the 
quaternions at each time step. The Euler angle method provides a physical description of rigid body 
rotation around an axis. In contrast, the quaternion formalism completely describes the rotation but 
they are mathematical objects that do not reflect directly the physical meaning of the rotation.  

The third possible way to describe the rotation of a rigid body around an axis is the so-called axis-
rotation formula.7-10 For unknown reason, it is not popular in the field of molecular simulations and 
as far we know, it is mentioned only in one article.11 This formula may be derived from the 
quaternion formalism but it can be directly obtained by the decomposition of the vector position in 
the perpendicular and parallel components to the rotation axis. The axis-rotation formula provides a 
clear picture of the rotation with any angle (ϕ ∈� ) around any axis n  in space. In this article we are 
concerned with the derivation of the axis-rotation formula and some applications of it. It allows a 
simple geometrical manipulation of the molecules or molecular fragments, which is a great facility for 
the preparation of the coordinates of the molecular systems for the input in Quantum Chemistry 
calculations, Molecular Dynamics and Monte-Carlo simulations. The rotational dynamics of the rigid 
bodies may be recovered and analysed from the trajectories of the component particles. Furthermore, 
the axis-rotation formula helps to construct the symmetry operators in the point group theory.  

 
 
2. BUILDING AND MERGING MOLECULES 
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2.1.  ROTATION OF A POINT AROUND AN AXIS 
 
Let us consider the changes of the coordinates of a point after the rotation with the angle ϕ around 
an arbitrary axis, described by the unit vector n , that is going through the point O described by the 
vector 0ρρρρ  with respect to the origin of a given coordinate reference frame. Two points, two real or 

dummy atoms, a bond or a direction (for example the electric dipole, the principal inertia axis or the 
angular velocity) may define the rotation axis. The direction of rotation is given by the right-hand 
rule: the thumb of the right hand is oriented in the direction of the vector n  and the curl of the 
fingers gives the positive direction of rotation.  
 
The vectors 0= + rρ ρρ ρρ ρρ ρ and 0' = '+ rρ ρρ ρρ ρρ ρ  give the position of a point P before and after the rotation, 

respectively. A simple formula that relates 'r  to r  (the relative vectors to 0ρρρρ , after and before 

rotations, respectively) is derived in the Appendix A1 and it is: 
 

 T'= cos ( )(1 cos ) sinϕ ϕ ϕ+ − + ×r r n n r n r . (1) 
 
Mathematically, we may write the right-hand rule as ( )>0×n r r' . The case ( )<0×n r r' is equivalent 

to a negative angle ϕ < 0, which means that the rotation is done in the inverse direction. 

The transformation of the relative position to O is given by ˆ ϕ
nr' = R r , where 

 

 Tˆ ˆ ˆ ˆ=cos (1 cos ) ( ) sinϕ ϕ ϕ ϕ+ − + ×nR I n n I n I  (2) 

 

is the associated rotation operator and Î represents the identity operator that transforms a vector in 

itself ˆ =Ir r . Therefore, the absolute position of the point P after rotation is described by  
 

 0 0
ˆ' = ( - )ϕ+ nRρ ρ ρ ρρ ρ ρ ρρ ρ ρ ρρ ρ ρ ρ . (3) 

 
 
 

              
 
The evolution in time of any point ρρρρ is decomposed into the translational motion of a reference point 

O described by the vector0ρρρρ and the rotation around the axis going through the reference point: 

Fig 1. The definition of the absolute 
(greek bold letters) and of the relative 
(bold letters) position vectors, before and 
after the rotation of the point P to P’ by 
the angle ϕ  around the unit axis n  which 
is going through the reference point O. 

The vectors { }
1,3i i=

f are the unit vectors 

of the absolute reference frame.  
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 0= + r� � �ρ ρρ ρρ ρρ ρ  (4) 

where,  

 = =ω × ×r n r n� ωωωω  (5) 
 
describes the rotation around the axis = / ωn ωωωω  with the angular velocityωωωω  (see the Appendix A2). 
Because of the separating of the vectors from the static (3) and dynamic equations (4) in the one 
component that refer to the reference frame and another inside it, it appears useful to introduce the 
local reference frame for the arbitrary point O. The axes of the local reference frame are parallel to 
the axes of the absolute reference frame and move together with the reference point O. In the further 
considerations we will refer only to the rotational part, around an axis that is going through a point 
O. In case of a set of atoms, the center of mass of the system is the most convenient choice for the 
reference point O. 
 
Here we list some properties of the rotation operator associated to the arbitrary unit vector n : 
i)  ˆ ˆ ˆ ˆ ˆα β α β β α+= =n n n n nR R R R R , the rotations around the same axis are commutative; 

ii)  0ˆ ˆ ˆ ˆ ˆ ˆϕ ϕ ϕ ϕ− = = =n n n -n nR R R R R I and therefore the inverse operator is 1ˆ ˆ ˆ)ϕ ϕ ϕ− −= =n n -n  (R R R ; 

iii) Tˆ ˆ ˆ= 2 ( )π − +nR I n n I ;12 

iv)  ˆ ˆ ˆ ˆ ˆ( )( )= , ( )×( )= ( × )ϕ ϕ ϕ ϕ ϕ
n n n n nR a R b ab R a R b R a b , the dot product and the cross product of the 

two arbitrary vectors a andb  are preserved; 

v) n is the eigenvector of the rotation operatorˆ =ϕ
nR n n for the eigenvalue 1, which is natural 

because the rotation operator does not change the rotation axis.  
 
In case of the manipulation of the molecules or fragments of the chemical systems, it is more 
economical to construct the rotation matrix: 
 

 
1 1 1 2 3 1 3 2

1 2 3 2 2 2 3 1

1 3 2 2 3 1 3 3

n n (1-cos )+cos n n (1-cos )-n sin n n (1-cos )+n sin

n n (1-cos )+n sin n n (1-cos )+cos n n (1-cos )-n sin

n n (1-cos )-n sin n n (1-cos )+n sin n n (1-cos )+cos

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ

� �
� �= � �
� �� �

R  (6) 

 
and to multiply it with the coordinates of the atoms that are rotated (see eq. 29, Appendix A3). 
 
 
2.2.  ALIGNMENT OF MOLECULES INTO A DIRECTION 
 
In the graphic visualization, in the crystal surface construction or in the set up of the initial structure 
of a chemical system, very often fragments or the full system must be oriented under an angle θ  
formed by a given direction from the system described by the unit vectord and a fixed direction in 
space described by the unit vector 0d (see Fig. 2). Two atoms, a bond, the dipole moment, the 

normal to a plane or a special direction from space may determine each direction. The current angle 
formed by the two directions is measured as ( )0 0arccosθ = dd , in the direction of superposing 

d over 0d . The system has to be rotated by angle 0θ θ−  around the unit axis 0

0

=
×
×

d d
n

d d
. Therefore, 

it is translated with the mass center in the reference point O, it is rotated and translated back with the 
mass center in the initial position. For example, this procedure can be applied to display a system 
with a special direction d  perpendicular to the screen or when an adsorbed molecule must be 
oriented with the dipole moment to make the angle θ  with the normal of a surface.  
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Fig 2. A rigid-body in initial orientation and after its reorientation to form  
the angle θ between the direction d fixed on the body and the given direction  
in space d0.  

 
Some of the chemical system properties can be easier determined considering the symmetry of 
system. Programs that employ the symmetry of the molecule require the coordinates of the molecule 
to be given in so-called standard symmetry orientation, which is defined based on the rules: (i) if the 
system has a symmetry Cs then the z axis is chosen perpendicular to the symmetry plane; (ii) if the 
system has symmetry axes then the z axis is oriented along the axis with the highest order; (iii) the x 
axis is considered in one vertical plane if it exists or along an axis C2 if it exists. The procedure 
presented above can be applied to orient a given system in the standard symmetry orientation. 
 
 
3. CONVERSION BETWEEN INTERNAL AND CARTESIAN 
    COORDINATES  
 
The molecular simulation codes start the calculations from the identity of the atoms and their 
position in space described by their cartesian coordinates (CC) or their mutual relative position 
described by the internal coordinates (IC). The chemical systems are graphically visualized based on 
the cartesian coordinates of the constitutive atoms. For a molecule of N atoms, there are 3N 
cartesian coordinates necessary to specify the location of the atoms. The standard molecular 
geometries, determined by the averaging of the interatomic distances, of the bond angles and of the 
dihedral angles provided by different experiments and different substances with similar atomic 
environments, constitute a good starting point in constructing the molecular geometries in the ICs. 
Moreover, the graphical programs offer the possibility to monitor the construction of molecules by a 
two-dimensional drawing of the molecule, which establish the connections between atoms. Based on 
the connectivity of the atoms in the molecule, the geometry of a non-linear molecule can be 
represented by 3N-6 internal coordinates (N-1 bond distances, N-2 bond angles and N-3 dihedral 
angles). Three degrees of freedom that define the center of mass position, and other three that, 
describe the orientation of the molecule are not considered, the position and orientation of the 
molecule, being fixed by the first three atoms. The distance between the atoms 1-2 and 2-3 and the 
bond angle 1-2-3 defines the positions of the first three atoms. For a linear molecule, N-1 distances 
determine the relative positions of the atoms. The place and the orientation in space of the molecule 
is defined by the position of any two atoms. 
 
The shapes of the potential energy surfaces are different in the cartesian and internal coordinates, 
generally being more complicated in the first case. Depending on the size and on the topology of the 
system, the optimization convergence is dependent on the type of coordinates. As a rule, the 
optimization in ICs is faster, except for  large molecules  or molecules with some particular 
topologies (cyclic, planar or linear). Providing a good initial hessian, especially when the geometry is 
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far from  equilibrium, the optimization in CC is enforced, making comparable the convergence in 
both types of coordinates.      
  
In the empirical force fields, the different components of the energy are expressed as functions of the 
interatomic distances, bond and dihedral angles, the displacements of the atoms are determined in 
CC. Therefore, in  Molecular Mechanics and Molecular Dynamics calculations the cartesian 
coordinates are mainly employed  although there are some  approaches  to apply internal coordinates 
in  Molecular Dynamics simulations. In principle, in Monte-Carlo simulations there are no problems 
to use the ICs, but the calculations are usually done in CCs.  
 
The transform of the coordinates from a type to another is very often demanded. The cartesian to 
internal conversion is direct. Based on the inter-atomic distance, the connectivity of the atoms is 
established. From the positions of the first three atoms, the distances between the atoms 1-2 and 2-3 
and the bond angle 1-2-3 are determined. For other atoms L=4,N the internal coordinates are 
determined in successive iterations for each atom L. The distance between the atoms K and L is 
given by KL KL L Kd = = −r ρ ρρ ρρ ρρ ρ , where the vectors ,K Lρρρρ  are the position vectors of the atoms K and L 

and KLr  is the relative vector of L to K. The angle formed by the three connected atoms J-K-L is 

given by 	 arccos KL
JKL

KL

π

 �

= − ⋅� 

� �

r
a

r
, where the vector /JK JKa = r r  is the unit vector along the J-K 

bond (see Fig. 3). The dihedral angle formed by four successive connected atoms is given by 

� arccos( )IJKL = uv
u v

, where ( )JI JI−u r r a a= and ( )KL KL−v r r a a=  are the perpendicular 

components to the bond J-K of the vectors JIr and KL L K= −r ρ ρρ ρρ ρρ ρ . The vectors JI I J= −r ρ ρρ ρρ ρρ ρ  and 

JK K J= −r ρ ρρ ρρ ρρ ρ are the relative positions of atoms I and K with respect to the atom J. 

    

              
Fig 3. The definition of the internal coordinates for a set of  
four chemical bonded atoms I, J, K and L.  

 
 
The inverse transform, from the internal to the cartesian coordinates requires more computational 
effort and employs three rotations around the three axes of the coordinates of each atom L=4,N, 
where N is the number of atoms of the system. Here we present a procedure that requires only two 
rotations for each atom L=4,N. For large N and for very often-used conversion internal-cartesian this 
procedure reduces significantly the computational effort. The first atom may occupy any position in 
space (usually it is placed in the origin of the reference frame), the second atom is placed around the 
atom 1 at a distance d12 (usually along a reference frame axis) and the third one is positioned at the 
distance d23 from the atom 2, along the bond 1-2. After that the atom 3 is rotated around an axis 
perpendicular to the bond 1-2 by the angle α123-π. The angle α123 is the desired angle to be formed 
by the bonds 1-2 and 2-3. Because the plane formed by the first three atoms is arbitrarily oriented in 
space, the rotation axis may be any one perpendicular to the bond 1-2. Usually, this plane is chosen 
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to coincide with one plane formed by two axes of the reference frame and in this case the rotation 
axis is the third axis. The positions of the other atoms are successively determined, based on the 
positions of the other three connected atoms that are already settled. Thus the position of the each 
next atom L is established based on the length dLK of the bond formed with another atom K, the angle 
αJKL of the two bonds J-K and K-L that share the same central atom K and the dihedral angle βIJKL 
formed by four sequentially bonded atoms I-J-K-L which is the angle necessary to rotate the (J,K,L) 
plane over the plane (I,J,K) (see Fig. 4). We will use the vectors u and a defined above (see Fig. 3) 

and the unit vector 
×
×

u a
b =

u a
, which is the normal of the plane (I,J,K). Let us consider the point X 

along the axis J-K from J to K at the distance dKL from the atom K: dKX KL= ⋅r a . Now the point X is 

rotated in the plane (I,J,K) to the point Y with the angle π-αJKL around the axis b: L -
 

JK
KY KX

α π= br R r . 

The point Y is rotated around the axis a with the angle π-βIJKL to the final position of the atom L: 
-

 
IJKL

KL KY
πβ= ar R r . The absolute position of the atom L is L K KL= + rρ ρρ ρρ ρρ ρ . The cycle is repeated for each 

atom, considered as L, until the coordinates of the all atoms are determined.   
 
 

                                                
Fig 4. The determination of the position of the atom L  
when the position of other three bonded atoms is known. 

 
 
 
4.  MERGING OF TWO STRUCTURES 
 
There are situations when the geometries of two fragments or two molecules are known and we have 
to merge them to create a new structure. The relative positioning of the two structures S1 and S2 is 
determined by the distance between their mass center and by their relative orientation. When the two 
systems must be connected by a chemical bond, let say formed between the atoms J from S1 and K 
from S2, the relative positioning of the two structures is given by the relative arrangement of the two 
atoms I and J from S1 to the two atoms K and L from S2: the distance dJK between the two 
connected atoms J and K, the angles αIJK and αJKL and the dihedral angle βIJKL (see Fig. 5). To assure 

the distance dJK between J and K, all the atoms of the system S2 are translated with d . JK
J JK

JK

−
r
r

ρρρρ , 

where JK K J= −r ρ ρρ ρρ ρρ ρ is the position of the atom K relative to the position of the atom J before the 

translation. In the new position the system S2 is rotated around the axis that is going through the 
atom J and is perpendicular to the plane determined by the atoms I, J and K with the angle αo

IJK -
αIJK, where αo

IJK is the angle formed by the atoms I, J and K before the rotation. To settle the angle 
αJKL, the system S2 is again rotated around an axis that is going through K and is perpendicular to 
the plane determined by the atoms J, K and L, with the angle αo

JKL-αJKL, where αo
JKL is the angle 

before the rotation. To fix the dihedral angle, the current angle βo
IJKL is determined and the system S2 

is rotated around the axis a that coincides with the direction I-J, with the angle βo
IJKL-βIJKL.  
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Fig 5. The definition of the relative orientation parameters  
(dJK, α IJK,α JKL and βIJKL) of the two atomic structures S1 and S2. 

 
 
When the torsion angle βIJKL is not predetermined, the stable conformers are established determining 
the torsion angle which corresponds to the local minimums of the energy: one fragment is rotated 
around the axis J-K using the axis-rotation formula by an incremental angle and the dependency of 
the total energy function on the torsion angle is recorded. For a higher accuracy, the internal 
geometries of the two fragments are optimized for each torsion angle βIJKL.  
 

4.1.  ORIENTATION OF A SYSTEM 
 
The principal inertia axes { }

1,3i i=
f , relative to the a given reference point O, of a chemical system 

characterize the spatial arrangement of the constituent atoms in the local reference frame with the 
origin in O. Let us suppose that the eigenvalues and the corresponding eigenvectors are ordered as 

1 2 3I I I≤ ≤ . The zero eigenvalue of 1 0I =  indicates that the atoms are arranged along the principal 

axis 1f . The other two principal moments are equals 2 3I I= and the corresponding eigenvalues are 

any two orthogonal vectors that are perpendicular to the molecule. If the first eigenvalue is much 
smaller than the other two I1 << I2 ≤ I3, then the eigenvector1f still points the orientation of the 

molecule and the value of 1I  is a measure of the deviation of the atoms from a linear molecule. When 

the atoms are arranged in a plane, the principal inertia moments satisfy the relation 3 1 2I I I= + . The 

deviation from this relation characterizes the deviation from the average plane of the atoms. The 
principal axis 3f is the normal of the plane and the other two principal axes are contained in the plane 

determined by the atoms.  
 
When a molecule is rotated in space with the angle ϕ around an axis n, which is going through the 
reference point O, the inertia matrix is changed as T=I' RIR , where R is the corresponding rotation 
matrix (see Eq. (6)). The new principal axes { }

1,3
'i i =

f  can be determined calculating I' and solving the 

eigenvalues and eigenvectors equation. It is easier to determine the new principal axes directly by the 
rotation of the initial principal axes { }

1,3i i=
f : 'i i=f Rf (see Fig. 6). When the chemical system is the 

subject of some successive rotations it is not necessary to calculate the coordinates of the atoms after 
each rotation. The new values of the principal axes after each rotation are calculated and from the 
relative orientation of the last principal axis and the initial principal axis, the total rotation matrix is 
determined as it is indicated in Appendix A3. Finally using the total rotation matrix the coordinates 
of the atoms can be established.  
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Fig 6. The body reference frames of a rigid-body before (left) and  
after his rotation (right). The vectors { }

1,3i i=
f and { }

1,3i i=
f are the  

principal inertia axes of the rigid-body before and after rotation.  
 
 

4.2. RELATIVE ORIENTATION OF TWO SYSTEMS 
 
The alignment of two systems is an important problem. The adsorption of a molecule in an active site 
on a surface implies a good geometrical matching between the parts of the molecule and the surface 
that are responsible for the frontier orbitals. A similar situation occurred in case of the drug 
interaction with the receptor proteins. The two systems may be optimised as a whole system but 
because of the large number of degrees, the calculation effort can be reduced studying in the first 
approximation, the alignment between the target molecule and the template keeping rigid the two 
systems. The two similar molecules or parts of molecules can be superposed by successive rotations, 
minimizing the least-squares differences between the root-mean-squares coordinates of the two 
structures. The mass centers of the two structures are made coincident with the origin of the 
coordinate frame. The starting relative arrangement of the two structures is usually determined by 
the identification of a set of three pairs of corresponding atoms in the two structures. The bonds 
between the first and the second selected atoms of each molecule are made collinear. Finally, the 
third selected atoms of each molecule are put in the same plane. In the case of the different 
geometries of the two structures we may reduce the number of iterations, making coincident the 
principle inertial axis of the two structures by the axis-rotation following the procedure presented in 
the Appendix A3. After the fit, one structure is displaced from the origin of the coordinate frame 
back to the initial position. 
 

4.3. RECOVERING ROTATIONAL INFORMATION OF MOLECULES  FROM ATOM 
TRAJECTORIES  
 
There are situations in which the trajectories of the atoms are previously obtained from the 
Molecular Dynamics simulation and we are interested to extract information on the rotational motion 
of the molecules. For each time step, the principal inertia axes are determined and the rotation axes 
and the rotation angle are determined from the change of the principle axes between the two time 
steps following the procedure presented in the Appendix A3. The vectors of the basis set { }

1,3i i=
f are 

the principal inertia axes of a molecule at the time step t0 and { }
1,3

'i i =
f are the principal inertia axes of 

the same molecule at the next time step t0+∆t. In case of the flexible molecules the vibrational motion 
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contaminates the rotation motion determined in this way. This undesired effect could be eliminated 
by averaging the motion on a proper chosen number of time steps n, centerd on the time step t0 and 
on the time step t0+n∆t. 

 

4.4. APPLICATIONS TO SYMMETRY 
 
Based on the concepts of the group theory, the symmetry of the molecules may be exploited to 
obtain qualitative information on molecules. This information allows us to select appropriate basis 
sets, to classify them and to find the very important selection rules for the transitions in the electronic 
and the vibration spectra. Moreover, the symmetry properties can be used to reduce significantly the 
computational efforts by block-diagonalization of the matrices that describe the interaction in the 
chemical system.  
 
The simple and general analytic formula of the axis-rotation operator allow us to build the other 
symmetry operators which work for any orientation of the chemical system (it is not necessary to use 
the standard symmetry orientation) and for high symmetry molecules (like dodecahedron or 
icosahedron). The symmetry operators do not affect the mass center of the molecule and in case that 
the molecule presents inversion symmetry, the inversion point coincides with the molecule mass 
center. Therefore, without to restrict the generality of the operators formulas, the reference point O 
used to define the rotation is chosen to be the mass center. 

 

 The axis-rotation operator corresponding to an axis n  and to a quantized angle 
2

n n

πϕ =  gives the 

rotation symmetry operator ˆ n
nC of degree n in respect to the axis n  as  

 Tˆ ˆ ˆ ˆ=cos (1 cos ) ( ) sinn
n n nϕ ϕ ϕ+ − + ×nC I n n I n I  (7) 

 
The reflection operator with respect to a symmetry plane with normal n  that is going through the 
mass center is given by  

 Tˆ ˆˆ 2 ( )= −n I n n Iσσσσ  (8) 

 
that correspond to the rotation operator with π radians, around an axis that is going through O and it 
is included in the symmetry plane.  
 
The rotation-reflection operator is determined by the composition of a rotation operator with respect 
to the axis n  that is going through the mass center and a reflection operator with respect to a plane 
that contains the mass center and has as normal the unit vector n , 

 

 Tˆ ˆ ˆ ˆ=cos (1 cos ) ( ) sinn
n n nϕ ϕ ϕ− + + ×nS I n n I n I  (9) 

 

The inversion operator of a point described by r  with respect to a point O is  

 

 ˆ ˆ
inv = −I I  (10) 

which transform r  in -r .  
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Numerous algorithms are developed for determination of the symmetry of an object.13 We do not 
insist here on this topic but we mention that the operators presented above are very helpful to detect 
the symmetry elements. The procedure may be speed-up using the fact that the symmetry of the 
molecule is reflected in some properties of the structure like the dipole moment and the composition 
of the inertia tensor. Once the complete set of the symmetry elements for the analysed molecule are 
identified, the sets of the equivalent atoms for each symmetry operator are settled. From the sets of 
the equivalent atoms a subset of atoms (called unique atoms) that generate the all atoms of the 
molecule is determined. Using only the coordinates of the unique atoms, the optimisation of the 
geometry is faster.   
 
The group of symmetry of a chemical system can be reduced to a subgroup by deformation of the 
molecule under the influence of an external fields (electric field for example) or because the Jahn-
Teller effect. There are also cases when the geometry of the chemical system has to be checked 
corresponds to a real local equilibrium or transition state. The symmetry of the system has to be 
reduced to a subgroup of the group of symmetry. In these cases a larger set of atoms are required 
and the list of the unique atoms in the new symmetry group is generated starting from relation 
between the two groups of symmetry. The symmetry operators (7)-(10) are very useful in the 
generating of the geometry of the required list of atoms.  
 
Different sets of functions (atomic orbital, spin functions, molecular orbitals or vibration coordinates) 
can be adapted to the symmetry of the system. The matrices that appear in the equations of the 
electronic and the spinorial states or of the nuclear motion become block-diagonal. Then, the 
calculations are done independently in each block, reducing significantly the size and the complexity 
of the calculations. Applying the symmetry operators Ô  from (7)-(10), that correspond to the 
symmetry of the system, to the functions of the basis set { }

1,
fλ λ = ω

, the elements of the matrices 

which give the transformation the set of functions { }
1,

fλ λ = ω
 to { }

1,
'f κ κ = ω

under the symmetry 

operators
1 1

ˆ' Of f fκ λ κλ λ
λ λ

ω ω

= =
= =� �O .    They determine a representation Γ  for the group symmetry 

associated to the system. The character of the symmetry operators in this representation 

1

ˆ( ) Oλλ
λ

χ
ω

Γ
=

= �O is calculated as the trace of the corresponding matrices Ô . The representation Γ is 

reducible and can be written as a direct summation i i
i

aΓ = Γ� of the irreducible representation iΓ of 

the symmetry group. The multiplicity of each irreducible representation is given by 

 

 *

ˆ

1 ˆ ˆ( ) ( )
iia

h
χ χΓ Γ= �

O

O O  (11) 

 

where, h is the number of the symmetry operators Ô or the size of the point symmetry group. The 
star designates the complex conjugate of the characterχ . 
 
For each irreducible representation iΓ  an associated projection operator can be constructed as a 

combination of the symmetry operators Ô  
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 *

ˆ

1 ˆ ˆˆ ( )i
ih

χ= �
O

P O O  (12) 

 
where the coefficients are the complex conjugate characters of the operators in that irreducible 
representation. The symmetry-adapted functions corresponding to each irreducible representation are 

built as a linear combination of the initial functions over which the projection operator ˆ iP is applied.14 

  
 

5.  CONCLUSIONS 
 
In the present article we have presented the axis-rotation formula with some of its applications to the 
molecular simulations. The axis-rotation formula is the natural choice to rotate an object. It avoids 
the difficulties in the determination of the Euler angles and the use of the Euler angles method and 
the mathematical complexity of the quaternion formalism. It is a very useful tool in different fields of 
the molecular simulations, allowing the construction and the manipulation of the atoms or fragments 
of systems by rotations in a natural way. Also it is useful in the production of symmetry operators, 
determination of the group-symmetry of a molecule and the adaptation to the molecule symmetry of 
the atomic and molecular orbitals and of the vibration coordinates. Future research work should 
focus on way to apply the axis-rotation formula to other problems. As example we will refer here to 
construction of a system in conditions of the imposing constraints to the distances between the 
chemical bonded atoms, the build of the nanotubes and to the calculation of the electronic interaction 
integrals from quantum chemistry, where the transformation of the local reference frame of the atoms 
to the standard reference frame may be avoided. Another possible application of the rotation-formula 
is in Molecular Dynamics simulations of rigid molecules  as an alternative to the quaternion 
formalism. Work in this direction is in progress. 
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APPENDICES 

 

A1.  THE ROTATION FORMULA 

 

We present here the derivation of the axis-rotation formula proposed by one of us (VC) few years 
ago independently before to know the derivation of the same formula in reference 15. The rotation 
around a unit axis T

1 2 3=(n ,n ,n )n ,16 does not affect the unit vector n  itself and the projections of an 

arbitrary vector r to n ,  

 '=nr nr . (13) 
 
Further, the norm of the rotated vector is conserved  
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 ' =r r . (14) 

 
The arbitrary chosen vector r  may be decomposed on the parallel ( )rnnr T

|| = and the perpendicular 

components ( )rnnrrrr T
|| −=−=⊥  to unit vector of the rotated vector. In agreement to the relation 

(13), the parallel component ( )rnnr T
|| =  of the rotated vector r to n  is conserved 

 ( ) ( ) ||
TT

|| '' rrnnrnnr === . (15) 

 
Therefore, the position vector , r’  after rotation will become 

 ( )rnnrrrr T
|| '''' +=+= ⊥⊥ . (16) 

 
From (13) and (14), it results that the square (or the modulus) of the perpendicular components are 
not changed by rotation 

 2 2 2 T 2-( )⊥ ⊥ =r = r' r n r . (17) 

 
From dot product of the perpendicular vectors ⊥r and ⊥r'  and using (14) and (17) it may be obtained 

 2 T 2cos -( ) cosϕ ϕ⊥ ⊥ ⊥ ⊥ � �= � �r r' = r r' r n r . (18) 

 
On other hand starting from their expressions 
  

 T T T 2- ( ) - ( ) ( )⊥ ⊥ � � � �= =� � � �r r' r n n r r' n n r' rr'- n r . (19) 

 
From equations (18) and (19) it results: 

 T 2cos ( ) (1 cos )ϕ ϕ+ −rr' = r n r . (20) 
 
The outcome cross product of the perpendicular vectors ⊥r and ⊥r'  is along the rotation axis n , and 

using (14) and (17) it results: 

 2 2 T 2r sin ( ) sinϕ ϕ⊥ ⊥ ⊥ � �× = =  !r r' n n r - n r . (21) 

 
On other hand, starting from their expressions it can be obtained: 

 T T T T- ( ) - ( ) ( ) ( )⊥ ⊥ " # " #× = × = × × − ×$ % $ %r r' r n n r r' n n r' r r'- n r n r' n r r n . (22) 

 
Appling a cross product of  r  to the right of the equality of last expressions (21) and (22) and using 
the properties of double cross product ( ) ( ) ( )× × = −a b c b ac a bc , after some algebraic 
manipulations it results the relation 

 2 T 2 T 2 T 2( ) '- cos ( )(1 cos ) ( ) sinϕ ϕ ϕ& ' & ' & '− − = ×( ) ( ) ( )r - n r r r n n r r - n r n r , (23) 

 
with two solutions: 

 2 T 2( ) 0=r - n r , (24) 
 
that corresponds to the cases when the vector r is parallel or anti-parallel to n, and 
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 T' cos ( )(1 cos ) sinϕ ϕ ϕ= + − + ×r r n n r n r . (25) 
 
The relation (25) represents the formula of the rotation around an axis with an angle [ ]0,ϕ ∈ π . The 

domain of values is restricted by the definition of dot and cross product of two vectors but may be 
extended to * because two or more successive rotations of angles in [ ]0,π can be applied around the 

same axis. The case described by equation (24) is contained in the relation (25). Therefore, the 
relation (25) is the general formula for the rotation with any angle ϕ ∈+ around any unit axisn  
without special cases of singularities. 
 
 
A2. THE ANGULAR VELOCITY 
 
An infinitesimal displacement d = dtvρρρρ can be decomposed in an infinitesimal translation 0 0d = dtvρρρρ  

and an infinitesimal rotation rotd = dtvρρρρ around an unit axis n that is going through the point described 

by 0ρρρρ with an angular velocity = ωnωωωω  that has the same direction asn . The modulus ω = ωωωω  gives 

the rotation angle d dtϕ = ω . 
 
Using the rotation formula (1) and considering the instantaneous rotation, produced around 

/= ωn ωωωω  with a very small rotation angle 0ϕ∆ → , in very short time 0t∆ → , we obtain 

 

rot t 0

t 0 0

T

0

T

0 0

(t+,t)- (t)
= = lim

,t
, (, )- (0)

= lim lim
,t ,

(- ( ))(1 cos ) sin
= lim

,

(1 cos ) sin
= - ( ) lim lim

, ,

=

-

ϕ

ϕ

ϕ ϕ

ϕ ϕ
ϕ

ϕ ϕω
ϕ

ϕ ϕ
ϕ ϕ

ω

∆ →

∆ → ∆ →

∆ →

∆ → ∆ →

+ − + ×

. /−
0 1+ + ×2 34 5

6 7

× ×

r r
v r

r r

r n n r n r

r n n r n r

n r = r

8

ωωωω

 (26) 

 
that is well known formula of rotation of any vector 

 rot = = ×v r r9 ωωωω  (27) 

 
 
 
 
A3. SOLVING THE ROTATION 

Let us consider two coordinate reference frames F and F’ described by the unit vectors { }
1,3i i=

f and 

{ }
1,3i i =

f' and that the unit vectors { }
1,3i i =

f' are obtained by an axis-rotation with the associated matrix 

R of the elements ij i jR = f f' .17 The axis n  and the angle α  that correspond to rotation of the frame 

F to F’ may be determined considering the relation (25): 

 Tcos ( )(1-cos )+ sin )j j j jα α α= + ×f' f n n f n f  (28) 
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From the dot product of the relation (28) with if  and considering the relation the 

k( ) ( ) ni j j i k× = × = =f n f n f f nf  next component in a cyclic-periodic ordering of the indices, the 

elements of matrix R are obtained as  

 cos n n (1-cos )+n sinij i j ij i j kR δ α α α= = +f f' . (29) 

 
The trace of the matrix gives the cosine of the rotational angle 

 
3

1

1
cos 1

2 ii
i

Rα
=

: ;= −< =
> ?
@ . (30) 

 
The difference of the extra-diagonal elements gives 

 ( )k

1
n sin

2 ij j iR Rα = −  (31) 

 
therefore, the rotation axis is determined until sinα . It can be normalized but its direction is not 
defined  since equation (31) has  two solutions: sinαn  and (- )sin( )α−n .  
 
The components of n are not defined for a symmetric matrix T =R R (that corresponds to 

i j j i=f f' f f' ), when sin 0α =  ( 0orα π= ). In this case Tcos ( )(1 1)j j jα= ± + ±f' f n n f , where the 

signs “+” and “–“ correspond to 0α = and α π= , respectively. 
The case 0α =  corresponds to j j=f' f , which means that no rotation is performed. The other case 

α π=  corresponds to T2 ( )j j j= − +f' f n n f  and the elements of the rotation matrix are 

2n ni j ij i jδ= − +f f' , where ijδ  is the Kroneker symbol. Choosing a component n (1 ) / 2k k k= + f f'  

the others are n ( ) /(2n )i k k k= f f' . To avoid the case n 0k = the k-th component has to correspond 

to the maximum diagonal element kk k kR = f f' .  

 

The components of an arbitrary vector ( )
3

T

1 2 3
1

r , r , r rk k
k=

= = Ar f expressed in the basis in F, become 

( )
3T' ' '

1 2 3
1

r , r , r r'k k
k=

= = Br f' in the new basis set in F’. The two sets of components are related by 

3

1

r r'k ki k
i

R
=

= C . By inversion and using the property of orthogonality of the rotation 1 T− =R R the 

components of the position vector r  in the basis F’ become 

 
3

1

r' rk ik k
i

R
=

= C  (32) 

 
This result is something expected because a vector is not affected by the transformation of the basis 
set and its coordinates have to be obtained by the inverse rotation.  
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