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Diffusion coefficient for reptation of polymers with kinematic disorder
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Institut fir Festkaperforschung, Forschungszentrumlidh, 52425 Jlich, Germany

(Received 31 July 2001; accepted 18 December P001

We give a lower bound on the diffusion coefficient of a polymer chain in an entanglement network
with kinematic disorder, which is obtained from an exact calculation in a modified Rubinstein—Duke
lattice gas model with periodic boundary conditions. In the limit of infinite chain length we show the
diffusive motion of the polymer to be slowed down by kinematic disorder by the same factor as for
a single particle in a random barrier model. ZD02 American Institute of Physics.
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INTRODUCTION laxation of the environment is of minor importance in gels
but is considered important in polymer melts.

Among the basic problems of polymer science is the  The scope of this communication is the investigation of
derivation of large scale properties of entangled polymershe influence of kinematic disorder, i.e., disorder reflecting
from microscopic properties, such as the molecular weightyarying defect mobility without affecting the equilibrium
which is proportional to the chain length A scaling argu-  configuration of the chain. IfRef. 13 an analysis of Monte
ment due to de Gennkgredicts for the zero-field diffusion Carlo data for a polymer with kinematic disorder, i.e., spa-
constantD (0) of a reptating polymer chain that to leading tially varying mobility of defects, is performed, which shows
order D(0)xL"% z=2. Computer simulatiods and reptation dynamics to prevail. Being based on computer
experiment$® showed an effective scaling exponentof  simulations and thus short chains, only speculations about
2.28-2.4 for the accessible range of polymer length in conthe limit of infinite chain length are possible. It is argued that
trast to the pure reptation prediction. Reptation based thean this limit the diffusion constant still scales as
ries accounting for contour length fluctuatiofGLF)® and D(0)L2=c (1)
contraint releaséCR)’ (partially) explain this behavior and '
predict for increasing chain length a crossoverzte2. So  where the constant of proportionalitymight be some aver-
far, this region is not experimentally accessible.terms of ~ age of the hopping ratéd. Using a modified RD model we
the Rubinstein—-Duke(RD) model®® which incorporates can give partial confirmation to this conjecture by rigorously
CLF, it is possible to compute the proportionality constantproving a lower boundd”®" on D(0), which yields (1).
after the crossovér® ie., lim__..D(0)L2=W/(2d+1), Moreover, we explicitly calculate the constantand thus
whereW is an elementary hopping rate setting the time scalshow, how the disorder changes the coefficient. In the limit
of defect diffusion andl is the dimensionality of the system of infinite chain lengthDP®" L= 1/(1/W).
environment. Finite size corrections behave B$0)L?
—W/(2d+1)xL~#, where 1/2<pB<1. The experimental
relevance of the model is shown’h!2The RD model is an
effective model neglecting many effects such as self avoid- In the RD model, the entanglement network is repre-
ance of the chain or the short time Rouse dynamics. Moresented as a cubic lattice, the lattice constant being equal to
over, the entanglement network as encountered, e.g., in géie mean entanglement length. A stringlof 1 “reptons,”
electrophoresis is idealized as being regular and static. Reak., sections with a length of the lattice constant, represents
entanglement networks have a random structure whose ethe polymer. The repton dynamics is as follows:
fects on the motion of the polymer have to be taken into  (a) Each cell occupied by the chain must contain at least

DEFINITION OF THE MODEL

account? one repton to ensure connectivity of the chain.
 Spatial variations of the mobility of the “defects” of (b) End reptons can move to adjacent cells provided rule
stored length. (a) is not violated.
« Locally fluctuating potential energy due to interactions (c) Interior reptons can move to cells occupied by the
between chain and environment. neighboring reptons if allowed bgga). This ensures the dy-
« Entropically favorable regions of low entanglement namics to be reptation.
density. Considering kinematic disorder each boundary between cells
 Relaxation of the environmeriCR). has assigned to it an individual hopping rate for a repton

As many effects are at interplay, it is experimentally impos-crossing in any direction. We assume there tashelN pos-
sible to isolate the influence of a single one. However, theosible ratesW,, each occurring with probabilityf (W,)
retical considerations and computer simulations can be usetiroughout the networkFig. 1). We demand that for the
to investigate each effect separately. The revieweats en-  distributionf(W,) the disorder averagdd/W) and (1/\W?)
tropic effects and the occurrence of “entropic trapping.” Re-are finite.
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A In the RD-model, discriminating links between reptons along
(a) and agains{—«) the field direction, which is an arbi-
trarily chosen direction in space, allows for following the
transport of stored length along this direction. Thus the zero
field diffusion constant along this space direction can be
calculated"'® which immediately yields the 3-dimensional
diffusion constant as diffusion at zero field is isotropic. This
is in contrast to the original Rubinstein modethich allows
only for the calculation of the curvilinear diffusion constant
along the contour of the tube within the model and requires

5w, B W, 5w, BW, B - additional assumptions to relate it to the 3-dimensional dif-
Yy m(ﬂ ~ fusion constant.
[7]of-t]o]3]5
L A RELATION OF OPEN AND PERIODIC SYSTEM

FIG. 1. Two-dimensional representation of a network with a polymer chain

and mapping to the lattice gas model. Arrows show possible moves. Calculations prOCEEd along analOgous lines as in Refs. 9

and 10. The adaption to the disordered system is straight-
forward, details will be presented in a forthcoming

. . ublication*® Using detailed balance, we calculated the
The RD model is a model for electrophoresis. The elec—p g

. . : .

tric'field E points along a body diagonal of the cubes in thegha:telon;r%/ S:ﬁ;@sﬁg’é?biﬁ:yzegf I:r?:ﬁn EI; IZ acgrrl(f)ig:(r:;tirgﬁea

lattice and each repton carries a charge. By local detalle:( ) is given b

balance, this modifies the rates for reptons crossing cell Vi) 18 9 y

boundaries by a factoB*! depending on it moving along Lo

(+) or against —) the field, whereB=expE/2).'® The con- P;per(o):il:[l P(yi)

figuration of the chain can by rephrased as a one dimensional

lattice gas model with_ sites by considering the links be- With

tween reptons with respect . Links between reptons in B 1/(2d+1) for y,=0,

the same cell are represented as({@cancy, those which P(y;)= )

are oriented alon¢agains} the field and across a cell bound- f(W,)d/(2d+1) for yj=*a.

ary with rateW, assigned to it as particles of type(—a).  The shape of the chain only depends on the signs ofthe

Thus, the chain conformation is represented lbypseu-  According to(2) the probability fory;=0 is 1/(2d+ 1), for

dospinsy; to y, (Fig. 1. Rule (c) for the repton dynamics y; being positive(negativg d/(2d+1). These probabilities

enforces the lattice gas dynamics to be as for an exclusioare as for the original RD model, implying that our kind of

process: In the bulk particles of satte hop to the left with  disorder leaves the equilibrium conformation of the chain

rateB*'W, and to the right with rat®**W,, where each unaffected, as in Ref. 13.

site can be occupied by at most one particle. The end dynam-  For the same bulk dynamics, but periodic boundary con-

ics in the lattice gas picture needs some care: Assuiyng ditions, it turns out thaP3,.(0) is at zero field also a sta-

(yL) to be non zero, the only possible move is the retractiorionary state. This enables comparing the influence of the

of the end repton to the cell occupied by its neighfrole  boundary terms of the stochastic generators on the diffusion

(a)]. This retraction, being an annihilation event in the latticeconstant as in Ref. 19 and we can prove tiixt(0)

gas picture, happens with the same rate as the respecti\zeDEifl, whereD (0) meansD(0) for a lattice gas with.

move in the bulk. Assuming; (y_) to be zero, the end sites.DP?", is the center of mass diffusion constant for a

repton can, according to rulgh), move to any of the @ |attice gas ofL+1 sites and periodic boundary conditions,

adjacent cells. For half of these the move leads to links beingyhere the center of mass variabkedepends on particle

along the field direction, the other half against it. The prob-moves in the lattice gas as was stated above for the open

ability of the chosen move leading to the crossing of a cellsystem. In the following we calcula®®'; to leading order

boundary with ratéV, being assigned to it i§(W,). Thus  and thus provide a lower bound @7{0). As it isundisputed

the move of the repton, being a creation event in the latticéhat disorder slows down diffusion compared to the naive

gas picture leads tg, (y,) changing from O tota with rate  approximatiorc= (W), this is the physically relevant bound.

B (W, )W,d (Bf(W,)W,d). This choice of boundary

dynamics is on average correct, but neglects the actual loc

styructure of the netwogri{? Yet to define isgthe motion of the ?ERO RANGE PICTURE

center of mass positior in terms of the lattice gas model: Dealing with a periodic system it is convenient to use the
 Particle typea moving to the right(left) decreases following alternative point of view: Instead of characterizing

(increasesx by 1/(L+1), as this is equivalent to a repton the system by=(y;,...,y.), it is possible to use the se-

moving downwardupward. As there ard. + 1 reptons each quences=(s;,...,sy) of the signs of those;, which are

contributes 1/ +1) to the center of mass position. nonzero and have rates w=(Wq,...Wy), W,
* Particle type—a moving to the right(left) increases  e{W,,...,W,}, andn=(n,,...,ny), wheren; equals the
(decreasesx by 1/(L+1). number ofy;=0 betweens; ands; ;. Here,sy ;1=s;, N;
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W}E: then be calculated aziZEjM:ll/WiH:z. This facilitates
W B w B w, B evaluating(v(s,w)), which using the quantum Hamiltonian
VA ) formalism'® and a treatment as 3ryields
L-M 1 ,
o, 50, %0, %0, % 0,0, (oww) =ESTr—7y 7 +o(E). ®

FIG. 2. Zero range particles moving in a random barrier energy landscapavith S= EJM: 1Sj -

can be understood as counting particles of zero interaction GING O c s
range at sitg. To make this alternative picture consistent AVERAGIN VER THE CHANNEL

with the lattice gas picture, we requiE’ ;n; =L —M. Also To obtainu, an average ofv) over the channels has to
the dynamics of then; is thus fixed: The configuration pe performed, where each channel has to be weighted such
(.--nj,Nj4q,...) changes td...,nj—1nj,,+1,...) with rate  that in zr and lattice gas picture corresponding configurations
Btiwj.; and to (.pj+lnj;—1..) with rate paye equal weight in the stationary staté(sw) is the

B%*1w; ;. This means that the random hopping rates asyejght factor of the channels as in Refs. 9 and 19 which is
well as thes; are not assigned to individual particles, but to 1 dified by the disorder to

bonds between sites in the zero rar@e picturel’ At E

=0 the zr-particles move as in a random barrier energy land-
scape(Fig. 2). A zr-particle hopping to the right across a
bond withs;>0 (s;<0) increasegdecreasesthe center of
mass position by 1/. Conversely, a zr-particle hopping to
the left across a bond witls;>0 (s;<<0) decreasesin- -
creasep the center of mass position byl1l/ Regarding a UZEM: > > W (s,w)(v(sw))
periodic system, the phase space is nonergodic, as in the zr )
picture neither the number, nor the order of ghandw; can 1
be changed. Therefore, the phase space consists of connected ~ EM: Uo(M)M(§
subspaces, called channglseing characterized byandw.

For obtaining the expectation value of the center of masivhere(1/z) is the average of with respect to the distribu-
drift velocity for the full phase space, at first the expecta- tion f(W,) anduv, is the term for the RD model without
tion value of the center of mass drift velocity for each chan-disorder. ForM — 2 the restrictions orf(W,) allow invok-
nel(v) has to be calculated. Subsequently averaging over th€g the central limit theorem, which yields{1/z)

M

I f(w). (6)

j=1

M

d
q’(S,W) = m

L
M

Thusuv is to first order inE given by

; )

expectation values for each channel yieldsTo compute = 1/(M(1MW)), leading, when employing the Einstein rela-
DPe" we will employ the Einstein relationDPe"  tion, to the following result in the limit of infinite chain
— 1L (dvldE)e_y. length:

perp 2 = 1
CALCULATIONS FOR INDIVIDUAL CHANNELS DPe 2= %)

S (2d+1) (AW)°

b b tochasti e ted the st %omparing to the result in Ref. 9 for the ordered case RD
abave by a stochastic generaléf;”, we computed the sta- model, DP®" L?=1/(2d+1) reveals the remarkable result

. S,w H -
tionary statePy;” for arbitrary E. The use of a product mea that in this limit the center of mass diffusion in the RD model

sure ansatz leads to a recursion relation y'e'd'T‘g the fOIIOan a ring is slowed down by kinematic disorder in the same
ing steady state probability for a configuratiom

16 manner as the single particle diffusion constant in a random
= (N1, ) barrier model. We remark that for the ordered RD model,
M M DPY', andD, (0) are equal to leading order as shown in Ref.
Ps¥m)=1] z].”J'/ >STTI z?i. (3) 10 by a variational statement fox(0). This variational tech-
j=1 "=t nique is also applicable to the RD model modified by kine-
The primed sum means summing with the constrainmatic disordet® and shows, that the naive approximation
sM . ni=L-M and =(W) provides an upper bound fdd(0). We performed
= Monte Carlo simulations of the model with open boundary

Expressing the dynamics for the zr-particles as state

M i-1 - . ) o )
' conditions with various distributions(W) and chain length

g :Zl 1/(exqu+‘E/2)Wj+1)k1;[1 eXp—sjE).  (4) up toL=40. A part from quickly decaying finite size effects,

) L ) ) . which depend orf (W), the results clearly indicate that also
The drift velocity is in the lattice gas picture given by the ¢, (he RD model with kinematic disorder open and periodic
difference of currents of particles with<0 andy;>0:  gystem have to leading order the same zero field diffusion

—li——i+t ; ; ;
(v)=(]~—|"). This translates into the zr picture as the cur-cnstant and therefore indeee: 1/ 1) yields the correct
rent of zr-particles across bonds wigh>0 minus the one asymptotic behavior.

across bonds witls;<0. Due to using the Einstein relation,
only first order terms in an expansion (f(s,w)) into E Gunter M. Schtz is gratefully acknowledged for posing
contribute toDP®". The quantityz; as occuring in(3) can  the problem and many helpful discussions.
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