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Lifetime of kaonium
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The kaon-antikaon system is studied in both the atomic and the strongly interacting sector. We discuss the
influence of the structures of thef 0(980) and thea0(980) mesons on the lifetime of kaonium. The strong
interactions are generated by vector meson exchange within the framework of the standardSU(3)V

3SU(3)A invariant effective Lagrangian. In the atomic sector, the energy levels and decay widths of kaonium
are determined by an eigenvalue equation of the Kudryavtsev-Popov type, with the strong interaction effects

entering through the complex scattering length forKK̄ scattering and annihilation. The presence of two scalar
mesonsf 0(980) anda0(980) leads to a ground state energy for the kaonium atom that is shifted above the
point Coulomb value by a few hundred eV. The effect on the lifetime for the kaonium decay into two pions is
much more dramatic. This lifetime is reduced by two orders of magnitude from 1.2310216 sec for annihilation
in a pure Coulomb field down to 3.2310218 sec when the strong interactions are included. The analysis of the
two photon decay width of thef 0(980) suggests a generalization of the molecular picture which reduces the
lifetime of kaonium still further to 1.1310218 sec.
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I. INTRODUCTION

There has been substantial experimental progress in
field of meson spectroscopy during the last decade@1#. In the
energy region up to 2 GeV, more scalar-isoscalar mes
have been established than can be accounted for by a q
antiquark structure@2#. The structure of the scalar meso
with the lowest mass,f 0(980), has been controversial fo
many years. Thef 0(980) might be aqq̄ state@3,4#, a q2q̄2

state@5#, or aKK̄ molecule@6#.
The radiative decay of thef meson provides a particu

larly strong argument for aq2q̄2 interpretation of both the
f 0(980) and thea0(980) mesons, as was first pointed out
Achasov and Ivanchenko@5#. Both the recent Novosibirsk
data @7# and the KLOE data@8# can be reproduced by
calculation which generates those mesons dynamically, h
ever @9#. Since in Ref. @9# Oller had to introduce af
→gK0K̄0 contact interaction, the issue remains controver
@10#.

The production of two neutral pions in ultrarelativist
pion proton reactions shows a strong dependence of
s-wave amplitude on the momentum transferred between
proton and the neutron for invariant two-pion masses in
vicinity of 1 GeV @11,12#. This fact has been interpreted a
evidence for a hard component of thef 0(980), see e.g. Ref
@13#. A recent calculation based on a model which allows
a dynamical generation of thef 0(980) provides a good de
scription of the data@14#. On the other hand, the model em
ployed in Ref.@14# also includes a bare scalar resonan
Given this situation, we feel that a simplified calculatio
might be helpful.

In this paper, we develop an analytical model which ge
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erates thef 0(980) meson as a boundKK̄ structure. This
model makes specific predictions for the structure of the
otic atom kaonium. In a second step, we work out the p
dictions for kaonium based on the meson-exchange mode
Ref. @14#.

The molecular interpretation is consistent with the sm

binding energy;10–20 MeV of theKK̄ system relative to
its reduced massMK'496 MeV. This suggests a nonrelativ
istic effective field theory approach@15# that has also been
used recently to study both pionium@16,17# as well as
O(a6) QED recoil and radiative corrections to the positr
nium spectrum@18#. With this in mind we use the standar
SU(3)V3SU(3)A Lagrangian@19# to describe the dynamic

of theKK̄ interaction@20,21# and decay via the exchange o
r,v,f,K* . . . vector mesons. The coupling constants a
pearing in the Lagrangian are related viaSU(3) symmetry to
the rpp coupling constantgrpp , which in turn can be ob-
tained from the Kawarabayashi-Suzuki-Riazudd
Fayyazuddin~KSRF! relation @22#. Thus once the decision
on the form of Lagrangian has been taken, only physi
meson masses and known coupling constants enter into
calculations.

We work in the nonrelativistic limit in which case tw
important simplifications occur:~i! only t-channel exchange
diagrams survive, and~ii ! the resulting one-meson exchang
potentials become local. This in turn means that one
reduce the Bethe-Salpeter~BS! integral equation for the
bound states of the interactingKK̄ system to a local two-
body Schro¨dinger wave equation that offers a significa
simplification over working with integral equations@20,23#.

After a brief recall of the derivation of the wave equatio
for nonrelativistic local potentials from the BS equation
Sec. II, the calculation of one-meson exchange potentials
volving both directr,v,f transfer betweenK andK̄ as well
as KK̄→KK̄ scattering via two-pion intermediate states i
volving K* exchanges is carried out in Sec. III. We refer
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these potentials collectively as one-boson exchange~OBE!
potentials. The last contribution is essential to describe

KK̄→2p decay channel. Then we make use of the fact t

one can describe the low-energy properties ofKK̄ very ad-
equately in the effective range approximation, to replace
OBE potentials by phase-equivalent potentials of the Ba
mann type@24# that give rise to the same scattering leng
and effective range. These potentials offer the unique adv
tage of having known analytic solutions so that the ass
ated Jost functions can be constructed explicitly.

A knowledge of the Jost functions in turn determines b

the scattering and bound state properties of theKK̄ system
without further approximation@25#. In Sec. IV we carry out
this program and compute both the mass and decay widt
the kaonic molecule from the relevant Jost function that
cludes annihilation contributions. The resulting complex
tal energy for this system is (981225i ) MeV that is in rea-
sonable agreement with the recent experimental data f
Fermilab@26# that give@(97563)2(2262)i # MeV.

We also give computed elastic and reaction cross sect
for KK̄ scattering, thepp inelasticities, and the cross sectio
for the inverse process,p1p2→KK̄, for which data exist,
using detailed balance. Those calculations disagree with
measured cross section, particularly near threshold@27–29#.

On the other hand the similarity in the pole position
both the recent Fermilab measurements as well as the c
lated position of this pole is striking. We also show that t
molecular picture is totally inadequate for describing the
photon decay width off 0(980), which comes out to be a
order of magnitude larger than experiment. Taken toge
with the overall underestimate of thep1p2→KK̄ data, this
suggests that thef 0(980) ground state cannot be a pure m
lecular state~see also@30#!. This point is taken further at the
end of Sec. IV.

We take up the discussion of kaonium in Sec. V. Sin
kaonium is a mixture of isoscalar and isovector states du
isospin-breaking introduced by the Coulomb potential,
appeal to the no-internal-mixing approximation that was
troduced in connection with isobaric analog states in nuc
In this approximation one joins linear combinations of t
I 50 and I 51 isospin amplitudes in the external regio
where only the Coulomb field is important, onto~in this
case! known solutions of good isospin of the wave equati
in the internal region where the strong field is dominant. T
allows one to construct the Jost function for kaonium witho
further approximation. Only momenta ofO(MKa), where
a'1/137, are of interest for kaonium. This fact allows o
to recast the condition that its bound states are given by
zeros of the Jost function in the lower half of the compl
momentum plane as an eigenvalue equation of
Kudryavtsev-Popov type@31#, in which the strong field ef-
fects only enter through theK1K2 scattering length. The
solutions of this equation show that the kaonium levels
shifted upwards from their pure Coulomb values and acq
lifetimes between 10218 and 10216 sec in the presence of th
KK̄ molecular ground state.

We also show explicitly that the strong field introduces
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additional node into the eigenfunctions of kaonium that l
at theK1K2 scattering length. The kaonium levels are the
fore to be viewed as excited states of the kaonic molecul
the combined Coulomb and strong fields of the system. T
in turn has the effect of enhancing theK1K2→2p annihi-
lation widths by two orders of magnitude over what th
would have been under Coulomb binding of the charg
kaon pair alone.

II. FORMALISM

In order to obtain a nonrelativistic equation for describi
possible bound states of aKK̄ meson pair resulting from
vector meson exchange between them we briefly recall
derivation given by Landau and Lifshitz@32# that starts out
with the four-point vertexiG@p3 ,p4 ;p1 ,p2# that enters the
Bethe-Salpeter~BS! equation@33#. Thep1 ,p2 andp3 ,p4 are
incoming and outgoing meson four-momenta respectiv
Then the homogeneous equation for this vertex that de
mines the bound state poles of the BS equation is

iG@p3 ,p4 ;p1 ,p2#5E d4q

~2p!4
i Ĝ@p3 ,p4 ;q,p31p42q#

3~2 i !D~q!~2 i !D~p31p42q!

3 iG@q,p31p42q;p1p2#. ~1!

All momentum labels formally flow from right to left, and
the sum of each pair on either side of the semicolon equ
the total four-momentumP of the incoming pair which is
conserved throughout the diagrammatic equation. The ha
vertex is the irreducible piece that generatesG by iteration.
The D ’s are meson propagators. For a free meson of fo
momentumq and massM one has

2 iD ~q!5
i

q22M21 i0
'S 1

2M D i

q02M2q2/2M1 i0
~2!

if in addition we move to the nonrelativistic limit by for
mally suppressing propagation ‘‘backwards’’ in time, i.e. b
omitting the antiparticle pole in the upper half of the com
plex q0 plane. We note@32# that the momentap1 ,p2 are
simply labels in Eq.~1! that are not determined by the equ
tion at all. So one can simply drop them. The other simp
fication is to observe that the combination

x~p3 ,p4!5D~p3!G@p3 ,p4#D~p4! ~3!

appears under the integral sign. Thus one can equally
recast Eq.~1! as an integral equation forx(p3 ,p4). This is
most usefully written down in the center of mass~CM! sys-
tem for which @p3 ,p4#56p1P/2 with p5@p0 ,p# and P
5@P0,0#, where P0 is the total energy in the CM frame
Then the equation determining the bound states reads@32#
3-2
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ix~p,P!5DS p1
1

2
PDDS 2p1

1

2
PD E d4q

~2p!4
ĜFp1

1

2
P,

2p1
1

2
P;q1

1

2
P,2q1

1

2
PGx~q,P! ~4!

wherex(p3 ,p4)5x(p1P/2,2p1P/2)[x(p,P).
To make further progress towards a nonrelativistic eq

tion, the vertexĜ should not depend on the time compone
of the relative outgoing and incoming four-momentap
5@p0 ,p# andq5@q0 ,q#, i.e.

ĜFp1
1

2
P,2p1

1

2
P;q1

1

2
P,2q1

1

2
PG'Ĝ@p,q,P0#.

~5!

Should this be the case one can then integrate out these
components fromx to obtain what is effectively the 3D Fou
rier transform of the wave function for relative motion,

c~p!5E
2`

` dp0

2p
x~p,P!. ~6!

Carrying out the integrals over the time components of
relative four-momenta one finally arrives at the desired eq
tion,

S p2

M
12M2P0Dc~p!2E d3q

~2p!3

Ĝ@p,q,P0#

4M2
c~q!50

~7!

that makes use of the nonrelativistic approximation

E
2`

` dp0

2p i
DS p1

1

2
P0DDS 2p1

1

2
P0D

'
1

4M2 S 1

p2/M12M2P0
D ~8!

as given by Eq.~2!. One recognizes Eq.~7! as the Schro¨-
dinger wave equation in momentum space for relative m
tion in a potential

V~p,q!52
Ĝ@p,q,P0#

4M2
~9!

and binding energy«52M2P0>0. Should Ĝ@p,q,P0#
only depend on the differencep2q, the corresponding po

tential will be local in coordinate space. SinceĜ is a relativ-
istic proper vertex that in lowest order gives theT matrix, the

mass factor 1/4M2 that convertsĜ into a nonrelativistic po-
tential is the same factor@16# that relates the relativisticT
matrix to its nonrelativistic counterpart.
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III. ONE-BOSON EXCHANGE POTENTIALS

In the following we use Eq.~9! to investigate the possible
binding of theKK̄ system via one-boson exchange potenti

by constructingĜ from the relevant pieces of the standa
SU(3)V3SU(3)A invariant Lagrangian, the derivation an
properties of which are described in detail in Ref.@19#. For
KK̄ scattering the relevant interaction Lagrangians for o
purposes are

LKKr5gKKr@K†tW]mK#rW m1c.c.

LKKv5gKKv@K†]mK#vm1c.c.

LKKf5gKKf@K†]mK#fm1c.c. ~10!

which, together with

LpKK* 5gpKK* @]mpW •K†tWKm* 2pW •]mK†tWKm* #1c.c.
~11!

generate interaction potentials forKK̄→KK̄ scattering via
r,v,f vector meson exchange, as well as forKK̄→pp an-
nihilation viaK* (892) strange meson exchange. TheK ’s are
all isospin doublets and c.c. stands for the additional cha
conjugation contribution withK→K̄, K* →K̄* .

The coupling constants in these expressions are all fi
in terms of therpp coupling constantgrpp by SU(3) sym-
metry relations@19#,

gKKr5gK̄K̄r5
1

2
grpp

gKKv5gK̄K̄v52
1

2
grpp

gKKf5gK̄K̄f5
1

A2
grpp

gpKK* 5gpK̄K̄* 52
1

2
grpp . ~12!

On the other hand therpp coupling is determined by the
KSRF relation@22# asgrpp'M r /(A2 f p)'6 in terms of the
r meson massM r and the pion weak decay constantf p

'93 MeV. In this sense, then, there are no free parame
in the calculation of the exchange potentials. They only c
tain physical meson masses and known coupling consta

In the nonrelativistic limit,pi1pj'@Mi1M j ,0#, pi2pj
'@0,pi2pj # only the t-channel scattering diagrams are re

evant for determiningĜ. In this limit these amplitudes al
have a common Yukawa-like form

ĜFp1
1

2
P,2p1

1

2
P;q1

1

2
P,2q1

1

2
PG

'g2CIns

~M11M3!~M21M4!

M21k2
~13!
3-3
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KREWALD, LEMMER, AND SASSEN PHYSICAL REVIEW D69, 016003 ~2004!
in momentum space, wherek5p2q is the t channel
3-momentum transfer, andMi are the masses in the indicate
entrance and exit channels; M is the mass of the exchan
boson andg the coupling constant. The isospin and bos
identity factorsCI andns in Eq. ~13! are given in@20#. They
are C05@3,1,1# and C15@21,1,1# and ns51 for r,v,f
exchange in theKK̄→KK̄ isoscalar and isovector channe
The corresponding values forK* exchange in theKK̄
→pp isoscalar and isovector channels areC052A6, C1

522, andns51/A2.

A. KK̄ exchange potentials

Since Ĝ is only a function of the 3-momentum transfe
the resulting potentials in Eq.~9! are attractive local Yukawa
potentials in coordinate space, and the determination of t
possible bound states is numerically straightforward. Wh
not necessary for convergence in the nonrelativistic case,
however, also include at each vertex in Eq.~13! the form
factor containing an arbitrary cutoffL

Ft~k!5S 2L22M2

2L21k2 D 2

~14!

that was used in@20,23# to obtain convergence in scatterin

calculations based on the relativisticĜ vertices. From Eq.~9!

the coordinate space nonrelativisticKK̄→KK̄ potential asso-
ciated with the exchange of bosonM is then

V~r !52g2CIU~M ,r ! ~15!

after division by 4MK
2 where MK is the kaon mass, an

U(M ,r ) is the Fourier transform

U~M ,r !5E d3k

~2p!3

@Ft~k!#2

M21k2
eikW•rW

5
1

4p H e2Mr

r
2

e2A2Lr

r F11
1

16S 112
M2

2L2
1

M4

4L4D
3S 12

M2

2L2D ~A2Lr !

1
1

16S 32
M2

2L2D S 12
M2

2L2D 2

~A2Lr !2

1
1

48S 12
M2

2L2D 3

~A2Lr !3G J . ~16!

The resultingKK̄ potential due tor,v,f exchange is
attractive in both isospin channelsI 50 and 1,

VI 50~r !52grpp
2 H 3

4
U~M r ,r !1

1

4
U~Mv ,r !

1
1

2
U~Mf ,r !J ~17!
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VI 51~r !52grpp
2 H 2

1

4
U~M r ,r !

1
1

4
U~Mv ,r !

1
1

2
U~Mf ,r !J ~18!

but too weakly so in the latter channel due to an alm
complete cancellation betweenr andv exchange to suppor
a bound state. In deriving these expressions we have
ploited theSU(3) relations~12! to express all coupling con
stants in terms ofgrpp .

These potentials are plotted in Fig. 1 for a strong coupl
constantas5grpp

2 /4p52.9 and cutoffL54 GeV. In prin-
ciple L can be different for each exchanged boson@20#. One
notes that theVI are now finite at the origin, in contrast to th
sum of pure Yukawa potentials to which they reduce asL
→`.

The coordinate space version of the wave equation Eq~7!
that describes the relatives-state motion in these potentia
becomes the usual Schro¨dinger equation

@,21k22MKVI~r !#c~r !50 ~19!

with total CM energyP052MK1k2/MK . We ignore the
charged to neutral kaon mass difference and work with

FIG. 1. One-boson exchange potentials using a cutoff ofL
54 GeV. The coupling constant isas52.9 and the masses of th
exchanged mesons are (M r ,Mv ,Mf)5(769,783,1019) MeV. The
analytical Bargmann potentials that reproduce the same scatte
lengths and effective ranges as the original one-boson exch
potentials are shown as companion curves.
3-4
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LIFETIME OF KAONIUM PHYSICAL REVIEW D 69, 016003 ~2004!
average kaon massMK . By numerically constructing thek
→0 scattering solutions one easily obtains the scatte
lengths and effective ranges that enter into the effec
range expansion of thes-wave phase shiftsd(k)

k cotd~k!52
1

aI
1

1

2
r Ik

21••• ~20!

in the two channels as

a055.835MK
21 , r 051.187MK

21 ~ isoscalar!

a1520.401MK
21 , r 153.702MK

21 ~ isovector!.
~21!

Thus only the isoscalar potential supports a bound state
binding energy is calculated to be«518.63 MeV, placing
the total mass for the boundKK̄ system atP052MK2«
5973.4 MeV. Figure 2 illustrates the sensitivity of«, a0
and r 0 on the choice of cutoff for this channel. ForL
*4 GeV the values ofa0 andr 0 are only weakly dependen
on L.

Even though the isovector potential does not suppo
bound state thea0(980) can be fully explained by this mode
as a threshold effect@21#. Effects of thea0(980) thus are
included in the calculation though it should be noticed t
decays to theph-channel are not considered in the analytic
model.

B. Shape-independent approach

The relatively small~on a hadronic scale! binding energy
«/MK;0.04 in the isoscalar channel~and no binding at all in
the isovector channel! indicates that an effective range a
proach should be applicable. This is confirmed by recalcu

FIG. 2. Dependence of theKK̄ binding energy« ~left hand
scale!, scattering lengtha0 and effective ranger 0 ~right hand scale!
on the choice of cutoffL used in the form factor for the isoscala
one-boson exchange potential.
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ing the binding energy from the effective range formula@25#
«'k2/MK518.60 MeV wherek52a50.194MK , see Eq.
~27! below. Consequently it is entirely sufficient to chara
terize theKK̄ interaction at low energies in terms of a sca
tering length and an effective range: the actual shape of
potential is immaterial.

We make use of this feature in the following to replace t
strong potentialsVI in Eqs.~17! and~18! by analytic poten-
tials of the Bargmann type given below that are pha
equivalent to them. Bargmann@24# ~see also@34# for an in
depth overview! has shown how to construct families of po
tentials that give rise to a prescribed Jost functionf (k). If
one chooses

f ~k!5
k2 ia

k2 ib
~22!

then the potential that leads to this Jost function can be
termined. It is@24,34,35#,

VI~r !52
1

MK

8b2

b22a2 F ebr

b2a
1

e2br

b1aG22

. ~23!

For this potential the effective range expansion is exact:

k cotd~k!5
ba

b2a
1

k2

b2a
. ~24!

This allows one to identify the scattering length and effect
range as

aI52
b2a

ba
, r I5

2

b2a
~25!

where the actual values of the parametersa and b will de-
pend on the isospin channel.

Fixing a andb is obviously equivalent to prescribing th
scattering length and effective range. Ifa is negative,a
52k, say, thenf (k) has a zero atk52 ik in the lower half
of the complexk plane, and there is a bound state@34# of
binding energy«s5k2/MK . Both the scattering and boun
state wave functions of the Bargmann potential in Eq.~23!
are known explicitly. Further details will be found in th
Appendix. The availability of such analytic solutions will b
important for including the effects of theKK̄→pp decay
channel nonperturbatively as discussed below.

Now invert Eq.~25! to construct phase equivalent pote
tials that have the same scattering length and effective ra
as the original exchange potentials in Eqs.~17! and~18!. The
required values ofa andb are

a52
1

r I
@12A122r I /aI #

b5
1

r I
@11A122r I /aI # ~26!

or
3-5
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KREWALD, LEMMER, AND SASSEN PHYSICAL REVIEW D69, 016003 ~2004!
a520.1936MK b51.491MK ~ isoscalar!

a510.9219MK b51.462MK ~ isovector!
~27!

for the two channels in question. These parameters are s
marized in Table I for easy reference. The resulting se
phase equivalent potentials are included in Fig. 1.

C. KK̄ annihilation potential

From Eq. ~13! one reads off the irreducible vertex fo
KK̄→pp via K* exchange, as

Ĝ~KK̄→pp!'2CInsgpKK*
2 ~Mp1MK!2

MK*
2 ~28!

where nsCI52A3 or 2A2 in the isoscalar or isovecto
channel. We have neglected the 3-momentum tran
relative to the largeK* (892) mass. As shown in Fig. 3, thi
amounts to introducing point vertices that can contrib
to KK̄ scattering via an intermediate pion loop. The con
bution from this interaction is complex due to the possibil
of on-shell decaysKK̄→pp in the intermediate state, an
the resultingKK̄ bound state acquires a width. The deta

are as follows: calling the contribution from Fig. 3i Ĝ (1) one
finds

i Ĝ (1)5 i Ĝ2~KK̄→pp!

3E d3l

~2p!3E2`

` dl0
2p i

DS l 1
1

2
P0DDS 2 l 1

1

2
P0D

5 i Ĝ2~KK̄→pp!
1

4Mp
2 E d3l

~2p!3

1

l2/Mp12Mp2P0

5 i Ĝ2~KK̄→pp!
J~P0!

4Mp
2

~29!

in view of Eq. ~8!. As summarized briefly in Eqs.~A23! and
~A24! of the Appendix the three dimensional integralJ(P0)
can be dimensionally regulated ind dimensions without dif-
ficulty to obtain a finite result@16# for d→3. The associated
annihilation potentialVKK̄ is then obtained from Eq.~9! as an
attractive contact potential in coordinate space,

TABLE I. Parameters of the Bargmann potentials, Eq.~23!, that
give rise to identical scattering lengths and effective ranges as
one boson exchange potentials in Eqs.~17! and ~18!. The last col-
umn gives the value of the logarithmic derivative that determi
the strength of the annihilation potential. The units areMK .

Isospin a b z

I 50 20.1936 1.491 217.409i
I 51 10.9219 1.462 226.114i
01600
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VKK̄~r !52
Ĝ2~KK̄→pp!

~4MK
2 !~4Mp

2 !
J~P0!d3~r !52c0

2d3~r !

~30!

with

c0
25

3

16

~gpKK*
2

!2

Mp
2 MK

2 S Mp1MK

MK*
D 4

J~P0! ~ isoscalar!.

~31!

The value of this factor in the isovector channel isc1
2

5 2
3 c0

2. The function

J~P0!5 i
Mp

4p
@Mp~P022Mp!#1/2 ~32!

is a complex function ofP0 that is positive and pure imagi
nary along the upper lip of the branch cut extending fro
2Mp to ` along the realP0 axis, see Eq.~A24!.

D. Jost function for a finite plus delta function potential
at the origin

We investigate the influence of the annihilation potent
on the properties of theKK̄ system by constructing the re
vised Jost function for the sumVI1VKK̄ . SinceVKK̄ is a
contact interaction, and the solutions in the potentialVI are
known, this can be done without approximation. The n
scattering problem to be solved reads

@,21k22MKVI~r !1MKcI
2d3~r !#c~r !50. ~33!

Consider isospinI 50. The presence of the delta functio
potential obliges one to give up the boundary conditi
w(k,r );r→0 on the scattering wave functionw(k,r )
5rc(k,r ) at the origin in favor of prescribing@36# its loga-
rithmic derivativew8/w there @34#. By integrating Eq.~33!
over the volume of an infinitesimal sphere centered
the origin, one finds that the logarithmic derivative at t
origin is fixed by the strength of the delta potential accord
to

w8

w
5

4p

MKc0
2

5z. ~34!

The point is now that forr .0 both the boundary condition
on w(k,r ) and the closed form of irregular solution o
Eq. ~33! are known explicitly: they are given by Eqs.~34!
and~A4! respectively. By constructing the Wronskian of th
pair in the limit r→0 one obtains the revised Jo
function as

FIG. 3. Replacement of the irreducibleKK̄ scattering diagram
involving the exchange of twoK* ’s by an equivalent pion loop
diagram with point vertices.
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f ~k!5W@ f ,w#5F ~z1 ik !
k2 ia

k2 ib
1 i

b22a2

k2 ib G ~35!

after setting limw(k,r )→1 for convenience. This choice i
unimportant since neither the root off (k) nor the scattering
phase shift depends on it. The value of the logarithmic
rivative z is k-dependent throughP0: from Eqs. ~31! and
~34! one finds

z~k!52
256i

3as
2

MpMKS MK*
MK1Mp

D 4

@Mp~P022Mp!#21/2,

P052MK1
k2

MK
~36!

after taking theSU(3) valuegpKK* 52grpp/2 for the cou-
pling constant.

IV. NUMERICAL RESULTS

The single equation~35! contains all the necessary info
mation on the scattering and bound states of the two-b
KK̄ system. Moreover, this information can be extrac
without further approximation. We use this form off (k) to
identify the revised scattering length and effective range
well as the bound state energy in the presence ofKK̄→2p
annihilation.

A. Effective range expansion

TheKK̄→pp annihilation channel renders the scatteri
matrix S(k)5 f (k)/ f (2k) nonunitary, since nowf * (k)
g

01600
-

y
d

s

Þf(2k). This can be seen directly from Eq.~35! after noting
that the logarithmic derivativez is even in k and purely
negative imaginary for realk. The scattering phase shift i
now complex. In order to identify the scattering length a
effective range in the presence of absorption, one can ei
maintain the expansion~20!, thereby introducing complex
effective range parameters@37,31#, or define@38# these in
terms of the real partd(k) of the total phase shift@not the
phase ofS(k)],

S~k!5 f ~k!/ f ~2k!5he2id(k), 0,h,1. ~37!

In the latter case

k cotd~k!5 ik
S~k!1h

S~k!2h
5 ik

f ~k!u f ~2k!u1 f ~2k!u f ~k!u
f ~k!u f ~2k!u2 f ~2k!u f ~k!u

~38!

that shows explicitly thatk cotd(k) is an even function ofk.
Setz(k)52 i j(k) in Eq. ~35! for the Jost function, and then
expand the right hand side toO(k2). After some calculation
one establishes the revised effective range expansion

k cotd~k!52
1

a08
1

1

2
r 08k

21••• ~39!

with the exact expressions

2
1

a08
5

b

b2a H a2j21~b22a2!2

aj222ab21a32b3J ~40!

and
1

2
r 085

a2~b22a2!41a~b1a!@a3~b2a!~5b223a2!1b4~a222ab12b2!#j2

~b2a!@a2j21~b22a2!2#@a32b322ab21aj2#2

1
a~b1a!@a~b2a!~b223a2!2b4#j41a4j6

~b2a!@a2j21~b22a2!2#@a32b322ab21aj2#2
22jj8ab4

@~a21ab2b2!~a32ab22b3!1a2j2~b1a!#

~b2a!@a2j21~b22a2!2#@a32b322ab21aj2#2

~41!
ring

n

e

f-
nd-
for the new inverse scattering length and effective ran
Here

j5 i z5
256

3as
2

MpMKS MK*
MK1Mp

D 4

@Mp~2MK22Mp!#21/2

517.409MK

j85 i
]z

]k2
52

128

3as
2
AMpS MK*

MK1Mp
D 4

@~2MK22Mp!#23/2

526.064MK
21 ~42!
e.at k50, and the primes serve to distinguish these scatte
lengths and ranges from those appearing in Eq.~24!, to
which they reduce in the no annihilation limitj→`. The
numerical values ofj andj8 have been calculated for meso
massesMp5140 MeV, MK5496 MeV, MK* 5892 MeV
and coupling constantas52.9. Using these together with th
values fora andb given in Table I, one obtains

a0854.281MK
21 ; r 0853.203MK

21 ~ isoscalar! ~43!

as predictions for theKK̄ isoscalar scattering length and e
fective range in the presence of absorption. The correspo
ing values for the isovector channel are still
3-7
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TABLE II. Summary of calculated isoscalarKK̄ scattering lengthsa08 and effective rangesr 08 ~in units
MK

21), based on thea andb Bargmann potential parameters~in unitsMK) that reproduce the complex boun
state at P0 shown in column two. The physical constants that enter into these calculations
(Mp ,MK ,MK* )5(140,496,892) MeV, andas5grpp

2 /4p'2.9, using the KSRF value ofgrpp'6. The last
four rows list the values ofa andb, and the resulting isoscalar scattering lengths and effective ranges
would be required to reproduce the theoretical results of Weinstein and Isgur~WI!, the fits of Morgan and
Pennington~MP!, and the experimental data.

Source P05M2 iG/2 (MeV) a b a08 r 08

This calculation 981225i 20.194 1.491 4.28 3.20
WI @6# 972216i 20.213 1.170 5.01 2.12
MP @40# 970224i 20.231 1.367 4.30 2.16
PDG @42# (97463)2(2465)i 20.2260.02 1.4160.16 4.3560.49 2.4660.35
E791 @26# (97563)2(2262)i 20.2160.02 1.3760.05 4.5260.20 2.5160.33
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a18520.401MK
21 ; r 1853.702MK

21 ~ isovector!
~44!

since there is no annihilation contribution from thel 50, I

51 partial wave to theKK̄ scattering amplitude due to th
identity of the outgoing pions in the isospin representati
Higher partial waves cannot contribute in any event due
the contact nature of the annihilation interaction. In fact
a0(980)→2p decay channel is forbidden byG parity. Thus
the isovector scattering length remains real if, as here,
ph decays are ignored.

B. Bound states forIÄ0

The bound states of Eq.~33! are determined@34# by the
complex root~s! of f (k) in Eq. ~35!, with Imk,0, i.e.

@z~k!1 ik#~k2 ia !1 i ~b22a2!50. ~45!

Let k5p2 ik, k.0 be such a root. Then the total massM

and decay widthG of a boundKK̄ pair at rest reads

P05M2
i

2
G52Mk1

~p2 ik!2

MK
. ~46!

This root can only be found numerically as will be do
shortly @39#. However, since the magnitude of the absorpt
coupling MK

2 uc0
2u;4pMK /j;0.7 is quite small relative to

the isoscalar potential strength, a perturbative solution in
verse powers ofz is useful. Replacez by its value2 i j at
k50 ~more correctlyk'2 ik but the difference is quantita
tively insignificant!. Then Eq.~45! reduces to a quadrati
equation fork. The relevant root is

k5
b22k2

j
2 ik1O~j22!'~0.125520.1936i !MK

~47!

wherek5 ia52 ik520.1936MKi is the root leading to the
bound state in the absence of absorption, andb
51.491MK . Working to the same order inj21 ~i.e. neglect-
ing the real part ofk), one finds that
01600
.
o
e

e

-

P0'2MK2
k2

MK
22ik

~b22k2!

MKj
. ~48!

Since 4pc2(0)52k(b22k2) from Eq. ~A10! the result in
Eq. ~48! is equivalent to treating the annihilation potentia
2c0

2d3(r ) as a first order perturbation ofP0,

P0'2MK2
k2

MK
2

i

2
G; G522ic0

2c2~0!5
8p

MKj
c2~0!.

~49!

Upon recalling that2 i j21;2J(P0), one sees from this
form that the complex solution forP0 always lies on the
secondsheet22p<f<0 of the cut complexP0 plane for
J(P0). Otherwise the signs of the imaginary parts ofP0 and
2J(P0) will differ, and no solution is possible. Taking cog
nizance of this fact the exact root of Eq.~45! and the result-
ing value forP0 are found numerically to be

k5~0.125420.1972i !MK ; P05~981225i ! MeV
~50!

using the previously determined values ofa andb shown in
Table I. Notice that the exact value ofk lies rather close to
the perturbation estimate given by Eq.~47!.

The exact numerical results for the Bargmann poten
that is phase-equivalent to Eq.~17! are given in the first row
of Table II. We contrast these results with the mass and w
calculations based on the Weinstein-Isgur nonrelativistic
tential model@6#, as well as the predictions of Morgan an
Pennington@40#, based on a parametrization of the Jost fun
tion @41# with parameters determined from experimen
phase shifts. These calculations are also compared with
earlier experimental results summarized by the Particle D
Group ~PDG! @42#, as well as the recent data from the Fe
milab E791 Collaboration@26#.

In order to extract Bargmann potential parameters t
would lead to the mass and width values of either Weinste
Isgur, or Morgan and Pennington, we have turned Eq.~45!
around and asked what values ofa and b produce a rootk
5p2 ik that gives a prescribed value of the complex to
energy in Eq.~46!. The answer is
3-8
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a52k2p
n1k

p2j
~51!

b5Aa22p~p2j!1~n1k!~a1k! ~52!

after settingz(p2 ik)5n2 i j. We have treated the exper
mental data in the same way. These relations allow on
establish a direct link between the mass and decay widt
the boundKK̄ state, and thence extract the isoscalar sca
ing length and effective range via Eqs.~40! and~41!, or Eqs.
~63! and ~64!.

The effective range expansion parameters obtained in
way for the Weinstein-Isgur calculations, the Morga
Pennington fits, the PDG data, and the Fermilab data,
also shown in Table II. Collectively these results are all
ternally consistent, and suggest that the nonrelativistic O
potential that includes absorption viaK* exchange, provides
a natural description for the properties of thef 0(980) scalar
meson as a boundKK̄ pair. In particular, the prediction of th
correct decay width fromK* exchange, which is paramete
free and can be treated without approximation, adds we
to this interpretation. In this connection it is also interesti
to compare with the current-algebra prediction@43# of G
'660 MeV for the much larger decay width~600–1000
MeV, also dominantly into two pions! of the f 0(400
21200) ors scalar meson, that is considered as a candid
for the qq̄ bound state.

C. Two-photon decay off 0„980…

The two-photon decay of thef 0(980), considered as
bound kaon-antikaon pair, can be treated by the sa
method. Working in a suitable gauge, the two-photon an
hilation potentialVgg is given by the single diagram in Fig
3 with theKK̄→2p vertices and pion propagators replac
by the analagous electromagneticK1K2→2g ~‘‘seagull’’ !
vertices and photon propagators, after division by two
compensate for crossing. One obtains

Vgg52cgg
2 d3~r !. ~53!

Without counterterms,cgg
2 is formally divergent due to the

photon loop. However, the imaginary part is finite,

Im cgg
2 5

1

2 S 2pa2

MK
2 D ~54!

wherea5e2/4p'1/137 is the fine structure constant. Th
two-photon decay width then follows from the second e
pression in Eq.~49! as

Ggg52Imcgg
2 cK1K2

2
5

2pa2

MK
2

cK1K2
2

5
a2k~b22k2!

2MK
2

55.59 keV ~55!
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wherecK1K25c^K1K2uKK̄& is the probability amplitude
for finding aK1K2 pair in the f 0(980) ground state. For a
state of good isospin,̂K1K2uKK̄&51/A2. One can verify
this result independently by noting that the coefficie
2pa2/MK

2 5vsgg , wheresgg gives the low velocity cross
section for the annihilation of free, charged boson-antibo
pairs of relative velocityv into two photons@44#. The decay
width of the bound state is then calculated in the stand
way @44# as sgg times the flux density, orsgg3vcK1K2

2 ,
which just reproduces Eq.~55!.

The numerical value found above forGgg is an order of
magnitude larger than both the estimate given in@45# and
also the currently quoted value of 0.3920.13

10.10 keV from experi-
ment @46#. In the molecular picture this discrepancy com
about because of the extreme sensitivity of the spatial w
function at the origin to the assumed binding energy of
KK̄ pair. In @45# the author estimatesc(0)' 1

10 MK
3/2 using a

Gaussian potential fitted to a binding energy of 10 MeV. T
is a factor;3 smaller than our estimate ofc(0) that corre-
sponds to a binding energy of 18.6 MeV, which in turn i
creases our estimated width by an order of magnitude o
that given in@45# ~see Fig. 9!.

On the other hand the 2p decay width, which is also
proportional toc2(0), is correctly reproduced by our wav
function. Thus it would not seem possible to reproduce b
the measured pole position of thef 0(980) decaying state in
the complex plane and at the same time the two photon
cay width in the molecular picture without introducing som
additional mechanism that reduces the fractional paren
f p5^K1K2uKK̄& of K1K2 in the f 0(980) ground state. For
apart from this factor, the branching ratio of electromagne
to hadronic decays is given by the expression

Ggg

G
'

a2j

8MK
u f pu2

5
2

3A2
S e2

gpKK*
2 D 2S MK*

Mp1MK
D 4S Mp

MK2Mp
D 1/2

u f pu2

'1.231024u f pu2 ~56!

that contains known physical constants if one adopts
SU(3) valuegpKK* 521/2grpp for the K→pK* coupling
constant again. The only less well-determined constan
this expression isgrpp . However, the spread between th
various estimates@20,21# of this coupling is not nearly large
enough to cause the branching ratio to alter by an orde
magnitude. This then leavesf p . SinceGgg /G;1025 experi-
mentally, one would requiref p;1/A10 down from 1/A2,
suggesting that the assumption of a pureKK̄ molecular
ground state of good isospin is oversimplified.

A competing picture for the structure off 0(980) as a four-
quark state has been developed in@5#, which leads to an
estimateG„ f 0(980)→gg…'0.27 keV@47# that is also~with
a particular choice of parameters! not in contradiction with
experiment. One has therefore to conclude that agreeme
otherwise between the calculated and experimental 2g decay
3-9
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TABLE III. Complex scattering lengths and effective ranges for isospin zero and one scattering ch
as calculated from Eq.~63!, as well as from coupled channel calculations with thef 08 and theph-channel
@30# included~in units of MK

21).

Isospin aI
e f f r I

e f f

One-boson exchange I50 4.28122.398i 1.16920.178i
I51 20.401 3.702

1 f 08 mixing 1ph-channel I50 2.16524.592i 0.15120.404i
I51 0.14721.944i 21.46320.202i
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width of f 0(980) by itself is too ambiguous for decidin
between a molecular versus aq2q̄2 four-quark structure of
this meson, and that some mixture of these two extreme
tures is probably indicated.

D. KK̄ cross sections and complex scattering lengths

The linear combination of scattering amplitudes of isos
zero and one,f p5( f 01 f 1)/25(Sp21)/2ik determines the
s-wave S matrix asSp5(S01S1)/2 for the scattering and
reaction cross sections forKK̄ scattering in the absence o
Coulomb interactions. One has

selas5
p

k2
u12Spu2, s r5

p

k2
~12uSpu2! ~57!

wherek is the relative momentum of the colliding pair. Th
reaction cross section has in turn contributions from
~quasielastic! ‘‘charge transfer’’ channel,K1K2↔K0K̄0, in
addition to the two-pion annihilation channel. One findss r
5sex1sa , with

sex5
p

k2 US S02S1

2 D U2

, sa5
1

2
~sa

(0)1sa
(1)! ~58!

since the annihilation cross sectionsa is simply the average
of the corresponding annihilation cross sections

sa
(I )5

p

k2
~12uSI u2! ~59!

in the separate isospin channels that add incoherently.
Smatrix elements of good isospin,SI , appearing in these

expressions are given directly by Eq.~37! in terms of the Jost
functions for each isospin channel as

SI~k!5F S ~j2k!~k2 ia !2~b22a2!

~j1k!~k1 ia !1~b22a2!
D S k1 ib

k2 ib D G
I

~60!

where the parameters in this expression refer to a spe
isospin as indicated. Then

selas
(I ) 5

4p

b21k2 F ~b22a21ba1k2!21~b2a!2j2

a2~j1k!21@b22a21k~j1k!#2G

01600
c-

n

e

fic

sa
(I )5

4pj

k F b21k2

a2~j1k!21@b22a21k~j1k!#2G . ~61!

Note thatsa
(I );1/k at smallk as befits a true absorption cros

section. One can confirm the expression for the annihilat
cross sectionsa

(I ) by considering the flux loss in each isosp
channel out of the radial wave functionw(k,r )/ f (2k) for
scattering, into an infinitesimal sphere located at the orig
Employing the boundary conditionsw(k,r )→1, w8(k,r )
→z as r→0 used to obtain the Jost functionf (k) of Eq.
~35!, this flux loss is given without approximation b
8p/@MKu f (2k)u2#. This is identical with the right hand sid
of the second of Eqs.~61! after division by the incident flux
v52k/MK .

Finally, taking the first option mentioned above Eq.~37!
and expandingk cotdI(k), where d I is the phase ofSI(k)
5exp(2idI), one has

k cotd I~k!521/aI
e f f1

1

2
r I

e f fk21••• ~62!

where the complex scattering length and effective range
given by the much simpler expressions

aI
e f f5Fb22a21ba2 i ~b2a!j

b~b22a21 iaj!
G ~63!

and

r I
e f f52

2~b2a!~j1 ia !2

@b22a21ba2 i ~b2a!j!] 2
. ~64!

Values of these quantities in theI 50 andI 51 channels are
listed in Table III. Note that forI 51, these expressions re
duce to those in Eq.~25!. The Re(aI

e f f) of course coincide
with the previous results, Eq.~40!, for the scattering lengths
when annihilation is present. From Eqs.~57! to ~59! the zero
momentum elastic, charge transfer, and annihilation cr
sections are given by

selas54puap
e f fu2, sex54puan

e f fu2, sa52
4p

k
Im~ap

e f f!

~65!

in the effective range approximation in terms ofap
e f f5(a0

e f f

1a1
e f f)/2, the commonK1K2 or K0K̄0 scattering length in
3-10
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the absence of Coulomb interactions, andan
e f f5(a0

e f f

2a1
e f f)/2. One can show from Eq.~63! that the sign of

Re(aI
e f f) is determined by the sign of the ‘‘bare’’ scatterin

lengthaI given by Eq.~25! in the absence of absorption, an
hence the sign of the parametera of the Bargmann potentia
that controls the existence (a,0) or not (a.0) of a bound
state in channelI; Im(aI

e f f) is independent of this sign. Fig
ure 4 illustrates how the real and imaginary parts ofap

e f f

would vary should this parameter vary~i.e. the binding en-
ergy vary! in the isoscalar channel. The remaining para
eters for this illustration have been kept the same as in T
I. However, the effects for small variations in the bindin
energy from real to virtual around zero are not large:
example simply switching the sign ofa to 10.1936MK in
Table I~thereby also unbinding the isoscalar channel!, causes
selas to decrease by;20% from 106 to 86 mb whilesa
remains unchanged.

Calculations of the total elastic, reaction, andv times the
annihilation cross sections based on Eqs.~57! and ~58! are
shown in Fig. 5. However, as there are as yet no repo
measurements ofKK̄ scattering with which to compare an
of these cross sections, we have attempted to use det
balance to derive thep1p2→KK̄ cross section, for which
measurements do exist@27#. In this case the latter cross se
tion can be exactly related to theI 50 absorption cross sec
tion for KK̄→pp defined by Eq.~59! as follows @see Eq.
~A22!#:

p2sa~p1p2→KK̄ !5
2

3
k2sa

(0)5
2p

3
~12h0

2! ~66!

FIG. 4. Real and imaginary parts of the complex scatter
lengthap

e f f as a function of the parametera of the isoscalar Barg-
mann potential. The remaining parameters are as in Table I.
f 0(980) ground state becomes unbound as Re(ap

e f f) passes through
zero from positive to negative values.
01600
-
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whereh05uS0(k)u is theKK̄ inelasticity, and wherep andk
are the relative momenta of the pion or kaon pair of the sa
total CM energy.

The two curves marked~a!1~b! in Fig. 6 „the upper one
includes Coulomb distortion @55# via the factor
u f c

(2)(k,d)u22'2ph@exp(2ph)21#21 taken from Eq.~A19!
of the Appendix forkd;mad!1… show the inferred results
for sa(p1p2→KK̄), where they are compared withp1p2

scattering data@27,28#, and the fit, curve~c!, to these data
using a parametrizedpp scattering amplitude with param
eters extracted from these experiments. The extraction
cedure is documented in detail in@27#. A coupled channel
treatment of thepp-KK̄ system leads to similar result
@20,23,30# ~especially@30#! shown by curves~d! and ~e!.

Figure 6 clearly shows that the strong enhancement of
cross section near threshold is not adequately reproduce
the pure molecular picture. The same remark holds for
calculatedpp inelasticity, discussed below, that is corr
spondingly somewhat too large near threshold~Fig. 7!.

The pure molecular picture agrees reasonably well w
the result obtained by that coupled channel calculation
@30# which omits the bare scalar meson statef 08 @curve ~d!#.
This numerical finding justifies the assumptions made in
der to obtain a simple analytical model. In order to obtain
good agreement with the data, the introduction of an expl
bare scalar meson state is necessary@curve ~e!#, however.

The parametrizedpp scattering amplitudes as taken fro
experiment@27# @curve~c!# assume the existence of a pole o
the second Riemann sheet just below theKK̄ threshold at
@997662(2768)i )] MeV in the pp scattering amplitude.
The experimentally inferred value of this pole lies reaso
ably close to the value of the pole on the second sheet f
decayingf 0(980) bound state given in Table II, that has be
calculated from the very different points of view present
here and elsewhere@6#.

g

he

FIG. 5. Calculated totals-wave elastic, reaction andv3 the
annihilation cross sections as a function of the invariant massP0 of
the colliding kaon-antikaon pair. The vertical line indicates t
threshold value at 2MK .
3-11
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FIG. 6. Thep1p2→KK̄ cross section given
by detailed balance, Eq.~66!, as a function of the

KK̄ invariant massP0. The two curves desig-
nated~a!1~b! give the results with~upper curve!
and without ~lower curve! Coulomb distortion.

Also shown are thep1p2→KK̄ experimental
data @27# ~closed circles! and @28# ~crosses!.
Curve ~c! is a fit to these data using the param
etrized scattering matrix of@27#. Curves~d! and
~e! correspond to coupled channel calculations

the p1p2→KK̄ cross section with@curve ~e!#
and without@curve ~d!# f 08 mixing.
ro

at

.

p

ic
a
or
ng

th

ct
ecay
p-
u-

e

ns
re-
l.
A further experimental check on these calculations is p
vided by comparing with the data@29# for the pp isoscalar
inelasticity parameterh0(pp). Since we have assumed th
only coupling between thepp and KK̄ channels is impor-
tant, this paramater equals theKK̄ inelasticity parameter
h0(KK̄)5uS0(k)u that may be calculated directly from Eq
~60!. The resulting prediction forh0(pp) is given in Fig. 7.
For comparison we also show the behavior ofh0(pp) that
follows from a fully relativistic treatment of the pion loo
integral under Pauli-Villars regularization with cutoffLPV
54 GeV ~the result is rather insensitive to the actual cho
of cutoff!. There is no difference in the two calculations ne
threshold. However, the relativistic version becomes m
elastic than the nonrelativistic calculation with increasi
CM energy.

V. KAONIUM

Besides the isoscalarKK̄ bound system, theK1K2 com-
ponent of this state can bind to form a kaonium atom in
01600
-

e
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e

e

long range Coulomb potential. In the following we constru
the Jost function that determines the bound states and d
widths of kaonium, that may then be calculated without a
proximation. The Hamiltonian now also includes the Co
lomb field Vc5aQQ̄/r , (Q,Q̄ are particle, antiparticle
charge operators! that breaks isospin. However, due to th
very disparate length scales;MK

21 and ;(aMK)21 over
which the strong and much weaker Coulomb interactio
operate, isospin breaking is essentially confined to that
gion of spacer>d outside the range of the strong potentia
In this region the wave function reads

1

r
~wpuK1K2&1wnuK0K̄0&), r>d ~67!

where wp and wn describe thes-wave radial motion of
K1K2 andK0K̄0 separately in the external region,
e

n

FIG. 7. The pp inelasticity parameter
h0(pp) as a function of the CM energy. Th
experimental data are taken from@29#. The upper
curve shows the behavior of the inelasticity give
by a fully relativistic calculation of the pion loop
integral.
3-12
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S d2

dr2
1k22MKVcD wp50, r .d

S d2

dr2
1k2D wn50, r .d. ~68!

Inside of this range we can ignore isospin breaking entir
due to the dominance of the strong isospin conserving in
action ~no internal mixing approximation@48,49#! and work
with states of good isospin. To obtain the Jost function
therefore need to join the linear combinations2(wp

6wn)/A2 corresponding toI 50 and 1 in the external regio
r>d onto the known solutions for the complex potentials
Eq. ~33! in the internal regionr<d. The latter are given by
w(k,r ) of Eq. ~A5! with the appropriate values ofa, b andz
taken from Table I for each isospin channel.

For r .d the solution describing the scattering of aK1K2

pair is given by the standard expression

wp~r !5 f c
(2)~k,r !2S~k!e2is f c

(1)~k,r !. ~69!

The f c
(2)(k,r ) and f c

(1)(k,r )5 f c*
(2)(k,r ) represent incom-

ing ~outgoing! waves in the Coulomb field,S(k) is the scat-
tering matrix of non-Coulombic origin,s5argG(11 ih) the
Coulomb phase shift andih5ma/ ik the Coulomb paramete
for attractive interactions;m5MK/2 is the reduced mass. Th
f c

(6)(k,r ) are proportional to Whittaker functions. One h
@50#

f c
(2)~k,r !5eph/2Wih,1/2~2ikr !

'
eph/2

G~12 ih!
$12 ikr 22mar

3@ ln 2ikr 1c~12 ih!12g21#1•••%,

kr→0 ~70!

where the smallkr behavior of f c
(2)(k,r ) involves @51# the

standardc function, andg50.57721 is the Euler constant
TheSmatrix in Eq.~69! is determined by the logarithmi

derivativezp5wp8/wp of wp at r 5d. In detail,

S~k!5e22i (s2r)S zp2zc

zp2zc*
D ~71!

wherezc5 f c8
(2)/ f c

(2) is the logarithmic derivative of the in
coming Coulomb wave atr 5d, andr5argf c

(2)(k,d). Thus
the Jost function describing kaonium is proportional tozp
2zc . To find it @49# we determine the value ofzp by match-
ing wp6wn onto the internal solutionsw0 and w1 of good
isospin, wherewn;exp(ikr) is a pure outgoing wave@52#.
Due the large difference in space behavior of the stro
(br@1) and Coulombic (kr!1) wave functions nearr;d
for momentak;ma of interest for kaonium, thew(k,r )
have already reached their asymptotic behavior, while
f c

(6)(k,r ) are still given by their smallkr approximation.
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The matching of value and derivative atr 5d is therefore
particularly simple to perform. One finds

1

zp
5

1

2 S 1

z0
1

1

z1
D ~72!

where the logarithmic derivativesz I5w I8/w I of the internal
wave functions carrying good isospinI are

z I5 ikS f ~k!eikd1 f ~2k!e2 ikd

f ~k!eikd2 f ~2k!e2 ikdD
I

. ~73!

The eigenvalue conditionzp5zc that determines complex
energies of kaonium then reads

12
1

2
zcS 1

z0
1

1

z1
D50. ~74!

This equation contains no free parameters. The Jost fu
tions f (k) in thez I all have predetermined constants for ea
isospin channel as given in Table I, and come from Eq.~35!
if annihilation is included, or Eq.~22! if it is not.

It is useful to express the roots of Eq.~74! in the form
kl52 ilma since thenl21→1,2,3, . . . for a pure Cou-
lomb field, and also to recognize that the logarithmic deriv
tivesz I can be replaced by their zero momentum values w
impunity becausek is alwaysO(ma) for kaonium. Then

1

z I
'2~aI

e f f2d!1O~1/z2! ~75!

in terms of the complex scattering length of Eq.~63!.
Using these forms for thez I , the eigenvalue condition

~74! can be reformulated in terms of the complex scatter
lengthap

e f f for K1K2 scattering as

ap
e f f5

1

2
~a0

e f f1a1
e f f!5S 12

1

zcd
Dd. ~76!

This leads to an eigenvalue equation of the Kudryavts
Popov~KP! type @31#,

1/ap
e f f52maFc~121/l!1

1

2
l1 ln~2lmad!12gG .

~77!

The logarithmic derivativezc(k) of the Coulomb wave func-
tion has been calculated atkl52 ilma from Eq. ~70!.

The resulting complex energy spectrum for kaonium
then given by

El2
i

2
Gl52

1

4
l2MKa2. ~78!

The solutions of the KP equation are dominated by thec
function on the right hand side that has poles atl51/n, for
integern. These poles just reproduce the pure Coulomb sp
trum of kaonium. The strong interaction changes this beh
ior by movingl off these poles tol5(n1d)21, whered is
3-13
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TABLE IV. Complex level shifts and lifetimes due to the strong interactions away from the point C
lomb value2

1
4 a2MK /n2526.607/n2 keV for the ground and exciteds-states of kaonium. Numerical so

lutions of the Kudryavtsev-Popov equation have been generated for theK1K2 scattering lengthap
e f f

5(1.94021.199i )MK
21 given by Eq.~79!. The matching radius isd;3MK

21 . The real part ofl lies close to
the sequence 1/1,1/2,1/3,1/4, . . . for apure Coulomb spectrum.

Level l DE2 iG/2 (keV) Lifetime (310218 sec)

3rd 0.249110.0005i 0.00320.002i 199
2nd 0.331810.0009i 0.00720.004i 84
1st 0.496510.0020i 0.02320.013i 25
Ground 0.986310.0079i 0.18020.103i 3.2
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complex and not necessarily small. In Table IV we list
series of exact numerical eigenvaluesl of the KP equation,
and the associated complex energy spectrum for kaon
These computations use the value

ap
e f f5~1.94021.199i !MK

215~0.7720.48i ! fm ~79!

for the complex scattering length calculated from Eq.~63!
plus the data given in Table III. Notice that thea0(980)
admixture introduced via the isovector scattering lengtha1
only contributes to the real part of theK1K2 effective scat-
tering length that enters into the calculation of the level sh
and decay widths of kaonium. The imaginary part is entir
determined by the isoscalar piece of the strong interactio
However, due to the nonlinear nature of the eigenvalue pr
lem, the isovector contribution nevertheless influences b
the real and imaginary parts of the resulting energy spectr
Only in the perturbative limit~to be described below! does
the a0(980) mode contribute solely to the level shifts.

For comparison we have also used the isospin zero
one scattering lengthsâ0

e f f5(0.8621.82i ) fm and â1
e f f

5(0.0620.77i ) fm, based on a recent investigation@30# into
the effects of a high lying scalar isoscalar quark antiqu
configuration~which we refer to asf 08) mixed into theKK̄
molecular ground state. Here the effect of theph-channel is
included too. TheK1K2 scattering length then becomes

âp
e f f5~1.15623.268i !MK

215~0.4621.30i ! fm ~80!

instead of Eq.~79!.
The predictions for kaonium are given in Tables IV a

V, while Table VI summarizes the decrease in lifetime of t
ground state as the complexity of theK1K2 interaction is
01600
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increased. In particular, Table VI shows that the lifetime
kaonium is reduced further by about a factor of three on
annihilation in the isovector channel is introduced via t
ph decay of thea0(980). These results are qualitative
similar to those given by other approaches to the problem
kaonium formation and decay@53#. One notes from Tables
IV and V that Rel,1/n, corresponding to a positive shift o
the Coulomb level when the strong interaction support
bound state~the sign of the real part of the scattering leng
determines the sign of the level shift!. In addition to causing
repulsive shifts of the Coulomb levels the strong field intr
duces a decay width due toK1K2→2p annihilation with a
lifetime of ;10218 sec@the two-photon annihilation lifetime
at O(MK

21a25);10213 sec, or one in 105 decays, is too
long to compete#. It also introduces an extra node into all th
eigenfunctions of kaonium. This means that the kaonium l
els representexcitedstates in the combined Coulomb plu

strong fields of theKK̄ system. As will be discussed in mor
detail below, the occurrence of this node is responsible
making the kaonium lifetime two orders of magnitud
shorter than the;10216 sec it would have been had th
K1K2 pair only been bound by a Coulomb field@54#.

Let us briefly indicate how these features come about. T
appearance of the additional radial node is required by
fact that the 1s state of relative motion has been usurped
the KK̄ ground state in the strong potential. So the grou
and excited levels of kaonium have to have a 2s,3s . . . char-
acter with one additional node. This node is always po
tioned in the close proximity of theK1K2 scattering length,
independent of the excitation energy. It is real or virtual d
pending on whether the strong interaction supports a
(ap.0) or a virtual (ap,0) bound state. This comes abo
Table
TABLE V. A repeat of the calculations described in Table IV, but for the scattering lengthâp
e f f

5(1.15623.268i )MK
21 of Eq. ~80! which has been taken from the model of Ref.@30# that includesf 08 mixing

and the1ph-channel. This choice leads to lifetimes of about a factor three shorter than those given in
IV.

Level l DE2 iG/2 ~keV! Lifetime (310218 sec)

3rd 0.249410.0014i 0.00220.005i 71
2nd 0.332210.0025i 0.00520.011i 30
1st 0.497510.0056i 0.01720.037i 8.9
Ground 0.989910.0223i 0.13720.291i 1.1
3-14
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as follows. The kaonium levels are all weakly bound ak
;ma so that their radial wave functions in the inner regi
all become nearly identical with the zero energy wave fu
tions of KK̄ in the strong potential alone. These functio
@see Eq.~A15!# all have a node atr 5ap in the effective
range approximation. The remaining nodes are supplied
the Whittaker functionW1/l,1/2(2lmar ) in the external re-
gion, r>d. They are almost identical with those of a pu
Coulomb field bound state wave function wherel51/n.

The eigenfunction for the lowest state of kaonium is illu
trated in Fig. 8~with absorption suppressed!. It is clear from
this figure that the actual choice of the cutoffd is immaterial
if taken anywhere in the region where the wave funct
behaves linearly. A closed form for the bound state eig
functionsw1/l of kaonium labeled by the quantum numb
l21 is given in Eq.~A13! in the Appendix. From that one
calculates that the gradient at the origin is enhanced by

FIG. 8. Kaonium ground state radial wave functions:~a! with
and~b! without the meson exchange fields present. In~a! the strong
field solution, Eq.~A13!, is joined smoothly atr 5d onto the Whit-
taker functionW1/l,1/2(2lmar ) for l50.981. The node in this so
lution falls at theK1K2 scattering lengthap . In ~b! the solution
W1,1/2(2mar )52mar exp(2mar) for a pure Coulomb field,l
51, is plotted for the same range ofr. To set the scale, note that th
Bohr radius of kaonium would fall at;300 units to the right of this
figure.

TABLE VI. A comparison of predicted lifetimes of the kaonium
ground state for increasing complexity of theK1K2 interaction.

Scattering
length ~fm!

t(K1K2→pp)
~sec!

Free annihilation at rest 0.0020.01i 1.2310216

1One boson exchange 0.7720.48i 3.2310218

1 f 08 mixing
1ph-channel@30# 0.4621.30i 1.1310218
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factor b/a in both isospin channels over that of the pu
Coulomb state. Physically this comes about because
strong potentials draw theK1K2 pair much closer together
thereby increasing the probability density of finding them
the origin by (b2/a2) I @noticeb.uau from Eq. ~26!# in each
isospin component, where they annihilate. In the isosc
channel, which is strongly attractive, the effect is especia
marked, (b2/a2)0;60. On the other hand the isovecto
channel only supports a virtual state. Hence the concen
tion of probability density at the origin in this channel
much weaker, (b2/a2)1;3.

The effect of this factor in the isoscalar channel is qu
dramatic. It increases the decay width of kaonium by t
orders of magnitude~with a corresponding decrease in life
time! over what it would have been in the absence of
strong potentialsVI . One can illustrate this qualitatively b
appealing to the perturbative solution@31,37# of the KP
equation for the complex energy shift. For the ground st
this reads

DE2
i

2
G'

1

2
MK

2 a3ap
e f f

5
1

2
MK

2 a3ap2
1

2
MK

2 a3j21F1

2 S b2

a2D
0
G ~81!

that equals either (0.18720.116i ) keV, or (0.187
20.164i ) keV depending on whether the value~79! or its
low absorption versionj@1 taken from Eq.~63!,

ap
e f f'

~a01a1!

2
2

i

2 S b2

a2j
D

0

5~1.94021.703!MK
21

~82!

is used for the effective scattering length. TheaI are the bare
scattering lengths of Eq.~25! as before. The last approxima
tion places the role of the isoscalar probability density a
mixture (b2/a2)0 in the kaonium ground state explicity i
evidence.

Neither approximation is very accurate in comparis
with the exact solution of (0.18120.107i ) keV, but can be
used to illustrate the effect of strong interactions decreas
the lifetime of kaonium against what it would have been in
pure Coulomb field. One sees this as follows. The de
width in Eq. ~81! is directly related to the ‘‘annihilation a
rest’’ cross section

sa'2
4p

k
Im~ap

e f f!5
4p

k

1

2 F b2j

a2j21~b22a2!2G
0

'
4p

kj F1

2 S b2

a2D
0
G ~83!

as G5vf2(0)sa , upon multiplication by the flux factorv
3f2(0) wheref2(0)5MK

3 a3/8p gives the probability per
unit volume for finding theK1K2 pair at the origin when
3-15
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KREWALD, LEMMER, AND SASSEN PHYSICAL REVIEW D69, 016003 ~2004!
bound by the Coulomb field alone;v5k/m is their relative
velocity. On the other hand when the strong potential is
sent, the scattering lengthsa0

e f f→2 i /j anda1
e f f→0 are pure

imaginary and zero respectively, so thatap
e f f→2 i /2j

520.028iM K
21 , and the corresponding free annihilatio

cross section becomes

sa, f ree5
4p

kj S 1

2D'sa /u, u;42 to 60 ~84!

if we use the unexpanded or expanded version ofsa in Eq.
~83!. The factoru reflects the modification of the kaonium
ground state due to the strong interactions.

In this case there is no energy shift at all, and the de
half-width is 1

2 G f ree50.0028 keV, leading to a lifetime o
t f ree51.2310216 sec. So theK1K2→2p strong potential
assisted annihilation lifetime drops by roughly the factoru
from 1.2310216 sec that it would have been in a pure Co
lomb field, to 3.2310218 sec as given by the exact solutio
of the KP equation. Table VI summarizes the change in l
time of the kaonium ground state as the complexity of
K1K2 interaction changes from assuming free annihilat
at rest in a Coulomb field, to including one-boson exchan
to addingf 08 mixing, for determining the scattering length.

We note in passing from the center expression forsa in
Eq. ~83! that if the bound state occurs at zero energya
50), the corresponding enhancement of the annihilat
width is maximal. Also, while generally true of the exa
solutions of the KP equation, the perturbative solution giv
in Eq. ~81! makes it evident that the sign of the level sh
goes along with the sign of the scattering length, which
positive for bound and negative for unbound or virtual stat

We close this section with a comment on to what ext
the results for kaonium might be considered as ‘‘parame
free.’’ Apart from specifying a Lagrangian with the attenda
assumption ofSU(3) symmetry that fixes the various cou
pling constants in terms ofgrpp , that we in turn fixed from
the KSRF relation, the only arbitrary parameter in these c
culations was the form factor cutoffL introduced in Sec.
III A. The choiceL54 GeV, that was also used in Ref.@20#,
led to calculated scattering lengths and effective ranges
theKK̄ system, that were then duplicated by constructing
equivalent Bargmann potential that depended on two par
etersa andb. This in turn gave predictions for the mass a
width of a boundKK̄ molecular state in reasonable acco
with the known experimental mass and width of thef 0(980)
scalar meson. However, as already demonstrated in Tab
one can turn the argument around without materia
affecting any of our conclusions for kaonium, by assert
that the Bargmann parametersa andb are actually predeter
mined from experiment in the strong interaction sector, th
leaving the kaonium sector without any free paramet
at all.

Similar remarks hold true for the calculated cross secti
shown in Figs. 5 and 6. Oncea andb have been fixed from
experiment or otherwise, no further adjustable parame
enter into these calculations. The actual values ofa andb as
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determined by any of the five alternatives shown in Table
do not in fact differ very much.

VI. DISCUSSION

In this investigation we have shown that one-meson
change potentials derived from a standardSU(3)V
3SU(3)A Lagrangian in the nonrelativistic limit are suffi
cient to bindKK̄ into a kaonic molecule with a mass an
decay width that closely match the experimental values
the f 0(980) isoscalar meson. We have also shown that
same potentials, in combination with detailed balance, l
to a prediction of thep1p2→KK̄ cross section that is too
low especially near threshold.

We have further demonstrated that there are specific,
perimentally observable effects in the energy level shifts a
decay properties of the kaonium spectrum, in the presenc
a KK̄ molecular ground state. The existence of such a bo
KK̄ pair would be reflected in positive energy level shifts
the kaonium Coulomb spectrum~due to level repulsion!, plus
enhancedK1K2→2p decay widths. On the other hand, u
bound or virtually bound~and therefore weakly correlated!

KK̄ pairs produce negative energy level shifts and a w
enhancement of the decay widths. Since the sign of the le
shifts and the enhancement of the decay widths go toge
with the presence or absence of a strongly correlatedKK̄ pair
in the ground state, measurements of the level shifts
decay widths in kaonium could provide another probe
investigating to what extent thef 0(980) meson ground stat
has a KK̄ molecular component. From the experimen
point of view it is important to stress that, as for protoniu
@31# which has a very similar decay width, the 1s22s level
spacing of;5.1 keV in kaonium is many times the est
mated decay widths&200 eV, so that these levels rema
distinguishable in the presence of the 2p decay channel.

Notwithstanding the results reported in@45#, we again
stress the conflict that exists between the pure molecular
scription of thef 0(980) ground state and the calculated 2g
decay width. In@45# a binding energy of 10 MeV for the
kaonium molecule was assumed, that leads to a width
;0.6 keV. However, most recent data show a resonance
ergy that corresponds to a pole in the complex plane, wh
translates into a binding energy of 18 to 20 MeV for t
molecular potential. This increase in binding energy e
hances the value of the spatial wave function at the origin
a factor of three, see Fig. 9. One way of understanding
origin of this discrepancy is to generalize the molecular p
ture of the f 0(980) to a superposition of aKK̄ component
and a hard component. In the Ju¨lich model@20# a f 08 state has
been considered in addition to the pure molecule in orde
reproduce the large inelasticities of thepp phase shifts in
the vicinity of theKK̄ threshold. Thef 08 state may be inter-

preted as either aqq̄ or as aq2q̄2 configuration. As pointed
out by Achasov@5# and confirmed by current algebra@43#,
the large decay width of the former into two pions may d
qualify a qq̄ interpretation of the additional componentf 08 .
3-16
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FIG. 9. Comparison of the bound state wa
function obtained numerically@curve ~a!# for the
isoscalar one-boson exchange potential of E
~17!, with that given by the analytical solution
Eq. ~A10!, for the equivalent Bargmann potentia
@curve~b!#. Curve~c! shows the wave function in
a Gaussian potential adjusted to give a bindi
energy of 10 MeV@45#.
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The effect of thef 08 component in thef 0(980) meson intro-
duced in the Ju¨lich model is to reduce the lifetime of kao
nium from 3.2310218 sec to 1.1310218 sec. The presently
available data concerning the inelasticities of thepp phase

shifts, and in particular thep1p2→KK̄ cross sections, do
not allow one to disentangle the components of thef 0(980)
structure in a model independent way. High resolution d
for two kaon production near to the threshold will be und
taken at COSY in the near future.
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trum, Jülich, for the exceptional hospitality of the institute
and for financial support. It is a pleasure to thank M. Bu¨s-
cher, D. Gotta, C. Hanhart and A. E. Kudryavtsev for use
discussions.
01600
ta
-

l

APPENDIX A

1. Isospin phase conventions

In order to construct two-meson states of good isos
using conventional Clebsch-Gordan coefficients the follo
ing phase conventions are useful.

If one chooses@38# as basis statesup6&57up,61&, and
up0&5up,0& for charged and neutral pions, the two-pio
state of good isospinuI 50,I 350& is, for example,

u~pp!0&52A1

3
@ up1~1!p2~2!&

1up2~1!p1~2!&

1up0~1!p0~2!&]. ~A1!

Since the pions are identical bosons in the isospin basis,
has to include a space part of the two-pion wave funct
that is symmetric in particle label interchange to accompa
-
FIG. 10. Variation of the spatial wave func
tion c(0), Eq. ~A10!, with binding energy.
3-17
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uI 50,I 350&. The normalization of the symmetrized produ
of the two-pion space wave function introduces an additio
factor ns51/A2.

For the kaon and antikaon isospin doublet and antidou
the analogous convention is, in matrix form,

K5S K1

K0 D , K̄5S K̄0

2K2D .

Consequently the isoscalar and isovector combinationuI
50,I 350& and uI 51,I 350& are

u~KK̄ !0&52
1

A2
@ uK1~1!K2~2!&1uK0~1!K̄0~2!&]

u~KK̄ !1&52
1

A2
@ uK1~1!K2~2!&2uK0~1!K̄0~2!&].

~A2!
r

y
o

d

tio
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These relations lead immediately to the values of the isos
coefficientsCI andns quoted below Eq.~13! in the text.

2. Wave functions for the Bargmann potentials

We briefly summarize some results of Bargmann for co
structing phase equivalent potentials. As shown in@24# the
assumed form Eq.~22! for the Jost function gives rise to
family of potentials that lead to this form forf (k): the sim-
plest one of this family is given by Eq.~23!. Let c(r )
5r 21w(r ), and replace the OBE potentials by this form f
VI . Then

w91~k22MKVI !w50 ~A3!

for KK̄ s-wave scattering. The two linearly independent s
lutions f (6k,r ) for this equation that are irregular at th
origin are known in closed form by construction@24,34#
f ~k,r !5e2 ikr
k2 ib@b sinh~br !1a cosh~br !#@b cosh~br !1a sinh~br !#21

k2 ib
→e2 ikr , r→`. ~A4!
f
ith
ve

a

s

ed
A general solution of Eq.~A3! can be written as a linea
combination of thef (6k,r ),

w~k,r !5
i

2k
@ f ~2k! f ~k,r !2 f ~k! f ~2k,r !# ~A5!

where the coefficientf (k) is the Jost function. It can be
shown quite generally@34# that f (k) is determined by the
Wronskian off (k,r ) andw(k,r ):

f ~k!5W@ f ~k,r !,w~k,r !#5@ f w82 f 8w#. ~A6!

Since W is independent ofr this can be evaluated at an
convenient point, in particular at the origin. The value
f (k) is determined by howw behaves at the origin. Ifw
;r , then f (k)5 f (k,0)5(k2 ia)/(k2 ib) as in Eq. ~22!.
This is the usual case. On the other hand ifw does not vanish
at the origin, but instead possesses a finite logarithmic
rivative there, thenf (k) is given by Eq.~35!.

In the first case one obtains the usual scattering solu
of Eq. ~A3! that vanishes at the origin as

w~k,r !5
sinkr

k
1

b22a2

b21k2

1

k

3
k sinh~br !cos~kr !2b cosh~br !sin~kr !

a sinh~br !1b cosh~br !
.

~A7!
f

e-

n

If a52k is negative, thenf (k) has a zero in the lower hal
of the complexk-plane, corresponding to a bound state w
binding energy«5k2/MK . The associated bound state wa
function is found by settinga52k andk52 ik in Eq. ~A7!
to find

w~2 ik,r !5
sinh~br !

b cosh~br !2k sinh~br !
e2kr . ~A8!

The normalization of this bound state is also available from
knowledge of the Jost function:

E
0

`

drw2~2 ik,r !5
i

4k2
f ~ ik!

] f ~k!

]k k→2 ik

5
i

4k2
f ~ ik! ḟ ~2 ik!5

1

2k~b22k2!

~A9!

sincef (k)5(k1 ik)/(k2 ib). The normalized bound state i
then given by

c~r !5~A4pr !21A2k~b22k2!

3
sinh~br !

b cosh~br !2k sinh~br !
e2kr . ~A10!

In Fig. 9 we compare the radial eigenfunction as obtain
by numerically solving for theKK̄ isoscalar bound state in
the one-boson exchange potential of Eq.~17!, with the ana-
3-18
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lytical solution given by Eq.~A10! for the phase equivalen
Bargmann potential. Except in the vicinity of the origi
where the numerical solution is underestimated by a fa
;1.2, the two wave functions are essentially identical. A
shown is the wave function at 10 MeV binding in a Gauss
potential that was used in@45# to estimatec(0).

Finally in Fig. 10 we illustrate the variation of the spati
wave functionc(0) of Eq.~A10! as a function of its binding
energy. This plot was obtained by using the calculated va
tion of a0 , r 0 and« with cutoff as shown in Fig. 2 for the
one-boson exchange potential to obtain the parametea
52k andb at each binding energy.

The inclusion of the annihilation potential changes t
solution for the radial eigenfunction fromw(2 ik,r ) to the
complex solution

w̃~kr ,r !5 f ~kr ,r !/ f ~kr ,0! ~A11!

wherekr5(0.125420.1972i )MK is the root of the Jost func
tion in the presence of annihilation as given by Eq.~50!. One
readily verifies thatw̃(kr ,0)51 and w̃8(kr ,0)5z52 i j as
required. A comparative plot of the normalized versions
the moduli of w̃(kr ,r ) and w(2 ik,r ) is given in Fig. 11.
Since the derivative ofw̃(kr ,r ) at the origin is purely imagi-
nary, its modulus has a zero derivative there. This is cle
visible in the inset in Fig. 11, that also shows howuw̃(kr ,r )u
‘‘heals’’ within 0.1 fm away from the origin from the effect
of the annihilation potential to rejoin the real solutionw
(2 ik,r ). Either eigenfunction leads to a rms molecular
dius of A^r 2&'1.62 fm ~i.e. about two proton charge radii!.

FIG. 11. A plot of ~the moduli of! the normalized radial wave

functionsw̃(kr ,r ) andw(2 ik,r ) that include and exclude annih
lation effects respectively. The inset details their behavior for sm

r. Notice thatuw̃(kr ,r )u ‘‘heals’’ to w(2 ik,r ) within 0.1 fm away
from the origin.
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The momentum content of the normalized spatial wa
functions c(r )5(A4pr )21w(2 ik,r ) and c̃(r )
5(A4pr )21w̃(kr ,r ) is given by their Fourier transform
c(p) and c̃(p). These are shown in Fig. 12 for relativ
meson momenta up to 1 GeV. As expected from Fig. 11,
effect of the annihilation potential is to redistribute the m
mentum to higher values, while at the same time leaving
characteristic value of̂p2& at ;0.08 GeV2 for the relative
meson momentum squared in the molecule.

3. Matching of isospin amplitudes

The wave functions of kaonium in the inner, or isosp
conserving region are given by Eq.~A5!. These solutions
either vanish at the origin, or possess a given logarithm
derivative there, depending on the form off (k) that is cho-
sen. Matching either form onto the linear combinationswp
6wn of the outside solutions atr 5d, one finds the consis
tency condition

S z02zp z02zn

z12zp 2z11zn
D S wp

wn
D 50

where zn5wn8/wn . The other logarithmic derivatives hav
been defined in the main text. At momentak;ma of rel-
evance for kaonium,zn5 ik is much smaller than any o
these so we simply drop it and find

1

zp
'

1

2 S 1

z0
1

1

z1
D ; wn /wp'211zp /z0512zp /z1 .

~A12!

The eigenvalue conditionzp5zc determines the values ofk
52 ik, which are pure imaginary in the absence of abso
tion, for the bound states of kaonium, and at the same t
removes the outgoing wave piece ofwp from Eq. ~69!. Then

ll

FIG. 12. Normalized Fourier transforms of the spatial wa

functionsc̃(r ) with andc(r ) without annihilation.
3-19
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the matching conditions show that the kaonium eigenfu
tions that join smoothly onto the pure decaying st
f c

(2)(2 ikr );W1/l,1/2(2kr ) outside the strong potential ar
given by a linear combination of isospin zero and one int
nal functions as

w1/l~r !5
1

2
zcf cF 1

z0

w0~2 ik,r !

w0~2 ik,d!
1

1

z1

w1~2 ik,r !

w1~2 ik,d!G ,
r<d5 f c~2 ik,r !, r>d ~A13!

wherezc5zc(2 ik) and f c5 f c
(2)(2 ik,d). We have labeled

these eigenfunctions with the ‘‘quantum number’’l21

5ma/k that reverts to an integer for a pure Coulomb fie
One verifies immediately that the matching of value ar
5d is guaranteed by the eigenvalue condition~74! or Eq.
~A12!, while the derivatives match identically from the de
nition of the logarithmic derivatives.

These eigenfunctions develop a common additional n
at theK1K2 scattering length, independent of the energy
the kaonium level. Consider the case where the scatte
length is real. Then this happens becausek;ma!MK is
very small so that the behavior of thew I(2 ik,r ) differ but
little from their zero energy behavior. From Eq.~A7! this is

w~0,r !5
b2a

b2 H ~b1a!sinh~br !

b cosh~br !1a sinh~br !

1r
ba

b2a

b sinh~br !1a cosh~br !

b cosh~br !1a sinh~br !J
;r , br!1

;
a

b
~r 2aI !, br@1 ~A14!

wherea andb refer to channelI. Inserting this information
into Eq. ~A13!, one finds that

w1/l;2~zcap! f c~12r /ap! ~A15!

outside the range of the strong interaction.
We return to the neglect of theK0–K6 mass differenceD

in calculating the logarithmic derivativezn for the K0K̄0

channel. Includingzn52A2MKD leads to a revised versio
of the eigenvalue equation~74! that now reads

12
1

2
~zc1zn!S 1

z0
1

1

z1
D1

zczn

z0z1
50. ~A16!

The lowest eigenvalue of this equation isl50.9860
10.0061i instead of 0.986310.0082i , an inessential change
The reason is the dominating influence of the isoscalar ch
nel for which z0d'18.0210.5i , that overshadows the re
maining logarithmic derivatives, which are allO(1), and
suppresses the last term in Eq.~A16!.
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4. Coulomb distortion

It is also useful to document the modification due to t
Coulomb interaction on the low-momentum behavior of t
absorption cross section as given by the third of Eqs.~65!.
Using Eqs.~71!, ~72! and ~75!, one finds that

sa'
4p

k2
Im~ap

e f f!Im~zc!'2
4p

k

Im~ap
e f f!

u f c
(2)~k,d!u2

~A17!

since Im(zc)52ku f c
(2)(k,d)u22 is the imaginary part of the

logarithmic derivativezc of the incoming Coulomb wave
The latter relation is easily found by writingf c

(2)(k,r )
5exp(is)@G(k,r )2 iF (k,r )# in terms of the regular and ir
regular Coulomb solutionsF(k,r );sin(kr2h ln 2kr1s),
G(k,r );cos(kr2h ln 2kr1s), so that

zc5S GG81FF82 ik

G21F2 D
r 5d

~A18!

after using the Wronskian relation (GF82G8F)5k that
holds for allr. Forkd;mad!1 one finds from Eq.~70! that

u f c
(2)~k,d!u25S e2ph21

2ph D F @122mad~ ln 2mad12g21!#2

1S 2pmad

~e2ph21!
D 2G;S e2ph21

2ph D ,

h52ma/k ~A19!

in agreement with Ref.@55#.

5. Detailed balance

If one ignores the real one-boson exchange potentialVI in
Eq. ~33!, then the Jost function forKK̄ scattering due to the
annihilation part alone is simplyf (k)5z1 ik. This gives rise
to ans-wave I 50 scattering length of

4pa0~KK̄ !52MKc0
2 ~A20!

after using the definition~34! for z. However, sincepp

annihilation intoKK̄ is described by the same diagram
Fig. 3 with the pion and kaon lines interchanged, theI
50, pp scattering length due to this process alone is a
given to the same approximation by the expression as ab
but with Mp andMK interchanged in the productMKc0

2, i.e.

4pa0~pp!52@MKc0
2#Mp↔MK

52
k

p
MKc0

2

54pa0~KK̄ !S k

pD . ~A21!

We have used Eq.~31! to perform the mass interchang
Herep andk are the relative momenta of a pion or kaon p
with the same total CM energyP0. There is no contribution
to the a2(pp) scattering length from Fig. 3 in theI 52
3-20
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channel, since the intermediate kaon loop can at most c
I 51. Consequently detailed balance holds between thI

50 absorption cross sectionsa
(0)(pp→KK̄) and its inverse

sa
(0)(KK̄→pp) when viewed in the isospin basis under t

above approximations.
However the physicalp1p2 channel is described by th

scattering length a(p1p2)5 2
3 a0(pp)1 1

3 a2(pp). But
Im@a2(pp)#50, so

sa~p1p2→KK̄ !52
4p

p
ImS 2

3
a0~pp! D

5
2

3

k2

p2
sa

(0)~KK̄→pp! ~A22!

provided thatP0>2MK .

6. Dimensional regularization ofJ„P0…

Replace the three-dimensional integral in Eq.~29! by its
analog ind dimensions@16#,
B

ys

na
ed
6

A

ys

01600
ry
J~P0!5E d3l

~2p!3 S 1

l2/M12M2P0
D

→ 1

~4p!d/2

1

G~d/2!
E

0

`

dL2
~L2!d/221

L2/M12M2P0

5@M ~2M2P0!#d/221
M

~4p!d/2
G@12d/2#

~A23!

or, asd→3,

J~P0!52
M

4p
[ M ~2M2P0#1/2

5
M

4p
@M u~P022M !u#1/2ei (f1p)/2

0,f,2p JP ~A24!

on the first sheet of the complexP0 plane. Note thatJ(P0) is
pure imaginary and positive on the upper lip of the cutf
50 extending from 2M to `. The analytic continuation to
the second sheet through the cut starting at the branch p
P052M is obtained by taking22p,f,0.
v. D
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