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We study the time-dependent contact area as a viscoelastic solid is squeezed against a randomly
rough substrate. Using a recently developed contact mechanics theory we study how the contact area
depends on time and on the magnificatipiNumerical results are presented for self-affine fractal
surfaces, and applications to tack, rubber friction, and sealing are giver200@ American
Institute of Physics.[DOI: 10.1063/1.1697376

I. INTRODUCTION dent on the contact time. At very low temperatures rubber is
i . ) in a glassy state, characterized by very long relaxation times.
The contact between a viscoelastic solid and hard, rang, this case the contact area is “small.” and very little relax-

domly rough, substrates is a topic of great practical impOrytinn occur on the time scale of a typical contact experiment:

tance, e.g., for pressure sensitive adhesives, rubber frictiog, s the contact area will increase very slowly with increas-
and rubber sealing. When a viscoelastic solid is squeezefly contact time. For intermediate temperatures, where the
with a constant force against a rough substrate, the area @f,5racteristic frequencyo="1/T (where T is the contact

real contact will increase monotonically with the contaCtyime) js somewhere in the transition region between the rub-
time. Since rubberlike materials have a wide distribution Ofbery region and the glassy region of the viscoelastic modulus

relaxation times, the area of real contact will usually increas%(w) the contact area will depend strongly on the contact
over a very long time perio@wvhich, e.g., could be a year or ime T

more). Since the pull-off force depend on the area of real |, 5 |inear viscoelastic material the stresg(x,t), is
contact, contact theories for viscoelastic solids are importants|sted to the straim(x,t) via
for estimating how the pull-off forcéor tack depend on the
applied squeezing pressure and the squeezing time. "

Rubberlike materials have elastic moduktia») that de- O'(X,t)=J dt’ E(t—t')
pend strongly on frequenay. Thus, at very low frequencies o
they behave as very soft “rubbery” materials, with typical . .
elastic modulus in the range 0.01-1 MPa. At high frequen-If we define the Fourier transform
cies they instead behave as hard glassy materials with the 1 (=
elastic modulus of order 1 GPa or more. Thus, as a function ()= _f dt f(t)e'“t,
of frequency the elastic modulus may increase by a factor of 2m | -
1000 or more. The transition from the rubbery region to the
glassy region is very wide, usually extending over more tharthen
three frequency decades. In a contact experiment, the inverse
of the contact time is a characteristic frequency; thus for long  G(X,w)= E(w)(—iw)eX o),
contact time rubber behave as a “soft” solid and the contact
area is “large,” while for short contact times it is relatively where
“hard” and the contact area “small.”

The viscoelastic modulus of rubberlike materials is ~, . [~ Lot
strongly (exponentially or fasterdependent on the tempera- E(w)= fo dtE(t)e™.
ture. Thus, at high enough temperature most of the rubber
relaxation times will be shorter than typical contact times,|t is also convenient to define the frequency-dependent elas-
resulting in a “large” contact area, which is weakly depen-tic modulusE(w) via

Jde

W(X,t ).

¥Electronic mail: b.persson@fz-juelich.de E(w)=—i wé(w).
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Most rheological experiments measiEéw) directly, rather

thanE(w). E(t) can be obtained from relaxation test experi-
ments, or calculated from the complex frequency-dependent
elastic modulu€(w).

Suppose that a viscoelastic solid is brought in contact
with a hard rough substrate at tihe 0. That is, the applied
(squeezing force vanish for negative timéno contac,
while it is nonzero fort>0. In the simplest approach, the
contact area is calculated using the standard Green-
wood—Williamsort contact mechanics theory, with the
modificatiorf that the time-dependent viscoelastic relaxation
modulusi(t) is use instead of the constant elastic modulus
as in the original theory. However, this approach overlooks
the following important effect: Assume that the solids are
squeezed together with a constant force at time. For
very short time the contact will be determined by the short
time (or high-frequencyviscoelastic modulus, and the con-
tact area will be “small.” Now, as time increases the elastic
modulusE(t) decreases and the contact area increases as a
result of the growth of the contact “islands” that was formed
at timet=0, and as a result of the formation of new contactF!G. 1. With increasing time_, t_he conta_ct area between the two solids in-
islands fort>0 (see Fig. 1 But a volume element of the o :a' Otr:'%fglzzvv\vltgsogefi)gftc'gﬂt:ﬁf‘:&gomaﬁ ataaand O, and by
solid that is deformed at time=ty,>0, will give rise to a
stress that evolve with time asE(t—ty)(t>ty). Thus, the
stress distribution at the interface at tite0 will depend on

E(t—t’) for all times 0<t’<t, and not just onE(t), as The theory developed in Ref. 6 is based on the assump-
assumed in Ref. 2. This fact has already been pointed out ition of roughness on many different length scales. The basic
Ref. 3. idea behind this contact theory is that it is very important not

In this paper we present a study of the time dependenc® a priori exclude any roughness length scale from the
of the contact area when a viscoelastic solid is squeezeanalysis. Thus, iA(\) is the(apparentarea of contact when
against a hard, randomly rough, substrate. We present nthe interface is studied at a spatial resolution corresponding
merical results based on the viscoelastic modulus measuréd the wavelength\, then we study the functiorP({)
for soft tacky rubber and tire rubber, in contact with hard=A(\N)/A(L), which is the relative fraction of the surface
substrates that have self-affine fractal surface roughness. /A&gea where contact occurs on the length saatd /. Here
illustrations, we discuss the implications for tack, rubberA(L)=A, denotes the macroscopic contact afeais the
friction, and sealing. We emphasize that the present theory idiameter of the macroscopic contact area so thflt)
only valid within the assumption of linear viscoelasticity. ~L?2]. The functionP(¢) can be obtained from the interfa-
Thus, for example, if a polymer in the glassy state iscial stress distributiofP(o,¢) at the magnificatiors, via®
squeezed against a hard rough substrate, local plastic flow -

(nonlinear processwill occur in the asperity contact regions, P({)= f do P(0,0). )

and the time dependence of the contact area cannot be pre-

dicted by the model presented in this paper. Similarly, forgqr 5 purely elastic solidP(,¢) satisfy the diffusionlike
polymer systems that undergo large-amplitudiquidlike) equation®

flow when exposed to external forces for a long time period,

will not be accurately described by the present theory. This P _ 9P

may be the case for uncross-linkéat weakly cross-linked a_g_ (£ 902’ )
polymer systems with low glass transition temperatures, or
cross-linked polymer systems with mobilquidlike) addi- ~ Where
tives. -
f(0)= 7 (E*)%aq’C(a),

IIl. CONTACT MECHANICS FOR ELASTIC SOLIDS— where q=¢q, (with q =2m/L) and where E*—E/
A BRIEF REVIEW (1—v?). The surface roughness power specia) is de-

The discussion in this paper will be based on twofined by
contact theories, namely the Greenwood—William$GiV) 1 ,
theory:* and a very recently developed thedry.We will C(q)= WJ d?x(h(x)h(0))e"9%,
use the GW theory in its simplest form where all the surface 7
asperities are approximated by spherical bumps of equal ravhereh(x) is the height of the rough surface measured from
dius. a flat reference plane chosen so tfiat=0.
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FIG. 3. The logarithm of the normalized contact ard&)/A,, for a tire-
tread rubber block in contact with an asphalt road as a function of the
logarithm of the magnification; (lower scalg, or the spatial resolution
(upper scalg The squeezing pressure is 0.4 MPa and the contact time 1 s.

FIG. 2. Arigid block squeezed against an elastic, randomly rough, substratéthe solid' and dashed Ijnes are without and with the adhesional interaction
included in the calculation.

The system is studied at different magnifications. At the lowest magnifica-
tion {=1, no surface roughness can be observed and the block makes ap-

parent contact with the substrate everywhere, resulting in a stress distribu-

tion in the form of a Dirac delta function centered at the applied sirgss

When the system is studied at increasing magnificatierd, surface rough- ~ Since G~1/0'S it follows that the area of real contact is
ness can be observed, resulting in a broadened stress distrigsierthe  proportional to the load for a small load. Usif®) and (4a)

text for detail. o
ext for detaily we can write, in a general case,

1
Oo c

P(¢)=erf

J
The physical meaning of E?) is as follows: When the 2 Pl(g)) ' (4b)

system is studied at the lowest magnificatig¢rn 1, no sur-
face roughness can be observed and the block malogsr- In this paper we neglect the influence of the attractive
end contact with the substrate everywhere in the nominakdhesional interaction between the solids at the interface.
contact area. In this case, if we neglect friction at the interHere we will briefly describe under which conditions this is
face, the stress at the interface will everywhere equah good approximation. Assume that an elastic solid with a
the applied stresg, see Fig. Pa), so thatP(o,1)=48(c  flat surface is squeezed against a nominally flat substrate. Let
— o). When we increase the magnification, we observe sureg be the nominal pressure in the nominal contact area. Let
face roughness with wavelength down Xe=L/{. In this  us first neglect the adhesional interaction. In this case the
case one may observe some noncontact regions, as showndantact area between the solids will typically depend on the
Fig. 2(b). Since the stress must go continuously to zero at thenagnification as shown by the solid line in Fig. 3. When we
edges of the boundary between the contact and noncontaicicrease the magnification, the contact afdd) will con-
regions, it follows that the stress distributid®( o, ) will tinuously decrease while the local pressures in(#pparent

have a tail extending the whole way down to the zero stresg;ontact areas increases. Let us study the system at the mag-
as indicated in Fig. @) (right). There will also be a tail nification {=L/\, corresponding to the spatial resolutidn
toward larger stresses> oy because the average stress mustWe now take into account the adhesional interaction. In a
be equal tooy. Thus, with increasing magnification, the first approximation the adhesional interaction will give rise
stress distribution will broadefwithout limit), as indicated to an additional pressure so that the contact area at the mag-
in Fig. 2 (right). This is similar to the broadening by diffu- nification ¢ depends onoy+ o4({), where the adhesion
sion of a system of particles initially localized to one point pressuré,
Xg In space.

Using (1) and(2) gives o) Tyen( £)EX |12 o
2 (= sinx L2G(0) 1 : A

P(§)=—f dXTe =erf G (3
mJo v In a typical case, because of surface roughness, the effective

interfacial surface energy.«<y is smaller than the&bar)
((r' o interfacial surface energy=y;+ y,— vy, observed when
G(0)= qugdg’ (&) _ E(E_) f‘“dq FC(q). two perfectly flat surfaces are brought together. However, as
0 z 4\ o the magnification increases(i.e., the resolution\ ap-
Note that for small loadry, G>1, and in this cas€3) prpaches an atqmic distancee wil appr_oachy. If we use
reduces tP(¢)~P,(¢), where v instead ofy in (5), we ge.t amverestlmatlorqf the im-
portance of the adhesional interaction. As an illustration of
P.()=[7G()] Y2 (48  the usefulness of the concept of adhesion pressure, in the

where
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Appendix we present a short derivation of the standard JKR
result for the adhesion of an elastic ball to a rigid flat sub-
strate.

In a typical application, e.g., a tire on a road or during
the contact phase in a tack experiment, the external squeez-
ing pressure is of ordery~1 MPa. Assuming thay has its
origin in the van der Waals interactiqas is almost always FIG. 4. Contact between a rough hard substrate and an elastic solid. All
the case in practical applicationgze havey~1 meV/Az2. asperities with heighth greater thard(t) makes contact.

The equation,

7T’}’E* 1/2
N ~1 MPa small compared to the nominal surface area. However, if the
. _ . ) . height distribution is assumed to be exponentigfh)
gives A=~100A if E*=1MPa, and A\=1A if E =B exp(—h/\), then A will depend linearly onFy, and we

=0.01 MPa. Note that at a given squeezing pressure, thgi| therefore focus on this limiting case in the present sec-
length-scalex where adhesion becomes importaigcreases tign.

very soft elastic solids, e.g. tack, the adhesional interactiogpherical asperity squeezed against the flat surface of a vis-
can in a typical cas@vhereso~1 MPa) be neglected during ¢oelastic solid. The contact area will be circular with a radius
the contact formation process. But even for tire rubber thg (t) and areaa=nr2, related to the penetratio(t) (the
adhesional interaction will become important only when wejndentation depth into the elastic soligdia the standard
study the contact area with a spatial resolution of l@ast Hertz formulagi?

=100 A. This is illustrated in Fig. 3 for a tire tread rubber

squeezed against a road surface. Since rubber friction on  &(t)=r?(t)/R, (6)
rough surfaces is mainly due to viscoelastic deformations of
the rubber on length scales larger thanuth (see Refs. 6, a(t)=mRa(t). 7

28), it is clear that the adhesional interaction will have a
small influence on the friction coefficient in this case. How-
ever, if we study a property such as the pull-off force that/12

only depend on the area of real contact, then the adhesion- 8 [t d

induced enhancement of the contact area may be important fy(t)= S—Rf dt’ E*(t—t’)Wr3(t’), (8)
in some cases. Note also that even if the area of real contact o
is determined mainly by the squeezing force, as will be th%NhereE* _

case in most applications to tack, the adhesional interactiogS the loading history is such that the contact aneseases

in the area of real contact will be_ t_haaole origin of the with time, and we will only focus on this case in what fol-
pull-off force. However, the exact origin of the pull-off force |

is a much more complicated problem than the contact forma-
tion process, in general, involving cavity formation, string- the rough substrate; see Fig. 4. If there Atg spherical

ing, and .other_ nonlinear Processes, and cannot _be Succe%lssfperities, then the number of asperities in contact with the
fully studied without a detailed knowledge of the linear andelastic wall will be

nonlinear mechanical properties of the rubber itSett.
Note that the adhesional interaction becomes more im- %

portant when the nominal contact pressurg decreases. N(t)=f dh NoP(h). 9

Thus, adhesion is important wheR<\,, where \, 4

= 7E*/(r(2, increases with decreasing,. This effect may be Since §(t) =h—d(t), using(7) we get the area of real con-

important for formula 1 tirewhich are very widg for  tact,

which, in contrast to normal personal car tires, it is believed

that adhesion is important because of the special design of _ " _

the tread tire rubbefwhich contains sticky substanges Alt)= jd(t) AN RoPMmRh=d(n)]. 10

The normal(squeezingforce fy is related to the radius(t)

E/(1—v?). These results are only valid as long

Assume that the elastic solid is locatedzatd(t) above

Using (8), the total normal forcé-y is given by

IIl. GREENWOOD-WILLIAMSON (GW) CONTACT SR .
THEORY FOR VISCOELASTIC SOLIDS v f dh Nop(h)J dt’ E*(t—t')
t) —o

Fan(t) = 3

In the simplest description of a rough surface, the sur-
face asperities are all considered as spherical cups with equal , o
radiusR but random heights. Random surfaces have Gauss- X g[h—d(t )]W[h_d(t )P (11)
ian height distribution. However, for a Gaussian height dis-
tribution the GW model does not give a contact alghatis  Let us assume that the squeezing is turned on atttir@ so
linearly dependent on the squeezing fofgg, as observed thatFy=0 for t<0 andFy=Fqy=const>0 for t>0. In this
in more realistic treatments as long as the contact area sase we get frongll) for t>0,
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E*(t)

8/R [~
Fo=Fomr + dh NoP(h
0 OE*(O) 3 jd(t) 0 ( )

t d
xf dt’ E* (t—t')g[h—d(t")] = [h—d(t")]32
o dt

(12
Let us introduce

v(t)=—d(t),

Contact between a viscoelastic solid and a rough substrate 8783
Taking the time derivative of this equation and usifi®)
and (19) gives, after some simplifications,

v(t) vA(b)

v

(21

wherer=(E.,/Eg) 7*. From(20) we get the boundary con-
dition

E*(0) Fy

which is the relative velocity between the surfaces. ThusEquation(21) is easy to integrate to get

(12) can be written as

I O
Fo=Fogv (g +4\RJd<t) dh NyP(h)

xftdt' E*(t—t")g[h—d(t")Jo(t")[h—d(t')]¥2
0

13
Substituting
P(h)=Be "
in (9), (10), and(12) and performing thén integrals gives
N(t)=NoBre 9V, (14)
A(t)=NBmR\2e 4/ (15)

Fo=F wm Lt E*(t—t")ou(t)e 9 (1g)
0 OE*(O) 0 v

where
a=2(wR)Y2\3N,B.

Equation(16) is an integral equation fai(t), which can
be solved as follows. Let us assume that

E*(t)=Eg+(E.—Eg)e V™, (17)
so that
E*(t)=(E,.—Eg)(—1/7*)e U™ (18)
and
E*(t)=—E*(t)/7*. (19
The time derivative 0f16) gives
E*(t) . ]
—E— —d(t)/\
0 FOE*(O)+aE (0)v(t)e
t ) ,
+af dt’ E* (t—t")o(t")e” 4
0
or
Fo E*(t)
_ (HIN
v(0=""E%0) E¥(0) ©
t E*(t—t') ,
- / 1 ald(t) —d(t’ )]\
fo dt' g5y v (e . (20)

U(O): - E*(O) aE*(O) d<0)/)\' (22)
N/
U(t): CeﬂTT_l’ (23)

whereC is a constant. Next, using that= —d(t), we get

1
d(t)=dy+ XIn(C—e’“T). (24)
Now, in the limitt—0 the contact mechanics is determined
by the high-frequency elastic modulls so that it is easy to
calculate

Fo=aE. ne 4O (25)
Using (22) and(25) gives
v(O):L*(l—E . (26)
T E.
But from (23),
N7
v(0)==7:
and combining this with26) gives
C= E- . (27)
E.—Eo
Using (24), (27), and(15) gives
A=A, 1+ ?—1 e U, (29

whereA; is the contact area for large tinte-o. Note that
the short-time contact are®0)=A,E,/E.. <A, since typi-
cally Eq/E,,~103,

IV. PHENOMENOLOGICAL VISCOELASTIC
CONTACT THEORY

Consider an elastic solid with a flat smooth surface
squeezed against a randomly rough substrate. Contact me-
chanics theoriés'® show that as long as the area of real
contact,A, is small compared to the nominal contact area
Aq, the area of real contact is proportional to the normal
(squeezingforce Fy . Thus, the theory developed in Ref. 6,
and briefly described in Sec. I, gives

2 _Fn
Q) EX

whereQ({) depends on the surface roughness power spectra
C(a):

A(Q)= (29
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acd 1/2
Q=U0 dq q3€(q>) : (30)
Equation(29) can also be written as
E* ()= — (31
mQ({)

whereoy=Fy/A, is the nominal normalsqueezinygstress,

andP({)=A({)/A, the relative contact area at the magnifi-
cation {. If the stressoy(t) depend on time, the area of

contactA(¢,t) will also depend on time and is given 631).

The results above was derived for a purely elastic solid.

Persson et al.

Now, let us assume thaty(t)=o0y for 0<t<T and zero
otherwise. In this case,

0'0/277
Bolw) = g (1-e

in) ) (36)

Substituting(35) and (36) in (34) gives

2 o9 (—1)

PEYD= T8 E Zmi

J’ q w+ilr*
X)L ot (erion)

(1_ein)efiwt,

We now generalize the theory to a viscoelastic solid, charac-

terized by the viscoelastic modulli&* (t). We tentatively
replace(31) with

t IP(Z,t’ 2 t
J dr e (t—t) o )=W‘g((§;.

— at’
Let us define the Fourier transform,

(32

1 (= .
’5'0((1)): E J_ dt Uo(t)elwt,

and the inverse transform

ao(t):f dwTo(w)e
If we assume thatry(t) vanishes fort=*=o we get from
(32),

20(1)

E*(w)(—iwt)ﬁ({,w)= m,

(33
where we have defined
E*(w)=f dt E*(t)e'“t.
0

Using (33), we get

- 2
P({w)=

Gol@) 2 Tyw)

mQ({) E* (w)(—iw) TQ({) E*(w)

and

To(w)
@ E(w)

—iwt

2
70(0) f . 39

Now, assume that

P({H)=

E*(t)=Eg+ (E.,—Eg)e V™.
In this case,

. Eo

E*( ): Eoc_EO
0 i

1™ —iw

and
E(w)=(—iw)E(w)

iEo/™ +E.0
w+til*

(Ex—Eplo

=Ey+ -
0 w+ilt*

(39

(37

where 14=(Ey/E..)/7*. Performing the integral in37)
givesP(¢,t)=0 for t<0, while for 0<t<T,

: (39

which agree with(28). This equation is only valid for such
low load thatP(¢{,t)<1. However, we may tentatively ob-
tain an expression for all loads as follows: First, comparing

(38) with (4) gives
2 -2

o0

Eo
_ —t/r
+ =N 1)e

a ad EO
G—Zfo dg q3<:<q>(0—0

We then use this expression in the form(d) to get

P(¢,t)=erf

2/G(L,1))

More generally, if

Pu.)= Q(Z)f do

denote the relative contact area to linear orderdn then in
analogy with(4b), we propose to use

To(w)
E* w)

—th

(39

(40)

N
P(grt) = erf(? Pl(glt) ,

for all values ofa. For the applied stress given by E§6),
we have

1_ein e—iwt

o 1
PN i 2m | Lo

—ilw E*(w)
20 oo . 1_ein e*iwt
7Q(0) f Ttw B ()Y

This result does, of course, not depend Dras long ast
<T (causality. Thus, we are free to choose forany value
larger than the timé under consideration. It turns out to be
convenient in the numerical evaluation Bf(Z,t) to choose
T=at wherea>1 but of order 1, e.g., 1.5. Equatio40)
and (41) have been used in all the following numerical cal-
culations.
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FIG. 5. The logarithm of the power spect(q) as a function of the L /./
logarithm of the wave vectay. Results are shown for an asphalt road track — | nim ,
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V. NUMERICAL RESULTS AND APPLICATIONS S b tack,_~ /

In this section we will present three different applica- | o
tions of the viscoelastic contact theory developed above,
namely to(a) tack of pressure-sensitive adhesivESA), (b) 1.6 ; - ; :
rubber friction, andc) sealing. We will not present any de- L (©)
tailed comparison of the theory with experiments, but rather 12}
just indicate three different applications where viscoelastic w
contact mechanics should be very important. In the future we o sl ta‘:"\_ﬁ b1
plan to present a detailed comparison of the theory with ex- Lé-l = :
periments. = f_;’

We will apply the theory for two different substrates, 0.4t g tread
namely a polished “steel” surface that is assumed to be self- ek i
affine fractal** with the fractal dimensiorD;=2.2 (corre- 0 R
sponding to the Hurst exponet=0.8), which is typical for o o 4 8
surfaces prepared, e.g., by sandblastingfar brittle mate- log w (1/s)

rials) by cleaving. The surface roughness power spectra

; ; ; _ FIG. 6. (a) The real andb) the imaginary part of the complex viscoelastic
C(Q) is shown in Fig. 5. Note th@(q) const forq<q0 modulusE(w), and (c) the loss tangent IB/ReE as a function of fre-

_ -1 :
=6x10' m™!, and the self-affine fractal fog>q,. The quency. Results are shown for a typical PSA rubber, and for a tire rim and
“steel” surface has the surface root-mean-squdrms) tread rubber.

roughness lum. In the context of tack we also consider

surfaces with other rms roughness amplitudes, nantgly,

=0.25, 4, 5, 10, 20, and 10@m, but with all the other tal the whole way up to the lateral siteof the surface. In
parameters the same as above; we will refer to these surfacesese case there is no roll-off wave vector in @) spec-

as “steel” surfaces. tra, and the only reasonable definition of the magnification

The second surface is an asphalt road track for which weefers to the length scaleso thatZ=L/\>1. In the follow-
have measured the height profilgx) using an optical ing the magnificationy=1 will always refer to the roll-off
method. From the measured data we have calcul@f@)  wavelength\.
using a recently developed computer coti@he resulting The viscoelastic modulus of the PSA rubber, rim rubber,
power spectra is also shown in Fig. 5. In this c&&) is and tread rubber used in our numerical calculations are
nearly perfectly self-affine fractal far>q,=1694 m %, the  shown in Fig. 6.
fractal dimension beind@{~2.3 and the root-mean-square
roughness$,,=0.26 mm.

For later convenience we define the cut-off or roll-off Pressure sensitive adhesives are used in many important
wavelength\ ,=2/q,. It is often convenient to refer the applications, e.g., for Scotch tape, post-it pads, and self-
magnification{=1 to the length scal&, rather than to the adhesive labels and envelopes. The adhesive consist of a
linear sizelL of the rubber block. Thus, if we study the sys- very thin layer(usually of order~20-100um) of a very soft
tem at the resolution, then{=\y/\. In this case it is clear (weakly cross-linkegirubber compound. The low-frequency
that if we study the system with a resolutian>\, (but, of  elastic modulus is typically only 0.01 MPa, which 1s100
course \<L), thenZ<1. In particular, when the resolution times lower than the rubber used for tires; see Fig. 6. As a
equals the sizé& of the block(or the nominal contact arga  result of the low elastic modulus, nearly complete contact
then {=\y/L, which is the smallest possible Some sur-  will occur in the apparent contact area, even for relative low
faces, e.g., surfaces prepared by fracture, are self-affine frasgqueezing pressures and large surface roughness. This is in

A. Tack
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FIG. 7. (a) The logarithm of the relative contact area at the magnification F|G. 8. (a) The logarithm of the pull-off force® (in arbitrary unit3 as a
{=10 corresponding to the wavelength=1 nm, as a function of the loga-  function of the logarithm of the contact time. For the contact pressyre
rithm of the contact time. For the contact pressage=0.01 MPa.(b) The  =0.01 MPa.(b) The logarithm of the pull-off forcéwith the same units as
logarithm of the relative contact aréafter 1 s of contagtat the magnifi-  in (g)] after 1 s of contact, as a function of the logarithm of the contact
cation{=10°, as a function of the logarithm of the contact pressure. For apressure. For three different surface roughnesses.
self-affine fractal substrate surface with the fractal dimenfiles 2.2, the
roll-off wave vectorg,=6x10* m~! and rms roughness amplitudég
=0.25, 1 and 4um. For PEHA-AA at the temperaturds=20 °C.
force F on the contact time and contact pressure for smooth
and rough PSA on the same smooth steel surface. The tack

contrast to tire rubber that under similar conditions wouldfilm is a standard polymer compound similar to PEHA. If
give a contact area of only a few % of the nominal contactone assumes, as a first approximation, that the pull-off force
area(see below. The theory presented above and the nu-is proportional to the area of real contact, then if the smooth
merical results presented below are for a semi-infinite visand rough PSA films in the measurements would correspond
coelastic solid and not for a thin confined viscoelastic slab ato the surfaces in Fig. 7, with the rms roughness 0.25 and 4
in most applications to tack. Nevertheless, if the amplitudeum, the agreement between the theory and the experiment is
and the wavelength of the surface roughness are small comemarkably goodin Ref. 16 no numerical values of the rms
pared to the thickness of the viscoelastic slab, then theoughness was presented for any of the studied supfaces
present model should give approximately correct results alsblevertheless, one cannot expect that the pull-off force is
for pressure-sensitive adhesives. strictly linearly related to the area of real contact. For ex-

We have performed calculations for two different stan-ample, at high pressure, complete contact occurs, but even in
dard rubber tack compounds representative of acrylic PShis case= will depend on the contact time because of relax-
used in applications, namely po¢Bethylhexyl acrylate ation of the stress distribution at the interfacee below.
(PEHA) and PEHA with 2% acrylic acifPEHA-AA). The  Furthermore, many PSA are able to form chemical bonds
results are summarized later in Figs. 7, 10, 11, 12, and 13.with the surface over rather long timésround 24 h This

Figure 7 shows results for PEHA-AA &t=20°C, in  situation is clearly excluded from our model.
contact with “steel” surfaces with the rms roughness ampli- It is clear from Fig. 7 and the experimental data reported
tudeshy=0.25, 1, and 4um. Figure 7a) shows the loga- on in Fig. 8 that in most casgst room temperatujeone
rithm of the relative contact area for at the magnification would expect complete contact at the interface for pressures
=10 corresponding to the wavelengih=1 nm, as a func- above 0.1 MPa, unless the surfaces are very rough or the
tion of the logarithm of the contact time, for the contact contact time very short. However, even in situations where
pressurery=0.01 MPa. Figure (b) shows the logarithm of complete contact occur at the interface one may expect a
the relative contact are@fter 1 s of contac}, again at the dependence of the pull-off force on the contact time for the
magnification{= 10, as a function of the logarithm of the following reason: If the surfaces are squeezed together with a
contact pressure. high pressure for a short tin{eeading to complete contact at

It is interesting to compare the results in Fig. 7 with thethe interfacg a wide distribution of stresses may be ex-
experimental data reported on in Ref. 16 and shown in Figpected at the interface. With increasing contact tiomeder a
8. The figure shows the dependence of the maximum pull-offixed squeezing pressyréhe stress distribution will relax.
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0.6
rubber A
_. 04
FIG. 9. A thermal fluctuation can give rise to a detached region at the Y 0.2
interface if the local tensile stress is high enough.
. . . 0
When the applied contact pressure is removed, tensile -2 -1 0 1
stresses will develop in the rubber in the valleys of the rough logt(s)

substrate surface. If the contact time is long enough, thesgg 10. The root-mean-squafems) o, of the fluctuating stress at the
tensile stresses may be small and no local detachment willterface for PEHA-AA, at the magnificatiofi= 10° corresponding to the
occur. However, if the contact time is short enough7 Verywavelengtmwl nm, as a function of the logarithm of the contact time. For
Iarge tensile stresses will develop when the external Squee'Zl_self—affine fractal substrate surface with the fractal dimerBian_.Z, the
. . . r?II—oﬁ wave vectorg,=6x10* m~! and rms roughness amplitudég
ing stress is removed, which may Ie_ad to local detachment at 1, 5, and 10um, and for the temperatuie=20 °C and contact pressure
the bottom of some valleys; see Fig. 9. These detached re; =1 mpa.
gions will then act as nucleation seeds for the cavities that
usually are observed during the pull-off procés& (In the
discussion above we have implicitly assumed that the contact . .
is perfect during the compression stage. However, it is posbigher than—o (notec<0) will be N® (o). For examplg,7|f
sible that in some cases air pockets could be trapped in tHgl/o1=5 a;1dA0=1 cnt andx=1nm, we getd~10
valleys. These too could act as seeds for cavities durin&”quD%lo- ) .
pull-off.19) Assume that the locdknsilestresso act in a small re-

Let us study the stress relaxation at the interface whe@ion of orderA>x\ at the interface. Let us calculate the
the solids are squeezed into complete conta¢t=. For a change in the free energy when this region undergoes detach-

purely elastic solid the stress distributiBio, ¢) at the mag- Ment; see Fig. 9. Using standard crack theory we get

nification £ is (approximately given by U~A 2= 02\3/E,
2
p(o-,é')%iex[{_ i_l) Ipi}, (42) Where Eg=E(w) for =0, is the low-frequency elastic
209 0o 4 modulus. This quantity is negative, i.e., the detached state

where P,=P,({) is given by (4a). Following the earlier has a lower free energy than the attached state, if
treatment, we will assume that this formula is approximately EoAy| 2

valid also for a viscoelastic solid if we replagy () with |o|>o* =( ) )

P.(Z,t) given by (41). Thus, the stress distribution is ap- A

proximately Gaussian with the root-mean-square width,  The barrier separating the attached state from the detached
)1/2 state has the height

0o
P&t AU=5Ay\?/9. (43

Note thatP;~ o so thato; is independent of the squeezing | \ =1 nm, Ay~3-5meV/R andE=10" Pa, we geir*
pressurero, which must be the case when complete contact- g 6 MPa. If the local tensile stress takes at least this value,
occurs at the interface. In Fig. 10 we show (the root mean  he detached state will have smaller energy than the attached
square of the fluctuating stress at the interfdoe PEHA-  state. However, only if the energy barrier that separates the
AA, at the magnification{ = 10° corresponding to the wave- complete contact state from thically) detached state is
lengthA~1 nm, as a function of the logarithm of the contact gmajier than, say-1 eV, will the system be able to junipy
time. The _”ESU”S are for steel surfaces with the rms rougha thermal fluctuationover the barrier on typical macroscopic
ness amplitudeby=1, 5, ar_1d 10um, and for the tempera- times, say 1 min. Using43) we calculate the barrier height
tureT=20°C. The calculations have been performed for they |y~ 2 eV when\~1 nm, whileAU~1 eV when\ is of
squeezing pressurgo=1MPa, which is high enough 10 the order of a few nanometers. Thus, nanometer-sized de-
give complete contact at the interface for the roughness amyched regiongwhich may act as a nucleus for the cavities
plitudes and contact times displayed in Fig. 10. When thgormed during pull-off can form spontaneously if the tensile
applied stress is reduced to zero, the probabiity) to find  stress at the interfad@n the absence of a squeezing pressure
a stress smaller tham can be obtained fron42) with oo phecomes of order 0.6 MPa, which will be the case if the

2
ol(z,t)=[<(a—go)z>]uz:<_

)

=0: surface roughness is large enough and the contact time short
1 oloy ) enough. For example, if the rms roughness amplitude equal
d(o)= sz_m dx e *72, ho=10um, then for the PEHA-AA adhesive with the con-

tact time 1 s we getsee Fig. 1D o;~0.12 MPa. Thus, with
Since there are roughli=A,/\? valleys on the substrate |o|=0.6 MPa we gefo|/o;="5 and®~10"". If the contact
surface ared,, the number of valleys with tensile stressesarea is 1 crfi as in the example above, we déb~ 10’ sites
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FIG. 12. The relative contact area as a function of the logarithm of the
FIG. 11. The logarithm of the relative contact area for PEfdAshed line  magnification for a self-affine fractal substrate surface with the fractal di-
and PEHA-AA(solid line), at the magnificatio = 1C° corresponding to the  mensionD;= 2.2 and the roll-off wave vecta,=6x 10* m~1. Results are
wavelengthh ~1 nm, as a function of the logarithm of the contact time. For shown for PEHA(dashed linesand PEHA-AA(solid lineg for T=20 °C,
a self-affine fractal substrate surface with the fractal dimenBipn2.2, the for two different substrate rms roughness amplitudgss; 20 um and 100
roll-off wave vectorg,=6x10* m~! and rms roughness amplitudég um. After 1 s ofcontact at the pressukg,=0.4 MPa.
=20um, and for the temperaturd=20°C and contact pressure,
=0.4 MPa.

temperature§=—20°C, 0°C, and 20 °C. As expected, the

at the interface wherénanometer-sizéddetached regions contact area decreases with decreasing Fem_pe_rature; at very
can be formed already without any applied pull-off stress. |0W temperaturgnot shown the polymer film is in a hard

It is important to note that when complete contact occurd/assy state and the contact area is very small.
at the interface, the nucleation of a detached region can only
occur by a thermal fluctuation. Thus, the local tensile stress o
necessary for detachmefinh the absence of thermal fluctua- B- Rubber friction
tions) is of order Ay/a~100 MPa(wherea is an atomic Many sliding systems exhibit atiction spike i.e., a
distance, which is much higher than the tensile stress duringstart-up friction force that is higher than the steady-state fric-
pull-off, which usually is below 1 MPa. Thus, the complete tion force, as illustrated in Fig. 14. The heighf of the
contact state can only be broken bgcal) thermal fluctua-  stiction spike depends on many parameters, e.g., the time
tions. period the solids have been in contact with before sliding, the

As shown above, for pressures of orde0.1 MPa or  gjiding or pull-velocity, and the temperatufeVery many
higher, and contact times of order 1 s or more, completgjifferent physical processes can give rise to a stiction spike.
contact will occur at the interface unless the surface rOUghFor examp|e, for two po|yme|’s in contact, chain interdiffu-
ness amplitude of the substrate is very high. Most experision may lead to a stiction spike. Another mechanism that
ments performed on tack are for substrate surface roughneggs been observed for very many materials, e.g., metals, pa-
below a fewum, but many surfaces of practical importance per, stone, glass and glassy polymers, is a slow increase in
have much larger roughness amplitudes. Here we presefie contact area between the solids as a result of thermally
some numerical results for very rough surfaces and for higlhduced plastic flow(creep, which always will occur when

squeezing pressures. the local stress in the contact areas is close to the plastic
Figure 11 shows the logarithm of the relative contact

area for PEHA(dashed lingand for PEHA-AA(solid line),
as a function of the logarithm of the contact time. The results

are for a “steel” substrate surface with the rms roughness T=20C
ho=20um, at the highest magnificatiog=10, corre- ! L]
sponding to the wavelength~1 nm. The temperatur@ 0.8}
=20°C, and the squeezing pressurg=0.4 MPa. In this ) > 0C
case complete contact is reached after about 0.1 s of contact < 06 -20C
for PEHA ard 1 s ofcontact for PEHA-AA. < 04}

Figure 12 shows the relative contact area as a function of
the logarithm of the magnification. Results are again shown 0-2y

for PEHA (dashed linesand PEHA-AA(solid lineg for T
=20°C, and for two different “steel” substrates with the
rms roughness amplitudelss=20 and 100um. In a practi-
cal application the tack film may be of order 1@@n thick, FIG. 13. The relative contact area for PEHA-AA as a function of the loga-
in which case the present result obtained for a semi-infinitéithm of the magnification for a self-affine fractal substrate surface with the
viscoelastic solid mav be of onlv qualitative validit fractal dimensiorD;=2.2, the roll-off wave vecton,=6x10* m~!, and

. y . yd Y- the rms roughness amplitudag=20 um. Results are shown for the tem-
Figure 13 shows the relative contact area for PEHA-AAperaturest= — 20 °C, 0°C, and 20 °C. After 1 s afontact at the pressure

as a function of the logarithm of the magnification for the ¢,=0.4 MPa.

0
-1 0 1 2 3 4 5
log ¢
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FIG. 16. The relative contact area after one second of contact, as a function
time of the magnification, wheref=1 corresponds to the wavelengtty
=27/gy~0.4cm. The highest magnificatioti=10° corresponds tox
FIG. 14. A block is pulled on a substrate. The spring force is shown as a0.04um. Results are shown for the nominal pressurgs-0.2 and 0.4
function of time. The heighAF of the stiction spike depends on the tinte ~ MPa. For the same tread tire rubber and surface roughness power spectra as
of stationary contact. in Fig. 15, at the temperatufe=60 °C.

yield stress of the solids. Experiméhand theor§®?2 have
shown that the area of real contact increases with the contagfea is due to thermally activated flips of polymer segments.
time t according to That is, the segments of the polymer chains can take many
different positions or orientations, which correspond to dif-
A(t)~a+bin(1+t/7), ferent local minima of the total potentid of the polymer
wherer is a characteristic time. If one assume that the sheasystem. At a given temperature the polymer segments per-
stressS necessary to break the contact junctions dependtorm thermally activated jumps between these local minima.
linearly on the perpendicular pressuges o+ 8P, it follows ~ When an external force act on a rubber block, it will deform
that the stiction spiké\F increases roughly logarithmically the potential energy surface in such a way that the local
with the contact time, as is indeed observed in most casespotential minima become deeper for such chain configura-
The contact area between a rubber block and a hardions that correspond to an elongation of the rubber block in
rough, substrate also increases roughly logarithmically witithe direction of the external force. The polymer segments
the contact timgas long as the contact area is small com-will spend more time in the deeper minima, which corre-
pared to the nominal contact aje@his is illustrated in Figs. spond to a macroscopic deformation of the rubber along the
15 for tire tread rubber in contact with an asphalt ro@&ig-  direction of the external force. A glasségisordered material
ure 16 shows for the same system the dependence of tiseich as rubber has a very wide distribution of barrier heights,
contact area on the magnificatiptdowever, for rubber the separating the local minima. Since a very long waiting time
physical origin of this enhancement of the contact area iss necessary in order for a thermal fluctuation to be able to
very different from that for most other solids since rubberflip a polymer segment over a high potential energy barrier,
does usually not yield plastically, but rather deforms purelythe wide distribution of barrier heights gives rise to the wide
elastically. For rubber, the time dependence of the contadlistribution of relaxation times observed for most rubberlike
materials, and to the asymptotically very slolapproxi-
mately logarithmig increase in the contact area with the con-

0.16 tact time.
Does rubber friction exhibit stiction spikes due to the
0.12¢ §=10y (slow) increase in the contact area? At first one may think
2 I that the increase in the contact area with the time of station-
P 0.08} 100, ary contact observed for rubber will give rise to stiction
- / peaks, just as is observed for metals and other materials that
0.041 1000 yield plastically in the contact aredsee above However,
T the situation for rubber is more complex because the origin
0 of the increase in the contact area is different for rubber than
-1 0 1 2 3 for most other solids.
log t (s) In an earlier publication one of us has developed a

FIG. 15. The relative contact area as a function of the logarithm of thetheory of rubber friction for nonstationary sliding on a hard

contact time for a tread tire rubber at the temperalures0 °C, and for the ~ (randomly rough substraté>* but neglecting the flash tem-
nominal pressures,=0.4 MPa. Results are shown for three different mag- perature(see below. For this case no stiction spike was ob-
nifications:{=10, 100, and 1000. The surface power spectra correspond t&eryed when the sliding velocity was abruptly increases from
an asphalt trac_k with 0_2? mm root-mean-sqg_are_rou_ghness, and the roll-o valuev, to a higher value ,, as long as both, andv, are
wave vectorgy=1694 m -, so that the magnificatiofti=1 corresponds to ; : LS T
the wavelengthho=2/o~0.4 cm. Note that the contact area increases P€IOW the velocityv . for which the steady-state kinetic fric-

with about 50% when the contact time increasesnfrbs to 1 h. tion coefficientu,(v) is maximal. In this theory rubber fric-
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; inder with the diameter 29 mmwith the vertical loadF
(@) =132 N is pulled on(a) a safety walk pavement, aritd) a
200¢ steel surface. The spring for¢ee., the force in the pulling
iy wire) is shown as a function of time, starting from the equi-
I'ID'SI librium state prepared by having the surfaces in stationary
contact for 10 and 1800 s; we refer to these time periods as
the waiting time. In(c) we show the rubber block velocity as
a function of time(for the case of 1800 s waiting time
safety walk pavement (swp) Note that for the safety walk papéa) the spring force is
0 — . — nearly independent of the waiting time. For the smooth steel
(b) surface no stiction spike is observed, but the kinetic friction
Jeoos ] coefficient fort>10 s is about 8% higher after 1800 s con-
tact time, as compared to the case of 10 s contact time. We
attribute this to the following effect: before sliding the sur-
face of the rubber block was abraded with sandpaper to re-
move the top rubber surface layer, which may have different
properties from the underlying rubber, but which is of no
interest in tire application as it is removed after a short run-in
time period. As a result the rubber surface may be rougher
— than the polished steel surface. When the rubber is in station-
- swWp (e) ary contact with the steel surface, the rubber—steel asperity
1b i b At e contact areas will increase with time because of the vis-
' : ity coelastic flow of the rubbgisee abovg If the steel surface is
much smoother than the rubber surface, then during sliding
the rubber will mainly make contact with the steel in the
same rubber surface regions as during the stationary time
period. Thus, even during sliding the rubber—steel contact
area will be largest for the case with the longest waiting time
Uu — = - period_. This wiII_ inc_rease the rubber fri_ction, in particula_r, if
there is a contribution from the adhesive rubber—steel inter-
time (s) action (which depends on the area of real contathe in-
FIG. 17. Arubber blocKin the form of a cylinder with the diameter 29 mm creased friction durmg the first 5 mm of sliding distance in
with the vertical loadFy =132 N is pulled on(a a safety walk pavement, (b) (1800 s contact timecannot be a flash temperature ef-
and(b) a steel surface. The spring for¢iee., the force in the pulling wiee  fect, since then it should also be observed for the 10 s wait-
o o e S e oo T 13015 45 {ime case. Finally we ot hat he present daa shows
thyese tirr?e periods as the waiting%ime. (Ir) we show the rubb;ar block ?hat there is no contribution to the S“(_:tlon spike fr(_)m pin-
velocity as a function of timéor the 1800 s waiting time The experiments ~ NiNG effects at the rubber—substrate interface arising from
were performed at room temperature using a standard tire tread rubber. thermally activated rearrangement of the rubber polymer
chains in the substrate potential during the time of stationary
contact. This is an important and nontrivial reslt.

=
[ ]
=]

spring force (M)

-

10s

spring force (M)
=
=

steal

' steal

0.5

velocity (mm/s)

tion is attributed to the bulk viscoelasticity of the rubber, and
u—0 asv—0 as a consequence of the fact thatHfw)
—0 asw—0.2° Thus, we can imagine a limiting case where
both the force acting on the rubber block, and the sliding  Surface roughness is an important factor that influences
velocity, arearbitrary smallbefore it is abruptly increased to the rate of leakage through seals. Vacuum seals are a special
a valuev, [below the maximum of they(v) curvel.?® For  case where the limit on the leakage rate is particularly rigor-
this case the rubber friction theSfywould predict no stic- ous. The exact mechanism of the roughness-induced leakage
tion spike. The physical reason for this is that the area ofs not well understood® In this section we present a new
contact gradually decreases during tftangential load  way of looking at this problem.

phase, and when full sliding occurs the contact area is al- Viscoelastic materials such as rubber are often used for
ready reduced to the value it has during steady sliding at theealing. Here we consider the tire-rim sealing. The rim is
given sliding velocity. Since this situation is very similar to made from steel. We assume that the steel surface is a self-
the situation described above, involving a rubber block inaffine fractal forq>qg, with the fractal exponenb=2.2
stationary contact with the substrate for some given waitindi.e., H=0.8). The surface root-mean-square roughness is
time before sliding, it is plausible to assume that no stictionassumed to be &m, as is typical for polished steel surfaces.
spike may occur in a stop—start experiment at very low pull-The long distance roll-off wave vector is assumed togge

ing velocity. This result is confirmed by the experiments re-=6x10* m™%, corresponding to the wavelength,
ported on in Ref. 27 and below. Thus, in Fig. 17 we show the=27/g9~100um. The power spectra for the surface is
sliding dynamics when a rubber blo¢k the form of a cyl-  shown in Fig. 5.

C. Seals
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FIG. 19. The relative contact area at the highest magnificatieri,0° (cor-
responds to\~1 nm) as a function of the logarithm of the contact titne
For the nominal pressures,=0.1 MPa. For a tread tire rubber compound,
and for a compound used in the tire-rim area, at the temperafure
=60°C. The substrate is self-affine fractal with the fractal dimen&ion
=2.2, and with the rms roughnessuin, and withgo=6x10* m™ 1.

A/Ag

-6 () the surfaces in these new noncontact areas will be smaller

than along the percolation channel. Since the gas flow
(number of molecules per unit timehrough a rectangular

pore of heighth depends asl~h® (see below we will as-
sume that most gas will leak through the percolation channel.
9 Assuming that the contact regions at any magnification
are approximately randomly distributed in the apparent con-
tact region, we expect from percolation theory that the non-
-1 ] 1 2 3 4 5 contact region will percolate whet/Ay~1—p., wherep,
log ¢ is the site percolation numb&t.For a hexagonal lattice,
FIG. 18. The relative contact area after one second of cotdaéfor tread which is the most pIaus[bIe lattice StrUCture. n th.e present
tire rubbey, (b) (for rim tire rubbey, and the root-mean-square roughness C&8S€, ONne hap.~0.7, while for a square latticeas in Fig.
(c), as a function of the magnification, whefe 1 corresponds to the wave- 20) percolation occurs ap.~0.6. Thus, the exact value of

length\o=2/qo~100 um. The highest magnificatiop=10° correspond  the percolation threshold does not depend sensitively on the
to A=1 nm. Results are shown for the nominal pressurgs 0.1, 0.2, and symmetry of the unit cell.

0.4 MPa, at the temperatuiie=60 °C. For substrate surface with the rms .
1 We assume that the main gas leakage comes from gas

roughnesshy=1 um and the roll-off wave vecto,=6x10* m™1. .
flow through the percolation channel. The most narrow pass
in this channel can be considered as a rectangular pore of
Figure 18 shows the relative contact area after one sedeighth, and of width and lengtix, where\ is determined
ond of contact for tread tire rubbéa), and for rim tire rub- by the magnificatior?, at the point whered/Ay~0.3. The
ber (b), and the root-mean-square roughnéss as a func- heighth of the pore is determined by the rms roughness at

log h s (M)
o

tion of the magnification. Here we have defined the magnificatior?,. . In the present case, if the tire gas pres-
a 12 sure is in the range 0.2-0.3 MPa, from Fig.()8we get
hrms:<27TJ dq qO(q)) {.~10 and from Fig. 1&), h~0.1um.
{dp We divide the tire-rim contact area inta square areas

0.4 MPa, at the temperatufie=60 °C. Figure 19 shows the

relative contact are@at the highest magnificatiof=10°) as

a function of the logarithm of the contact tinte for the AlAg =1 AlAg >1-g  A/Ag <1-R
nominal pressures,=0.1 MPa.

We now study the rubber—steel interface at an increasing
magnification. At the lowest magnificatiofi<1l complete
contact occurs at the interface; see Fig.(&dt). When we
increase the magnification, we observe noncontact areas or -
: T : . =1 =5 £=10
islands. The magnification is now increased until the noncon-
tact area percolates, i.e., until a channel of noncontact SUFG. 20. When the interface between the solids is studied at low magnifi-
face area, extending from the high-pressure internal region cftion, there appears to be complete contaletck areabetween the solids.
the tire to the outsidéatmospheric pressure regjoris first When the magnmcatlon is |n9re§sed it is observed_that only partial contact

e . . occur. At high enough magnification the nonconfadite) surface area will
observed. AS the_magnlflcatlon is increased furth_er’ NEW NOMsercolate and onéor several airflow channels will be visible at the inter-
contact region will be observed, but the separation betweeface.
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expectB to be of order a few cm The number of squares is VI. SUMMARY AND CONCLUSION
m=2m7R/B, whereR is the radius of the tire at the rim. We
expectm~100.

Let us study the gas flow through a rectangular pore o
heighth and width and lengtffin the flow direction \. We
assume stationary and laminar flow, and tha\. In this
case the basic equations of hydrodynamics become

In this paper we have studied the time-dependent contact
prea as a viscoelastic solid is squeezed against a randomly
rough substrate. Using a recently developed contact mechan-
ics theory we presented results for the dependence of the
contact area on time and on the magnificatfoAll numeri-
cal results were obtained for self-affine fractal surfaces. De-

VP~ V2, tailed applications to tack, rubber friction, and sealing have
been presented, and compared with experimental data.
V-(nv)=~0, The theory we describe can only be applied when the

contact area increases with time, which always will be the
whereP is the gas pressure, the flow velocity, u the vis-  case if the system is exposed to a constant squeezing pres-
cosity, andn the gas number density. We assume constangure for timet>0. The detailed behavior of the tack film
temperature, and that the pressBris related to the number during pull-off is a much more complicated topic in general

densityn via the ideal gas law: involving bond breaking, cavity formation, stringing, and
highly nonlinear elongation processes. This topic cannot be
P=nkgT . studied analytically with the same accuracy as the contact

&Prmation process discussed in this paper. Nevertheless, de-
tailed information about the contact area as a function of
magnification and contact time, and information about the
(Pi—PS)hg stress distribution at the interface at the ons_et of pull-off,
~ W forms a necessary background for the discussion of the tack-
B film dynamics during pull-off.
whereP, andP,, are the pressure inside and outside the tire, "€ contact mechanics theory presented above neglect
respectively. Here we have implicitly assumed that the fullthe adhesional interaction between the soffdeve believe
pressure drofP,— P, occur over the pore. IN;(t) denote that this is a gopd appro>'<|mat|c.)n in mo_st of the applications
the number of gas phase molecules in the tivaich is pro- presented in this paper involving relative rough substrates.

portional to the pressur, in the tire), we get for the typical However, following the theory recently developed for elastic
solids® it should be possible to generalize the viscoelastic

Using the equations above the number of molecules that flo
through the pore per unit time is

caseP>Py: i ) ) _
contact mechanics theory to include the adhesional interac-
mP?h® tion.
N]_N - m
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the volume of air in an angular section of the tire of widh

With B~3 cm we getV;~3x10 % m®, and using the vis-

cosity of air u~17x10 6 Ns/n? givesAt~1 year. This is APPENDIX: SIMPLE DERIVATION
an upper limit of the leakage time, since when the interfaciaP™ THE JKR EQUATIONS

contact area is studied at hlghel’ magnification new pore Here we illustrate how the concepts of the adhesion
channels thl’OUgh which the air can leak will be detected. Th%ressure can be used to obtain the Standar(ﬁ?]]@uh for
discussion above is only valid if the mean-free path for thean elastic spher@adiusR) adhering to a flat rigid surface. In

gas phase moleculdat the pressur®,) is shorter than the the absence of an applied load, the radius of the contact area,
pore heighth. If this is not the case the hydrodynamic de- according to the JKR theory, is

scription presented above is not valid, and one must take into 2 \ 13
account the nonspecular scattering of the gas phase mol- r:(QWR 7’)
ecules from the pore surfaces. 2E*

It is interesting to note that the adhesional interactionyp;g equation can be derived using the adhesion pressure
between the rubber surface and the steel rim is likely to hav'érguments as follows: When an elastic ball is squeezed

negligible influence on the leakage rate. Adhesion will aﬁeCtagainst a flat without adhesion, the Hertz theory gives a cir-
the (apparent contact area only at very high magnification . |1ar contact area with the radius
(see Sec. )| but most of the gas leakage occur via the much

larger air flow channels, which can be observed at low mag- [— 37Rog
nification. 4E*

(A1)

: (A2)
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where oo=F/(mr?) is the nominal(or averagg squeezing
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