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Lifetime of kaonium
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The kaon-antikaon system is studied in both the atomic and the strongly interacting sector. We discuss the
influence of the structures of thig(980) and thea,(980) mesons on the lifetime of kaonium. The strong
interactions are generated by vector meson exchange within the framework of the st&id&@y,

X SU(3), invariant effective Lagrangian. In the atomic sector, the energy levels and decay widths of kaonium
are determined by an eigenvalue equation of the Kudryavtsev-Popov type, with the strong interaction effects
entering through the complex scattering lengthKd¢ scattering and annihilation. The presence of two scalar
mesonsf(980) anday(980) leads to a ground state energy for the kaonium atom that is shifted above the
point Coulomb value by a few hundred eV. The effect on the lifetime for the kaonium decay into two pions is
much more dramatic. This lifetime is reduced by two orders of magnitude from1026 sec for annihilation

in a pure Coulomb field down to 3210 *® sec when the strong interactions are included. The analysis of the
two photon decay width of th&,(980) suggests a generalization of the molecular picture which reduces the
lifetime of kaonium still further to 1.x 10" 8 sec.

DOI: 10.1103/PhysRevD.69.016003 PACS nuniberl1.10.St, 14.40.Aq, 14.40.Cs, 36.1K

. INTRODUCTION erates thef,(980) meson as a bounkK structure. This
. ' ~_model makes specific predictions for the structure of the ex-
There has been substantial eXperlmental progress In tl"tﬁK: atom kaonium. In a second Step’ we work out the pre-

field of meson spectroscopy during the last dedddein the  dictions for kaonium based on the meson-exchange model of
energy region up to 2 GeV, more scalar-isoscalar mesongef. [14].

have been established than can be accounted for by a quark- The molecular interpretation is consistent with the small
antiquark structurd2]. The structure of the scalar meson

with the lowest massf0(9§0), has b_een controvers;a_lzfor its reduced mashl (=496 MeV. This suggests a nonrelativ-
many years. Thd,(980) might be aq state[3,4], aq°q istic effective field theory approadi5] that has also been
state[5], or aKK molecule[6]. _ ~ used recently to study both pioniufii6,17 as well as
The radiative decay of th¢ meson provides a particu- o(46) QED recoil and radiative corrections to the positro-
larly strong argument for &°q? interpretation of both the njum spectrun{18]. With this in mind we use the standard
fo(980) and theay(980) mesons, as was first pointed out by Sy(3),,x SU(3), Lagrangiar{19] to describe the dynamics

Achasov and Ivanchenkfb]. Both the recent Novosibirsk IV . .
data[7] and the KLOE datd8] can be reproduced by a of the KK*lnteractlon[ZO,ZJJ and decay V|a_the exchange of
V\P_,w,d),K ... vector mesons. The coupling constants ap-

calculation which generates those mesons dynamically, ho S . !
ever [9]. Since in Ref.[9] Oller had to introduce agb pearing in the Lagrangian are related 8ibl(3) symmetry to
he pr7r coupling constany,, ., which in turn can be ob-

—1>OyK K" contact interaction, the issue remains controversmlained from the Kawarabayashi-Suzuki-Riazuddin-
[ %‘h ducti F tw wral oi i ultrarelativisti Fayyazuddin(KSRP relation[22]. Thus once the decision
€ production of two neutral plons In URTaretativistic on"the form of Lagrangian has been taken, only physical

pion proton reactions shows a strong dependence of th|$1eson masses and known coupling constants enter into the
s-wave amplitude on the momentum transferred between thg

. . . ) alculations.
p.ro.tqn and the neutron for mvanant tvvo-plon' masses in the We work in the nonrelativistic limit in which case two
V|c_|n|ty of 1 GeV[11,12. This fact has been interpreted as important simplifications occuri) only t-channel exchange
evidence for a hard cpmponent of the(980), see e.g. Ref. diagrams survive, an@i) the resulting one-meson exchange
531', r?aﬁﬁ:il?tgcearlgl:;a'[‘it(l)%ngcati%j(ggO? r;%?/?(ljgsh;:Zgggv‘(’jseforpotentials become local. This in turn means that one can
scription of the dat@14]. On the other hand, the model em- reduce the Bethe-SalpetéBS) integral equation for the

ployed in Ref.[14] also includes a bare scalar resonancegogndss'ﬁ?z_s of the interactingk S%Stemﬁto a local t_\]:yo-
Given this situation, we feel that a simplified calculation ody schrainger wave equation that offers a significant
might be helpful. simplification over working with integral equatiof20,23.

In this paper, we develop an analytical model which gen- After a br'le'f r.ecaII of the der ivation of the wave quathn
for nonrelativistic local potentials from the BS equation in
Sec. I, the calculation of one-meson exchange potentials in-

*Permanent address: Nuclear and Particle Theory Group, Univel0lVing both direcp, w, ¢ transfer betweeK andK as well
sity of the Witwatersrand, Johannesburg, Private Bag 3, WITSas KK— KK scattering via two-pion intermediate states in-
2050, South Africa. volving K* exchanges is carried out in Sec. Ill. We refer to

binding energy~10-20 MeV of theKK system relative to
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these potentials collectively as one-boson exchai@eE) additional node into the eigenfunctions of kaonium that lies
potentials. The last contribution is essential to describe that theK*K ™~ scattering length. The kaonium levels are there-

KK — 2 decay channel. Then we make use of the fact thafore to be viewed as excited states of the kaonic molecule in

one can describe the low-ener ropertiek sl very ad- the combined Coulomb and strong fields of the system. This
dy prop y in turn has the effect of enhancing the" K~ — 27 annihi-

equately in the effective range approximation, to replace ey, s by two orders of magnitude over what they
OBE potentials by phase-equivalent potentials of the Barg\'/vould have been under Coulomb binding of the charged
mann type[24] that give rise to the same scattering length ;1 pair alone.

and effective range. These potentials offer the unique advan-
tage of having known analytic solutions so that the associ-
ated Jost functions can be constructed explicitly. Il. FORMALISM

A knowledge of the Jost functions in turn determines both

the scattering and bound state properties ofKli€ system o ssiple hound states of KKK meson pair resulting from
without further approximatiofi25]. In Sec. IV we carry out  ygctor meson exchange between them we briefly recall the
this program and compute both the mass and decay width @ferjvation given by Landau and Lifshif82] that starts out
the kaonic molecule from the relevant Jost function that inyith the four-point vertexI'[ps,p.;P1,P-] that enters the
cludes annihilation contributions. The resulting complex t0-Bethe-SalpetefBS) equation33]. Thep,,p, andps,p, are
tal energy for this system is (98125)) MeV that is in rea- incoming and outgoing meson four-momenta respectively.
sonable agreement with the recent experimental data fromhen the homogeneous equation for this vertex that deter-
Fermilab[26] that give[ (975+3)—(22+2)i] MeV. mines the bound state poles of the BS equation is

We also give computed elastic and reaction cross sections

for KK scattering, ther inelasticities, and the cross section

In order to obtain a nonrelativistic equation for describing

4
for the inverse processr™ 7~ — KK, for which data exist, iF[psip4;p1,P2]=f d q4iF[p3,p4;q,p3+ ps—q]
using detailed balance. Those calculations disagree with the (2m)
measured cross section, particularly near thresf@fd-29. X (—1)D(q)(—1)D(ps+ pa—0q)
On the other hand the similarity in the pole position in
both the recent Fermilab measurements as well as the calcu- Xil'[q,p3+pPa—ad;P1P2]. (1)

lated position of this pole is striking. We also show that the

molecular picturg is totally inadeq'uate for describing the 2A1l momentum labels formally flow from right to left, and
photon decay width of o(980), which comes out to be an ne 5um of each pair on either side of the semicolon equals
order of magnitude larger than experiment. Taken togethe[rhe total four-momentunP of the incoming pair which is

with the overall underestimate of the” =~ — KK data, this  conserved throughout the diagrammatic equation. The hatted
suggests that thg,(980) ground state cannot be a pure mo-vertex is the irreducible piece that generafesy iteration.
lecular Statdsee alS([?)O]) This point is taken further at the The D's are meson propagators. For a free meson of four-

end of Sec. IV. _ _ o ~ momentumg and massM one has
We take up the discussion of kaonium in Sec. V. Since

kaonium is a mixture of isoscalar and isovector states due to

isospin-breaking introduced by the Coulomb potential, we _iD(a)= i _ 1 i

; 2o e —iD(g) = 55—~ 5% :
appeal to the no-internal-mixing approximation that was in q’>—M?+i0 \2M/q,—M—qg?2M+i0
troduced in connection with isobaric analog states in nuclei. 2)

In this approximation one joins linear combinations of the
=0 andI=1 isospin amplitudes in the external region

Wheri only thel SOUIOTb f'%ld. IS "T‘pof”t?]”t’ on(m th'st. mally suppressing propagation “backwards” in time, i.e. by
.Caf‘r? .nct)wn ‘T’O utions ?\ goct)h |s?sp|nfc_) Id € \(/jvavg eoll:"’I_F'g.nomitting the antiparticle pole in the upper half of the com-
allows one to construct the Jost function for kaonium withou?/S* %o Plane. We notd32] that the momentzpy p, are

further approximation. Only momenta @(Ma), where simply labels in Eq(1) that are not determined by the equa-

- : . : tion at all. So one can simply drop them. The other simpli-
a~1/137, are of interest fqr kaonium. This fact a!lows ONeg . tion is to observe that the combination
to recast the condition that its bound states are given by the
zeros of the Jost function in the lower half of the complex
momentum plane as an eigenvalue equation of the X(P3,P4)=D(p3)I'[P3,P4]D(pa) (€)

Kudryavtsev-Popov typ€&31], in which the strong field ef-

fects only enter through thi"K™ scattering length. The appears under the integral sign. Thus one can equally well

solutions of this equation show that the kaonium levels argecast Eq(1) as an integral equation fog(ps,p,). This is

shifted upwards from their pure Coulomb values and acquirenost usefully written down in the center of ma&M) sys-

lifetimes between 10'® and 10'*® sec in the presence of the tem for which[ps,ps]= = p+ P/2 with p=[p,,p] and P

KK molecular ground state. =[P,,0], where P, is the total energy in the CM frame.
We also show explicitly that the strong field introduces anThen the equation determining the bound states rgz@ls

if in addition we move to the nonrelativistic limit by for-
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ix(p,P)=D

1P>f d'q f[ +1p
2 (2a)* P 2

(4)

1
p+§P D(-p-i-

1 1 1
—p+5Pia+5P,—a+5P|x(a,P)

where x(ps,ps) = x(p+ P/2,—p+ P/2)=x(p,P).
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IIl. ONE-BOSON EXCHANGE POTENTIALS

In the following we use Eq.9) to investigate the possible
binding of theKK system via one-boson exchange potentials
by constructingl” from the relevant pieces of the standard

SU(3)yXSU(3), invariant Lagrangian, the derivation and
properties of which are described in detail in Ref9). For

KK scattering the relevant interaction Lagrangians for our

To make further progress towards a nonrelativistic equapyrposes are
tion, the vertex™ should not depend on the time components

of the relative outgoing and incoming four-momenpa
=[Po,p] andq=[qo.q], i.e.

r 1P 1P- 1P 1P r P
p+5P.—pt5Pia+ 5P —a+ 5P|~ [p.q,Po].
(5

Should this be the case one can then integrate out these time £ _,x =g, k[ 9*7- KTTK*
components frony to obtain what is effectively the 3D Fou-

rier transform of the wave function for relative motion,

P(p)= j —X(p P). (6)

Carrying out the integrals over the time components of th
relative four-momenta one finally arrives at the desired equa-

tion,

d*q T[p,q,Po]
(2m)°  4AM?

2
oMo yip)- |

#(q)=0

that makes use of the nonrelativistic approximation

dpg

ffoc2|

1
4M?2

1
p+ 3 Po

1

8

1
p%M+2M — Po)

as given by Eq(2). One recognizes Ed7) as the Schro

dinger wave equation in momentum space for relative mo-

tion in a potential

i:‘[p!quO]

AVE ©

V(p,a)=—

and binding energye=2M—P,=0. Should f[p,q,Po]
only depend on the differenge—q, the corresponding po-

tential will be local in coordinate space. Sincds arelativ-
istic proper vertex that in lowest order gives thenatrix, the

mass factor 1/KI? that convertd” into a nonrelativistic po-
tential is the same factdrl6] that relates the relativisti®
matrix to its nonrelativistic counterpart.

Lxkp= gKKp[KT;'ﬁMK];;”+ c.C.

Lk o= kKol KTﬂMK]w”-i— c.c.
Lrky=kkslK'9,K]p*+c.c. (10)
which, together with
7 KT TK* ]+ c.c.
(11

generate interaction potentials K — KK scattering via

p,w,¢ vector meson exchange, as well as #df — o an-
nihilation viaK* (892) strange meson exchange. HKis are
all isospin doublets and c.c. stands for the additional charge

g&onjugation contribution Witk — K, K* —K*

The coupling constants in these expressions are all fixed
in terms of thep7rr coupling constang,, . by SU(3) sym-
metry relationg 19],

1
gKKp= gﬁpzigpﬂ”ﬂ

1

Okkw = IkKew™ — Egpwfrr

1
Jkke= gﬁd)zﬁgpm

1

E 9pmm- (12)

Omkk* = QakK* = —
On the other hand thgpm# coupling is determined by the
KSRF relation[22] asg, ,,~M,/(+/2f ;) ~6 in terms of the
p meson masM, and the pion weak decay constaint
~93 MeV. In this sense, then, there are no free parameters
in the calculation of the exchange potentials. They only con-
tain physical meson masses and known coupling constants.
In the nonrelativistic limit,p; +p;~[M;+M;,0], pi—p;
~[0,p;—p;] only thet-channel scattering diagrams are rel-

evant for determiningf‘. In this limit these amplitudes all
have a common Yukawa-like form

P p+2p Spiqtip L
pr5P.=pr5Pa+sP,—a+3
(M1+M3)(My+My)
~n2
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10

in momentum space, wherk=p—q is the t channel
3-momentum transfer, ard; are the masses in the indicated
entrance and exit channels; M is the mass of the exchange
boson andg the coupling constant. The isospin and boson
identity factorsC, andng in Eq. (13) are given in[20]. They

are Cy=[3,1,1] and Cl—[ 1,1,1] and ng=1 for p,w,¢
exchange in th&K— KK isoscalar and isovector channels.

The corresponding values fdk* exchange in theKK
— 7 isoscalar and isovector channels &g=—6, C;
-2, andng=1/\/2.

<+—— | = 0 one boson exchange

Bargmann equivalent

A. KK exchange potentials

- V(r) in units of M K

Sincel" is only a function of the 3-momentum transfer,
the resulting potentials in E@9) are attractive local Yukawa
potentials in coordinate space, and the determination of theil
possible bound states is numerically straightforward. While
not necessary for convergence in the nonrelativistic case, we

N

| = 1 one boson exchange

however, also include at each vertex in Ef3) the form
factor containing an arbitrary cutoff

2A2—-M2\?

- 14
2A2%+ K2 (14

Ft(k>=<

that was used 120,23 to obtain convergence in scattering
calculations based on the relativisticvertices. From Eq(9)

the coordinate space nonrelativisiie — K K potential asso-
ciated with the exchange of bosdfis then
V(r)=-g°’CiU(M,r) (15

after division by M% where My is the kaon mass, and
U(M,r) is the Fourier transform

d*k [FY(k)]? .- -
(2m)° M M2+k2
1 eer e*\i/\r 1 M2 M4
:E[ I T B yYe Ry
1——2><ﬁAr)
1 M2
3-———||1-— Ar)?2
( 2A2)( 2A2) (V2A1)
M2\ 3
48(1—7> (V2Ar (16)

The resultingKK potential due top,w,¢ exchange is
attractive in both isospin channdlss0 and 1,

, (3 1
VI:O(r):_gpﬂ'Tr ZU(Mpir)+ ZU(var)

1
+§U(M¢,,r)) (17)

25 3.0

05

1.0 1.5

rin units of MK
FIG. 1. One-boson exchange potentials using a cutoffAof
=4 GeV. The coupling constant i8;=2.9 and the masses of the
exchanged mesons ar®l(,,M, ,M ,)=(769,783,1019) MeV. The
analytical Bargmann potentials that reproduce the same scattering
lengths and effective ranges as the original one-boson exchange
potentials are shown as companion curves.

and
) 1
Vica(N)==055 _ZU(Mp,r)
1U M
7 (M,,1)

1
+§U(M¢,r)] (18

but too weakly so in the latter channel due to an almost
complete cancellation betweenand w exchange to support

a bound state. In deriving these expressions we have ex-
ploited theSU(3) relations(12) to express all coupling con-
stants in terms o, .

These potentials are plotted in Fig. 1 for a strong coupling
constantag= gf)m/477=2.9 and cutoffA=4 GeV. In prin-
ciple A can be different for each exchanged bof20]. One
notes that th&/, are now finite at the origin, in contrast to the
sum of pure Yukawa potentials to which they reduceAas
— 00,

The coordinate space version of the wave equatior(’Bq.
that describes the relativestate motion in these potentials
becomes the usual Schiiager equation

M Vi(r)]i(r)=0

with total CM energyPo=2My+k?/My . We ignore the
charged to neutral kaon mass difference and work with an

[V2+k2— (19
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ing the binding energy from the effective range formi2&]
e~k?’/My=18.60 MeV wherex=—a=0.194M, see Eq.
(27) below. Consequently it is entirely sufficient to charac-

terize theKK interaction at low energies in terms of a scat-

% i 1= « tering length and an effective range: the actual shape of the
s | Jdoo = potential is immaterial.
Y ol ] © We make use of this feature in the following to replace the
&t N ~”é’ strong potentiald/, in Egs.(17) and(18) by analytic poten-
g i 15 2 tials of the Bargmann type given below that are phase
o | 1 s equivalent to them. Bargmari4] (see alsd34] for an in
£ 201 ] o depth overviewhas shown how to construct families of po-
£t 19 & tentials that give rise to a prescribed Jost functigk). If
[ 1 «  one chooses
10 B
i 7 k—ia
CZ. P T HP T EP R
30 35 4.0 4.5 50

then the potential that leads to this Jost function can be de-

Cutoff A (GeV) termined. It is[24,34,35,

FIG. 2. Dependence of thKK binding energys (left hand
scalg, scattering lengtla, and effective range, (right hand scale
on the choice of cutof\ used in the form factor for the isoscalar
one-boson exchange potential.

br —brij-2

8b?
Mk b2—a?

e e
+
b—a b+a

(23

Vi(r)=—

_ ) For this potential the effective range expansion is exact:
average kaon madd . By numerically constructing thk

—0 scattering solutions one easily obtains the scattering ba k2
lengths and effective ranges that enter into the effective kcotﬁ(k)=—b_ a+_b— a’
range expansion of thewave phase shiftd(k)

(29)

This allows one to identify the scattering length and effective

1 1
kcoté(k)=—a—+5r,k2+..- (200 range as
|

b—a 2
in the two channels as a=-7pa "“p-a (25
_ -1 _ —1
ap=5.83M ", ro=1.18M" (isoscalay where the actual values of the paramet@rand b will de-
. . pend on the isospin channel.
a;=—0.40My ", r;=3.70My " (isovectoy. Fixing a andb is obviously equivalent to prescribing the

(21)  scattering length and effective range. dfis negative,a

. . = — g, say, therf(k) has a zero dt= —i« in the lower half
Thus only the isoscalar potential supports a bound state. IS¢ the complexk plane, and there is a bound sté8#] of

binding energy is calculated tgtxe=18.63 MeV, placing binding energys = «%/M . Both the scattering and bound
the total mass for the boundK system atPo=2My—¢  state wave functions of the Bargmann potential in E2§)
=973.4 MeV. Figure 2 illustrates the sensitivity of a;  are known explicitly. Further details will be found in the
and ro on the choice of cutoff for this channel. Fox  Appendix. The availability of such analytic solutions will be
=4 GeV the values o#, andr, are only weakly dependent jmportant for including the effects of th&K— ma decay
onA. ) ) channel nonperturbatively as discussed below.

Even though the isovector potential 'does not support & Now invert Eq.(25) to construct phase equivalent poten-
bound state the,(980) can be fully explained by this model 5|5 that have the same scattering length and effective range

as a threshold effed21]. Effects of theay(980) thus are 55 the original exchange potentials in EGS) and(18). The
included in the calculation though it should be noticed thateqyired values of andb are

decays to ther »-channel are not considered in the analytical

model. 1

a=-— r_[l_ Vvi=2r,/a]
|

B. Shape-independent approach

The relatively smallon a hadronic scalebinding energy
e/M¢~0.04 in the isoscalar chann@nd no binding at all in
the isovector channgindicates that an effective range ap-
proach should be applicable. This is confirmed by recalculater

b=r£[1+\/1—2r|/a|] (26)
|
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TABLE |. Parameters of the Bargmann potentials, &8), that L L
. . . . . . K K
give rise to identical scattering lengths and effective ranges as the
one boson exchange potentials in E(s?) and(18). The last col- K* K —
umn gives the value of the logarithmic derivative that determines K K =
T

the strength of the annihilation potential. The units kig.

FIG. 3. Replacement of the irreducibiek scattering diagram

Isospin a b ¢ involving the exchange of twdK*’s by an equivalent pion loop
1=0 ~0.1936 1.491 —17.409 diagram with point vertices.
1=1 +0.9219 1.462 —26.114 R o
(KK — )
Vik()= = o I(P) 8%(1) =~ c58%(r)
a=—-01936M b=1.491M (isoscalay (4AMi0)(4M7) @0
a=+0.9219M b=1.462M (isovectoy with
2
@7 , 3 (giKK*)Z M ,+My 4J b ) |
for the two channels in question. These parameters are sum- €0~ 16 M2ZM2 M (Po)  (isoscalar.

marized in Table | for easy reference. The resulting set of (31)
phase equivalent potentials are included in Fig. 1.
The value of this factor in the isovector channel d$

— _ 2 2 .
C. KK annihilation potential = 5Cg- The function

From Eq.(13) one reads off the irreducible vertex for

M
— J(Py)=i——[M _(Pg—2M )]*? 32
KK— 77 via K* exchange, as (Po) 477[ =(Po »] (32

o (M_+My)2 is a complex function oP that is positive and pure imagi-
I'KK— 7777)%—C,nsngKK*W—2 (28 nary along the upper lip of the branch cut extending from
K* 2M _ to «© along the reaP, axis, see Eq(A24).

where nC;=~ 3 or —\2 in the isoscalar or isovector D. Jost function for a finite plus delta function potential
channel. We have neglected the 3-momentum transfer at the origin

relative to the largek* (892) mass. As shown in Fig. 3, this . . i L .
amounts to introducing point vertices that can contribute Ve investigate the influence of the annihilation potential
to KK scattering via an intermediate pion loop. The contri-On the properties of th&K system by constructing the re-

bution from this interaction is complex due to the possibility ViS€d Jost function for the suf,+ V. SinceVii is a
of on-shell decayKK s in the intermediate state, and contact interaction, and the solutions in the potentiahre

, — ) i ' 777 known, this can be done without approximation. The new
the resultingkKK bound state acquires a width. The deta"sscattering problem to be solved reads

are as follows: calling the contribution from FigiB® one . ,
finds [VZ+K*=MgV (r)+Mgcis®(r)]p(r)=0. (33

Consider isospin =0. The presence of the delta function

e (l): -2 T
i ITH(KK— ) potential obliges one to give up the boundary condition

&l = dl, 1 1 e(k,r)~r—0 on the scattering wave functiowp(k,r)

XJ 3 TD | + EPO) D| -1+ §P°> =ry(k,r) at the origin in favor of prescribinf36] its loga-

(2m)) —=eml rithmic derivative'/ ¢ there[34]. By integrating Eq.(33)
X o 1 e 1 over the volume of an infinitesimal sphere centered at
=il'%(KK— ) f the origin, one finds that the logarithmic derivative at the
aM2J) (2m)% PIM ,+2M ,— P, origin is fixed by the strength of the delta potential according

to
:il:Z(KK—>7T7T)J(P2) (29 ¢ _ A =¢. (34)
AM<7 ¢  Mgcl

in view of Eq. (8). As summarized briefly in Eq$A23) and  The point is now that for >0 both the boundary condition
(A24) of the Appendix the three dimensional integddP) on ¢(k,r) and the closed form of irregular solution of
can be dimensionally regulated éhdimensions without dif-  Eq. (33) are known explicitly: they are given by Eq&34)
ficulty to obtain a finite resuft16] for d—3. The associated and(A4) respectively. By constructing the Wronskian of this
annihilation potentiaV/x is then obtained from Eq9) asan  pair in the limit r—0 one obtains the revised Jost
attractive contact potential in coordinate space, function as
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k—ia b%?—a? #f(—Kk). This can be seen directly from E@5) after noting
FRO=WLf,e]=| ({+iK) i o Tiq 5| (39 that the logarithmic derivative is even ink and purely
negative imaginary for read. The scattering phase shift is
after setting limg(k,r)—1 for convenience. This choice is NOW complex. In order to identify the scattering length and
unimportant since neither the root bfk) nor the scattering effective range in the presence of absorption, one can either
phase shift depends on it. The value of the logarithmic deMaintain the expansiof20), thereby introducing complex
rivative ¢ is k-dependent througiP,: from Egs. (31) and effective range parametef87,31, or define[38] these in

(34) one finds terms of the real part(k) of the total phase shifinot the
phase ofS(k)],
ci0=— 22 e M (b oy S =f(K/f(—k)= 7?9, 0<p<1l.  (37)
302 7 “IMg+M, mro g '
) In the latter case
k
Po=2My+ (36) S(ky+7  FK)F(—K)|+F(=k)[f(K)]
M k cotd(k) =ik =ik
‘ = SI = = TR TRl
after taking theSU(3) valueg xk* = —0,../2 for the cou- (39)

pling constant.
that shows explicitly thak cot&(k) is an even function ok.

IV. NUMERICAL RESULTS Set{(k)=—i&(k) in Eq. (35) for the Jost function, and then
expand the right hand side @(k?). After some calculation
The single equatioii35) contains all the necessary infor- one establishes the revised effective range expansion
mation on the scattering and bound states of the two-body
KK system. Moreover, this information can be extracted
without further approximation. We use this form k) to
identify the revised scattering length and effective range as

well as the bound state energy in the presenckif-2m with the exact expressions
annihilation.

1 1
Kcota(k)=— — + Srok2+ - - (39
a; 2

22 2_Aa2\2
1 b|a§+(b a%) ] 40

A. Effective range expansion a, b—a|ag?—2ab?+a3- b3

The KK — 77 annihilation channel renders the scattering
matrix S(k)=f(k)/f(—k) nonunitary, since nowf* (k) and

1 a%(b’—a?)*+a(b+a)[a’(b—a)(5b?—3a?)+b*a®—2ab+2b?)]&?

fo= (b—a)[a2e?+ (b2— a?)2][a°— b3— 2ab?+ ag?]?

2

[(a’+ab—Db?)(a®—ab?—b% +a?*(b+a)]
(b—a)[a?&?+ (b?—a?)?|[a®—b®—2ab®+ a&?)?
(41

a(b+a)[a(b—a)(b?>—3a?)—b*]&4+a*¢d B
(b—a)[a?&?+ (b?—a?)?][a®—b®*— 2ab®+ a¢?)?

2¢¢'ab?

for the new inverse scattering length and effective rangeat k=0, and the primes serve to distinguish these scattering
Here lengths and ranges from those appearing in E4), to
which they reduce in the no annihilation limit—«~. The

., 256 Mgs | _1p numerical values of and&’ have been calculated for meson
e=18= MM g | IM=(2Mk=2M )] massesM =140 MeV, My =496 MeV, M. =892 MeV
S and coupling constants=2.9. Using these together with the
=17.40M ¢ values fora andb given in Table I, one obtains
ot 128 Mes |4 ap=4.28M,*; rj=3.20M, "' (isoscalay (43
§=i— == ——\M | | [(2M¢—2M )]~ o — _
ak? 3a§ My +M, as predictions for th&K isoscalar scattering length and ef-
. fective range in the presence of absorption. The correspond-
=—6.06My (42 ing values for the isovector channel are still
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TABLE Il. Summary of calculated isoscal&K scattering lengths,, and effective ranges; (in units
Mgl), based on tha andb Bargmann potential parametdis units M) that reproduce the complex bound
state at P, shown in column two. The physical constants that enter into these calculations are
(M, , My ,Mg+)=(140,496,892) MeV, ands=gf,w/47r~2.9, using the KSRF value @, ,,~6. The last
four rows list the values o& andb, and the resulting isoscalar scattering lengths and effective ranges that
would be required to reproduce the theoretical results of Weinstein and (Mguyrthe fits of Morgan and
Pennington(MP), and the experimental data.

!

Source Po=M—il'/2 (MeV) a b a ro

This calculation 981 25 —0.194 1.491 4.28 3.20

Wi [6] 972—16i —-0.213 1.170 5.01 2.12

MP [40] 970-24i —0.231 1.367 4.30 2.16
PDG[42] (974+3)—(24+5)i  —0.22+0.02 1.410.16 4.35-0.49 2.46-0.35
E791[26] (975+3)—(22+2)i  —0.21+0.02 1.3720.05 4.52-0.20 2.51-0.33

' _ -1. ' -1 2 2_ .2

a;=—040M,~; r;=3.70My " (isovectoj b oM K oi (b“— k%) 49

~ - 2l Kk———.

(44) 0 K Mg M &

since there is no annihilation contribution from the O, | Since 47¢?(0)=2k(b?— «?) from Eq. (A10) the result in

=1 partial wave to th&KK scattering amplitude due to the Eq. (48) is equivalent to treating the annihilation potential
identity of the outgoing pions in the isospin representation.— c§63(r) as a first order perturbation &,

Higher partial waves cannot contribute in any event due to
the contact nature of the annihilation interaction. In fact the
a0(980)— 2 decay channel is forbidden Wy parity. Thus

the isovector scattering length remains real if, as here, the

' L 200 87
F; FZ—ZICOl// (O):M_K§

K2
PONZMK_ 2

|
V32 v4(0).

(49

7 n decays are ignored.

B. Bound states forl =0

The bound states of E¢33) are determined34] by the
complex roots) of f(k) in Eqg. (35), with Imk<O0, i.e.

[£(k)+ik](k—ia)+i(b*—a?)=0. (45)
Let k=p—ik, k>0 be such a root. Then the total mads
and decay widtH™ of a boundKK pair at rest reads
(p—ix)?
Mg
This root can only be found numerically as will be done

i

shortly[39]. However, since the magnitude of the absorptive

coupling MZ|c3|~47M /£€~0.7 is quite small relative to
the isoscalar potential strength, a perturbative solution in in
verse powers of is useful. Replacg by its value—i¢ at
k=0 (more correctlyjk~ —i« but the difference is quantita-
tively insignifican}. Then Eq.(45) reduces to a quadratic
equation fork. The relevant root is

2

3

—ik+0O(& 2)~(0.1255-0.1936)M
(47)

wherek=ia=—ik=—0.1936V«i is the root leading to the
bound state in the absence of absorption, ahd
=1.49IM . Working to the same order i&i ! (i.e. neglect-
ing the real part ok), one finds that

Upon recalling that—i¢é 1~ —J(Py), one sees from this
form that the complex solution foP, always lies on the
secondsheet—27< ¢=<0 of the cut complexP, plane for
J(Py). Otherwise the signs of the imaginary partsRgfand
—J(Py) will differ, and no solution is possible. Taking cog-
nizance of this fact the exact root of E¢5) and the result-
ing value forP, are found numerically to be
k=(0.1254-0.1972)Mg; Py=(981-25) MeV
(50)

using the previously determined valuesaodndb shown in
Table I. Notice that the exact value kflies rather close to
the perturbation estimate given by Edv7).

The exact numerical results for the Bargmann potential
that is phase-equivalent to E@.7) are given in the first row
of Table Il. We contrast these results with the mass and width
calculations based on the Weinstein-Isgur nonrelativistic po-
tential model[6], as well as the predictions of Morgan and
Penningtorj40], based on a parametrization of the Jost func-
tion [41] with parameters determined from experimental
phase shifts. These calculations are also compared with the
earlier experimental results summarized by the Particle Data
Group (PDG) [42], as well as the recent data from the Fer-
milab E791 Collaboratioh26].

In order to extract Bargmann potential parameters that
would lead to the mass and width values of either Weinstein-
Isgur, or Morgan and Pennington, we have turned @§)
around and asked what valuesafindb produce a rook
=p—ik that gives a prescribed value of the complex total
energy in Eq.46). The answer is
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v+k where ¢+ - = ¥{K*K~|KK) is the probability amplitude
D—£ (5D for finding aK *K~ pair in thef,(980) ground state. For a
state of good isospinK "K “|KK)=1/,/2. One can verify
b=\aZ—p(p— &+ (v+x)(a+«k) (52)  this result independently by noting that the coefficient
27-ra2/Mﬁ=vcrw, whereo,,, gives the low velocity cross
after setting?(p—ix)=v—i& We have treated the experi- Section for the annihilation of free, charged boson-antiboson
mental data in the same way. These relations allow one tpairs of relative velocity into two photong44]. The decay
establish a direct link between the mass and decay width ofidth of the bound state is then calculated in the standard

_ . . 2
the boundk K state, and thence extract the isoscalar scattefvay [44] as o, times the flux density, oo, Xv i+ -,

ing length and effective range via Eq40) and(41), or Eqs. ~ Which just reproduces Eg55).
(63) and (64). The numerical value found above fbr,, is an order of
The effective range expansion parameters obtained in thigagnitude larger than both the estimate giver{46] and
way for the Weinstein-Isgur calculations, the Morgan-also the currently quoted value of 04813 keV from experi-
Pennington fits, the PDG data, and the Fermilab data, amment[46]. In the molecular picture this discrepancy comes
also shown in Table Il. Collectively these results are all in-about because of the extreme sensitivity of the spatial wave
ternally consistent, and suggest that the nonrelativistic OBEunction at the origin to the assumed binding energy of the
potential that includes absorption W& exchange, provides KK pair. In[45] the author estimateg(0)~ %Mf&@ using a
a natural description for the properties of thg980) scalar Gaussian potential fitted to a binding energy of 10 MeV. This
meson as a bounidK pair. In particular, the prediction of the is a factor~3 smaller than our estimate ¢f0) that corre-
correct decay width fronkK* exchange, which is parameter- sponds to a binding energy of 18.6 MeV, which in turn in-
free and can be treated without approximation, adds weightreases our estimated width by an order of magnitude over
to this interpretation. In this connection it is also interestingthat given in[45] (see Fig. 9.
to compare with the current-algebra predictipt8] of I’ On the other hand the 72 decay width, which is also
~660 MeV for the much larger decay widtf600—1000 proportional tog?(0), is correctly reproduced by our wave
MeV, also dominantly into two pionsof the f,(400 function. Thus it would not seem possible to reproduce both
—1200) oro scalar meson, that is considered as a candidatthe measured pole position of tlig(980) decaying state in
for the qq bound state. the complex plane and at the same time the two photon de-
cay width in the molecular picture without introducing some
additional mechanism that reduces the fractional parentage
. fp=(K"K7|KK) of K"K~ in thef,(980) ground state. For,
The two-photon decay of thé;(980), considered as a apart from this factor, the branching ratio of electromagnetic

bound kaon-antikaon pair, can be treated by the samg hadronic decays is given by the expression
method. Working in a suitable gauge, the two-photon anni-

hilation potentialV,, is given by the single diagram in Fig. T per:
3 with the KK— 27 vertices and pion propagators replaced %“ 8M |fp|2
by the analagous electromagnekc K~ —2y (“seagull”) K

a=—k—p

C. Two-photon decay off (980

vertices and photon propagators, after division by two to 2 e \2 Mgx |4 M 12
. . _ m 2
compensate for crossing. One obtains —3\/5 > (M Mg (MK_ M ) |f ol
2 88(r) (53 I ’ ’
V,,=—cC r.
2 7y ~1.2x10 4|f,|? (56)

Without countertermsciy is formally divergent due to the ) ) )

photon loop. However, the imaginary part is finite, that contains known physical constants if one ado-pts the
SU(3) valuegxx+=—1/29,,, for the K— 7K* coupling
constant again. The only less well-determined constant in

(54) this expression ig,,,. However, the spread between the
various estimatef20,21] of this coupling is not nearly large
enough to cause the branching ratio to alter by an order of

where a=e?/47w~1/137 is the fine structure constant. The magnitude. This then leavég. Sincel’ 7/1“~1O‘5 experi-

two-photon decay width then follows from the second ex-mentally, one would requirép~1/\/ﬁ down from 142,

2ma?

2
MK

pression in Eq(49) as suggesting that the assumption of a put& molecular
ground state of good isospin is oversimplified.
5 2 2mwa’? 5 A competing picture for the structure 6§(980) as a four-
F)'V:ZImCV}'(ﬂK*K’:vlpK*K’ quark state has been developed[&, which leads to an
K estimatel" ( f,(980)— yy)~0.27 keV[47] that is also(with
@?i(b2— K2 a particular choice of parametgnsot in contradiction with
=——— =559 keV (55 experiment. One has therefore to conclude that agreement or
2Mi¢ otherwise between the calculated and experimenjad@cay
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TABLE lll. Complex scattering lengths and effective ranges for isospin zero and one scattering channels
as calculated from Eq63), as well as from coupled channel calculations with theand thewn-channel
[30] included(in units of M ).

Isospin af'f reff
One-boson exchange =D 4.281-2.398i 1.169-0.178i
=1 —0.401 3.702
+ fu mixing + o »-channel =0 2.165-4.592 0.151-0.404
I=1 0.147-1.944 —1.463-0.202
width of f3(980) by itself is too ambiguous for deciding 4 b2+ k2
— (O
between a molecular versusgdq? four-quark structure of 0y’ = . (6D
G- four.q ©k [aX(¢+ k)2 [b2-attk(£+K)]?

this meson, and that some mixture of these two extreme pic-

tures is probably indicated. Note thata(a')~ 1/k at smallk as befits a true absorption cross

o section. One can confirm the expression for the annihilation
D. KK cross sections and complex scattering lengths cross sectiow) by considering the flux loss in each isospin

The linear combination of scattering amplitudes of isospinchannel out of the radial wave functiap(k,r)/f(—k) for
zero and onef,=(fo+f;)/2=(S,—1)/2k determines the scattering, into an infinitesimal sphere located at the origin.
swave S matrix asS,=(Sy+S,)/2 for the scattering and Employing the boundary conditiong(k,r)—1, ¢'(kr)

reaction cross sections fetK scattering in the absence of —fas r_—>0 used ‘O_Ob‘?“” the .‘JOSt functidmk_) Of. Eq.
Coulomb interactions. One has (35), this flux loss is given without approximation by

8m/[M|f(—k)|?]. This is identical with the right hand side
- - of the second of Eqg61) after division by the incident flux
O'elas:_zll_splza Ur:_2(1_|8p|2) (57) U=2k/MK. . . ) )
k k Finally, taking the first option mentioned above Eg§7)

. ] o ] and expandingdk cot(k), where &, is the phase ofS,(k)
wherek is the relative momentum of the colliding pair. The —exp(d8), one has

reaction cross section has in turn contributions from the
(quasielasti “charge transfer” channelk "K = —K°K°, in
addition to the two-pion annihilation channel. One fings

= eyt 04, With

1
reffey (62)

k cots, (k)= —1/a8""+ 5

where the complex scattering length and effective range are

7| [ Sy— S| 1 given by the much simpler expressions
Tex=— 5 ) , 0'a=§(o'go)+ O'gl)) (58)
k i | b2—a?+ba-i(b-a)é -
ai = :
since the annihilation cross section is simply the average b(b*-a*+iaé)
of the corresponding annihilation cross sections and
U(l):£(1_|8|2) (59) ” 2(b—a)(é+ia)?
a k2 ! |'|e =— (64)

[b?—a’+ba—i(b—a)&)]?

in the separate isospin channels that add incoherently.  \/5jes of these quantities in the=0 andl =1 channels are

Smatrix elements of good isospiB, , appearing in these |isted in Table IIl. Note that fot =1, these expressions re-
expressions are given directly by H§Y) in terms of the JOst  ,ce tg those in Eq(25). The Re&®'") of course coincide
functions for each isospin channel as with the previous results, E¢40), for the scattering lengths
when annihilation is present. From E57) to (59) the zero
momentum elastic, charge transfer, and annihilation cross
sections are given by

(é-Kk)(k—ia)—(b*-a?
(é+K)(k+ia)+(b2—a?)

k+ib
k—ib

S/(k)= (60)

- . - 4
where the parameters in this expression refer to a specifiogs=4n|as’|?,  oe=4mal’|?, o= — Tlm(ag”)
isospin as indicated. Then

(65)
o) — 4m | (b’—a’+ba+k®)?+(b—a)*¢? in the effective range approximation in termsaff''= (a§'"
1S 124 k2| @2(£+ k)24 [b2— a2+ k(£+k) ]2 +a%™/2, the commork *K~ or K°K® scattering length in
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a (units of Mr<) FIG. 5. Calculated totak-wave elastic, reaction andX the

annihilation cross sections as a function of the invariant rifgssf

FIG. 4. Real and imaginary parts of the complex scatteringthe colliding kaon-antikaon pair. The vertical line indicates the

length agff as a function of the parametarof the isoscalar Barg- threshold value at By
mann potential. The remaining parameters are as in Table I. Th
fo(980) ground state becomes unbound asa%féx passes through

zero from positive to negative values.

Where 5o=|S,(k)| is theKK inelasticity, and wherg andk
are the relative momenta of the pion or kaon pair of the same
total CM energy.

The two curves market)+(b) in Fig. 6 (the upper one
the absence of Coulomb interactions, amd'’=(a" includes Coulomb distortion [55] via the factor
—a%™/2. One can show from Eq63) that the sign of |f{7)(k,d)| 2~2my[exp(2r7)—1]"* taken from Eq(A19)
Re(af”) is determined by the sign of the “bare” scattering of the Appendix forkd~ wad<1) show the inferred results
lengtha, given by Eq.(25) in the absence of absorption, and for o,(7+ 7~ —KK), where they are compared with* =~
hence the sign of the parameteof the Bargmann potential scattering dat#27,28, and the fit, curve(c), to these data
that controls the existence{0) or not @>0) of a bound using a parametrizegr7 scattering amplitude with param-
state in channel Im(af”) is independent of this sign. Fig- eters extracted from these experiments. The extraction pro-
ure 4 illustrates how the real and imaginary partsa@f‘f cedure is documented in detail j27]. A coupled channel
would vary should this parameter vafye. the binding en- treatment of ther7-KK system leads to similar results
ergy vary in the isoscalar channel. The remaining param-{20,23,3Q (especially{30]) shown by curvegd) and (e).
eters for this illustration have been kept the same as in Table Figure 6 clearly shows that the strong enhancement of the
I. However, the effects for small variations in the binding cross section near threshold is not adequately reproduced by
energy from real to virtual around zero are not large: forthe pure molecular picture. The same remark holds for the
example simply switching the sign @ to +0.1930M in  calculated 7= inelasticity, discussed below, that is corre-
Table I(thereby also unbinding the isoscalar chaprneduses spondingly somewhat too large near thresh@liy. 7).

Oelas 10 decrease by-20% from 106 to 86 mb whiler, The pure molecular picture agrees reasonably well with
remains unchanged. the result obtained by that coupled channel calculation of
Calculations of the total elastic, reaction, andimes the  [30] which omitsthe bare scalar meson stedtg[curve (d)].
annihilation cross sections based on E@&) and (58) are  This numerical finding justifies the assumptions made in or-
shown in Fig. 5. However, as there are as yet no reporteder to obtain a simple analytical model. In order to obtain a
measurements dfK scattering with which to compare any good agreement with the data, the introduction of an explicit
of these cross sections, we have attempted to use detailééire scalar meson state is necesgenyve (e)], however.
balance to derive ther* =~ —KK cross section, for which ~ The parametrizedrm scattering amplitudes as taken from
measurements do exig7]. In this case the latter cross sec- €xperimen{27] [curve(c)] assume the existence of a pole on
tion can be exactly related to the=0 absorption cross sec- the second Riemann sheet just below K threshold at
tion for KK— 77 defined by Eq.(59) as follows[see Eq. [997+6—(27=8)i)] MeV in the 77 scattering amplitude.
(A22)]: The experimentally inferred value of this pole lies reason-
ably close to the value of the pole on the second sheet for a
) ) decayingf,(980) bound state given in Table I, that has been
o - . : )
plo (7t —KK) = §k20_go):?(1_ 773) (66) ﬁaelrceu::zdelfg;;nmtgfé}/.ery different points of view presented
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FIG. 6. Ther* 7~ —KK cross section given
by detailed balance, E¢66), as a function of the
KK invariant massP,. The two curves desig-
nated(a)+(b) give the results witupper curve
and without (lower curve Coulomb distortion.
Also shown are ther* 7~ —KK experimental
data [27] (closed circles and [28] (crosses
Curve (c) is a fit to these data using the param-
etrized scattering matrix d27]. Curves(d) and
(e) correspond to coupled channel calculations of
the 7"~ —KK cross section witHcurve (e)]
and without[curve (d)] fg mixing.

1.0 1.1 1.2 1.3 1.4
Invariant mass (GeV)

A further experimental check on these calculations is profong range Coulomb potential. In the following we construct
vided by comparing with the daf&9] for the 77 isoscalar  the Jost function that determines the bound states and decay
inelasticity parametenq( ). Since we have assumed that widths of kaonium, that may then be calculated without ap-
only coupling between therm and KK channels is impor-  proximation. The Hamiltonian now also includes the Cou-
tant, this paramater equals the€K inelasticity parameter lomb field V.=aQQ/r, (Q,Q are particle, antiparticle
70(KK)=|Sy(k)| that may be calculated directly from Eq. charge operatoysthat breaks isospin. However, due to the
(60). The resulting prediction fory(7) is given in Fig. 7. very disparate length scalesM,* and ~(aM) " over
For comparison we also show the behaviorg{ =) that ~ which the strong and much weaker Coulomb interactions
follows from a fully relativistic treatment of the pion loop operate, isospin breaking is essentially confined to that re-
integral under Pauli-Villars regularization with cutoffp,,  gion of space =d outside the range of the strong potential.
=4 GeV (the result is rather insensitive to the actual choiceln this region the wave function reads
of cutoff). There is no difference in the two calculations near
threshold. However, the relativistic version becomes more
elastic than the nonrelativistic calculation with increasing 1 _

CM energy. F(‘Pp|K+K7>+ enlKK?), r=d (67)

V. KAONIUM

Besides the isoscal&K bound system, th& *K~ com-  Where ¢, and ¢, describe theswave radial motion of
ponent of this state can bind to form a kaonium atom in theK "K~ andK°K® separately in the external region,

2 T T T T T T T T T T T

n,(mm) T

FIG. 7. The w# inelasticity parameter
T no(7m) as a function of the CM energy. The
o (6 [E ® T experimental data are taken frdi20]. The upper
[ ] . . .. .
| [ ] curve shows the behavior of the inelasticity given
3 I - by a fully relativistic calculation of the pion loop
integral.
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d2 The matching of value and derivative etd is therefore
P+k2—MKVC ©,=0, r>d particularly simple to perform. One finds
1 1( 1 N 1 72
d2 _—= E J— R
(FH@ ¢n=0, r>d. (68) o 2l6 o
r

where the logarithmic derivative§ = ¢,/ ¢, of the internal

Inside of this range we can ignore isospin breaking entirel))’vave functions carrying good isospirare
due to the dominance of the strong isospin conserving inter- F(K)elkd 4+ f(— k)~ ikd
4=
|

action (no internal mixing approximatiof48,49) and work : : (73)
f(k)ed—f(—kye '

with states of good isospin. To obtain the Jost function we
therefore need to join the linear combinations(¢,

+ ¢,)/\2 corresponding td=0 and 1 in the external region The eigenvalue conditiofl,= ¢ that determines complex
r=d onto the known solutions for the complex potentials inenergies of kaonium then reads

Eq. (33) in the internal regiom<d. The latter are given by

¢o(k,r) of Eq. (A5) with the appropriate values af b and{ 1— Eg (iJr i) -0 (74)
taken from Table | for each isospin channel. 2°%¢¢ 4 '
Forr>d the solution describing the scattering oka K ~

pair is given by the standard expression This equation contains no free parameters. The Jost func-

tionsf (k) in the ¢, all have predetermined constants for each
ep(N=1(k,r)—S(k)e?7f ) (k,r). (69)  isospin channel as given in Table |, and come from B8)

if annihilation is included, or Eq(22) if it is not.

The f{7)(k,r) and f{7)(k,r)=£%)(k,r) represent incom- It is useful to express the roots of E4) in the form

ing (outgoing waves in the Coulomb field3(k) is the scat- ky=—i\ua since then\™*—1,2,3... for apure Cou-

tering matrix of non-Coulombic origing=argl'(1+i7) the  lomb field, and also to recognize that the logarithmic deriva-
Coulomb phase shift aridy= wa/ik the Coulomb parameter tives{; can be replaced by their zero momentum values with
for attractive interactionsz = M /2 is the reduced mass. The impunity becausd is alwaysO(ua) for kaonium. Then
f(*)(k,r) are proportional to Whittaker functions. One has L
[50] 7~ (@ =d)+o(uie?) (75)
|
FE(kor) =772 Wi 115(21Kr) _ |
' in terms of the complex scattering length of EG3).
Using these forms for th¢,, the eigenvalue condition
(74) can be reformulated in terms of the complex scattering
lengtha®'" for K*K ™ scattering as

Tnl2

~ I,(l—_in){l—lkl’—Z/.Lar

X[IN2ikr + g(1—ip)+2y—1]+- -},

L1
{d

where the smalkr behavior off{)(k,r) involves[51] the  This leads to an eigenvalue equation of the Kudryavtsev-
standardy function, andy=0.57721 is the Euler constant. Popov(KP) type[31],

The Smatrix in Eq.(69) is determined by the logarithmic
derivative{,= ¢/ ¢, of ¢y atr=d. In detail,

1
Kr—0 (70 ay''=5(ay +ay')= d. (76)

1
Vag''=2pa| y(1- 1) + §x+'n<2>\wd>+27}-

S( k) —e 2i(0'p)( gp—{(j) (71) (77)
{p—&e The logarithmic derivativé (k) of the Coulomb wave func-

tion has been calculated k{= —iA na from Eq. (70).

where{.= 7/t is the logarithmic derivative of the in-  The resulting complex energy spectrum for kaonium is

coming Coulomb wave at=d, andp=argf{)(k,d). Thus  then given by

the Jost function describing kaonium is proportionalltp

—{¢. To find it[49] we determine the value df, by match-

ing ¢p* @, Onto the internal solutiong, and ¢, of good

isospin, wherep,~exp(kr) is a pure outgoing wavgs2].

Due the large difference in space behavior of the stronghe solutions of the KP equation are dominated by g¢he

(br>1) and Coulombic Kr<1) wave functions near~d function on the right hand side that has polea at1/n, for

for momentak~ ua of interest for kaonium, thep(k,r) integern. These poles just reproduce the pure Coulomb spec-

have already reached their asymptotic behavior, while thérum of kaonium. The strong interaction changes this behav-

féi)(k,r) are still given by their smalkr approximation. ior by moving\ off these poles ta = (n+ 8) "1, whereé is

[ 1., )
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TABLE IV. Complex level shifts and lifetimes due to the strong interactions away from the point Cou-
lomb value— 7 a?M /n?= —6.607h? keV for the ground and exciteststates of kaonium. Numerical so-
lutions of the Kudryavtsev-Popov equation have been generated foKth€ scattering Iengtmgff
=(1.940-1.199)M ! given by Eq.(79). The matching radius i~3My*. The real part of lies close to
the sequence 1/1,1/2,1/3,1/4 . for apure Coulomb spectrum.

Level A AE—iT/2 (keV) Lifetime (X 10718 sec)
3rd 0.249% 0.0005% 0.003-0.002 199
2nd 0.3318-0.0009 0.007-0.004 84
1st 0.4965-0.0020 0.023-0.013 25
Ground 0.9863- 0.0079 0.180-0.103 3.2

complex and not necessarily small. In Table IV we list aincreased. In particular, Table VI shows that the lifetime of
series of exact numerical eigenvalue®f the KP equation, kaonium is reduced further by about a factor of three once
and the associated complex energy spectrum for kaoniunannihilation in the isovector channel is introduced via the
These computations use the value w7y decay of theay(980). These results are qualitatively
similar to those given by other approaches to the problem of
kaonium formation and decd3]. One notes from Tables
IV and V that Rex <1/n, corresponding to a positive shift of
the Coulomb level when the strong interaction supports a
. . . . . bound statéthe sign of the real part of the scattering length
admixture introduced via the isovector scattering lergth determines the sign of the level shiftn addition to causing

only contributes to the real part of tiie"K™ effective scat- repulsive shifts of the Coulomb levels the strong field intro-
tering length that enters into the calculation of the level shifts P 9

and decay widths of kaonium. The imaginary part is entirelyquc_eS a decay_vi/édth due t0"K™—2m ann_|h_|lat_|on W'th a
determined by the isoscalar piece of the strong interactiond/fetime 9'1~10 sec[the two-photon annihilation lifetime
However, due to the nonlinear nature of the eigenvalue prob@t O(My*a™°)~10"**sec, or one in 1D decays, is too
lem, the isovector contribution nevertheless influences botkPng to compete It also introduces an extra node into all the
the real and imaginary parts of the resulting energy spectrungigenfunctions of kaonium. This means that the kaonium lev-

Only in the perturbative limi{to be described belomdoes els represenexcitedstates in the combined Coulomb plus

the ay(980) mode contribute solely to the level shifts. strong fields of th&K system. As will be discussed in more
For comparison we have also used the isospin zero angetail below, the occurrence of this node is responsible for
one scattering lengthsS''=(0.86-1.84) fm and a$'" making the kaonium lifetime two orders of magnitude
=(0.06-0.77) fm, based on a recent investigatii80] into  shorter than the~10 1% sec it would have been had the
the effects of a high lying scalar isoscalar quark antiquarkk *K~ pair only been bound by a Coulomb figlg4].
configuration(which we refer to ad,) mixed into theKK Let us briefly indicate how these features come about. The
molecular ground state. Here the effect of the-channel is ~appearance of the additional radial node is required by the
included too. Thek *K ~ scattering length then becomes ~ fact that the 5 state of relative motion has been usurped by
the KK ground state in the strong potential. So the ground
at"'=(1.156-3.268)M '=(0.46-1.30) fm (80)  and excited levels of kaonium have to haves:3® . . . char-
acter with one additional node. This node is always posi-
instead of Eq(79). tioned in the close proximity of th& K~ scattering length,
The predictions for kaonium are given in Tables IV andindependent of the excitation energy. It is real or virtual de-
V, while Table VI summarizes the decrease in lifetime of thepending on whether the strong interaction supports a real
ground state as the complexity of tie"K ™ interaction is  (a,>0) or a virtual @,<0) bound state. This comes about

ag'=(1.940-1.199)M, '=(0.77-0.48) fm (79)

for the complex scattering length calculated from E&8R)
plus the data given in Table Ill. Notice that ttzg(980)

TABLE V. A repeat of the calculations described in Table IV, but for the scattering leagth
=(1.156-3.268)M gl of Eqg. (80) which has been taken from the model of R&0] that includesf{ mixing
and the+ 7 n-channel. This choice leads to lifetimes of about a factor three shorter than those given in Table

V.
Level A AE—iT/2 (keV) Lifetime (x 108 sec)
3rd 0.2494-0.0014 0.002-0.005 71
2nd 0.3322-0.0025 0.005-0.011% 30
1st 0.4975 0.0056 0.017-0.037 8.9
Ground 0.9899-0.0223 0.137-0.291 1.1
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TABLE VI. A comparison of predicted lifetimes of the kaonium factor b/a in both isospin channels over that of the pure

ground state for increasing complexity of tHé K™ interaction. Coulomb state. Physically this comes about because the
strong potentials draw thie* K~ pair much closer together,
Scattering (K"K~ — ) thereby increasing the probability density of finding them at
length (fm) (se9 the origin 