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Analytical correlation correction of the chemical potential of solid solutions
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We derive an analytical expression for the chemical potential of disordered binary alloys using a reciprocal
space approach. The main characteristic of the formalism is that it does not limit the effective radius of atomic
interaction and correlations in the system. The lattice displacements caused by atomic size mismatch can be
naturally introduced into this formalism. A comparison with results from Monte Carlo simulations shows very
good agreement. The new analytical expression for the chemical potential can be widely applied, e.g., for the
calculation of phase diagrams as well as surface segregation profiles in nanoconfined systems.
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The chemical potential of a solid solutioh—-B, u=u,  flat portions in the Fermi surface causing Fermi surface nest-
- ug, Where u, and ug are the chemical potentials of the ing effects!! The reciprocal space modification of the single-
alloy components, is a fundamental thermodynamical quarsite MFA does not suffer from the problems mentioned
tity, since, at thermodynamic equilibrium, the chemical po-above, although it is less accurate in the vicinity of a phase
tentials of all the parts of the aIon are equal. This Conditiontransition' and, moreover, m|ght give qua|itative|y wrong re-
is applied in many areas of solid state physics and materialgyits in the case of frustrated latticey.
science, including the study of phase diagrams, spinodal de- The aim of this paper is to derive a simple and accurate
composition or surface segregation phenomena. From thg,a\vtical expression for the chemical potential of a disor-
condition that the chemical potentials in all product phasegyereq alioy, which takes correlation effects into account. For
must Ee equal in systems unr(]jerfgc;:ng spmodalfd@;omposihe derivation of the free energy of the alloy we use a recip-
v e e Al SPaCcSpace poroach based on an ferive Crrel:
greg Y, ion correction procedure. Instead of performing the calcula-

potential is equal in all near-surface layers and in the bul ions within a_ thermodvnamic oerturbation theBrwie
part of the alloy provides a set of equations for the atomic . ay P ; w
concentration in every lay&r? Integrate the configurational free energy with respect to the

For the calculation of the chemical potential of solid so-INVerse temperature’ _ . .
lutions Monte Carlo (MC) simulationg or analytical For the calculation of the chemical potential we start with
statistical-thermodynamic approach@ can be used. The the free energy of the syste(see, e.g., Ref. 31
MC method is characterized by a high accuracy, because it 10F
avoids additional simplifying assumptions, and can be used w=——,
as a standard in statistical thermodynamics. On the other N dc

hand, simple models and analytical expressions for thermo- : . .
and, simple models and analytical expressions for the Og:hereF is the configurational free energy,the concentra-
i

1)

dynamic quantities are extremely important, since they not. . o
only elucidate qualitative trends but also allow us to expres on of the componen#, an_dN th? number of Iatt_|ce sites in
e alloy crystal. In MC simulations the numerical value of

one physical property of the system via others. In addition . . )
anal)?ticyal app?oarc):he); demandyin general much less compme configurational free energy of the alloy is then calculated
using the exact relatiéri

tational efforts in comparison to MC simulations.
Among the analytical statistical-thermodynamic ap- 1kgT

proaches for the calculation of the chemical potential, the F:kBTJ

single-site mean-field approximatigMFA) and several ver-

sions of the cluster-variation meth@@VM) are commonly .
used. The MFA ignores correlation effects in the mutual ar-WherekB is the Boltzmann constaril, the temperaturés the

rangement of the different alloy componeAsThe CVM internal confi.gurati.onal energy of the alloy, aﬁgthe vaIuc_a
which takes correlations into accourft? involves cumber- of the configurational entropy, calculated in- the high-

. . . . . emperature limit.
some analytic equations and a nonlinear increase in calculé— Ir?the following we split the internal confiqurational en
tion time with increasing radius of atomic interaction. 9 P 9

Real systems, such as metallic alloys, are often charactef* 9 of the alloy into a sum of two terms

ized by a large radius of atomic interaction. One source of E=E,+AE, (3)
long-ranging interactions is atomic size mismatch, which is

generally present in alloy systems. It results in an infinitelywhere E, denotes the internal configurational energy in the
ranging strain-induced interaction between atém¥ An- high-temperature limit where the correlations in the occupa-
other type of long-ranging interaction is found in alloys with tion of lattice sites are vanishind.E is the energy contribu-

E(T)d(1/kgT') - TS, (2)
0
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tion caused by atomic correlations. Equati@ can then be fluctuations
written as R
1kgT
F=Fy+ kBTf AE(T)d(1/kgT'), (4)
0 . .
_1oF Free eneray Correllcat;0n ﬁl;‘l](;tlon
whereF,=E,-TS, F=Noc|€  Fro £x =—B—(a—*)
It is important to note, that the mean-fielMF) expres- dex 0o

sion for the configurational energy and entropy of an alloy
are asymptotically exact in the high-temperature liit.
Therefore, it can be used for the calculationFgf In addi-
tion, in the single-site MFA for the disordered state of the
alloy, the valuess; andE, do not depend on temperature.
Assuming the atomic interactions to be pairwise, the en-
ergy contribution caused by atomic correlations is given by |G, 1. Iterative procedure for the calculation of the correlation
corrections to the free energy and the chemical potential.

exact
integration ]
1/kgT Energy correction

AF—kgT [AEd(I/kgT") | AE= iszgk
AN

exact
statistics

1
= —> Vist, (5)
2N - c(1-0)

T T (L) (Vi+ NikgT' ®

whereV; and g are the Fourier transforms of the two-body
mixing potential and the correlation function, respectivély.
The summation in Eq5) is carried out over all wave vectors
in the first Brillouin zone. In the following, the definition

with \ as a Lagrangian multiplier, constrained by the condi-

f,;:EfF;e“'ZR for the Fourier transform is used for any func- aF _ 0 )
tion fg of the real space vectd® where the summation is 2N '
carried out over all sites of the alloy crystal. o
Substituting Eq(5) in Eq. (4) gives glgﬁgtfgﬁt the case=0 in Eq. (8) corresponds to the KCM
kBT 1/kgT Substituting Eq.(8) into Eq. (6) and using Eq(9), we
F=Fo+ E VkJ ex(T")d(1/kgT'), (6)  obtain the normalization condition
-1 §M - _
where we assume that the interaction potentiglsdo not N Eﬁsk c(1-9). (10

depend on temperature and concentration.

In the presence of atomic size mismatch, the mixing poBy using Eq.(6) and the definition in Eg(1) one can arrive
tential can be represented\a¢s=v°h+vg3" i.e., as asum of a again at an analytical expression for the chemical potential of
chemical part determined for the undistortperfec lattice  the alloy
and an effective strain-induced paf'*

The correlation functiorg=gg(T) can be calculated itera- ey = 1-2

SM= Mmra t
tively using variousk-space statistic-thermodynamical ap- 2Nc(1-¢)";
proximations starting from the MFA. In the following we use
the Krivoglaz-Clapp-Moss(KCM),1! the spherical model This is the key result of this study.

> Vst (11)

(SM),23 and the recently developed rifgapproximation In order to test the numerical accuracy of E@l) we
(RA). These approximations are listed in the order of in-have performed extensive MC simulations and compared the
creasing accuracy in the correlation functf@n. results with calculations in the various approximations. The

Figure 1 displays the iterative procedure for the calculaMC simulations were done in the grand canonical ensemble.
tion of the correlation function and the free energy. In eachThe standard Metropolis single spin-flip MC method was
loop the chemical potential of the system can be calculatedsed. Typical model crystals with periodic boundaries varied
with increasing accuracy starting with the MFA value for thein size from 10< 10 10 to 60x 60< 60 unit cells to control
chemical potential possible finite size effects. The chemical potential was ad-

justed in the simulations in order to achieve the desired com-

C position of the alloy. The MC results are shown in Figs. 2—4
Hara = P+ Vi OC+kBTInE () as bold blue lines and serve as an exact reference for the
analytical Eqs(7) and(11).
with ® as the energy of injection of aA sort atom into a First we present results for a series of model systems. For
crystal lattice sitgthe unary mixing potentiaft® the first two systems two different interaction modéss

In the first loop of this iterative procedure, correlationsV;>0, V=0, s=2, and(b) V,;>0, V,=-0.5V;, Vs=0, s
within the SM approximation are taken into account. Within =3 have been used with a fixed concentrationAeditoms
this approximatiot-'3the correlation function is given by  c,=0.1. In order to test the numerical results for a different
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02 04 06 08 10 08 10 12 14 2.3+
=>4 (@) ——MFA (b) —:—I\S/IFA =4 ——MFA
_ ] —e— SM —e—SM |
% —MC —wc [ 2.4 —eo—SM
> -6.01 ——KCM —t—KCM -6.0 —_ —MC
> >
= 65 1-6.5 2 5]
-7.01 7.0 =
35 VA -2.6-
(C) (d) —e—SM -3.5
—nMC
s 0 ——KCM 4.0 2.7
Ex ?_TFA\ , | |
== 4.3 800 850 900
5.0 KM ‘ ‘ 5.0 T [K]
1 0.6 0.8 1.0T 12 14 16 18 20
To kBTN1 To kBTN1 FIG. 4. (Color) Temperature dependence of the chemical poten-

tial for the alloy N gfCrg 11, Obtained with MC simulations, within
FIG. 2. (Colon Dependence of the reduced chemical potentialthe MF approximation, and within the SM approximation. The ef-
on the reduced temperature, obtained by MC simulations, the MFAfective atomic interaction potential in 30 shells is taken from Ref.
the KCM, and the SM approximation fa,=0.1 and(a) V;>0, :
V=0 (s=2), (b) V;>0, V,=-0.5V4, Vs=0(s=3), and for cp
=0.25 and(c) V;>0, Vs=0(s=2), (d) V;>0, V,=-0.5V4, Vg
=0 (s=3).

AN
~

tion effects in the atomic distributigrdisplay deviations to

the exact values of more than 10% in all cases considered
here. The KCM approximation approaches the MC results at
. ) . . high temperatures and gives the biggest discrepancy from the
concentration we present in a second series of calculationgc results in the interval close to the phase-transition tem-

and simulations with the same interaction models for a conperatyre. Although this discrepancy is decreasing when inter-
centration ofA-atomsc,=0.25. actions in the second coordination shell are taken into ac-

In Fig. 2 the results fouyra, uxcu, andusy are shown — count, this approximation gives nonadequate trends in close
for the temperature range> Ty, whereT, denotes the order- vicinity of the transition temperature.

disorder transition temperatuteThis demonstrates that the |, Fig. 3 we demonstrate that the formalism developed
MFA systematically overestimates the chemical potentiabhoye can be readily applied for the determination of the
(upper bounyl while the KCM approximation systematically concentration as function of temperature at a fixed chemical
underestimates the chemical potential of the systiewer  hotential. The results of the MC simulations and the calcula-
bound. o . tions done in the SM approximation are very close within a

_ Figure 2 also shows that the SM approximation provides &yige range of temperature. Notice that the MF calculations
high numerical accuracy, since the results of calculations Ussynipit systematic errors up to 30%.
ing MC simulations and the SM approximation practically  Figure 4 shows that the tendencies demonstrated in the
coincide with each other in a wide temperature range, exceise of the short-range interactidfég. 2) are also found for
the narrow intgrval near.th.e p.hase transition temperaturgpe real alloy Ni dCro 11 in the temperature range under con-
where the maximum deviation is less than 1%. The resultgjgeration. In this case the effective interaction is ranging up
obtained within the single-site MFfwhich neglects correla-  he 30th neighbor shelf. The chemical potentials calculated
within the ring approximation using Eq12) and calculated
0.13 within the spherical model using E(B) are identical within
0.3%. The systematic deviation between the MC and the SM
] results is approximately 1%, and between the MF and the
0.1 MC approximately 10%.

The numerical tests of the correlation correction proce-

] dure performed in this paper using the spherical model for
0.09 the correlation function demonstrate that the comparatively
simple analytical Eq(11) derived for the chemical potential

0.12 1

0.10+

0'08__ MC of a binary alloy has a high numerical accuracy in a wide
0.071 ——MFA temperature range, both in the case of model systems with
0.06] —e—SM short-range atomic interactions, and in the case of a real
| ——— alloy with long-range interactions.
0.5 0.6 0.7 0.8 0.9 In those cases, where even higher accuracies for the de-
k T/V, termination of the chemical potential are required, a numeri-

cal solution of Egs(1) and(6) can be performed employing

FIG. 3. (Color Temperature dependence of the concentrationthe correlation function calculated in the second loop of the
calculated within the SM approximation for a model system de-iterative procedurgsee Fig. 1 which results in the RA.
scribed by a fixed chemical potentialV,;=-7. Within the RA the correlation function reads
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RA _ c(l-c)
T e oV kT 12
with
=N [1+c(1-c)(Vi+N)/keT] S, (13
K
and
(1-2c)?
VEff = VIZ - W% (Vq + 7\)(V|2—q + A)SgMSE—Md'
(14

The Lagrangian multipliek in Eq. (14) should be calculated

using the normalization condition given by E40). We em-
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performed only numerically and in turn the equation for the
chemical potential can no longer be written in a closed ana-
lytical form. The chemical potential determined within the
RA is virtually identical to the SM results and is, therefore,
not shown in the figures.

In conclusion we emphasize, that, due to the use of a
k-space approach, the radius of the effective interaction has
no limitation; thus the presented formalism naturally takes
into account all long-ranging strain-induced effeets? It
can furthermore be generalized to systems governed by
many-body interactiort$'® and by magnetic interactios?

The derivation of the analytical expressions for the chemical
potential has been carried out independently from the dimen-
sion of the system under consideration.

Therefore, this formalism can be applied to material sci-

phasize here that, in contrast to the corresponding values iénce problems of current interest, in particular to calculate

the KCM and SM approximation, the values fo‘nndv‘éff are

phase diagrams of “real” binary alloys, to study complex

temperature dependent in the RA. Therefore, the integratiomulticomponent, amorphous, and fluid systems, and to in-
over the inverse temperature in E§) and the calculation of vestigate ordering and segregation phenomena at surfaces,

the derivative with respect to concentration in E.can be

interfaces, and in thin films.
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