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We derive an analytical expression for the chemical potential of disordered binary alloys using a reciprocal
space approach. The main characteristic of the formalism is that it does not limit the effective radius of atomic
interaction and correlations in the system. The lattice displacements caused by atomic size mismatch can be
naturally introduced into this formalism. A comparison with results from Monte Carlo simulations shows very
good agreement. The new analytical expression for the chemical potential can be widely applied, e.g., for the
calculation of phase diagrams as well as surface segregation profiles in nanoconfined systems.
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The chemical potential of a solid solutionA−B, m=mA
−mB, where mA and mB are the chemical potentials of the
alloy components, is a fundamental thermodynamical quan-
tity, since, at thermodynamic equilibrium, the chemical po-
tentials of all the parts of the alloy are equal. This condition
is applied in many areas of solid state physics and materials
science, including the study of phase diagrams, spinodal de-
composition or surface segregation phenomena. From the
condition that the chemical potentials in all product phases
must be equal in systems undergoing spinodal decomposi-
tion, the concentration in each of them can be found.1–4 In
surface segregation theory, the condition that the chemical
potential is equal in all near-surface layers and in the bulk
part of the alloy provides a set of equations for the atomic
concentration in every layer.5–7

For the calculation of the chemical potential of solid so-
lutions Monte Carlo sMCd simulations8 or analytical
statistical-thermodynamic approaches2,3,6 can be used. The
MC method is characterized by a high accuracy, because it
avoids additional simplifying assumptions, and can be used
as a standard in statistical thermodynamics. On the other
hand, simple models and analytical expressions for thermo-
dynamic quantities are extremely important, since they not
only elucidate qualitative trends but also allow us to express
one physical property of the system via others. In addition,
analytical approaches demand in general much less compu-
tational efforts in comparison to MC simulations.

Among the analytical statistical-thermodynamic ap-
proaches for the calculation of the chemical potential, the
single-site mean-field approximationsMFAd and several ver-
sions of the cluster-variation methodsCVMd are commonly
used. The MFA ignores correlation effects in the mutual ar-
rangement of the different alloy components.3,9 The CVM,
which takes correlations into account,2,4,9 involves cumber-
some analytic equations and a nonlinear increase in calcula-
tion time with increasing radius of atomic interaction.

Real systems, such as metallic alloys, are often character-
ized by a large radius of atomic interaction. One source of
long-ranging interactions is atomic size mismatch, which is
generally present in alloy systems. It results in an infinitely
ranging strain-induced interaction between atoms.2,3,10 An-
other type of long-ranging interaction is found in alloys with

flat portions in the Fermi surface causing Fermi surface nest-
ing effects.11 The reciprocal space modification of the single-
site MFA does not suffer from the problems mentioned
above, although it is less accurate in the vicinity of a phase
transition, and, moreover, might give qualitatively wrong re-
sults in the case of frustrated lattices.3,9

The aim of this paper is to derive a simple and accurate
analytical expression for the chemical potential of a disor-
dered alloy, which takes correlation effects into account. For
the derivation of the free energy of the alloy we use a recip-
rocal spacesk-spaced approach based on an iterative correla-
tion correction procedure. Instead of performing the calcula-
tions within a thermodynamic perturbation theory10 we
integrate the configurational free energy with respect to the
inverse temperature.8,9

For the calculation of the chemical potential we start with
the free energy of the systemssee, e.g., Ref. 11d

m =
1

N

]F

]c
, s1d

whereF is the configurational free energy,c the concentra-
tion of the componentA, andN the number of lattice sites in
the alloy crystal. In MC simulations the numerical value of
the configurational free energy of the alloy is then calculated
using the exact relation8,9

F = kBTE
0

1/kBT

EsT8dds1/kBT8d − TS0, s2d

wherekB is the Boltzmann constant,T the temperature,E the
internal configurational energy of the alloy, andS0 the value
of the configurational entropy, calculated in the high-
temperature limit.

In the following we split the internal configurational en-
ergy of the alloy into a sum of two terms

E = E0 + DE, s3d

whereE0 denotes the internal configurational energy in the
high-temperature limit where the correlations in the occupa-
tion of lattice sites are vanishing.DE is the energy contribu-
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tion caused by atomic correlations. Equations2d can then be
written as

F = F0 + kBTE
0

1/kBT

DEsT8dds1/kBT8d, s4d

whereF0=E0−TS0.
It is important to note, that the mean-fieldsMFd expres-

sion for the configurational energy and entropy of an alloy
are asymptotically exact in the high-temperature limit.12

Therefore, it can be used for the calculation ofF0. In addi-
tion, in the single-site MFA for the disordered state of the
alloy, the valuesS0 andE0 do not depend on temperature.

Assuming the atomic interactions to be pairwise, the en-
ergy contribution caused by atomic correlations is given by

DE =
1

2N
o
kW

VkW«kW , s5d

whereVkW and«kW are the Fourier transforms of the two-body
mixing potential and the correlation function, respectively.13

The summation in Eq.s5d is carried out over all wave vectors
in the first Brillouin zone. In the following, the definition

fkW =ofRWe
−ikWRW for the Fourier transform is used for any func-

tion fRW of the real space vectorRW where the summation is
carried out over all sites of the alloy crystal.

Substituting Eq.s5d in Eq. s4d gives

F = F0 +
kBT

2N
o
kW

VkWE
0

1/kBT

«kWsT8dds1/kBT8d, s6d

where we assume that the interaction potentialsVkW do not
depend on temperature and concentration.

In the presence of atomic size mismatch, the mixing po-
tential can be represented asVkW =VkW

ch+VkW
s–i, i.e., as a sum of a

chemical part determined for the undistortedsperfectd lattice
and an effective strain-induced part.2,3,14

The correlation function«kW =«kWsTd can be calculated itera-
tively using variousk-space statistic-thermodynamical ap-
proximations starting from the MFA. In the following we use
the Krivoglaz-Clapp-MosssKCMd,11 the spherical model
sSMd,13 and the recently developed ring10 approximation
sRAd. These approximations are listed in the order of in-
creasing accuracy in the correlation function.10

Figure 1 displays the iterative procedure for the calcula-
tion of the correlation function and the free energy. In each
loop the chemical potential of the system can be calculated
with increasing accuracy starting with the MFA value for the
chemical potential

mMFA = F + VkW=0c + kBT ln
c

1 − c
, s7d

with F as the energy of injection of anA sort atom into a
crystal lattice sitesthe unary mixing potentiald.15

In the first loop of this iterative procedure, correlations
within the SM approximation are taken into account. Within
this approximation10,13 the correlation function is given by

«kW
SM =

cs1 − cd
1 + cs1 − cdsVkW + ld/kBT

, s8d

with l as a Lagrangian multiplier, constrained by the condi-
tion

]F

]l
= 0. s9d

Note that the casel=0 in Eq. s8d corresponds to the KCM
equation.

Substituting Eq.s8d into Eq. s6d and using Eq.s9d, we
obtain the normalization condition

N−1o
kW

«kW
SM = cs1 − cd. s10d

By using Eq.s6d and the definition in Eq.s1d one can arrive
again at an analytical expression for the chemical potential of
the alloy

mSM = mMFA +
1 − 2c

2Ncs1 − cdo
kW

VkW«kW
SM. s11d

This is the key result of this study.
In order to test the numerical accuracy of Eq.s11d we

have performed extensive MC simulations and compared the
results with calculations in the various approximations. The
MC simulations were done in the grand canonical ensemble.
The standard Metropolis single spin-flip MC method was
used. Typical model crystals with periodic boundaries varied
in size from 10310310 to 60360360 unit cells to control
possible finite size effects. The chemical potential was ad-
justed in the simulations in order to achieve the desired com-
position of the alloy. The MC results are shown in Figs. 2–4
as bold blue lines and serve as an exact reference for the
analytical Eqs.s7d and s11d.

First we present results for a series of model systems. For
the first two systems two different interaction modelssad
V1.0, VS=0, sù2, and sbd V1.0, V2=−0.5V1, VS=0, s
ù3 have been used with a fixed concentration ofA-atoms
cA=0.1. In order to test the numerical results for a different

FIG. 1. Iterative procedure for the calculation of the correlation
corrections to the free energy and the chemical potential.
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concentration we present in a second series of calculations
and simulations with the same interaction models for a con-
centration ofA-atomscA=0.25.

In Fig. 2 the results formMFA , mKCM, andmSM are shown
for the temperature rangeT.T0, whereT0 denotes the order-
disorder transition temperature.16 This demonstrates that the
MFA systematically overestimates the chemical potential
supper boundd, while the KCM approximation systematically
underestimates the chemical potential of the systemslower
boundd.

Figure 2 also shows that the SM approximation provides a
high numerical accuracy, since the results of calculations us-
ing MC simulations and the SM approximation practically
coincide with each other in a wide temperature range, except
the narrow interval near the phase transition temperature,
where the maximum deviation is less than 1%. The results
obtained within the single-site MFAswhich neglects correla-

tion effects in the atomic distributiond display deviations to
the exact values of more than 10% in all cases considered
here. The KCM approximation approaches the MC results at
high temperatures and gives the biggest discrepancy from the
MC results in the interval close to the phase-transition tem-
perature. Although this discrepancy is decreasing when inter-
actions in the second coordination shell are taken into ac-
count, this approximation gives nonadequate trends in close
vicinity of the transition temperature.

In Fig. 3 we demonstrate that the formalism developed
above can be readily applied for the determination of the
concentration as function of temperature at a fixed chemical
potential. The results of the MC simulations and the calcula-
tions done in the SM approximation are very close within a
wide range of temperature. Notice that the MF calculations
exhibit systematic errors up to 30%.

Figure 4 shows that the tendencies demonstrated in the
case of the short-range interactionssFig. 2d are also found for
the real alloy Ni0.89Cr0.11 in the temperature range under con-
sideration. In this case the effective interaction is ranging up
the 30th neighbor shell.17 The chemical potentials calculated
within the ring approximation using Eq.s12d and calculated
within the spherical model using Eq.s8d are identical within
0.3%. The systematic deviation between the MC and the SM
results is approximately 1%, and between the MF and the
MC approximately 10%.

The numerical tests of the correlation correction proce-
dure performed in this paper using the spherical model for
the correlation function demonstrate that the comparatively
simple analytical Eq.s11d derived for the chemical potential
of a binary alloy has a high numerical accuracy in a wide
temperature range, both in the case of model systems with
short-range atomic interactions, and in the case of a real
alloy with long-range interactions.

In those cases, where even higher accuracies for the de-
termination of the chemical potential are required, a numeri-
cal solution of Eqs.s1d ands6d can be performed employing
the correlation function calculated in the second loop of the
iterative proceduressee Fig. 1d which results in the RA.
Within the RA the correlation function reads

FIG. 2. sColord Dependence of the reduced chemical potential
on the reduced temperature, obtained by MC simulations, the MFA,
the KCM, and the SM approximation forcA=0.1 andsad V1.0,
Vs=0 ssù2d, sbd V1.0, V2=−0.5V1, Vs=0 ssù3d, and for cA

=0.25 and scd V1.0, Vs=0 ssù2d, sdd V1.0, V2=−0.5V1, Vs

=0 ssù3d.

FIG. 3. sColord Temperature dependence of the concentration
calculated within the SM approximation for a model system de-
scribed by a fixed chemical potentialm /V1=−7.

FIG. 4. sColord Temperature dependence of the chemical poten-
tial for the alloy Ni0.89Cr0.11, obtained with MC simulations, within
the MF approximation, and within the SM approximation. The ef-
fective atomic interaction potential in 30 shells is taken from Ref.
17.
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«kW
RA =

cs1 − cd

I + cs1 − cdVkW
eff/kBT

, s12d

with

I = N−1o
kW

f1 + cs1 − cdsVkW + ld/kBTg−1, s13d

and

VkW
eff = VkW −

s1 − 2cd2

2NkBTc2s1 − cd2o
qW

sVqW + ldsVkW−qW + ld«qW
SM«kW−qW

SM.

s14d

The Lagrangian multiplierl in Eq. s14d should be calculated
using the normalization condition given by Eq.s10d. We em-
phasize here that, in contrast to the corresponding values in
the KCM and SM approximation, the values forI andVkW

eff are
temperature dependent in the RA. Therefore, the integration
over the inverse temperature in Eq.s6d and the calculation of
the derivative with respect to concentration in Eq.s1d can be

performed only numerically and in turn the equation for the
chemical potential can no longer be written in a closed ana-
lytical form. The chemical potential determined within the
RA is virtually identical to the SM results and is, therefore,
not shown in the figures.

In conclusion we emphasize, that, due to the use of a
k-space approach, the radius of the effective interaction has
no limitation; thus the presented formalism naturally takes
into account all long-ranging strain-induced effects.2,3,11 It
can furthermore be generalized to systems governed by
many-body interactions14,18 and by magnetic interactions.9,19

The derivation of the analytical expressions for the chemical
potential has been carried out independently from the dimen-
sion of the system under consideration.

Therefore, this formalism can be applied to material sci-
ence problems of current interest, in particular to calculate
phase diagrams of “real” binary alloys, to study complex
multicomponent, amorphous, and fluid systems, and to in-
vestigate ordering and segregation phenomena at surfaces,
interfaces, and in thin films.

1R. Kikuchi and D. de Fontaine, Scr. Metall.10, 995 s1976d.
2D. de Fontaine, Solid State Phys.34, 73 s1979d.
3A. G. Khachaturyan,Theory of Structural Transformations in Sol-

ids sWiley, New York, 1983d.
4V. G. Vaks, Phys. Rep.391, 157 s2004d.
5F. L. Williams and D. Nason, Surf. Sci.45, 377 s1974d.
6G. Kerker, J. L. Morán-López, and K. H. Bennemann, Phys. Rev.

B 15, 638 s1977d.
7M. Polak and L. Rubinovich, Surf. Sci. Rep.38, 127 s2002d.
8K. Binder, in Monte Carlo Methods in Statistical Physics, edited

by K. Binder sSpringer, Berlin, 1979d.
9F. Ducastelle,Order and Phase Stability in AlloyssNorth-

Holland, Amsterdam, 1991d.
10V. N. Bugaev and R. V. Chepulskii, J. Phys.: Condens. Matter10,

7309 s1998d.

11M. A. Krivoglaz, Diffuse Scattering of X-Ray and Neutron by
FluctuationssSpringer, Berlin, 1996d.

12R. A. Suris, Fiz. Tverd. TelasLeningradd 4, 1154 s1962d fSov.
Phys. Solid State4, 850 s1962dg.

13R. Brout,Phase TransitionssBenjamin, New York, 1965d.
14V. N. Bugaevet al., Phys. Rev. B65, 180203sRd s2002d.
15V. N. Bugaev and R. V. Chepulskii, Acta Crystallogr.51, 456

s1995d.
16R. V. Chepulskii and V. N. Bugaev, Solid State Commun.105,

615 s1998d.
17W. Schweika and H.-G. Haubold, Phys. Rev. B37, 9240s1988d.
18R. V. Chepulski, J. Phys.: Condens. Matter11, 8645s1999d.
19M. F. R. Drautz and J. M. Sanchez, J. Phys.: Condens. Matter16,

3843 s2004d.

UDYANSKY et al. PHYSICAL REVIEW B 71, 140201sRd s2005d

RAPID COMMUNICATIONS

140201-4


