
INSTITUTE OF PHYSICS PUBLISHING and INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR FUSION

Nucl. Fusion 45 (2005) 468–476 doi:10.1088/0029-5515/45/6/008

Predictive modelling of L and H
confinement modes and edge pedestal
characteristics
D. Kalupin1, M.Z. Tokar1, B. Unterberg1, X. Loozen1 and
D. Pilipenko2

1 Institut für Plasmaphysik, Forschungszentrum Jülich GmbH, EURATOM Association,
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Abstract
The results of predictive self-consistent modelling of plasma parameters in low (L) and high (H) confinement modes
by the one-dimensional transport code RITM, with particular emphasis on the properties of the edge transport barrier,
are presented and discussed. The same transport model is used under both L- and H-mode conditions and includes
contributions from ion temperature gradient (ITG), trapped electron, drift Alfvén (DA) and drift resistive ballooning
instabilities described in the fluid approximation. The computations predict the formation of the edge transport barrier
at a high enough heating power due to stabilization of ITG and DA modes, dominating the edge transport in the
L-mode, through the effects of the density gradient and the pressure gradient at low collisionality, respectively. The
calculated radial profiles and scalings for pedestal and confinement characteristics are compared with measurements
on JET, DIII-D and JT-60U tokamaks.

PACS numbers: 52.35.Py, 52.55.Fa

1. Introduction

The shear of the radial electric field is generally considered as
the main cause of confinement improvement in fusion plasmas
under the H-mode conditions [1, 2]. However, by applying
this postulate to a particular situation, one has to take into
account the specific nature of transport mechanisms, whose
suppression leads to the improvement. Diverse approaches
have been proposed in order to explain the transport in fusion
plasmas. Different types of micro-instabilities were discussed
as dominating anomalous transport processes in the plasma
core and at the edge, as well as different methods to model
these instabilities, i.e. fluid, gyro-kinetic, linear, non-linear,
etc, were considered. The main purpose of this study is a self-
consistent computation of the plasma profiles over the whole
plasma radius including the edge transport barrier. This is
a difficult problem by itself because (i) transport coefficients
undergo a strong change at the interface between the core and
barrier regions and (ii) the interface position is not known
a priori. Therefore, as the first approximation, a relatively
reduced transport model based on a fluid approximation is
used. This, nonetheless, includes contributions from the most

important unstable modes and describes a strong reduction of
the edge transport under the H-mode conditions. In spite of the
models ‘simplicity’, the resulting transport coefficients depend
extremely non-linearly on the plasma parameters and their
gradients imposing serious requirements on the code applied
for solving the transport equations.

In the case of the edge transport barrier, instabilities
of a different nature should be taken into consideration [3].
Specific ‘edge’ instabilities, drift Alfvén (DA) and drift
resistive ballooning (DRB) modes, are triggered by Coulomb
collisions and, therefore, are of importance only at a
relatively low temperature. Numerical modelling of edge
turbulence [4] predicts that the E × B rotation shear alone
is not capable of stabilizing these modes and low plasma
collisionality in combination with high pressure gradient
is required. An analytical model for DA turbulence,
which takes these mechanisms into account, has been
developed in [5]. It predicts that this channel of particle
and energy losses, controlling the edge transport under
L-mode conditions, becomes drastically reduced if the
heating power exceeds a critical value. Predictive modelling
of radial profiles in H-mode plasmas performed in [6]
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by using this model, has revealed good agreement with
experimental data.

An analysis of results in [5] shows that the dominance
of the temperature gradient in the pressure gradient plays an
important role in the reduction of DA transport. The same
effect is of significance for the stabilization of collisionless
universal drift waves (DWs) [7]. In the present consideration,
DWs are not taken into account since they are damped in a
linear approximation by a magnetic shear [8]. When non-linear
dynamics is involved DW becomes self-sustaining [9], but the
induced transport is significantly reduced by an increasing
temperature gradient [10]. Therefore, we expect that the
present approach provides qualitatively correct results even
without DW contribution to the transport. Nevertheless,
in order to enhance the reliability of results, the calculation
of plasma parameter profiles should be integrated in future
with a consistent non-linear modelling of particle and energy
transport.

The suppression of edge turbulence is necessary but
not enough for the formation of the H-mode pedestal.
Additionally, the modes dominating transport in the plasma
core should be damped in the barrier region. Thus, the current
diffusive ballooning mode (CDBM) [11] is strongly reduced
by the magnetic shear. Our computations show that under
the conditions of H-mode without internal transport barriers,
CDBM induced transport plays, in the outer half of the plasma
minor radius, a much smaller role than ion temperature gradient
(ITG) and trapped electron (TE) unstable modes [13]. ITG
instability can be effectively stabilized by the density gradient,
since the latter essentially determines the critical temperature
gradient [13, 14]. Especially at the plasma edge, where the
density gradient is the largest due to the ionization of neutrals
penetrating into the confined volume through the separatrix, it
crucially assists the shear of E×B rotation in the suppression of
ITG transport. Moreover, the present calculations demonstrate
that only when the effect of the density gradient is taken into
account, can important experimentally observed features of the
L–H transition and characteristics of the edge transport barrier
be explained. For the suppression of dissipative TE modes
in the barrier the low plasma collisionality plays an important
role [15, 16].

2. Code RITM

2.1. Transport equations

The numerical modelling of L- and H-mode plasmas in JET
is done by using the one-dimensional transport code RITM
[17–22]. This code allows us to compute the variation of
diverse plasma parameters with time and the effective minor
radius of the magnetic surface, r , in the confined plasma region
from the plasma axis to the separatrix. Neutrals produced by
plasma recycling on divertor plates and entering the confined
volume through the separatrix are described by the velocity
distribution function fn. This is governed by the kinetic
equation:
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∂

∂r
(vrfn) = Sn − νnfn, (1)

where vr, Sn and νn are the radial velocity, source density
and ionization frequency of neutral particles, respectively.

By applying a diffusive approximation [23], equation (1) is
reduced to equations for the neutral particle and flux densities.

The densities of electrons and impurity ions, ne, and nZ ,
respectively, are determined from continuity equations:
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where Sn,Z are the densities of charged particle sources due
to ionization, recombination and charge-exchange of impurity
ions with the main neutrals; ions of all charges Z of He, C,
O, Ne, Si and Ar impurities can be taken into account in
the calculation. The radial distribution of the particle source
due to neutral beam injection is taken from the experimental
data [22, 24].

The densities of particle fluxes include both diffusive and
convective contributions:
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The densities and fluxes of the background ions are computed
from the quasi-neutrality conditions:

ni = ne −
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Z · nZ, �i
⊥ = �e

⊥ −
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Z · �Z
⊥. (5)

The metric coefficients g1,2, characterizing the magnetic
equilibrium, are determined by using the Shafranov shift,
calculated from the Grad–Shafranov equation, and analytically
prescribed elongation δ and triangularity κ of the magnetic
surfaces.

The electron and ion temperatures, Te and Ti, are
determined from the heat transport equations:

3

2

∂neTe

∂t
+

1

rg1

∂

∂r

[
rg2

(
1.5 �e

⊥Te − κe
⊥

∂Te

∂r

)]
= Qoh + Qe

au − Qei − Qen − QeI, (6)

3

2

∂n�Ti

∂t
+

1

rg1

∂

∂r

[
rg2

(
1.5 ��

⊥Ti − κ�
⊥

∂Ti

∂r

)]
= Qi

au + Qei + Qin, (7)

where n� = ni + �nZ , �� = �i + ��Z and Qoh and Qe,i
au

are the densities of heating sources due to Ohmic dissipation
and additional heating from neutral beams and radio-frequency
waves, respectively; the radial profile of Qe,i

au is taken from
experiment [22, 24]; Qei, Qen, QeI are the energy losses from
electrons due to Coulomb collisions with ions, excitation and
ionization of neutrals and impurities, respectively, and Qin the
energy exchange between main ions and neutrals by ionization
and charge-exchange.

The boundary conditions of equations (2), (3), (6) and (7)
at the separatrix, r = a, imply the e-folding lengths of
parameters, which are taken from measurements.

2.2. Transport model

2.2.1. Linearized equations for small perturbations. The
transport model in RITM accounts for the most important
unstable drift modes. These are divided into two groups of
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‘core’ and ‘edge’ instabilities treated separately by using two-
fluid MHD equations linearized for small perturbations of
plasma parameters proportional to exp(−iωt + iky). Here,
ω is the complex frequency and k the wave vector component
in the direction y on the magnetic surface perpendicular to the
field lines.

The first ‘core’ group includes ITG–TE modes, which are
described by taking into account the perturbations of density,
ion temperature and electric potential, ñ, T̃i and ϕ̃, respectively.
They are governed by the linearized ion and electron continuity
equations [13, 25]:

−iωñ + Ṽi,r
dn

dr
= 0, (8)
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ω∗ − ω + iνeff(ωTe/(ω − ωD + iνeff))
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and the ion heat balance equation:(
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Here Ṽi,r is the perturbed radial ion velocity, which includes
E × B, polarization, diamagnetic and gyro–viscous drift
contributions, ftr the fraction of trapped particles,
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)
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eB

(
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dr

)
,

ωD = 2cTek
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are characteristic drift frequencies, νeff = νeiR/r the effective
collision frequency of TEs with νei being the collision
frequency of thermal electrons, c the speed of light, e the
elementary charge, B the magnetic field induction, τ =
Ti/(ZeffTe) and Zeff is the ion effective charge.

For the ‘edge’ DA–DRB modes, the perturbation
of electric current is of importance. Its perpendicular
components, j̃r and j̃y, are determined from the corresponding
components of the momentum equation for ions:

− iωminṼi,r = j̃yB

c
, ik(Te + Ti)ñ = − j̃rB

c
. (11)

The parallel component, j̃‖, is governed by the charge
conservation condition:

�∇ · �j = ∂j̃‖
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+ ikyj̃y +
∂j̃r

∂r
= 0. (12)

It is assumed that only electron parallel motion is of
importance, i.e. j̃‖ = −enṼe,‖, and the perturbation Ṽe,‖ of
the electron parallel velocity is determined by the parallel
momentum balance equation, i.e. Ohm’s law:
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Perturbations of the parallel electric field and radial magnetic
field are given by Maxwell’s equations:

Ẽ‖ = i
4πω

k2
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2
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kc
y

j̃‖. (14)

By combining equations (8)–(10) one gets a dispersion
relation between ω and k for ‘core’ modes. In the case
of ‘edge’ instabilities, equations (8), (11)–(14) result in an
eigenfunction equation of the Mathieu type describing the
variation of the electric potential perturbation amplitude with
the poloidal angle [26]. The dispersion relation in this case
follows from the properties of Mathieu functions. In order to
find ω as a function of k and other parameters, the obtained
dispersion equations are solved by using standard subroutines.

2.2.2. Transport coefficients. The transport coefficients are
evaluated by taking into account only the perturbations with
the maximum growth rate γ = Imω as a function of the wave
number k. The particle flux, generated by the radial drift
due to the perturbed poloidal electric field with the velocity
VE = ikcϕ̃/B, is given by the relation [13]:

�e = ñV ∗
E + ñ∗VE = 2c(Re ñ Im ϕ̃ − Im ñ Re ϕ̃) ky

B
.

The density and potential perturbations here are linked through
equation (8). On a non-linear stage the ϕ̃ amplitude is saturated
at a level where the perturbation drive due to linear instability is
counterbalanced by the outflow due to E×B convection: γ ñ ∼
VE∇ñ. As a result, one gets a quasi-linear approximation [13]:
eφ/Te ≈ γ /(ω∗ekxLn). Finally, the anomalous diffusivity
D is determined from the definition: �e = −D∇n. By
neglecting finite Larmor radius effects, this procedure leads
to the prominent improved mixing length approximation [13],

D ≈ γ

k2

γ 2

γ 2 + ω2
r

,

where ωr is the real frequency of perturbations.
Numerical modelling of radial profiles with the transport

model described above is very time consuming. In order
to avoid this, approximate solutions of dispersion equations
can be used to estimate the frequencies, growth rates and
wave numbers of individual unstable modes. In such an
approximation the contributions to anomalous transport from
ITG and TE are given by the relations [13, 15]
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where kITG ≈ 0.3/ρs and kTE ≈ 1/ρs (ρs being the ion Larmor
radius) are the k-values at which the maximum growth rates of
ITG and TE modes, respectively, are approached and R is the
plasma major radius.

Characteristic transport coefficients due to DA and DRB
modes were found in [5, 27]:

DDA = χGB√
µ

¯̄χ⊥(βn, νn), (17)

DDRB = (2qρe)
2νeR

(
−d ln ne

dr

)
. (18)
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HereχGB = ρ2
s cs/Lp is the Gyro–Bohm diffusion with cs being

the ion sound velocity and Lp = −dr/d ln(nTe) the e-folding
length for the electron pressure; µ = −k‖Lp

√
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with k‖ ∼ 1/qR; the factor
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with β = 4πneTe/B
2 and λe being the mean free path length;

q is the safety factor and ρe the electron Larmor radius.
Combining the contributions from all modes, the effective

transport coefficients are assumed in the form
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where the input from CDBM is estimated according to [11]:
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where G0,1 are functions of the normalized pressure gradient

α = 8πRq2

B2
T

∣∣∣∣∂(neTe + niTi)

∂r

∣∣∣∣
and the magnetic shear s = (r/q)(dq/dr) given in [12], h is
the rotation shear (qR/υA)(1/sB)dEr/dr , υA is the Alfvén
velocity and ωpe is the electron plasma frequency.

The proportionality of the ITG contribution to the particle
transport to the fraction of trapped particles, ftr , is explained as
follows. In a linear electrostatic approximation ITG instability
does not provide particle transport [13]. However, as other
drift instabilities on the non-linear turbulent stage, it leads
to stochastization of closed drift orbits and generates particle
losses. This happens most easily to TEs with low parallel
velocity [28]. The small factor 4r/3R in the expression for
the electron pinch velocity represents a relatively weak effect
of ion driven modes on electron convection [29]. The pinch
velocity of impurity ions includes, in addition to V e

⊥, the
neo-classical contribution V

Z,NEO
⊥ due to collisions with the

background ions [30].
The present version of the code RITM does not permit us

to model ELM activity explicitly because, due to non-linear
dependence of transport coefficients on the radial gradients of
plasma parameters, calculations do not converge reliably for
time steps smaller than 5–10 ms. Indirectly, the ELM effect on
particle and energy losses is taken into account by increasing

m
2
s
-1

Figure 1. Ion heat diffusion coefficients computed for JET
parameters at different levels of additional heating power.

the edge transport as exp[(α/αc)
m], with m 	 1, when

the normalized pressure gradient α exceeds the ballooning
stability limit αc = 0.4s95[1 + δ2

95(1 + 5κ2
95)] [31]. Here, s95,

δ95 and κ95 are the values of the magnetic shear, elongation
and triangularity at the magnetic surface where the toroidal
flux is 95% of its value at the separatrix. According to [31],
δ95 = 0.914δseparatrix and κ95 = 0.85κseparatrix.

3. Modelling of L- and H-mode conditions

The formation of a transport barrier at the edge by sufficient
plasma heating is the main exceptional feature of the H-mode
compared to L-mode performance. In order to demonstrate
the capability of the transport code to reproduce both L and
H confinement modes, calculations were done for JET plasmas
with the following parameters: the magnetic field BT = 2.4 T,
plasma current IP = 2.3 MA, with a monotonic profile of the
safety factor and q95 = 4, the elongation and triangularity at
the separatrix equal 1.6 and 0.45, respectively. Plasmas of a
relatively high line-averaged density, n̄ = 0.7–1 × 1020 m−3,
characteristic for the experiments with deliberate impurity
seeding into JET [22, 24] have been modelled.

Figure 1 presents the radial profiles of the total ion
heat diffusivity computed using the transport model given
by equations (8)–(14). For low heating power χion is about
1 m2 s−1 at the plasma edge and is determined mostly by
the anomalous contribution. With increased heating the
turbulent transport becomes completely suppressed in the
region 0.93 � ρ � 1 where the total heat diffusion reduces to
the neo-classical level. For the following parametric studies,
which required many runs of the code, the approximate
transport coefficients in equations (15)–(18) have been used
instead of the transport model presented by equations (8)–(14).
A comparison of both approaches for some selected cases has
shown that they lead to principally similar results.

Figure 2 shows the normalized edge pressure gradient, α,
and the ion temperature at a position inside the transport barrier,
ρ = 0.95, computed versus the total heating power, Ptot. One
can see a very strong (by a factor of 3–3.5) non-linear increase
in both characteristics taking place in a relatively narrow
power range of 8–12 MW. The latter clearly separates the two
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Figure 2. Normalized pressure gradient, α, and ion temperature, Ti,
at ρ = 0.95 versus the input power.

parameter regions where both α and Ti are weakly dependent
on the power. These regions are attributed to L- and H-modes,
respectively. Up to now the code RITM does not include a
particular physics of the applied auxiliary heating (NBI, ICRH)
and its effect on transport. Therefore, an important problem,
namely how the heating nature affects the L–H transition, could
not be investigated and should be tackled in future studies. The
influence of the heating power density profile on the results has
been analysed by changing this in two ways: (i) by adding a
constant through the radius contribution, which is the same for
electrons and ions, to the initial experimental profile for the
L-mode conditions, and (ii) by multiplying this profile by a
constant factor. It turns out, that the power level at which the
L–H transition takes place, is nearly the same in both cases.

Non-linear interrelations between plasma parameters,
their gradients and transport characteristics do not permit us
to interpret simply and uniquely the mechanism sustaining
the reduced edge transport under H-mode conditions. The
following one, schematically demonstrated in figure 3, seems
to be the most probable. When the heating power increases
to the necessary level, the electron temperature grows
(figure 3(a)), collisionality drops and the pressure gradient
rises to a level high enough for a significant reduction of
the transport driven by DA instability, equation (17). When
this transport channel, being the main one for electrons under
L-mode conditions (figure 3(b)), is reduced, a steeper density
gradient is formed at the edge due to ionization of recycling
neutrals (figure 3(c)). This allows us to maintain the ITG
transport at a low level in spite of increasing ITG (figure 3(d))
because, according to equation (15), DITG ∼ √∇T − ∇Tcrit ,
where the critical temperature gradient ∇Tcrit increases non-
linearly with the density gradient ∇n.

Large temperature and density gradients are considered
normally as destabilizing for dissipative TEM [15, 16, 25].
This is, in particular, the case in collisional L-mode plasmas
where ω∗ 
 νeff and DTE ∼ ηeω

2
∗/νeff ∼ ∇T ∇n/νeff .

However, in the H-mode barrier, ω∗ 	 νeff and, according
to equation (16), DTE ∼ ηeνeff ∼ νeff∇T/∇n ∼ 1/

√
T ;

i.e. TEM induced transport drops with increasing temperature
at the edge. Nonetheless, the remaining TEM activity plays
an important role by maintaining the steep density gradient
at the edge through its contribution to the inward pinch (see
equation (20), [14]).

When the major suppliers to the anomalous transport are
suppressed, the neo-classical transport provides the dominant
contribution to χi at the edge (figure 3(e)). Formation of the
edge transport barrier leads to the pedestal in the temperature
and pressure profiles (figures 3( f ) and (g)).

4. Pedestal characteristics

Characteristics of the edge pedestal, e.g. its width and the
temperatures at the pedestal top, T

Edge
i,e , are very important for

the overall plasma performance [32]. Thus, due to the nature
of turbulence triggered by temperature gradients [13, 33], the
temperature profiles are stiff in the plasma core and T

Edge
i,e

essentially controls the total plasma thermal energy. The
pedestal width, �, significantly varies in experiments with
different global and local plasma parameters [34, 35]. For
the profiles computed by RITM the pedestal width is defined
as the distance from the separatrix to the position where a
sudden change in the ITG takes place. In order to find the
relation between � and the line-averaged density, the latter
has been changed by RITM calculations through the intensity
of deuterium fuelling. The decrease of � with density is in
good correlation with the observations on DIII-D [34], which
were explained by the assumption that � is controlled by the
penetration depth of neutrals, ln, being inversely proportional
to the plasma density.

Our modelling shows that this dependence is due to the
effect of the density gradient on the growth rate of ITG
instability. The proportionality between � and ln found in
RITM computations, is explicitly demonstrated in figure 4. In
addition, the penetration depth of neutrals is proportional to
their thermal velocity. After charge-exchange neutrals acquire

the ion temperature, one can expect that � scales as
√

T
Edge

i .
Such behaviour, found in experiments on JT-60U [35], is
confirmed by the results of our modelling presented in figure 5.

JET plasmas under consideration were characterized by
the presence of Type-I ELMs [22, 24]. In computations, the
normalized pressure gradient approaches the ideal ballooning
stability limit, but does not overcome it. This is due to the
strong enhancement of the edge transport assumed in the code
when α exceeds αc.

5. Threshold power for H-mode

The inter-machine analysis [36] provides the scaling for
the power threshold of the L–H transition: Pth =
0.042n̄0.64

e B0.78S0.94, where n̄e is the line-averaged electron
density and S the plasma surface (MW, m−3, T, m−2). The grey
area in figure 6 presents the threshold value of Pin − dW/dt

found in experiments on JET [37], where Pin is the total
heating power and W is the plasma stored energy. The results
of calculations with the code RITM are shown by different
symbols.

Because computations do not allow us to resolve a real-
time dynamics of the L–H transition, the threshold power
is determined in simulations as the power level at which
(dα/dPtot)(ρ = 0.95) has the maximum slope as a function
of Ptot (see figure 2). Different symbols for the same toroidal
magnetic field were obtained by varying the plasma density
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(a) (e)

(b) (g)

(c) (f)

(d) (h)

normalized normalized

Figure 3. Radial profiles of (a) electron temperature, (b) heat diffusivity due to DA mode, (c) ion density, (d ) heat diffusivity due to ITG
mode, (e) total ion heat diffusivity, (f ) ion temperature, (g) total pressure and (h) radial electric field, computed for Ptot = 4.2 MW (- - - -)
and Ptot = 14 MW(——).

Figure 4. Normalized pedestal width versus normalized penetration
depth of recycling neutrals.

at the pedestal top, from 6 × 1019 m−3 to 9 × 1019 m−3, for
each value of the magnetic field. Although the modelling
reproduces the general tendency well, it predicts a density
dependence stronger than is given by the scaling law. This
can lead to some problems for obtaining the H-mode in
future machines like ITER, if the operation is extended to
densities noticeably higher than 1020 m−3. For nominal ITER
parameters, S = 678 m2, B = 5.3 T, ne = 6×1013 cm−3 [38],
our computations predict a power threshold between 30 and
45 MW. According to figure 6, this value can be up to a factor
of two larger if the density is increased by 50%.

6. Discussions of the results

6.1. Threshold of L–H transition

The computations above predict a sharp variation of transport
coefficients in a narrow range of the power input. However,
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Figure 5. Normalized pedestal width as a function of ion
temperature at the pedestal top.

Bt = 1.9 T

ne
Bt = 2.2 T
Bt = 2.4 T
Bt = 2.6 T
Bt = 2.7 T

Pth = 0.042  ne
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Figure 6. Heating power at the onset of the H-mode in JET from
experimental data (grey area) and RITM modelling (symbols)
versus the inter-machine scaling [38].

they do not show a bifurcation, contrary to normal belief
about the L–H transition. Here, we demonstrate that this is
a result of particular conditions considered above, i.e. of high
enough density, and that the adopted transport model predicts a
bifurcation at a lower density. Consider the heat flux produced
by DA modes, q⊥ = 3DDAn∇T +3DDA∇nT = 3DDA∇(nT ).
In the parameter νn, introduced in [5] and used in equation (17)
above, the effects of the collisionality and pressure gradient are
mixed. In order to separate them, we make use of the parameter

ν0 =
√

β

λek‖

√
mi

me
∝

(
ne

Te

)3/2

,

Figure 7. Function f (βn, ν0) versus normalized beta for different
values of ν0.

depending on collisionality only. As a result one gets q⊥ =
q0f (βn, ν0), where

q0 =
(

1

4π

)5/2 (me

n

)3/2 B3

mi

(
c

eqR

)2

and

f (βn, ν0) = β
5/2
n

(1 + β2
n )3/2

[
1 + ν2

0 (1 + β2
n )3/βn

1 + β2
n + ν

4/3
0 /β

2/3
n

]1/2

. (26)

The factor f (βn, ν0) is shown in figure 7 as a function of βn

for several ν0. The stationary value of βn and thus of the
pressure gradient at the edge, is determined by the intersection
of these curves with the horizontal line qcore/q0, where qcore is
the density of the heat flux from the core into the edge region.
With increasing heating power and growing q⊥/q0, different
types of behaviour can be distinguished. If ν0 is larger than a
critical value of 0.1 but does not exceed it significantly, the
function f is monotonic and reveals a strong reduction of
its slope for βn in the vicinity of 1. Therefore, when q⊥/q0

exceeds a level of 0.3, the pressure gradient increases very fast.
This situation of not too low plasma collisionality has been
modelled in this paper. If, however, the density is sufficiently
low and ν0 is less than 0.1, f (βn, ν0) has an N-like shape.
Then, a bifurcation to the state of much lower transport occurs
when q⊥/q0 exceeds the critical level. This behaviour can be
associated with the ‘classical’ L–H transition. In real plasmas
the density and temperature and their gradients are interrelated,
so the present analysis provides qualitative guidelines only.

6.2. Role of the radial electric field

The mechanisms responsible for the formation and sustainment
of the H-mode edge barrier considered above do not include
the effect from the radial electric field Er . However, normally
the shear of the drift motion induced by Er is considered as the
main cause for suppression of turbulence [1, 2]. In order to
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take this channel into account, Er is determined from the radial
momentum balance for ions:

Er = VϕBϑ − VϑBϕ

c
+

1

eni

∂(niTi)

∂r
, (27)

where Bϑ,ϕ and Vϑ,ϕ are the poloidal and toroidal components
of the magnetic field and ion velocity, respectively. Henceforth
we assume Vϕ = 0 and Vϑ given by the neo-classical
theory [30], Vϑ = kneo(c/eBϕ)(∂Ti/∂r), with kneo depending
on the collisionality regime.

By going from the L- to H-mode conditions, the plasma
density and temperature gradients become much sharper and
a large sheared E × B rotation arises in the barrier region
(see figure 3(h)). Therefore, the transport contribution of an
unstable drift mode is reduced by the factor [2]

f = 1

1 + (ξ · ωE×B/γmax)
2 , (28)

with ξ ≈ 1 and

ωE×B = RBθ

B

∂

∂r

(
Er

RBθ

)
. (29)

By applying equations (27) and (28), one gets the estimate:
ωE×B ≈ csρs/(LnLT). Our computations show that this value
is noticeably less than the characteristic growth rate of the edge
instabilities [4], γ edge

max ≈ cs
√

2/(RLn), even in the edge barrier
region. Therefore, the radial electric field is not so efficient in
suppressing edge instabilities as the mechanisms considered
above, i.e. low collisionality and high pressure gradient.

The situation may be different for the ‘core’ ITG
instability, for which [13] γ ITG

max ≈ 0.3cs/
√

RLT < γ
edge
max .

Figure 8 shows profiles of the ion heat conductivity and
temperature found under different assumptions about the
mechanism for reduction of ITG-driven transport, i.e. by
including separately and simultaneously the effects due to
density gradient and electric field. One can see that in this
case also the E × B rotation shear cannot sustain a pronounced
barrier on its own and the density gradient works more
efficiently. Our results do not exclude of course the fact that
the effect from the E × B rotation shear can be more important
under other plasma conditions.

7. Conclusions

The RITM code coupled with the transport model, which
takes into account the contributions from different unstable
drift modes, allows a self-consistent modelling both of L- and
H-mode conditions. Computations show that the transport
barrier arises when the heating power exceeds a critical level
and anomalous transport induced both by ‘edge’ and ‘core’
unstable modes becomes suppressed at the plasma edge. This
happens owing to decreasing collisionality and increasing
gradients of the density and pressure. The width of the barrier
is determined by the condition for the suppression of the ITG-
mode with the density gradient and scales as the penetration
depth of recycling neutrals. The scaling of the power threshold
for the L–H transition with engineering parameters found
by quasi-stationary RITM computations mimics well the
experimental findings on JET. For the suppression of unstable
modes and maintaining of the edge transport barrier, the E × B
rotation shear is less important compared to other mechanisms
considered.

Figure 8. Ion heat conductivity and temperature computed for JET
parameters under different assumptions about the mechanisms for
reduction of ITG-driven transport.
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