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Treating realistically the ambient water is one of the main difficulties in applying Monte Carlo
methods to protein folding. The solvent-accessible area method, a popular method for treat-
ing water implicitly, is investigated by means of Metropolis simulations of the brain peptide
Met-Enkephalin. For the phenomenological energy functionECEPP/2 nine atomic solvation
parameter (ASP) sets are studied that had been proposed by previous authors. The simulations
are compared with each other, with simulations with a distance dependent electrostatic permit-
tivity ε(r), and with vacuum simulations (ε = 2). Parallel tempering and a recently proposed
biased Metropolis technique are employed and their performances are evaluated. The measured
observables include energy and dihedral probability densities (pds), integrated autocorrelation
times, and acceptance rates. Two of the ASP sets turn out to beunsuitable for these simulations.
For all other sets, selected configurations are minimized insearch of the global energy minima.
Unique minima are found for the vacuum and theε(r) system, but for none of the ASP models.
Other observables show a remarkable dependence on the ASPs.In particular, autocorrelation
times vary dramatically with the ASP parameters. Three ASP sets have much smaller autocor-
relations at 300 K than the vacuum simulations, opening the possibility that simulations can be
speeded up vastly by judiciously chosing details of the force field.

1 Introduction

Protein folding is considered as one of the grand challengesin mathematical biology. Ac-
tually, there are several different problems related to protein folding. Strictly speaking, one
should distinguish betweenfold prediction, i.e. the mapping of the amino acid sequence
onto the geometry of the native configuration, and understanding thepathway along which
the folding proceeds. Another problem isinverse fold prediction, i.e. finding an amino
acid sequence which will fold into a desired native configuration.

At present there is no hope that any of this problems can be attackedab initio, i.e. by
solving the many-body Schrödinger equation. Instead, onefirst constructs effective poten-
tials (“force fields”) which then allow the dynamics of the nuclei to be treated by classical
mechanics. The native state is then identified with the stateof lowest energy. There are
several such force fields in current use, each one with its weaknesses and strengths. It
seems fair to say that their precision typically is sufficient for the correct folding of pep-
tides and small proteins, but not for larger ones with, say, more than 50 amino acids. In
addition, some force fields make additional simplificationssuch as keeping bond lengths
fixed or even lumping several small atoms into one effective particle.
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Given an amino acid sequence and a force field, finding the native state would then
seem straightforward, if there were a single local energy minimum. But, alas, energy land-
scapes for typical proteins are rough, with many local minima, and finding the global one
is highly non-trivial. Basically, there are two methods available for this purpose: molecular
dynamics and Monte Carlo methods.

In molecular dynamics (MD) one just solves numerically Newton’s equations of mo-
tion. This has the advantage that one simulates directly thephysical folding process, i.e.
one obtains directly the dominant folding paths and one getsimmediately estimates for the
folding times. There are of course many details which can be adjusted to make the simu-
lation faster and more realistic (e.g., one can include thermal noise and solve a Langevin
equation, or one can treat Coulomb forces more efficiently),but basically one has not much
freedom in putting up the simulations, and these simulations tend to be slow – very slow!

This is in contrast to Monte Carlo (MC) simulations. There one gives up any claim
to follow the actual path, but one jumps in phase space as efficiently as possible, subject
only to the constraint that one samples configurations according to the Boltzmann-Gibbs
distribution,p(config) ∝ exp(−E(config)/kBT ). Indeed, with modern advanced MC
methods one may even give up this requirement and re-weight eventually the final distribu-
tion to obtain proper sampling1–9. Since one is completely free in how one moves in phase
space (one may even move by adding or removing particles, seeRef. 10), such a strategy
can be very efficient if the moves are well chosen – but it can also be extremely inefficient,
if they are badly chosen.

In nature biomolecules exist in the environment of solvents(i.e. water, in general),
thus the molecule-solvent interactions must be taken into account. Indeed, neglecting the
ambient water altogether can lead to gross errors. In MD simulations water just slows
down the simulations because the number of particles increases by a factor between two
and ten. For MC simulations the situation is much worse. For steric reasons, many moves
which would be very efficientin vacuo, become inefficient (i.e., are accepted with small
probabilities) if the molecule is surrounded by water. Thisis the main reason why chemists
in general prefer MD over MC methods.

Since it is so very computer time consuming to simulate proteins when the surround-
ing water is treated explicitly, a number of approximate treatments of solvent effects have
been developed, where the water is treated onlyimplicitly. In thesolvent-accessible area
approach11–13 it is assumed that the protein-solvent interaction is givenby the sum of the
surface area of each atomic group times a parameter calledatomic solvation parameter
(ASP). The choice of a set of ASPs (also called hydrophobicity parameters or simply hy-
drophobicities) defines a model of solvation. However, there is no agreement on how to
determine the universally best set of ASPs, or at least the best set for some limited purpose.
For instance, eight sets were reviewed and studied by Jufferet al.14 and it was found that
they give rather distinct contributions to the free energy.

In Ref. 15 we investigated how different ASP sets modify the Metropolis simulations
of the small brain peptide Met-Enkephalin (Tyr-Gly-Gly-Phe-Met) at 300 K. The reason
for the choice of Met-Enkephalin is that its vacuum properties define a reference system for
testing numerical methods, e.g. Ref. 1–5,9. Therefore, Met-Enkephalin appears to be well
suited to set references for the inclusion of solvent effects as well, but we are only aware
of few articles16, 17, which comment on the modifications due to including a solvent model.
On the other hand, the effect of ASP models on the helix-coil transition of polyalanine has
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been studied recently18.
The simulation temperature was chosen as 300 K in Ref. 15, because room temperature

is the physical temperature at which biological activity takes place. Most of the previous
simulations of Met-Enkephalin in vacuum were performed at much lower temperatures or
employed elaborate minimization techniques with the aim todetermine the global energy
minimum (GEM). Only recently9 it was shown that the GEM is well accessible by local
minimization of properly selected configurations from an equilibrium time series at 300 K.
Precisely this should be the case for a GEM which is of relevance at physical temperatures.

For our simulations we use the program package SMMP19 (Simple Molecular Me-
chanics for Proteins) together with parallel tempering20–22 (PT) and the recently intro-
duced9 biased Metropolis technique RM1 (rugged Metropolis – approximation 1). SMMP
implements a number of all-atom energy functions, describing the intramolecular inter-
actions, and nine ASP sets13, 23–29to model the molecule solvent interactions. We use the
ECEPP/230 (Empirical Conformational Energy Program for Peptides) energy function with
fully variableω angles and simulate all nine ASP sets. For comparison we simulate also
Met-Enkephalin in vacuum and with the distance dependent electrostatic permittivityε(r)
of Ref. 31.

The energy functions and some details of the Metropolis methods used are explained
in Sec. 2. In Sec. 3 we present the main results. Summary and conclusions are given in
Sec. 4.

2 Models and Methods

2.1 Force Field and Atomic Solvation Parameter Sets

In all-atom models of biomolecules the total conformational energy of the intramolecular
interactionsEI is given as the sum of the electrostatic, the Lennard-Jones (Van der Waals),
the hydrogen bond, and the torsional contributions,

EI = 332
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Hererij is the distance between atomsi andj, qi andqj are the partial charges on the
atomsi andj, ε is the electric permittivity of the environment,Aij , Bij , Cij andDij are
parameters that define the well depth and width for a given Lennard-Jones or hydrogen
bond interaction, andφk is thek-th torsion angle. The units are as follows: distances are
in Å, charges are in units of the electronic charge and energiesare in kcal/mol.

One of the simplest ways to include interactions with water is to assume a distance
dependent electrostatic permittivity according to the formula31, 32

ε(r) = D −
D − 2

2

[

(sr)2 + 2sr + 2
]

e−sr . (2)

Empirical values for the parametersD ands are chosen so that the permittivity takes the
value of bulk water,ε = 80, for large distances, and the valueε = 2 for smallr, i.e. for
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the interior of the molecule. This approach is clearly an oversimplification, because atoms
which are close to each other do not necessarily have to be simultaneously in the interior
of the molecule. Reversely, two atoms which are separated bya large distance may still be
in the interior of the molecule. More elaborated approachesare asked for.

If the molecule-solvent interaction is proportional to thesurface area of the atomic
groups, it is given by the sum of contributions of a product ofthe surface area of each
atomic group and the atomic solvation parameter13,

Esol =
∑

i

σiAi . (3)

HereEsol is the solvation energy and the sum is over all atomic groups.Ai is the solvent
accessible surface area andσi the atomic solvation parameter of groupi. The choice of a
set of ASPsσi defines a model of solvation. In our work, we used the same ninesets of
ASPs as in the SMMP package and refer to19, 15 for notations and details.

2.2 Metropolis Methods

For the updating we used PT with two processors, one running at 300 K and the other
at 400 K. This builds on the experience9 with vacuum simulations of Met-Enkephalin for
which the following observations are made:

1. The integrated autocorrelation timeτint (defined below in this section) increases from
400 K to 300 K by a factor of ten for the (internal) energy and byfactors of more than
twenty for certain dihedral angles.

2. The energy probability densities (pds) at 300 K and 400 K overlap sufficiently, so that
the PT method works, leading to an improvement factor of about 2.5 in the real time
needed for the simulation (see Table I of Ref. 9).

A detailed description of the PT algorithm is given in Ref. 15. It used an approximation,
called RM1, to the rugged Metropolis scheme introduced in Ref. 9 which had given an
improvement by an additional factor of two for the vacuum system9. Finally, the GEM
was determined by minimizing selected configurations of the300 K time series. More
precisely,

1. We determined the lower 10% quantileE0.1 and the upper 10% quantileE0.9 of the
energy distribution of our time series. This is done by sorting all energies in increasing
order and finding the values which cut out the lower and upper 10% of the data. For
the statistical concepts see, e.g., Ref. 36.

2. We partitioned the time series into bunches of configurations. A bunch contains the
configurations from one crossing of the upper quantileE0.9 to the next so that at least
on crossing of the lower quantileE0.1 is located between the two crossings ofE0.9.
For each bunch we picked then its configuration of lowest energy. The idea behind this
procedure is to pick minima of the time series, which are to a large degree statistically
independent.

3. We run a conjugate gradient minimizer on all the selected configurations and thus
obtain a set of configurations which are local energy minima.For the vacuum simu-
lation9 about 5% to 6% of the thus minimized configurations agreed with the GEM.
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To determine the speed at which the systems equilibrate, we measured the integrated
autocorrelation timeτint for the energy and each dihedral angle. These times are directly
proportional to the computer run times needed to achieve thesame statistical accuracy for
each system. They thus determine the relative performance of distinct algorithms. For an
observablef the autocorrelations are

C(t) = 〈f0 ft〉 − 〈f〉2, (4)

wheret labels the computer time. Definingc(t) = C(t)/C(0), the time-dependent inte-
grated autocorrelation time is given by

τint(t) = 1 + 2
t
∑

t′=1

c(t′) . (5)

Formally the integrated autocorrelation timeτint is defined byτint = limt→∞ τint(t).
Numerically, however, this limit cannot be reached as the noise of the estimator increases
faster than the signal. Nevertheless, one can calculate reliable estimates by reaching a
window of t values for whichτint(t) becomes flat, while its error bars are still reasonably
small. The data given in the next section were obtained in this way, see Ref. 37 for a more
detailed discussion.

3 Results

3.1 Autocorrelations

The PT simulations with temperaturesT0 = 400 K andT1 = 300 K are performed on the
system in vacuum (ε = 2), with ε(r) given by Eq. (2) and for the nine ASP sets in the
SMMP package. The ranges of the dihedral angles are not restricted but vary in the full
range from−π to π. Each measurement is based on≈ 2×106 sweeps, where one sweep is
defined by updating each dihedral angle once. On the Cray T3E,this takes about 14 hours
for the vacuum system and5 × 14 hours for each ASP set.

Results of the time-dependent integrated autocorrelations times (5) for the vacuum
simulations and the ASP sets OONS and EM86 are shown in Fig. 1a. In each case a
window oft values is reached for whichτint(t) does no longer increase within its statistical
errors. In the case of the vacuum simulations it even decreases, but this is not significant
due to the statistical error. These windows are then used to estimate the asymptoticτint for
all ASP sets except the ASP sets JRF and BM.

The acceptance rates of the solvent models JRF and BM are muchlower than for the
other models. In essence the simulations of these two modelsget stuck, which implies
that their integrated autocorrelation times cannot be measured. The pds of the dihedral
angles of these two models are also erratic and the conclusion is that they cannot be used
to describe Met-Enkephalin in solvent.

The energy couples to all dihedral angles and its integratedautocorrelation time is
characteristic for the entire system, while the integratedautocorrelation times of the single
dihedral angles vary heavily from angle to angle. For all systems but JRF and BM, we
show in Fig. 1b the integrated autocorrelation times at 300 Kfor the energy and all dihedral
angles. The notationvi, i = 0, 1, . . . , 24 is used, wherev0 is stands in for the energyE
and fori = 1, . . . , 24.
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Figure 1. (a) The time-dependent integrated autocorrelation time for the energy at 300 K from our simulations of
the vacuum system and the solvent models EM86 and OONS. (b) Integrated autocorrelation times for the energies
(v0 = E) and the dihedral anglesvi, i = 1, . . . , 24 atT = 300 K.

In Fig. 1b we see that for each dihedral anglevi the integrated autocorrelation times
τint[vi] for the three solvent models OONS, WE92 and SCH2 are smaller than for the re-
maining systems, including the vacuum system. In particular, this means that the OONS,
WE92 and SCH2 models require far less statistics than the vacuum run for achieving the
same accuracy of results. In the following the solvation models OONS, WE92 and SCH2
define the “fast class”, while the other models shown in Fig. 1b constitute the “slow class”
(the models JRF and BM are omitted from this classification).“Good” behavior of the
models OONS and WE92 has been previously observed38. Precise values of the autocor-
relation times and further details on their measurements can be found in Ref. 15.

3.2 Structure

For all our simulations we applied the method outlined in subsection 2.2 to determine local
energy minima. Again, the results of the JRF and BM solvent model are erratic. The BM
model is entirely frozen, onlyNconf = 2 different configurations are ever reached at 400 K
andNconf = 1 at 300 K. Therefore, we do not give minimization results for BM. For JRF
theNconf numbers are more reasonable, but still by a factor of one third and less smaller
than theNconf numbers of each other system. JRF is also disregarded in the following
discussion.

Only if the same energy minimum is hitNhits > 1 times, we can argue that we found
the GEM. This was the case for the vacuum and for theε(r) simulations (notably already
at 400 K), but not for any of the ASP solvent models. There, each minimization led to a
different state. This is a very interesting observation, asit might indicate that the energy
landscape is rougher for the ASP solvent models. But if this were the case, we should also
expect that autocorrelations are longer for the ASP solventmodels, while the opposite was
found at least for three ASP parameter sets.

Indeed we were not the first to observe this phenomenon. Quitesome time ago Li
and Scheraga1, 16 developed a Monte Carlo minimization method and applied it to Met-
Enkephalin in vacuum and in solvent modeled by OONS. While for the vacuum system
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their method converged consistently to the GEM, all their five runs of the solvent model
led to different conformations with comparable energies. They interpreted their results
in the sense that Met-Enkephalin in water at20◦C is presumably in an unfolded state for
which a large ensemble of distinct conformations co-exist in equilibrium. A consistent
scenario was later observed in NMR experiments39.

Although the minimization method of Li and Scheraga is entirely different from ours,
they essentially tested for valleys of attraction to the GEMat room temperature, quite as
we do in the present paper. So, we have not only confirmed theirold result, but find that
it is common to a large set of ASP models implemented in SMMP. Neither the method by
which an ASP set was derived, nor whether it belongs to the fast or slow class, appears to
matter with this respect.
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Figure 2. Probability densities of the dihedral anglev7 for (a) the vacuum simulation and (b) the WE92 simula-
tion. The arrow indicates the vacuum GEM value of this angle.

In a search for structural differences of Met-Enkephalin inthe different models, we
looked at the pds of the dihedral angles. For all systems and both temperatures there
are altogether2 × 9 × 24 = 432 distributions. At the first look the pds of the different
systems are amazingly similar, independently of whether they are from systems of the fast
or slow class, from an ASP model, from the vacuum or from theε(r) simulation. A more
careful investigation reveals differences which appear torelate to the distinct behavior
under our minimization. For the dihedral anglev7 this is illustrated in Fig. 2a and Fig. 2b.
Its probability densities are compared at 300 K and 400 K. Forthe vacuum simulation the
pds are depicted in Fig. 2a and from 400 K to 300 K we observe an increase of the peak
close to the arrow which indicates the vacuum GEM value ofv7. In contrast to this, the
wrong peak increases for the WE92 solvent model (Fig. 2b).

One may suspect that the difference between the models of ourfast and slow classes
is simply due to an effectively higher temperature for the three models of the fast class.
To gain insight into this question, we calculate the corresponding entropies. Each pd is
discretized as a histogram of 200 bins,ρij , wherei = 1, . . . , 24 labels the dihedral angles,
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Figure 3. Overall entropies of the dihedral angles. The numbers on thex-axis label the different models, with
itysol = 0 for vacuum anditysol = 10 for theε(r) model.

and
∑200

j=1
ρij = 1. The entropy of a dihedral angle is then defined by

Si = −

200
∑

j=1

ρij ln ρij (6)

and the total entropy of the pds of an ASP model isS =
∑

i Si. In Fig.3 these entropies
are depicted for all our models. The lines between the data points are just drawn to guide
the eyes. The dips for the JRF and the BM model show, again, that their configurations
are essentially frozen. For the other models we see a decrease of entropy from 400 K to
300 K, but we find no larger entropy for the models of the fast class than for the models of
the slow class. Therefore, the effective temperature scenario is ruled out. Instead, it seems
that for the models of the fast class the solvent has some kindof “lubrication” effect, which
accelerates the simulation.

Strong similarities between the ASP models of the fast classon one side and the ASP
models of the slow class on the other side are found for the solvation energies, the gyration
radii and the end-to-end distances.

4 Summary and Conclusions

We have reported on simulations of Met-Enkephalin at room temperature (300 K) for nine
different solvation models. Quantitative results obtained in that way should not be trusted,
because the methods to derive the ASPs have been quite crude.Also our simulations do
not give information that would allow us to pick a best ASP setfor the intended purpose
of simulating Met-Enkephalin at 300 K. Nevertheless, we obtained a number of very inter-
esting consequences which should be more general and which should apply to any attempt
to include solvation effects in Monte Carlo calculations.

If we exclude two ASP sets which behave erratic (at least as implemented in SMMP19),
we have still nine models: seven ASP sets, vacuum simulations with ε = 2, and theε(r)
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system31. These models seperate into a fast and a slow class with respect to their autocorre-
lation times. Vacuum simulations are in the slow class. Thisleads to the interesting feature
that it takes less computer time to estimate physical observables at room temperature in the
fast solvation models OONS23, WE9227, and SCH225, 28 than it takes for vacuum, despite
the substantial increase of the computer time per sweep by a factor of about 5 for the sol-
vation models over the vacuum system. We have no clear clue why some models have a
fast and others a slow dynamics. But the possibility that slightly different force fields can
lead to vastly different autocorrelation times is of coursesomething which should be kept
in mind.

We applied the minimization procedure of Ref. 9 in an attemptto locate the GEM
for the nine systems which are reasonably well-behaved under Metropolis simulations at
300 K. The GEM is unambiguously found for the vacuum system and for the simulation
with a distance dependent electrostatic permittivity. No true GEM is found for any of
the remaining seven ASP models. This confirms an old result ofLi and Scheraga16, who
concluded that at room temperature Met-Enkephalin in wateris likely in an unfolded state.
To get a better understanding of this result, we studied at 300 K the dihedral pds in some
details. At a first glance they look quite similar for all the models in the fast as well as
in the slow class. Differences are found for a number of details, which may allow to
explain why the 300 K configurations of the ASP models behave entirely different under
our minimization procedure than the vacuum and theε(r) systems.

The central question, which remains to be settled, is whether ASP models will ulti-
mately allow for accurate Metropolis simulations of biomolecules like Met-Enkephalin in
solvent or not. In principle, this could be decided by comparing with simulations with
explicit solvent, but this has not yet been done.
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