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Diffusion coefficient for reptation of polymers with kinematic disorder
Richard D. Willmann
Institut für Festkörperforschung, Forschungszentrum Ju¨lich, 52425 Ju¨lich, Germany

~Received 31 July 2001; accepted 18 December 2001!

We give a lower bound on the diffusion coefficient of a polymer chain in an entanglement network
with kinematic disorder, which is obtained from an exact calculation in a modified Rubinstein–Duke
lattice gas model with periodic boundary conditions. In the limit of infinite chain length we show the
diffusive motion of the polymer to be slowed down by kinematic disorder by the same factor as for
a single particle in a random barrier model. ©2002 American Institute of Physics.
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INTRODUCTION

Among the basic problems of polymer science is
derivation of large scale properties of entangled polym
from microscopic properties, such as the molecular weig
which is proportional to the chain lengthL. A scaling argu-
ment due to de Gennes1 predicts for the zero-field diffusion
constantD(0) of a reptating polymer chain that to leadin
order D(0)}L2z, z52. Computer simulations2,3 and
experiments4,5 showed an effective scaling exponentz of
2.28–2.4 for the accessible range of polymer length in c
trast to the pure reptation prediction. Reptation based th
ries accounting for contour length fluctuations~CLF!6 and
contraint release~CR!7 ~partially! explain this behavior and
predict for increasing chain length a crossover toz52. So
far, this region is not experimentally accessible.5 In terms of
the Rubinstein–Duke~RD! model,6,8 which incorporates
CLF, it is possible to compute the proportionality consta
after the crossover,9,10 i.e., limL→`D(0)L25W/(2d11),
whereW is an elementary hopping rate setting the time sc
of defect diffusion andd is the dimensionality of the system
environment. Finite size corrections behave asD(0)L2

2W/(2d11)}L2b, where 1/2<b<1. The experimenta
relevance of the model is shown in.11,12The RD model is an
effective model neglecting many effects such as self avo
ance of the chain or the short time Rouse dynamics. Mo
over, the entanglement network as encountered, e.g., in
electrophoresis is idealized as being regular and static. R
entanglement networks have a random structure whose
fects on the motion of the polymer have to be taken i
account:13

• Spatial variations of the mobility of the ‘‘defects’’ o
stored length.

• Locally fluctuating potential energy due to interactio
between chain and environment.

• Entropically favorable regions of low entangleme
density.

• Relaxation of the environment~CR!.
As many effects are at interplay, it is experimentally impo
sible to isolate the influence of a single one. However, th
retical considerations and computer simulations can be u
to investigate each effect separately. The review14 treats en-
tropic effects and the occurrence of ‘‘entropic trapping.’’ R
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laxation of the environment is of minor importance in ge
but is considered important in polymer melts.7

The scope of this communication is the investigation
the influence of kinematic disorder, i.e., disorder reflect
varying defect mobility without affecting the equilibrium
configuration of the chain. In~Ref. 13! an analysis of Monte
Carlo data for a polymer with kinematic disorder, i.e., sp
tially varying mobility of defects, is performed, which show
reptation dynamics to prevail. Being based on compu
simulations and thus short chains, only speculations ab
the limit of infinite chain length are possible. It is argued th
in this limit the diffusion constant still scales as

D~0!L25c, ~1!

where the constant of proportionalityc might be some aver-
age of the hopping ratesW. Using a modified RD model we
can give partial confirmation to this conjecture by rigorous
proving a lower boundDper on D(0), which yields ~1!.
Moreover, we explicitly calculate the constantc and thus
show, how the disorder changes the coefficient. In the li
of infinite chain lengthDper L251/̂ 1/W&.

DEFINITION OF THE MODEL

In the RD model, the entanglement network is rep
sented as a cubic lattice, the lattice constant being equa
the mean entanglement length. A string ofL11 ‘‘reptons,’’
i.e., sections with a length of the lattice constant, represe
the polymer. The repton dynamics is as follows:

~a! Each cell occupied by the chain must contain at le
one repton to ensure connectivity of the chain.

~b! End reptons can move to adjacent cells provided r
~a! is not violated.

~c! Interior reptons can move to cells occupied by t
neighboring reptons if allowed by~a!. This ensures the dy
namics to be reptation.
Considering kinematic disorder each boundary between c
has assigned to it an individual hopping rate for a rep
crossing in any direction. We assume there to besPN pos-
sible ratesWa , each occurring with probabilityf (Wa)
throughout the network~Fig. 1!. We demand that for the
distribution f (Wa) the disorder averages^1/W& and ^1/W2&
are finite.
8 © 2002 American Institute of Physics
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The RD model is a model for electrophoresis. The el
tric field E points along a body diagonal of the cubes in t
lattice and each repton carries a charge. By local deta
balance, this modifies the rates for reptons crossing
boundaries by a factorB61 depending on it moving along
~1! or against~2! the field, whereB5exp(E/2).15 The con-
figuration of the chain can by rephrased as a one dimensi
lattice gas model withL sites by considering the links be
tween reptons with respect toE. Links between reptons in
the same cell are represented as ‘0’~vacancy!, those which
are oriented along~against! the field and across a cell bound
ary with rateWa assigned to it as particles of typea ~2a!.
Thus, the chain conformation is represented byL pseu-
dospinsy1 to yL ~Fig. 1!. Rule ~c! for the repton dynamics
enforces the lattice gas dynamics to be as for an exclu
process: In the bulk particles of sort6a hop to the left with
rateB61Wa and to the right with rateB71Wa , where each
site can be occupied by at most one particle. The end dyn
ics in the lattice gas picture needs some care: Assumingy1

(yL) to be non zero, the only possible move is the retract
of the end repton to the cell occupied by its neighbor@rule
~a!#. This retraction, being an annihilation event in the latt
gas picture, happens with the same rate as the respe
move in the bulk. Assumingy1 (yL) to be zero, the end
repton can, according to rule~b!, move to any of the 2d
adjacent cells. For half of these the move leads to links be
along the field direction, the other half against it. The pro
ability of the chosen move leading to the crossing of a c
boundary with rateWa being assigned to it isf (Wa). Thus
the move of the repton, being a creation event in the lat
gas picture leads toy1 (yL) changing from 0 to6a with rate
B71f (Wa)Wad (B61f (Wa)Wad). This choice of boundary
dynamics is on average correct, but neglects the actual l
structure of the network.16 Yet to define is the motion of the
center of mass positionx in terms of the lattice gas model:

• Particle typea moving to the right~left! decreases
~increases! x by 1/(L11), as this is equivalent to a repto
moving downward~upward!. As there areL11 reptons each
contributes 1/(L11) to the center of mass position.

• Particle type2a moving to the right~left! increases
~decreases! x by 1/(L11).

FIG. 1. Two-dimensional representation of a network with a polymer ch
and mapping to the lattice gas model. Arrows show possible moves.
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In the RD-model, discriminating links between reptons alo
~a! and against~2a! the field direction, which is an arbi
trarily chosen direction in space, allows for following th
transport of stored length along this direction. Thus the z
field diffusion constant along this space direction can
calculated,9,10 which immediately yields the 3-dimensiona
diffusion constant as diffusion at zero field is isotropic. Th
is in contrast to the original Rubinstein model,6 which allows
only for the calculation of the curvilinear diffusion consta
along the contour of the tube within the model and requi
additional assumptions to relate it to the 3-dimensional d
fusion constant.

RELATION OF OPEN AND PERIODIC SYSTEM

Calculations proceed along analogous lines as in Ref
and 10. The adaption to the disordered system is strai
forward, details will be presented in a forthcomin
publication.16 Using detailed balance, we calculated t
stationary statePopen* (0) at zero field. It is a product mea
sure and the probability of finding a configurationy
5(y1 ,...,yL) is given by

Popen* ~0!5)
i 51

L

P̃~yi !

with

P̃~yi !5H 1/~2d11! for yi50,

f ~Wa!d/~2d11! for yi56a.
~2!

The shape of the chain only depends on the signs of theyi .
According to~2! the probability foryi50 is 1/(2d11), for
yi being positive~negative! d/(2d11). These probabilities
are as for the original RD model, implying that our kind
disorder leaves the equilibrium conformation of the cha
unaffected, as in Ref. 13.

For the same bulk dynamics, but periodic boundary c
ditions, it turns out thatPopen* (0) is at zero field also a sta
tionary state. This enables comparing the influence of
boundary terms of the stochastic generators on the diffus
constant as in Ref. 19 and we can prove thatDL(0)
>DL11

per , whereDL(0) meansD(0) for a lattice gas withL
sites. DL11

per is the center of mass diffusion constant for
lattice gas ofL11 sites and periodic boundary condition
where the center of mass variablex depends on particle
moves in the lattice gas as was stated above for the o
system. In the following we calculateDL11

per to leading order
and thus provide a lower bound onD(0). As it isundisputed
that disorder slows down diffusion compared to the na
approximationc5^W&, this is the physically relevant bound

ZERO RANGE PICTURE

Dealing with a periodic system it is convenient to use t
following alternative point of view: Instead of characterizin
the system byy5(y1 ,...,yL), it is possible to use the se
quences5(s1 ,...,sM) of the signs of thoseyi , which are
nonzero and have rates w5(w1 ,...,wM), wj

P$W1 ,...,Ws%, and n5(n1 ,...,nM), where nj equals the
number ofyi50 betweensj andsj 11 . Here,sM11[s1 , nj

n
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can be understood as counting particles of zero interac
range at sitej. To make this alternative picture consiste
with the lattice gas picture, we require( j 51

M nj5L2M . Also
the dynamics of thenj is thus fixed: The configuration
(...,nj ,nj 11 ,...) changes to(...,nj21,nj 1111,...) with rate
Bsj 11wj 11 and to (...,nj11,nj 1121,...) with rate
B2sj 11wj 11 . This means that the random hopping rates
well as thesj are not assigned to individual particles, but
bonds between sites in the zero range~zr! picture.17 At E
50 the zr-particles move as in a random barrier energy la
scape~Fig. 2!. A zr-particle hopping to the right across
bond withsj.0 (sj,0) increases~decreases! the center of
mass position by 1/L. Conversely, a zr-particle hopping t
the left across a bond withsj.0 (sj,0) decreases~in-
creases! the center of mass position by 1/L. Regarding a
periodic system, the phase space is nonergodic, as in th
picture neither the number, nor the order of thesj andwj can
be changed. Therefore, the phase space consists of conn
subspaces, called channels,9 being characterized bys andw.
For obtaining the expectation value of the center of m
drift velocity for the full phase spacev̄, at first the expecta-
tion value of the center of mass drift velocity for each cha
nel ^v& has to be calculated. Subsequently averaging over
expectation values for each channel yieldsv̄. To compute
DL

per we will employ the Einstein relation DL
per

51/L(dv̄/dE)E50 .

CALCULATIONS FOR INDIVIDUAL CHANNELS

Expressing the dynamics for the zr-particles as sta
above by a stochastic generatorHzr

s,w , we computed the sta
tionary statePzr

s,w for arbitraryE. The use of a product mea
sure ansatz leads to a recursion relation yielding the follo
ing steady state probability for a configurationn
5(n1 ,...,nM):16

Pzr
s,w~n!5)

j 51

M

zj
njY ( 8

n
)
j 51

M

zj
nj . ~3!

The primed sum means summing with the constra
( j 51

M nj5L2M and

zj5(
i 51

M

1/~exp~sj 1 iE/2!wj 11!)
k51

i 21

exp~2sj 1kE!. ~4!

The drift velocity is in the lattice gas picture given by th
difference of currents of particles withyi,0 and yi.0:
^v&5^ j 22 j 1&. This translates into the zr picture as the c
rent of zr-particles across bonds withsj.0 minus the one
across bonds withsj,0. Due to using the Einstein relation
only first order terms in an expansion of^v(s,w)& into E
contribute toDL

per . The quantityzi as occuring in~3! can

FIG. 2. Zero range particles moving in a random barrier energy landsc
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then be calculated aszi5( j 51
M 1/wi 1 j5z. This facilitates

evaluating^v(s,w)&, which using the quantum Hamiltonia
formalism18 and a treatment as in9 yields

^v~w,w!&5ES2
L2M

L~L21!

1

z
1o~E2!, ~5!

with S5( j 51
M sj .

AVERAGING OVER THE CHANNELS

To obtainv̄, an average of̂v& over the channels has t
be performed, where each channel has to be weighted
that in zr and lattice gas picture corresponding configurati
have equal weight in the stationary state.C(s,w) is the
weight factor of the channels as in Refs. 9 and 19 which
modified by the disorder to

C~s,w!5
dM

~2d11!L S L
M D )

j 51

M

f ~wj !. ~6!

Thus v̄ is to first order inE given by

v̄5(
M

(
s5~s1 ,...,sM !

(
w5~w1 ,...,wM !

C~s,w!^v~s,w!&

5(
M

v0~M !M S 1

2D , ~7!

where^1/z& is the average ofz with respect to the distribu-
tion f (Wa) and v0 is the term for the RD model withou
disorder. ForM→` the restrictions onf (Wa) allow invok-
ing the central limit theorem, which yields:̂ 1/z&
51/(M ^1/W&), leading, when employing the Einstein rel
tion, to the following result in the limit of infinite chain
length:

DL
perL25

1

~2d11!

1

^1/W&
. ~8!

Comparing to the result in Ref. 9 for the ordered case
model, DL

per L251/(2d11) reveals the remarkable resu
that in this limit the center of mass diffusion in the RD mod
on a ring is slowed down by kinematic disorder in the sa
manner as the single particle diffusion constant in a rand
barrier model. We remark that for the ordered RD mod
DL11

per andDL(0) are equal to leading order as shown in R
10 by a variational statement forD(0). This variational tech-
nique is also applicable to the RD model modified by kin
matic disorder16 and shows, that the naive approximationc
5^W& provides an upper bound forD(0). We performed
Monte Carlo simulations of the model with open bounda
conditions with various distributionsf (W) and chain length
up toL540. A part from quickly decaying finite size effect
which depend onf (W), the results clearly indicate that als
for the RD model with kinematic disorder open and period
system have to leading order the same zero field diffus
constant and therefore indeedc51/̂ 1/W& yields the correct
asymptotic behavior.
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