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ABSTRACT

The methods of Euler angles and unit quaternions are typised to represent the rotations and
the orientation of a rigid body in space. Based on salgebraic manipulations, the alternative
formula, called axis-rotation, which describes theatioh around a given axis with an arbitrary
angle, is derived. The use of some of its applicationseireral fields of molecular modelling is

introduced. Although we present the use of the axis-ootdbirmula only in some fields of the

molecular simulation, it is applicable in any other domehere object rotation is employed.

1. INTRODUCTION

Molecules are composed of nhumbers of atoms, ranging diovars, e.g. HF, to very big complex
systems of hundred thousands of atoms, e.g. big proteDBlAr Atoms are bound to molecules by
intra-atomic potentials, which give rise to mutual atomotions like vibrations, bending motions or
torsions. In the case of dynamical calculations,apglied time step has to be chosen small enough
in order resolve the fastest motions in the syst&wos.the case of molecular dynamics simulations,
where electronic degrees of freedom are neglected anddten of atoms is described classically,
the timestep of integration is usually in the rangeXd. On the other hand, in the case of Monte
Carlo simulations, the number of trial moves hasdalhosen large enough in order to sample the
configuration space, accessible by the molecule. HoweWen one is not interested particularly in
short time but in long time dynamics of a molecule evhmle system composed of molecules, e.g.
folding of a protein into a native state or transpornamena in liquids. Taking into account the
fastest vibrational motions in the system explicithplies a computational burden. Therefore, as a
first approximation, the fastest degrees of freedonoéiem frozen and mutual distances between
neighboured atoms are fixed to their average distaffugther approximations may also freeze
bending or torsional motions). If all degrees of freedorm molecule are constrained, the dynamics
is described as rigid body motion (we note that handiowstant distances between objects is also
an important item in very much different areas, e.gapagter graphics, computer games, spacecraft-
and car-simulations or robotics). The motion of adripody can naturally been splitted into
translational motion of the center of mass and imtat motion around its principal axes, i.e. all
atoms belonging to the same molecule rotate an aigleround the same axis and have the same

angular velocityw. The equations of translational and rotational motibereby describe the



reaction of the rigid body to external forc&he motion will be constant, conserving total egerg
and angular momentum if no external forces actherbbdy.

The graphical interfaces allow the interactive riication of the atomic structures by selecting
fragments of structures and manipulating them agdiation, rotation, projection and scaling. The
rotation is a fundamental tool in building and nieggof the atomic structures as molecules, clusters
crystals and surfaces. It can be used also in dheetsion from internal coordinates to cartesian
coordinates, which are required by some codes eof different branches of the molecular
simulations.

In order to describe the orientation and rotatioepgace of a rigid body, two mathematical tools are
usually used: the Euler angles and the quaterfifiBhe method of Euler angles consists of three
successive rotations around the x-, y- and z-axits,three anglegs & and ¢, called Euler angles.

Different sets of Euler angle rotations exist ahd three rotations may be applied in any order.
Quaternions are mathematical objects that gener#ie complex numbers and obey the Pawley

algebra® Formally, a quaternionq:(q0 ,qV)Tis a vector with four components, one scalar
component, ¢,, and a vectorial oneq,=(q,,q,,q ). The quaternion with the form
q=(cos@ /2),n sing /2)) is normalizedq’+q; +¢f +¢¢ = 1 and is associated to the rotation of the

angle ¢ around the unit axis=(n,,n, ,n, Y .> The components of the quaternions are expressed as

products of sine and cosine functions of the Eategles and Euler angles and quaternions can be
mutually transformed into each otHér.

The equations of motion based on Euler angles toteams with singularities for some particular
orientations. This problem may be overcome eitlyesdme successive rotations of smaller angles or
by changing the coordinate system when approadhegingularity. Both solutions require some
additional statements in the algorithm and intredseme computational overhead. The advantage of
the quaternion description is that there are naiapeases for the orientation of a molecule, bet t
method is not free of problems, as the norm ofgi@ernions is not conserved along the evolution
in time® The accumulation of the numerical errors may bevemted by normalization of the
guaternions at each time step. The Euler angleadgbhovides a physical description of rigid body
rotation around an axis. In contrast, the quaterfoemalism completely describes the rotation but
they are mathematical objects that do not refleecty the physical meaning of the rotation.

The third possible way to describe the rotatiora afgid body around an axis is the so-called axis-
rotation formula’*°® For unknown reason, it is not popular in the fiefdnolecular simulations and

as far we know, it is mentioned only in one articléThis formula may be derived from the
guaternion formalism but it can be directly obtdiri® the decomposition of the vector position in
the perpendicular and parallel components to thatiom axis. The axis-rotation formula provides a

clear picture of the rotation with any anglel{ ) around any axi® in space. In this article we are

concerned with the derivation of the axis-rotatiormula and some applications of it. It allows a
simple geometrical manipulation of the moleculesnotecular fragments, which is a great facility for
the preparation of the coordinates of the molecsi@mtems for the input in Quantum Chemistry
calculations, Molecular Dynamics and Monte-Carfawations. The rotational dynamics of the rigid
bodies may be recovered and analysed from thetoales of the component particles. Furthermore,
the axis-rotation formula helps to construct tharsyetry operators in the point group theory.

2. BUILDING AND MERGING MOLECULES



2.1. ROTATION OF A POINT AROUND AN AXIS

Let us consider the changes of the coordinatespaiirat after the rotation with the angtearound
an arbitrary axis, described by the unit veatgrthat is going through the point O described & th
vector p, with respect to the origin of a given coordinagérence frame. Two points, two real or

dummy atoms, a bond or a direction (for exampleetbetric dipole, the principal inertia axis or the
angular velocity) may define the rotation axis. Teection of rotation is given by the right-hand
rule: the thumb of the right hand is oriented ie threction of the vecton and the curl of the
fingers gives the positive direction of rotation.

The vectorp=p, +rand p'=p, +r' give the position of a point P before and aftex tbtation,
respectively. A simple formula that relatesto r (the relative vectors tq,, after and before
rotations, respectively) is derived in the Appentlixand it is:

r'=r cosp+n1fr )(I- cog I x sigh. (1)

Mathematically, we may write the right-hand rulergs xr' )>0. The casen(r xr' )<0Ois equivalent
to a negative anglg < 0, which means that the rotation is done in tiverise direction.

The transformation of the relative position to @igen byr' = R;,;"r , Where

R?=cospl + (- cogn)n(l ¥ sigh X 2)

is the associated rotation operator zfmrdpresents the identity operator that transforwector in
itself Ir =r . Therefore, the absolute position of the poinftBraotation is described by

P=p+RI(p-p). (3)

Fig 1. The definition of the absolute
(greek bold letters) and of the relative
(bold letters) position vectors, before and
after the rotation of the point P to P’ by
the anglep around the unit axig which

is going through the reference point O.

The vectorifi}i:1 ,are the unit vectors
of the absolute reference frau

The evolution in time of any poiriis decomposed into the translational motion offeremce point
O described by the vectpyand the rotation around the axis going throughréference point:



p=p +r (4)
where,

F=0n Xr =wxn (5)

describes the rotation around the axisw/w with the angular velocity (see the Appendix A2).
Because of the separating of the vectors from tagcs3) and dynamic equations (4) in the one
component that refer to the reference frame anthandnside it, it appears useful to introduce the
local reference frame for the arbitrary point OeTdxes of the local reference frame are parallel to
the axes of the absolute reference frame and namether with the reference point O. In the further
considerations we will refer only to the rotatiopalkt, around an axis that is going through a point
O. In case of a set of atoms, the center of masiseo$ystem is the most convenient choice for the
reference point O.

Here we list some properties of the rotation omerassociated to the arbitrary unit vector

) RR” =R%# =RPR?, the rotations around the same axis are commatativ

i) R?’R =R’R’ =R° =] and therefore the inverse operator {R?)* = R* =R’ ;

i) R'=-T+n ()"

iv)  (R’a)(R’b)=ab, (R’a)x(Rb)=R’ (axb), the dot product and the cross product of the
two arbitrary vector&andb are preserved;

V) nis the eigenvector of the rotation opera?tﬁn:n for the eigenvalue 1, which is natural
because the rotation operator does not chang®taon axis.

In case of the manipulation of the molecules ogrimants of the chemical systems, it is more
economical to construct the rotation matrix:

nn (1-cop )+cop  pn (l-cgs )sn ¢n  ,nn (1-¢gos }+ngs
R=|nn,(lcog Jnsig  §p (1-cgs )rops  ,non (gos Js|  (6)
nn;(1-co® )-nsipg nn (l-cgs )tnsgn ;n;n (1-gos )+go

and to multiply it with the coordinates of the atthat are rotated (see eq. 29, Appendix A3).

2.2. ALIGNMENT OF MOLECULES INTO A DIRECTION

In the graphic visualization, in the crystal sugamnstruction or in the set up of the initial stcue

of a chemical system, very often fragments or thiesi/stem must be oriented under an argle
formed by a given direction from the system desdriby the unit vectatand a fixed direction in
space described by the unit vectdy(see Fig. 2). Two atoms, a bond, the dipole momim,

normal to a plane or a special direction from spaeg determine each direction. The current angle
formed by the two directions is measured &s= arccos{ddo), in the direction of superposing

. . dxd
dover d,. The system has to be rotated by arjle & around the unit aX|e:|d xd°| . Therefore,
x Uy
it is translated with the mass center in the refeegooint O, it is rotated and translated back tith
mass center in the initial position. For examples procedure can be applied to display a system
with a special directiord perpendicular to the screen or when an adsorbddcole must be
oriented with the dipole moment to make the arjl&ith the normal of a surface.
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Fig 2. A rigid-body in initial orientation and aftés reorientation to form
the angled between the directiod fixed on the body and the given direction
in spaced,.

Some of the chemical system properties can beredstermined considering the symmetry of
system. Programs that employ the symmetry of thiecute require the coordinates of the molecule
to be given in so-called standard symmetry origmatvhich is defined based on the rules: (i) € th
system has a symmetry @en the z axis is chosen perpendicular to thex®tny plane; (ii) if the
system has symmetry axes then the z axis is odealbag the axis with the highest order; (iii) the
axis is considered in one vertical plane if it &xier along an axis Qf it exists. The procedure
presented above can be applied to orient a giv@ersyin the standard symmetry orientation.

3. CONVERSION BETWEEN INTERNAL AND CARTESIAN
COORDINATES

The molecular simulation codes start the calculatifrom the identity of the atoms and their
position in space described by their cartesian dinates (CC) or their mutual relative position
described by the internal coordinates (IC). Thentubal systems are graphically visualized based on
the cartesian coordinates of the constitutive atoRms a molecule of N atoms, there are 3N
cartesian coordinates necessary to specify thetidocaf the atoms. The standard molecular
geometries, determined by the averaging of theatwenic distances, of the bond angles and of the
dihedral angles provided by different experimentsl aifferent substances with similar atomic
environments, constitute a good starting pointanstructing the molecular geometries in the ICs.
Moreover, the graphical programs offer the postsitiib monitor the construction of molecules by a
two-dimensional drawing of the molecule, which blsa the connections between atoms. Based on
the connectivity of the atoms in the molecule, teometry of a non-linear molecule can be
represented b$N-6 internal coordinatesN-1 bond distanced\-2 bond angles andll-3 dihedral
angles). Three degrees of freedom that define #mkec of mass position, and other three that,
describe the orientation of the molecule are natsickered, the position and orientation of the
molecule, being fixed by the first three atoms. Tiwance between the atoms 1-2 and 2-3 and the
bond angle 1-2-3 defines the positions of the finsee atoms. For a linear molecule, N-1 distances
determine the relative positions of the atoms. plaee and the orientation in space of the molecule
is defined by the position of any two atoms.

The shapes of the potential energy surfaces aeretit in the cartesian and internal coordinates,
generally being more complicated in the first c&epending on the size and on the topology of the
system, the optimization convergence is dependenthe type of coordinates. As a rule, the
optimization in ICs is faster, except for large leonoles or molecules with some particular
topologies (cyclic, planar or linear). Providingi@od initial hessian, especially when the geomstry
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far from equilibrium, the optimization in CC isferced, making comparable the convergence in
both types of coordinates.

In the empirical force fields, the different compais of the energy are expressed as functiongof th
interatomic distances, bond and dihedral angles,ditplacements of the atoms are determined in
CC. Therefore, in Molecular Mechanics and Moleculynamics calculations the cartesian
coordinates are mainly employed although theresange approaches to apply internal coordinates
in Molecular Dynamics simulations. In principle, Monte-Carlo simulations there are no problems
to use the ICs, but the calculations are usualhedo CCs.

The transform of the coordinates from a type totlaeois very often demanded. The cartesian to
internal conversion is direct. Based on the intervdc distance, the connectivity of the atoms is
established. From the positions of the first tramms, the distances between the atoms 1-2 and 2-3
and the bond angle 1-2-3 are determined. For cébemsL=4,N the internal coordinates are
determined in successive iterations for each atonihe distance between the atokisandL is

given byd, =|r..|=|p. —p«|, Where the vectogg , are the position vectors of the atokhsndL
andr,, is the relative vector df to K. The angle formed by the three connected atddsL is

given bya,,, = ﬂ—arcco{a dﬁj where the vectoa =r,, /|r,| is the unit vector along theK
r.KL

bond (see Fig. 3). The dihedral angle formed by fewccessive connected atoms is given by
B L =arccosf% » Where u=r, -(¢,apand v=r, -(r,ap are the perpendicular
uj|v

components to the bon#+K of the vectorsr, and r,, =p_—p.. The vectorsr;, =p —p, and
I =P« — P, are the relative positions of atomandK with respect to the atoth

Fig 3. The definition of the internal coordinates & set of
four chemical bonded atomsJ, K andL.

The inverse transform, from the internal to thetesian coordinates requires more computational
effort and employs three rotations around the tlaees of the coordinates of each atbn#,N,
where N is the number of atoms of the system. Merg@resent a procedure that requires only two
rotations for each atoir=4,N. For large N and for very often-used conversmernal-cartesian this
procedure reduces significantly the computatioffare The first atom may occupy any position in
space (usually it is placed in the origin of thierence frame), the second atom is placed arownd th
atom 1 at a distancedusually along a reference frame axis) and thvel thine is positioned at the
distance gk from the atom 2, along the bond 1-2. After that #tom 3 is rotated around an axis
perpendicular to the bond 1-2 by the ammies . The anglex;,; is the desired angle to be formed
by the bonds 1-2 and 2-3. Because the plane fobyede first three atoms is arbitrarily oriented in
space, the rotation axis may be any one perpeaditalthe bond 1-2. Usually, this plane is chosen



to coincide with one plane formed by two axes @f tbference frame and in this case the rotation
axis is the third axis. The positions of the othesms are successively determined, based on the
positions of the other three connected atoms ttetkeady settled. Thus the position of the each
next atonL is established based on the lengthaf the bond formed with another atdginthe angle
ok of the two bondsl-K andK-L that share the same central atirand the dihedral ang[&;«.
formed by four sequentially bonded atorkK-L which is the angle necessary to rotate thi,{)
plane over the plané,J,K) (see Fig. 4). We will use the vectarsanda defined above (see Fig. 3)
xa

and the unit vectob = uxa
uxal

along the axig-K fromJ to K at the distancexd from the atonK: r,, =ald,, . Now the poiniX is
rotated in the pland,{,K) to the pointY with the anglet-aak. around the axib: r., =R 57"

The point Y is rotated around the agiwith the angler-f;«. to the final position of the atoin
r, =R» 7 . The absolute position of the atdnis p, = p, +r,, . The cycle is repeated for each

atom, considered as until the coordinates of the all atoms are deimszcth

, Which is the normal of the planeJK). Let us consider the point

Fig 4. The determination of the position of themato
when the position of other three bonded atoms asvkn

4. MERGING OF TWO STRUCTURES

There are situations when the geometries of twgnfiemnts or two molecules are known and we have
to merge them to create a new structure. The velagsitioning of the two structures S1 and S2 is
determined by the distance between their massrcanteby their relative orientation. When the two
systems must be connected by a chemical bondayefosmed between the atodrom S1 anK
from S2, the relative positioning of the two stiwess is given by the relative arrangement of the tw
atoms!| andJ from S1 to the two atomK and L from S2: the distance;dbetween the two
connected atom$andK, the anglesi;x anda;x. and the dihedral angf&;«._(see Fig. 5). To assure

the distance g betweenJ andK, all the atoms of the system S2 are translateld pyit-d |:J—'<|

JK
wherer, =p, —p,is the position of the atod relative to the position of the atodnbefore the
translation. In the new position the system Satated around the axis that is going through the
atom J and is perpendicular to the plane deterntiyeithe atomd, J andK with the anglen®; -
ok, Wherea® sk is the angle formed by the atois) andK before the rotation. To settle the angle
0k, the system S2 is again rotated around an axisighgding through K and is perpendicular to
the plane determined by the atodK andL, with the anglen®y. -0, wherea®sy is the angle
before the rotation. To fix the dihedral angle, therent anglgd® . is determined and the system S2
is rotated around the axasthat coincides with the directidal, with the anglé® k. -Bik..



Fig 5. The definition of the relative orientatioarpmeters
(dyk, O 13k, 0 3k @ndysk) of the two atomic structures S1 and S2.

When the torsion angl,«. is not predetermined, the stable conformers aebkshed determining
the torsion angle which corresponds to the locaimuims of the energy: one fragment is rotated
around the axig-K using the axis-rotation formula by an incremeatajle and the dependency of
the total energy function on the torsion angle ésorded. For a higher accuracy, the internal
geometries of the two fragments are optimized &mhetorsion angl@,x..

4.1. ORIENTATION OF A SYSTEM

The principal inertia axe%fi} relative to the a given reference point O, ofhamgical system

i=1,3’
characterize the spatial arrangement of the comestitatoms in the local reference frame with the
origin in O. Let us suppose that the eigenvaluestha corresponding eigenvectors are ordered as

I, <1, <l,. The zero eigenvalue df =0 indicates that the atoms are arranged along theifl
axis f,. The other two principal moments are equigls | ;and the corresponding eigenvalues are
any two orthogonal vectors that are perpendicudathe molecule. If the first eigenvalue is much
smaller than the other twh << I, < I3, then the eigenvectfstill points the orientation of the
molecule and the value of is a measure of the deviation of the atoms frdimear molecule. When
the atoms are arranged in a plane, the princigaliinmoments satisfy the relation=1, +I ,. The
deviation from this relation characterizes the diéwn from the average plane of the atoms. The
principal axisf,is the normal of the plane and the other two ppgicaxes are contained in the plane
determined by the atoms.

When a molecule is rotated in space with the apggieound an axig, which is going through the
reference point O, the inertia matrix is changed &RIR ", whereR is the corresponding rotation
matrix (see Eq. (6)). The new principal aés} _ . can be determined calculatitigand solving the

eigenvalues and eigenvectors equation. It is etsidetermine the new principal axes directly g th
rotation of the initial principal axeé‘,} : f,'=Rf, (see Fig. 6). When the chemical system is the

i=1,3" 'l
subject of some successive rotations it is notswoyg to calculate the coordinates of the atonas aft
each rotation. The new values of the principal afes each rotation are calculated and from the
relative orientation of the last principal axis ahe initial principal axis, the total rotation matis
determined as it is indicated in Appendix A3. Hinaking the total rotation matrix the coordinates
of the atoms can be established.



Fig 6. The body reference frames of a rigid-bodptee(left) and
after his rotation (right). The vectof§} _ .and{f}  are the

principal inertia axes of the rigid-body before afigbr rotation.

4.2. RELATIVE ORIENTATION OF TWO SYSTEMS

The alignment of two systems is an important probl€he adsorption of a molecule in an active site
on a surface implies a good geometrical matchitigydxen the parts of the molecule and the surface
that are responsible for the frontier orbitals. iilar situation occurred in case of the drug
interaction with the receptor proteins. The twoteys may be optimised as a whole system but
because of the large number of degrees, the cadouleffort can be reduced studying in the first
approximation, the alignment between the targeteod¢ and the template keeping rigid the two
systems. The two similar molecules or parts of mdés can be superposed by successive rotations,
minimizing the least-squares differences between rfot-mean-squares coordinates of the two
structures. The mass centers of the two structaresmade coincident with the origin of the
coordinate frame. The starting relative arrangenadrihe two structures is usually determined by
the identification of a set of three pairs of cepending atoms in the two structures. The bonds
between the first and the second selected atomnesaf molecule are made collinear. Finally, the
third selected atoms of each molecule are put & daime plane. In the case of the different
geometries of the two structures we may reducentimber of iterations, making coincident the
principle inertial axis of the two structures by thxis-rotation following the procedure presented i
the Appendix A3. After the fit, one structure isglaced from the origin of the coordinate frame
back to the initial position.

4.3. RECOVERING ROTATIONAL INFORMATION OF MOLECULES FROM ATOM
TRAJECTORIES

There are situations in which the trajectories lod atoms are previously obtained from the
Molecular Dynamics simulation and we are interesteelxtract information on the rotational motion
of the molecules. For each time step, the principatia axes are determined and the rotation axes
and the rotation angle are determined from the gihani the principle axes between the two time

steps following the procedure presented in the AgpeA3. The vectors of the basis :{éit}izlvsare

the principal inertia axes of a molecule at theetstep ¢ and{fi '}izlsare the principal inertia axes of
the same molecule at the next time steft. In case of the flexible molecules the vibratianation



contaminates the rotation motion determined in wWay. This undesired effect could be eliminated
by averaging the motion on a proper chosen numbime steps, centerd on the time stepand
on the time steptnAt.

4.4. APPLICATIONS TO SYMMETRY

Based on the concepts of the group theory, the syrynof the molecules may be exploited to
obtain qualitative information on molecules. Thfrmation allows us to select appropriate basis
sets, to classify them and to find the very impatrselection rules for the transitions in the elaic

and the vibration spectra. Moreover, the symmetoperties can be used to reduce significantly the
computational efforts by block-diagonalization bktmatrices that describe the interaction in the
chemical system.

The simple and general analytic formula of the -aatsition operator allow us to build the other
symmetry operators which work for any orientatidthe chemical system (it is not necessary to use
the standard symmetry orientation) and for high raginy molecules (like dodecahedron or
icosahedron). The symmetry operators do not affectnass center of the molecule and in case that
the molecule presents inversion symmetry, the swarpoint coincides with the molecule mass
center. Therefore, without to restrict the gengraif the operators formulas, the reference point O
used to define the rotation is chosen to be thes waster.

The axis-rotation operator corresponding to am axand to a quantized angé, -2 gives the
n

rotation symmetry operatcfEQ of degreen in respect to the axis as
Cp=cosg,l + (& cog, pn('l ¥ sigp I (7)

The reflection operator with respect to a symmetane with normah that is going through the
mass center is given by

6. =1-:nq") (8)

that correspond to the rotation operator wmttadians, around an axis that is going through ®itan
is included in the symmetry plane.

The rotation-reflection operator is determined iy tomposition of a rotation operator with respect
to the axisn that is going through the mass center and a tieffteoperator with respect to a plane
that contains the mass center and has as normaihitheectorn,

Si=cosp, 1~ (@ cog, ) (T ¥ sigpxl 9)
The inversion operator of a point described byith respect to a point O is

= (10)

which transfornr in -r .
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Numerous algorithms are developed for determinatibthe symmetry of an objett.We do not
insist here on this topic but we mention that therators presented above are very helpful to detect
the symmetry elements. The procedure may be speedsing the fact that the symmetry of the
molecule is reflected in some properties of thacstire like the dipole moment and the composition
of the inertia tensor. Once the complete set ofsimemetry elements for the analysed molecule are
identified, the sets of the equivalent atoms faxhesymmetry operator are settled. From the sets of
the equivalent atoms a subset of atoms (calleduen@oms) that generate the all atoms of the
molecule is determined. Using only the coordinaieshe unique atoms, the optimisation of the
geometry is faster.

The group of symmetry of a chemical system canebleiged to a subgroup by deformation of the
molecule under the influence of an external fi€lelectric field for example) or because the Jahn-
Teller effect. There are also cases when the gegroétthe chemical system has to be checked
corresponds to a real local equilibrium or traositstate. The symmetry of the system has to be
reduced to a subgroup of the group of symmetrghése cases a larger set of atoms are required
and the list of the unique atoms in the new synyngtoup is generated starting from relation
between the two groups of symmetry. The symmetrgraiprs (7)-(10) are very useful in the
generating of the geometry of the required lisatoims.

Different sets of functions (atomic orbital, spim€tions, molecular orbitals or vibration coordest

can be adapted to the symmetry of the system. Tdteices that appear in the equations of the
electronic and the spinorial states or of the rarcknotion become block-diagonal. Then, the
calculations are done independently in each bloagk,cing significantly the size and the complexity

of the calculations. Applying the symmetry operaté) from (7)-(10), that correspond to the
symmetry of the system, to the functions of theisbaet{ fA} Jp the elements of the matrices

which give the transformation the set of functioh§}, ~to {f'} _ under the symmetry

K=1,
W %)

operatord ', =ZOU = ZOM f,.  They determine a representatibnfor the group symmetry
A=l A=1

associated to the system. The character of the symynoperators in this representation

Xr (6) = ZOA , Is calculated as the trace of the correspondingi(maté. The representatioh is
A=1

reducible and can be written as a direct summdtien)_ aI; of the irreducible representatidh of
i

the symmetry group. The multiplicity of each irredie representation is given by

a =13 x O ©) (12)

where,h is the number of the symmetry operaté)sar the size of the point symmetry group. The
star designates the complex conjugate of the ctepac

For each irreducible representatidn an associated projection operator can be constiuas a
combination of the symmetry operatcfbs

11



P =23 X (00 (12)

where the coefficients are the complex conjugateatiers of the operators in that irreducible
representation. The symmetry-adapted functionsesponding to each irreducible representation are

built as a linear combination of the initial furests over which the projection operatefis applied*

5. CONCLUSIONS

In the present article we have presented the axaion formula with some of its applications te th
molecular simulations. The axis-rotation formulahs natural choice to rotate an object. It avoids
the difficulties in the determination of the Eulamgles and the use of the Euler angles method and
the mathematical complexity of the quaternion fdisna It is a very useful tool in different fields

the molecular simulations, allowing the constructamd the manipulation of the atoms or fragments
of systems by rotations in a natural way. Alsasiuseful in the production of symmetry operators,
determination of the group-symmetry of a moleculd the adaptation to the molecule symmetry of
the atomic and molecular orbitals and of the vibrattoordinates. Future research work should
focus on way to apply the axis-rotation formuleotber problems. As example we will refer here to
construction of a system in conditions of the impgsconstraints to the distances between the
chemical bonded atoms, the build of the nanotubdd@the calculation of the electronic interaction
integrals from quantum chemistry, where the tramsédion of the local reference frame of the atoms
to the standard reference frame may be avoidedith&ngossible application of the rotation-formula
is in Molecular Dynamics simulations of rigid maldes as an alternative to the quaternion
formalism. Work in this direction is in progress.
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APPENDICES
Al. THE ROTATION FORMULA

We present here the derivation of the axis-rotafizmula proposed by one of us (VC) few years
ago independently before to know the derivationhef same formula in reference 15. The rotation

around a unit axis=(n,,n, ,n, Y ,*® does not affect the unit vector itself and the projections of an
arbitrary vectorr to n,

nr=nr'. (13)
Further, the norm of the rotated vector is consgtrve

12



r=rl. (14)

The arbitrary chosen vector may be decomposed on the parai|et n(nTr)and the perpendicular
components, =r —r,=r —n(nTr) to unit vector of the rotated vector. In agreenterthe relation
(13), the parallel component = n(nTr) of the rotated vector to n is conserved

r'=n(nr)=n(n"r)=r,. (15)
Therefore, the position vector’, after rotation will become

r=ry+r=r +n(n'r). (16)

From (13) and (14), it results that the squarelfermodulus) of the perpendicular components are
not changed by rotation

rf=rha o) (17)
From dot product of the perpendicular vectorandr' ; and using (14) and (17) it may be obtained
ra' = toff ocosp=1 *n(r" ¥ | cogp. (18)

On other hand starting from their expressions

e o =frA g ) )]e-ne’ ) (19)
From equations (18) and (19) it results:
m=r cosg+r(f ¥ (- cogp . (20)

The outcome cross product of the perpendicularovect,andr' ; is along the rotation axis, and
using (14) and (17) it results:

roxr o =nrising=n [r = of ¥ )*]sing. (21)
On other hand, starting from their expressionasiit loe obtained:
roxr o =fr A F)[xfnen(r® ) ]E e n ¢A )rx na(r g x (22)
Appling a cross product of to the right of the equality of last expressio2s)(and (22) and using

the properties of double cross prod{@k b) xc= b(aq — & bg, after some algebraic
manipulations it results the relation

[r2-@7)? |[re cosp-n (7 )& cog )=f n (" §| w sig, (23)

with two solutions:
r’-(nr)*=0, (24)

that corresponds to the cases when the veatoparallel or anti-parallel to, and

13



rrsrcosp+n i r )(1- cop n x sig. (25)

The relation (25) represents the formula of thatioh around an axis with an anq}e][o,n] . The

domain of values is restricted by the definitiordot and cross product of two vectors but may be
extended ta] because two or more successive rotations of aing[é)sn] can be applied around the

same axis. The case described by equation (2énisioed in the relation (25). Therefore, the
relation (25) is the general formula for the raiatwith any anglep [0 around any unit axis

without special cases of singularities.

A2. THE ANGULAR VELOCITY

An infinitesimal displacementip=vdtcan be decomposed in an infinitesimal translatipp=v ,dt
and an infinitesimal rotatiodp=v, dtaround an unit axis that is going through the point described

byp,with an angular velocityw = wn that has the same directionnasThe modulusu):|w| gives
the rotation anglelg = wdt.

Using the rotation formula (1) and considering tihetantaneous rotation, produced around
n = w/ w with a very small rotation angl&g — 0, in very short timeAt — 0, we obtain

= im r (t+At)T (1)
At-0 At
= im 22 jjm [(49)7(0)
At-0 At Ap-0 A¢

(-r+n(r )(1-cosp ¥ xr sinp

\Y

rot

=w lim (26)
A0 A¢
=o| [+ +n 0r)] lim EOF )iy ¢ i S
Ap-0 A¢ Ap-0 A¢
SWNXT = WXr
that is well known formula of rotation of any vecto
Vo = =1 (27)

A3. SOLVING THE ROTATION

Let us consider two coordinate reference framesd=Fa described by the unit vectof§} _ .and

{f}_ ,and that the unit vectofd';} _ are obtained by an axis-rotation with the assotiatatrix

R of the elementsRy; =ff', " The axisn and the angler that correspond to rotation of the frame
F to F may be determined considering the relafih):

f'; =f, cosa+n 6 ¥, )(1-cosr W<, sim (28)

14



From the dot product of the relation (28) withand considering the relation the
fi(nxf;) =n@, xf;) =nf, =n, next component in a cyclic-periodic ordering o thdices, the
elements of matrbR are obtained as

R, =ff, =g¢ cosa+ nn (l-cog ){n sia. (29)
The trace of the matrix gives the cosine of thatiobal angle

cosa = %[Zs: R - 1j : (30)

The difference of the extra-diagonal elements gives
. 1
n, sing =§(Rj -R) (31)

therefore, the rotation axis is determined usiila . It can be normalized but its direction is not
defined since equation (31) has two solutionsinag and (-n)sin(-a).

The components af are not defined for a symmetric matR{ = R (that corresponds to

ff, =f f',), whensing = 0 (a =0orm). In this case', =4 , cosa +n § ', )(I+ 1, where the

signs “+” and “-* correspond tar = Oand a = 7, respectively.

The casea =0 corresponds td'; =f;, which means that no rotation is performed. Theptase
a=rm corresponds tof, =, +D @ ki ;) and the elements of the rotation matrix are
ff;, ==, +2nn , whered; is the Kroneker symbol. Choosing a component=/(1+f,f',)/2

the others aran, = /(f,f',)/(2n, ). To avoid the case, = Othe k-th component has to correspond
to the maximum diagonal elemeRf, =f,f',.

3
The components of an arbitrary vecuorz(rl, r2,r3)T = > rf . expressed in the basis in F, become
k=1
T3 . . .

=>r\f ,in the new basis set in F. The two sets of comptheare related by

k=1

r =(r1,r2,r3)

3

r = > R4 . By inversion and using the property of orthogitpadf the rotationR™ =R the
i=1

components of the position vectoin the basis F become

re = 23: Ry (32)

This result is something expected because a vectat affected by the transformation of the basis
set and its coordinates have to be obtained bintleese rotation.
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