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We investigate the complexation of a polyelectrolyte bendable rod with an oppositely charged spherical
macroion. We take into account electrostatic bending of the rod and its asymmetric charge neutralization by
sphere charges. The spontaneous curvature of the rod toward the sphere results in a substantial overcharging
of such polyelectrolyte complex with a possible phase transition. Assuming a discrete helical charge distribution
on the rod surface, we calculate the electrostatic energy of the helix and the electrostatic contribution to its
bending and twisting elasticity. We show that the latter may change sign when the helical pitch is changed.
For a DNA-relevant case, these corrections appear to be small compared to the corresponding mechanical
elastic moduli. We discuss possible applications of our results to the description of overcharging of the
nucleosome core particles.

I. Introduction

Nucleosome core particles(NCPs), the elementary units of
the chromatin, play a fundamental role in many biological
processes.1 Eukaryotic genomic DNA is (evolutionary) con-
structed to help DNA packaging and to govern the positioning
of NCPs along the DNA.2 It is known that particular DNA
sequences have a higher affinity to the histone core, whereas
long stretches of poly(dA)‚poly(dT), for instance, prevent the
nucleosome formation.3 The structure of the NCP is highly
conserved in different organisms and tissues.4

DNA adapts its structure to fit the highly bent state in the
NCP, where the DNA radius of curvature is only twice as large
as the DNA diameter.5-7 In particular, DNA is overtwisted in
the NCP by 0.3-0.5 bp/turn, on average,5,8-10 compared to
DNA in solution with 10.5 bp/turn.11 DNAs use their sequence-
dependent bendability and twistability12 to achieve a better
packaging in the NCP. (The CG (AT) have a preference to bend
into the major (minor) DNA groove.2,8) Also, trinucleotides
AAA and TTT are found more often when the minor groove
faces the octamer, whereas GGC and GCC are in the minor
groove when it points outward the NCP.13 Several models,
mostly stereochemical, of such “DNA kinking” have been
suggested in the literature.14-17 Although the structure of NCP
has been resolved recently with a great accuracy by X-ray
diffraction on NCP crystals,6,8,18 the physical basics and the
factors governing NCP stability in solution are not yet com-
pletely understood.

Electrostatics.The DNA wrapped in the NCP is known to
overcharge considerably the histone protein core. As both the
histone core (rich in lysine and arginine) and the DNA are
strongly and oppositely charged objects, the electrostatic interac-
tion should play an important role in their complexation
(although specific DNA-histone interactions should not be
overlooked). The influence of salt conditions on the NCP
stability supports this hypothesis: DNA is released from the
NCP for salt concentrations outside the physiological range.19,20

The NCP structure also suggests that close contacts of DNA
with the histone proteins may result in neutralization on the

inner-to-core DNA phosphates. Possible consequences of such
neutralization have been predicted long ago21 and explored
within a simple electrostatic model of rod bending.22 However,
DNA interactions with the core and the DNA helical symmetry
have not been included in these models. (DNA helicity was
however shown to be important in all-atom computer simula-
tions of the bending of asymmetrically neutralized DNA.23)

Various theoretical electrostatic models of complexation of
polyelectrolyte chains of different flexibilities with oppositely
charged sphere(s) have been suggested to model DNA-histone
complexes.24-33,35Transitions between wrapped and unwrapped
conformations for relatively short chains26 as well as transitions
between touching, bent, and completely wrapped conformations
for long chains29 have been predicted. Rosette-like chain-sphere
complexes for the chain with high bending rigidity have also
been described.25,34 The complex formation has been studied
by computer simulations36-39 and experimentally;40 however,
some of its features still remain unclear. In particular, how strong
can be the curvature induced by an asymmetric neutralization
of charges of the wrapped rod, and how can this affect the charge
of the complex? How does the DNA helicity contribute to this
effect?

In this work, we extend the treatment of ref 22 to include
the electrostatic interaction of an asymmetrically neutralized rod
with an oppositely charged sphere. We show the quantitative
effects of spontaneous rod curvature and calculate the corre-
sponding degree of sphere overcharging in section II. Assuming
a helical distribution of discrete charges on the rod, we estimate
the electrostatic contribution to its twisting and bending elasticity
in section III. We sum the Debye-Hückel interaction potentials
to calculate the electrostatic interaction energy of the charges,
as it was suggested in refs 41 and 42. Finally, we compare our
results with the results of existing theoretical models and discuss
the differences between them in section IV.

II. Spontaneous Rod Curvature and Sphere
Overcharging

Model and Approximations. We adapt a highly simplified
model of a DNA-sphere complex. The complex consists of a
bendable polyelectrolyte rod of radiusa wrapped around an* Corresponding author. E-mail: a.cherstvy@fz-juelich.de.
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oppositely charged sphere of radiusRand chargeZe0, as shown
in Figure 1a. The straight rod carries two identical linear arrays
of elementary charges (-e0), with the charge-charge separation
h, which are located on opposite sides of the rod. When the
rod is bent around the (incompressible) sphere, one array of
charges is in contact with the sphere. Thus, the charge density
increases on the inner-to-sphere rod surfaces and decreases on
the outer-to-sphere one. If some of the inner-to-sphere rod
charges are neutralized by sphere charges, the repulsion between
them is diminished. The repulsion of the outer-to-sphere charges
induces a rod curvature toward the sphere that favors rod
adsorption and may result in overcharging of the sphere (a
curved macroion).

We approximate the interactions among the charges by the
Debye-Hückel potential, which captures the actual screened
charge-charge interactions.24 We assume that the fraction (1
- η) of the macroion charges are mobile and that they can
participate in neutralization of inner-to-sphere rod charges.
Rod-sphere electrostatic interactions are thus effectively renor-
malized upon the rod adsorption. We consider the limit of a
persistent rod (rod persistence lengthlp J R), neglecting rod
fluctuations and other entropic contributions.43 We first consider
the energy of an asymmetrically neutralized rod alone and then
address the rod-sphere interaction.

A. Asymmetrically Neutralized Rod. a. Straight Rod.The
electrostatic (el) energyEel

line per lengthh of an infinite straight
array of pointlike charges interacting via the Debye-Hückel
potential is27,44

HerelB ) e0
2/(εkBT) is the Bjerrum length (kB is the Boltzmann

constant,T is the absolute temperature,ε is the dielectric
constant of water), andκ is the reciprocal Debye screening
length of the solution. We use this kind of summation for
different charge configurations several times in this paper.

In a free (f) state, the energy of a straight rod of the length
L with two linear arrays of charges isEel

rod,f/(kBTLlB) ) -2 ln[1
- e-κh]/h2. The interaction energy between these two arrays is
neglected below for simplicity because it is nearly the same
for a straight and a bent rod conformation. The electrostatic
energy of a bent (b) line,Eel

line,b, with the curvature radiusRc is

wherern is the distance between two charges separated bynh
along the rod axis.

b. Bent Rod. We presume that some of the rod charges
located next to the sphere are neutralized by the mobile sphere
charges. The remaining rod charges are allowed to redistrib-
ute: the mean charge-charge separation increases by 1/(1-
θ), whereθ is the fraction of neutralized inner rod charges (see
Figure 1). Forκh , 1 (the screening length comprises many
rod charges) and for large curvature radii,24,41the energy of the
bent rodEel

rod,b (2) can be approximated as43,45

Here,h( ) h(Rc ( a)/Rc are the charge-charge separations on
inner (-) and outer (+) to sphere rod charge arrays. Below,
we will use this expression as an approximation, although the
actual rod curvature radii might be comparably small. Note that
the last term in eq 3 is similar to the Odijk-Skolnick-Fixman
correction for the persistence length of a rodlike polyelectrolyte
chain in salt solution46

The mechanical bending energy of the rod isEbend
rod,b/(kBTL) )

lp/(2Rc
2). We use the model of a homogeneous rod bending,

although for smallRc some modifications of the bending
mechanism are possible (rod kinking,47 etc.).

The results of minimization with respect to the radius of
curvatureRc of the total energy difference between the bent
and free state are shown in Figure 2 for a rod with parameters
close to those ofB-DNA. The value of the spontaneous curvature
radius of the rod,Rc, decreases with increasingθ since less
contraction of inner-to-sphere charges is needed upon bending.
At larger salt content (largerκ) Rc increases because the
electrostatic interaction becomes weaker. The value ofRc

decreases with decreasinglp, as one could expect (see Figure
2). The energy depth (the difference of the total energy for the
state withRc ) ∞ and with the optimalRc) varies forθ ) 0.5
from ≈0.02kBT/Å for lp ) 500 Å atκ-1 ) 3 Å to ≈0.15kBT/Å
for lp ) 0 atκ-1 ) 7 Å. If R) Rc, no bending energy is required
to wrap a rod around the sphere. IfR > Rc, the rod is wrapped
spontaneously; i.e., it has a negative persistence length, and the
adsorption can continue beyond the isoelectric point of the
complex.

Figure 1. Structure of the complex of a rod wrapped around an
oppositely charged sphere (a) and the parameters of the helix with
discrete charges (b, c). The nucleosome is a cylinder of about 110 Å
in diameter and 60 Å in height.

Figure 2. Radius of spontaneous curvature of an asymmetrically
neutralized rod. Parameters:a ) 10 Å, h ) 3.4 Å, κ-1 ) 3 Å (solid)
andκ-1 ) 7 Å (dashed),lp ) 750 Å, 500 Å, 250 Å, and 0 (from top
to bottom).
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Note that a partial neutralization of the rod charges (by
condensed/adsorbed cations) would diminish the value of the
electrostatic bending persistence length. In particular, for a
sequence of alternating-e0 and +Re0 charges, this value is
lel,(
line ≈ lB(1 - R)2/(4κ2b2), whereb is the distance between the

closest positive and negative charges. Note also that the
screening length inside the cylinder core can be larger thanκ-1,
as in DNA-histone complexes, because the core contains almost
no mobile ions. Thus, the charges on the outer surface of the
bent rod, interacting through the core, repel each other stronger
than those on the inner surface. This can be the another source
of spontaneous rod curvature that occurs without an asymmetric
charge neutralization.

B. Rod-Sphere Interactions.We assume that the sphere
charge is renormalized by the rod adsorption that prevents the
overcharging of the complex due to pure rod-sphere interac-
tions. We estimate how the effective charge of the complex
changes due to the additional curvature of the asymmetrically
neutralized rod considered in the last subsection. Let the fraction
η of sphere charges be immobile. For the bound (b) state of the
rod of the lengthL the interaction energy with the sphere (sp)
can be written as

Hereθ is the fraction of compensated charges on the inner rod
surface;θ ) Z(1 - η)h/L < 1 if all mobile sphere charges are
required to neutralize the inner rod charges, andθ ) 1 if there
is an excess of mobile sphere charges after the neutralization
of all inner rod charges. The terms in eq 5 are the attraction of
the outer and of the partially compensated inner rod charges to
the sphere, respectively. HereL* ) Z(1 - η) h is the length of
the rod with all the inner-to-sphere charges neutralized by the
mobile sphere charges. Equation 5 is constructed so that the
overcharging presented in Figure 3 isonlydue to the additional
bending of asymmetrically neutralized rod toward the sphere.
In the free state,Eel

sp-rod,f ) 0. Note that we do not solve the
Poisson-Boltzmann equation to calculate the potential of the
complex and its energy here; instead, we use the approximate
expressions for the interaction and self-energy of the complex.

The sphere self-energies in the bound and free state

favor neutral sphere-rod complexes.
For large sphere radii and large rod charge densities, the

length of the wrapped rod can be smaller than the circumference
of the sphere. In general, however, several turns of a wrapped
rod may correspond to the energy minimum. Then, the repulsion
between the charges of different turns can be approximated by
the repulsion of straight lines, using the potentiale0ψ(x)/(kBT)
≈ 2(lB/h)K0(x), where K0(x) is the modified Bessel func-
tion. This can decrease the degree of overcharging predicted
below. For simplicity, the parameters in Figure 3 are chosen
such that less than one turn of the rod is usually wrapped,L <
2π(R + a). Note that in DNA-relevant cases the interaction
between the turns must not necessarily be repulsive (see section
IV). Note also that the full solution of the linearized Poisson-
Boltzmann theory for adsorption of a thin polyelectrolyte chain
on the oppositely charged sphere, where the chain configurations
with several turns have been considered, results in undercharged
complexes.35

Charge of the Complex.The minimization of the energy
difference between the bound and free state

yields the optimal lengthL of the rod adsorbed on the sphere
and the total fraction of neutralized sphere charges (Figure 3)

In the simplest case, a thin polyelectrolyte chain adsorbs on
the oppositely charged sphere only if the gain in attractive
interaction energy is larger than the bending energy penalty,
i.e., when25 lp j 2ZlB/(hκ). For the adsorption of the rod with
two charged strings this critical adsorption condition turns into
lp < lp* ≈ [2ZlB(R + a)2/h(1 + κR)][e-2κa/(R + 2a) + (1 -
θ)/R]. The fraction of compensated charges of the sphere is
always smaller than unity (undercharging). The neutralization
of inner-to-sphere rod charges dramatically modifies this picture.
For η close to unity, there are not enough mobile charges to
neutralize the inner rod charges, and the complex reveals no
overcharging. However, for smallerη the complex is substan-
tially overcharged due to the additional rod bending. Wrapping
occurs at relatively largelp since the bare rod charge and sphere
charge were chosen to be quite large, and no counterion
condensation effects44 were considered. The energy∆E(L) may
have two minima, and the transition between them may occur
abruptly, at some criticallp (Figure 3b). The energy depth for
an optimalL is large for smalllp, it decreases with increasing
rod stiffness, and it vanishes near the transition points. The
dependence ofΘ on κ (Figure 4) reveals that at very low ionic
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Figure 3. Fraction Θ of the sphere charges compensated by the
adsorbed rod vs persistence lengthlp. Parameters:a ) 10 Å, κ-1 ) 3
Å, h ) 3.4 Å, R ) 50 Å, Z ) 100. For (b) the sphere self-energy (6)
is counted, whereas for (a) it is neglected. In (a), the dot-dot-dashed
curve corresponds to the simple case of rod adsorption to the sphere
when no repulsion within the rod is considered (atη ) 0.9).
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strength the charge of the complex goes to zero sincelel
line

rapidly grows, and the adsorption becomes unprofitable. For
large ionic strengths, the charge of the complex also decreases
since the electrostatic interactions, bending the rod and attracting
it to the sphere, become weaker.

Note that one can do similar estimates for several charged
lines on the rod surface, as a better model for the DNA charge
pattern, and also include the sphere compressibility. In this case,
we also expect to observe an overcharging although possibly
diminished. It is also possible that some particular conformations
of the helical charge array on the surface of the macroion might
be favored. This subject requires a more delicate consideration
of the energy balance, including the helix-helix interaction,
which is beyond the scope of the present paper.

III. Bending and Twisting a Helix of Discrete Charges

The results of the previous section can be relevant for NCP
overcharging; however, the helical symmetry of DNA may affect
them to some extent. First, the bending elasticity of the helix is
not the same as that of the linear array of the same charge
density. Second, DNA helicity introduces another type of
deformation, namely twisting. In this section, we estimate the
electrostatic bendinglel

hel and twistingltw
hel persistence lengths of

a helix. Asymmetric neutralization of charges upon adsorption
of the helix on the sphere would soften the helix, and
consequently, bending and twisting become nonuniform along
the helix. Below, however, we consider pure bending of the
helix, with no charge neutralization on the helix upon its
bending.

Recently, similar calculations have been performed in refs
27, 41, and 42. For instance, in ref 41 it was shown that the
electrostatic energy of the helix is lower than the one of a line
with the same linear charge density (because the charges are
better separated), andlel

hel is typically larger than that of the
line, lel

line. Within the same Debye-Hückel model the electro-
static cost of twist deformations of a DNA-like double spiral
has been calculated in ref 42. It was shown that theltw

hel can
change sign, depending on the environmental conditions and
structural parameters. We adapt a similar approach and our
results are quite similar to those of refs 41 and 42.

Electrostatic Energy of the Helix.We consider a single helix
of discrete charges on the surface of a rod with the same
dielectric constant and the screening length in the rod interior
and exterior, similarly to refs 41 and 42. The electrostatic energy
of the helix Eel of radiusa and helical pitchH,48,49 with the
radius of curvatureRc, can then be approximated within the
same Debye-Hückel limit as (per one charge)

where thern are now the distances between the charges on a
smoothly bent spiral (spiral on the surface of a toroid). The
bending contracts the charge separations on the inner radius,
and it stretches the charge separations on the outer radius of
the bent helix. That might cause a difference between the
electrostatic persistence length of the helix and of the linear
array of charges.

In the limit of thin helices,a/h j 1 (it can work quite well
up to a ∼ h), and for large curvature radius, the energy of a
bent helix is (per one charge)

The intrinsic reciprocal screening length emerging from the
helical charge distribution isg ) 2π/H. The first term in this
expression is the energy of a linear array of charges with the
axial charge-charge separationh (eq 1). The second term in
(10) is the energy required to bend this array. Equation 4 for
lel
line follows from this term after the summation. The third term

is a negative correction to the energy of a straight array of
charges due to the finite radius of the helix. The fourth term is
a correction to the bending energy of a linear array of charges
accounting for the charge helicity;∆lel

hel is the correction to
lel
line. Higher order terms,O(a4, Rc

-4), have been omitted in eq
10.

Straight Helix. At Rc f ∞ we have rn )

xn2h2+4a2sin2[ngh/2], and the energy of the straight helix can
be written as (per one charge)

with Pm[Z] ) ∑n)1
∞ Zn/nm the polylogarithm function. Figure 5a

shows thatEel
hel < Eel

line because the separation of charges on the
helix is more favorable and thus their repulsion is weaker. The
corresponding energy difference is∝a2. Above some value of
a, of course, this tendency should break down, together with
the approximation of thin helices (Eel

hel must be positive). Note
that Eel

hel diverges atκ f 0 since the sum in (1) with the
nonscreened Coulomb potential does not converge.

Discreteness of Charges.The dependenceEel
hel(H) on the

pitch H at constanth is presented in Figure 5b (the number of
charges per helical pitch is not constant). The exact electrostatic
energy, obtained by numerical summation of eq 9, has a
minimum atH ≈ 2h. In this case, the separation between the
nearest charges along the helix is maximal: the charges are
located on the opposite sides of the helix (Figure 1c). The energy
of the helix withH ) h andH ) ∞ is equal to the energy of
the line with the sameh. Figure 5b shows that the approximate

Figure 4. Fraction of the sphere charge neutralization as a function
of inverse screening length of the solution. The parameters are same
as in Figure 3b, except forlp ) 500 Å.
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n)1

∞ e-κrn

rn

(9)

Eel

kBT
≈ lB∑

n)1

∞ {e-κnh

nh
+

e-κnhnh(1 + κnh)

24Rc
2

-

a2e-κnh1 + κnh

n3h3
2 sin2[ngh

2 ]} +
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energy expression, eq 11, works quite well for largeH. For H
J 2h the energy of the helix grows withH that makes the
overtwisting of the helix favorable from the point of view of
electrostatics because the charge separation becomes larger (this
energy growth follows also from eq 9 of ref 42).55

The strategy of calculatingEel
hel via summation of Debye-

Hückel potentials has been suggested by Manning.27,41 In
general, however, the final summation in eq 9 cannot be
performed. In the limit of thin helices, this is possible, and it
gives an energy value rather close to the exact result fora j h,
as shown in eq 11 and Figure 5a. The figure provides results
for a helix with the linear charge density ofB-DNA but with a
) 3 Å, where the approximation of a thin helix applies. Note
that for smallerκ more terms have to be taken into account in
the numerical evaluation of the sum in eq 10 in order to achieve
the same accuracy because further apart charges interact more
strongly.

Twisting. Using eq 11, we can estimate the electrostatic
contribution to the helix twist elasticity. We impose a small
uniform twistω to the helix with pitchH and expand the energy
difference in powers ofω

The second derivative ofδE with respect toω yields

The helicity, in the thin helix approximation, gives a small cor-

rection to the mechanical DNA twisting persistence length,ltw
∼ 750 Å51,52 (Figure 6a). Sinceltw

hel ∝ a2, it can reach a con-
siderable fraction ofltw for a ∼ 10 Å. The dependenceltw

hel(κ) is
relatively weak (Figure 6a), as it was also predicted in ref 42.

Figure 6b shows thatltw
hel assumes positive and negative

values depending on the pitch. In the limitH f ∞ at constant
h, eq 13 yieldsltw

hel < 0 since the corresponding helix has the

Figure 5. Electrostatic energy of the linear array of charges,Eel
line

(dotted, eq 1), and the energy of the helix,Eel
hel, calculated via direct

numerical summation (dotted-dashed, eq 9) and approximately (solid,
eq 11). Parameters:a ) 3 Å, h ) 3.4 Å, lB ) 7.1 Å; H ) 10h (part
a) andκ ) 0.1 Å-1 (part b).

δE/h ) [Eel
hel(g + ω) - Eel

hel(g)]/h ≈ Wtw
helω + kBTltw

helω2/2
(12)

l tw
hel(H, h, a) )

∂
2(δE/h)

∂ω2
=

a2lB

2h2{ln[cosh[κh] - cos[gh]

eκh/2 ] +
κh(e-κh - cos[gh])

cosh[κh] - cos[gh]} (13)

Figure 6. Electrostatic twisting (a, b), eq 13, and bending (c, d), eq
15, persistence lengths of a helical array of charges. Parameters for
part a (b) are the same as in Figure 5a (5b), respectively; for part ca
) 3 Å, H ) 4h ) 34 Å and for part da ) 3 Å, H ) 4h, κ ) 0.1/Å.
In part b the solid curve is eq 13; the dashed curve isl tw

hel obtained in
ref 42. In parts c and d the solid curves are caculated according to eq
15; the dotted curves are the results of ref 41 for smalla.
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highest energy (Figure 5b), and thus it is unstable with respect
to decreasingH. Similarly, for H ≈ 2h where the energy
assumes a minimum, the helix is stable andltw

hel > 0. Such a
change of sign has recently been predicted within a similar
model in ref 42 (dashed curve in Figure 6b).

For the parameters used in Figure 6b, the approximation of
thin helices reaches beyond the region of its applicability when
|2π/H| J 0.3. However, the shape ofltw

hel(H) is the same both
for small a (where the approximation works) and for large
a becauseltw

hel ∝ a2. Thus, negative values ofltw
hel are unlikely

to be an artifact of the chosen approximations. Note that
although for higher salt concentrationsEel

hel decreases rapidly,
ltw
hel changes only slightly withκ.

Bending.The electrostatic bending persistence length of the
helical array of charges in a solution with simple salt

can also be calculated. We show below that the correction
∆lel

hel can be both positive and negative.
Intuitively, there is a simple argument why the helix can be

bent easier than the linear array of charges with the same axial
charge-charge separationh. Let us take a helix with a large
radius and small pitch such thatH j κ-1 j a and, for instance,
H ) 4h. (About 80% of the bare DNA charge is typically
neutralized by the condensed cations;44 i.e., only about four
charges per DNA pitch remain noncompensated.) Thus, the bent
helix consists of four bent linear arrays, each with the intercharge
separationH. For the parameters chosen, the repulsion is
considerable between the charges within the same array, but it
is negligible between the charges of different arrays. Here, one
can write for the persistence length of the helix thatlel

hel ≈ 4lB/
(4κ2H2), whereas for the initial linear arraylel

line ) lB/(4κ2h2);
i.e., nearly a 4 times larger value is found. This limit is, however,
opposite to the limit of thin helices considered in the present
paper, when the helix radius is the smallest parameter of the
problem.

The general expression forlel
hel has been obtained in ref 41;

the summation in the final expression however cannot be
performed for arbitrary helix parameters. Using the Taylor
expansions of eqs 19 and 20 of ref 41 for small helical radius
a, one obtains that a thin helix is harder to bend than the linear
array of charges. Doing the same expansion for the helix with
four charges per pitch one can get an estimation

At physiological salt concentrations and below, the corrections
to lel

line due to the charge helicity are small (Figure 6c). These
corrections affect only slightly the results of the model of sphere
overcharging by the wrapped rod, presented in section II. The
dependence of∆lel

hel at small a on the ionic strength of the
solution and on the helical pitch is very similar for eq 15 and
for expressions presented in ref 41 (Figure 6c,d).

Experiments show that the DNA bending modulus is strongly
κ dependent,53 whereas the DNA twist modulus is almost
insensitive toκ52 which is consistent with our predictions. Note
that these results, obtained in the limit of large curvature radii,
are not directly applicable to the DNA wrapping in the
nucleosome, where the DNA curvature radius is as small as 5
nm; the DNA radius also cannot be considered as small.

Note that the low-dielectric core of DNA might enhance the
electrostatic interactions considerably;ltw

hel and lel
hel would then

increase correspondingly. The precise value ofε inside the DNA
and close to it, however, is unknown, and therefore we cannot
make here any conclusive predictions for the DNA electrostatic
twisting and bending rigidity. The water-DNA dielectric
boundary should also modify the Debye-Hückel screening law
between the charges used in the present paper.50

IV. Discussion and Conclusions

As outlined in the Introduction, a considerable overcharging
of the NCP by a DNA wrapped around the histone core is well
established; however, the reasons for this are not fully under-
stood. In the first part of this paper, we have explored one of
the possible overcharging mechanisms connected with the
asymmetric neutralization of DNA charges by an oppositely
charged sphere. Such neutralization induces a rod bending
toward the macroion, resulting in its overcharging. In the second
part, we have considered a helical array of charges on a bent
DNA-like polyelectrolyte rod and have calculated the energy
of the helix and the electrostatic contributions to its bending
and twisting elasticity modules, in the limit of thin helices. These
corrections are typically small and would modify only slightly
the prediction of the sphere overcharging by the rod, presented
in section II.

These findings might be relevant to description the NCP. The
NCP crystal structure shows8 that within the NCP the histone
proteins form a number of (electrostatic) contacts, hydrogen
bonds, and salt links with the DNA phosphates. In addition,
positively charged arginine chains enter the DNA minor groove
every time when it faces the octamer, interacting directly with
the DNA phosphates.8,56 Possible charge neutralization caused
by these interactions and the repulsion of noncompensated outer-
to-core DNA phosphates can contribute to NCP overcharging.
Also, this can result in a nonuniform DNA “kinking” in the
NCP which occurs in special positions with respect to the
histones.8

DNA-DNA Electrostatic Interaction in the Nucleosome.
The interaction between the DNA turns, neglected in the present
paper, likely also contributes to NCP stability. Below we discuss
possible consequences of this interaction and analyze them in
terms of known theories of DNA-DNA interactions.

In particular, it is known that electrostatic interactions between
the nearest DNA turns should stabilize the NCP.5,6 It was
suggested that in the NCP a “bridging of negatively charged
phosphate groups on the DNA by means of cations or positively
charged histone side chains” can occur.5 For a repetitive
formation of such bridges along the whole length of the wrapped
DNA, it was suggested that an integer number of bp per turn
of wrapped DNA would be favored.5 It was also shown that
each DNA turn around the histone core contains≈7.6 DNA
helical pitches: as a result of this periodicity, “adjacent turns
of the superhelix are arranged with a minor groove ap-
proximately opposite to the major groove”.6 Later experimental
studies have shown that highly charged H2B as well as H3
histone tails often pass through thealigned minor grooVesof
the nearest DNA turns, connecting the DNA turns together via
the “bridges”.8 I.e., the tails “zip” oppositely charged DNA
minor grooves together that, together with the common elec-
trostatic DNA-histone attraction, is expected to influence the
stability of the NCP.

Recent NCP crystallography studies8,18 have indicated that
another zipping mechanisms might also be involved in NCP
stabilization. It comes from groove-strand alignment of nearest

lel
hel ) lB/(4κ

2h2) + ∆lel
hel (14)

∆lel
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∑
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∞ e-κnh

nh
{(3 + 3κnh + κ
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turns of the DNA superhelix (Figure 1a in ref 8). Similarly, in
columnar DNA assemblies, the attraction betweenB-DNA
duplexes has been predicted to occur on the basis of the
Kornyshev-Leikin theory of DNA-DNA electrostatic interac-
tions.57,58 This attraction is due to the “electrostatic zipper”
formed between the strands of one DNA and the adsorbed
cations residing in the grooves of another DNA.57,58 In this
theory, the DNA phosphates and the adsorbed cations are treated
as spirals of charges on the surface of a rod with a low dielectric
constant representing the DNA core. The adsorption of (mul-
tivalent) cations into the DNA grooves was shown to enhance
this zipperlike attraction.58,59For two parallelB-DNA duplexes
at 27 Å interaxial separation the possible gain of the electrostatic
interaction energy can be as large as∼15kBT per 50 bp, at
optimal azimuthal alignment of DNAs.58 Aligned fragments of
a DNA superhelix in the NCP are expected to obey the
interaction laws similar to those of parallel DNA helices.57,58,60

Thus, the energy of NCP stabilization coming from the
electrostatic interaction of aligned DNA fragments in the NCP
can be also∼15kBT (3/4 of the superhelical turn, about 50 bp,
is the length of DNA-DNA contacts in the NCP). This energy
gain grows with the length of DNA-DNA contacts that favors
the DNA adsorption on the histone core and can thus also
contribute to NCP overcharging.

Nucleosome and Dense DNA Aggregates.For two parallel
DNAs, the Kornyshev-Leikin theory predicts that DNA-DNA
contacts are stronger if the DNAs have anintegernumber of
base pairs per DNA helical turn.57,61The energy gain for a pair
of idealB-DNA duplexes was shown to be nearly twice as large
as the torsional energy of DNA overtwisting by 0.5 bp/pitch
(the latter is∼1kBT per DNA pitch) at DNA-DNA separations
relevant to NCP. This electrostatic preference is likely to be
the reason for the DNA overwinding from 10.5 bp/pitch11 to
10.0 bp/pitch62,63upon transition from dilute solutions to dense
assemblies/fibers.61 One can speculate that, similarly, the DNA
overtwisting to about 10.0 bp/turn observed in the NCP8,10 is
required for a better alignment of nearest DNA turns of the
superhelix because “then the same stabilizing interactions
between adjacent superhelix turns can occur repeatedly along
the (DNA) chain”.5

Other similarities in the behavior of DNA wrapped on the
NCP and of DNA dense aggregates indicate the importance of
DNA-DNA electrostatics.64 The average DNA-DNA interaxial
separation in the NCP is about 27 Å,1,6,8 which is close to the
separation at which the DNA-DNA attraction in the presence
of condensing cations is detected in DNA columnar assemblies65

and in DNA-cationic lipid complexes67 as well as to the
equilibrium DNA-DNA separation in toroidal DNA conden-
sates;66,68 theoretically, DNA-DNA attraction at such separa-
tions has also been predicted on the basis of the theory of
electrostatic interaction of DNA duplexes.57-60 Some properties
of condensation and resolubilization of NCPs in the presence
of biologically important di- and trivalent ions5,69are also similar
to those observed for free DNA in solution,65,70 indicating the
importance of DNA-DNA electrostatic interactions in both
cases.71

The higher-order structures of the NCPs also involve interac-
tions between DNA fragments wrapped on different NCPs.
Pulling a single chromatin fiber72 has revealed, for instance,
that the internucleosomal interaction energy in the fiber is≈3kBT
per nucleosome. (The internucleosomal contacts in the fiber
appear to disrupt at the pulling force of about 5 pN.) The stability
of the 30 nm nucleosome fiber is triggered by addition of lysine-
rich H1 proteins,73 known to interact with wrapped DNA when

it leaves and enters the NCPs (polylysine is known to condense
free DNA efficiently74). The interaction of the highly charged
histone tails outside the core (not visible in the crystal structure)
with the DNA can also contribute to the stability and influence
the structure of the 30 nm fiber.75

Outlook. Although a theory of electrostatic interactions within
the NCP is not constructed yet, the (oversimplified) electrostatic
model suggested in the present paper may clarify some of the
relevant points. Advanced studies might involve further pecu-
liarities of DNA-DNA and DNA-histone interactions includ-
ing the difference in their dielectric constants and possible
specific/bridging interactions, sequence-dependent DNA de-
formability76,77 and periodicity,3 the influence of counterion
condensation,44 and, probably, DNA-DNA chiral interactions.78

On a higher level of NCPs organization, the crystallization5,6,79

and folding of interconnected NCP filaments into high-order
(solenoidal) structures80-83 might also involve DNA-DNA
interactions. For instance, the folding into the 30 nm solenoidal
fiber can be triggered by addition of multivalent cations, which
presumably adsorb into DNA grooves making the DNA-DNA
electrostatic interactions more favorable. The influence of the
DNA double-helical structure on DNA properties in macromo-
lecular assemblies could be the subject of future investigations.
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