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IFF, FZ-Jülich, 52425 Ju¨lich, Germany

O. Albohr
Pirelli Reifenwerke, 64733 Ho¨chts/Odenwald, Postfach 1120, Germany

C. Creton
Laboratoire PCSM, ESPCI-10, rue Vauquelin-75231 Paris Cedex 05, France

V. Peveri
Pirelli Tire Section, Pirelli Pneumatici S.P.A., Viale Sarca 222, 20126 Milan, Italy

~Received 19 December 2003; accepted 17 February 2004!

We study the time-dependent contact area as a viscoelastic solid is squeezed against a randomly
rough substrate. Using a recently developed contact mechanics theory we study how the contact area
depends on time and on the magnificationz. Numerical results are presented for self-affine fractal
surfaces, and applications to tack, rubber friction, and sealing are given. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1697376#

I. INTRODUCTION

The contact between a viscoelastic solid and hard, ran-
domly rough, substrates is a topic of great practical impor-
tance, e.g., for pressure sensitive adhesives, rubber friction,
and rubber sealing. When a viscoelastic solid is squeezed
with a constant force against a rough substrate, the area of
real contact will increase monotonically with the contact
time. Since rubberlike materials have a wide distribution of
relaxation times, the area of real contact will usually increase
over a very long time period~which, e.g., could be a year or
more!. Since the pull-off force depend on the area of real
contact, contact theories for viscoelastic solids are important
for estimating how the pull-off force~or tack! depend on the
applied squeezing pressure and the squeezing time.

Rubberlike materials have elastic modulusE(v) that de-
pend strongly on frequencyv. Thus, at very low frequencies
they behave as very soft ‘‘rubbery’’ materials, with typical
elastic modulus in the range 0.01–1 MPa. At high frequen-
cies they instead behave as hard glassy materials with the
elastic modulus of order 1 GPa or more. Thus, as a function
of frequency the elastic modulus may increase by a factor of
1000 or more. The transition from the rubbery region to the
glassy region is very wide, usually extending over more than
three frequency decades. In a contact experiment, the inverse
of the contact time is a characteristic frequency; thus for long
contact time rubber behave as a ‘‘soft’’ solid and the contact
area is ‘‘large,’’ while for short contact times it is relatively
‘‘hard’’ and the contact area ‘‘small.’’

The viscoelastic modulus of rubberlike materials is
strongly ~exponentially or faster! dependent on the tempera-
ture. Thus, at high enough temperature most of the rubber
relaxation times will be shorter than typical contact times,
resulting in a ‘‘large’’ contact area, which is weakly depen-

dent on the contact time. At very low temperatures rubber is
in a glassy state, characterized by very long relaxation times.
In this case the contact area is ‘‘small,’’ and very little relax-
ation occur on the time scale of a typical contact experiment;
thus the contact area will increase very slowly with increas-
ing contact time. For intermediate temperatures, where the
characteristic frequencyv51/T ~where T is the contact
time! is somewhere in the transition region between the rub-
bery region and the glassy region of the viscoelastic modulus
E(v), the contact area will depend strongly on the contact
time T.

In a linear viscoelastic material the stress,s(x,t), is
related to the straine(x,t) via

s~x,t !5E
2`

t

dt8 E~ t2t8!
]e

]t8
~x,t8!.

If we define the Fourier transform

f̃ ~v!5
1

2p E
2`

`

dt f~ t !eivt,

then

s̃~x,v!5Ê~v!~2 iv!ẽ~x,v!,

where

Ê~v!5E
0

`

dt E~ t !eivt.

It is also convenient to define the frequency-dependent elas-
tic modulusE(v) via

E~v!52 ivÊ~v!.a!Electronic mail: b.persson@fz-juelich.de
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Most rheological experiments measureE(v) directly, rather
thanÊ(v). E(t) can be obtained from relaxation test experi-
ments, or calculated from the complex frequency-dependent
elastic modulusE(v).

Suppose that a viscoelastic solid is brought in contact
with a hard rough substrate at timet50. That is, the applied
~squeezing! force vanish for negative time~no contact!,
while it is nonzero fort.0. In the simplest approach, the
contact area is calculated using the standard Green-
wood–Williamson1 contact mechanics theory, with the
modification2 that the time-dependent viscoelastic relaxation
modulusE(t) is use instead of the constant elastic modulus
as in the original theory. However, this approach overlooks
the following important effect: Assume that the solids are
squeezed together with a constant force at timet50. For
very short time the contact will be determined by the short
time ~or high-frequency! viscoelastic modulus, and the con-
tact area will be ‘‘small.’’ Now, as time increases the elastic
modulusE(t) decreases and the contact area increases as a
result of the growth of the contact ‘‘islands’’ that was formed
at time t50, and as a result of the formation of new contact
islands fort.0 ~see Fig. 1!. But a volume element of the
solid that is deformed at timet5t0.0, will give rise to a
stress that evolve with time as;E(t2t0)(t.t0). Thus, the
stress distribution at the interface at timet.0 will depend on
E(t2t8) for all times 0,t8,t, and not just onE(t), as
assumed in Ref. 2. This fact has already been pointed out in
Ref. 3.

In this paper we present a study of the time dependence
of the contact area when a viscoelastic solid is squeezed
against a hard, randomly rough, substrate. We present nu-
merical results based on the viscoelastic modulus measured
for soft tacky rubber and tire rubber, in contact with hard
substrates that have self-affine fractal surface roughness. As
illustrations, we discuss the implications for tack, rubber
friction, and sealing. We emphasize that the present theory is
only valid within the assumption of linear viscoelasticity.
Thus, for example, if a polymer in the glassy state is
squeezed against a hard rough substrate, local plastic flow
~nonlinear process! will occur in the asperity contact regions,
and the time dependence of the contact area cannot be pre-
dicted by the model presented in this paper. Similarly, for
polymer systems that undergo large-amplitude~liquidlike!
flow when exposed to external forces for a long time period,
will not be accurately described by the present theory. This
may be the case for uncross-linked~or weakly cross-linked!
polymer systems with low glass transition temperatures, or
cross-linked polymer systems with mobile~liquidlike! addi-
tives.

II. CONTACT MECHANICS FOR ELASTIC SOLIDS—
A BRIEF REVIEW

The discussion in this paper will be based on two
contact theories, namely the Greenwood–Williamson~GW!
theory,1,4 and a very recently developed theory.5–7 We will
use the GW theory in its simplest form where all the surface
asperities are approximated by spherical bumps of equal ra-
dius.

The theory developed in Ref. 6 is based on the assump-
tion of roughness on many different length scales. The basic
idea behind this contact theory is that it is very important not
to a priori exclude any roughness length scale from the
analysis. Thus, ifA(l) is the~apparent! area of contact when
the interface is studied at a spatial resolution corresponding
to the wavelengthl, then we study the functionP(z)
5A(l)/A(L), which is the relative fraction of the surface
area where contact occurs on the length scalel5L/z. Here
A(L)5A0 denotes the macroscopic contact area@L is the
diameter of the macroscopic contact area so thatA(L)
'L2]. The functionP(z) can be obtained from the interfa-
cial stress distributionP(s,z) at the magnificationz, via6

P~z!5E
0

`

ds P~s,z!. ~1!

For a purely elastic solid,P(s,z) satisfy the diffusionlike
equation:6

]P

]z
5 f ~z!

]2P

]s2 , ~2!

where

f ~z!5
p

4
~E* !2qLq3C~q!,

where q5zqL ~with qL52p/L) and where E* 5E/
(12n2). The surface roughness power spectraC(q) is de-
fined by

C~q!5
1

~2p!2 E d2x^h~x!h~0!&e2 iq"x,

whereh(x) is the height of the rough surface measured from
a flat reference plane chosen so that^h&50.

FIG. 1. With increasing time, the contact area between the two solids in-
creases by the growth of existing asperity contact areas~A and C!, and by
the formation of new asperity contact areas~B!.
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The physical meaning of Eq.~2! is as follows: When the
system is studied at the lowest magnificationz51, no sur-
face roughness can be observed and the block makes~appar-
ent! contact with the substrate everywhere in the nominal
contact area. In this case, if we neglect friction at the inter-
face, the stress at the interface will everywhere equal
the applied stresss0 , see Fig. 2~a!, so thatP(s,1)5d(s
2s0). When we increase the magnification, we observe sur-
face roughness with wavelength down tol5L/z. In this
case one may observe some noncontact regions, as shown in
Fig. 2~b!. Since the stress must go continuously to zero at the
edges of the boundary between the contact and noncontact
regions, it follows that the stress distributionP(s,z) will
have a tail extending the whole way down to the zero stress,
as indicated in Fig. 2~b! ~right!. There will also be a tail
toward larger stressess.s0 because the average stress must
be equal tos0 . Thus, with increasing magnification, the
stress distribution will broaden~without limit!, as indicated
in Fig. 2 ~right!. This is similar to the broadening by diffu-
sion of a system of particles initially localized to one point
x0 in space.

Using ~1! and ~2! gives

P~z!5
2

p E
0

`

dx
sinx

x
e2x2G~z!5erfS 1

2AGD , ~3!

where

G~z!5E
0

qLz

dz8
f ~z8!

s0
2 5

p

4 S E*

s0
D 2E

0

qLz

dq q3C~q!.

Note that for small loads0 , G@1, and in this case~3!
reduces toP(z)'P1(z), where

P1~z!5@pG~z!#21/2. ~4a!

Since G;1/s0
2 it follows that the area of real contact is

proportional to the load for a small load. Using~3! and ~4a!
we can write, in a general case,

P~z!5erfS Ap

2
P1~z! D . ~4b!

In this paper we neglect the influence of the attractive
adhesional interaction between the solids at the interface.
Here we will briefly describe under which conditions this is
a good approximation. Assume that an elastic solid with a
flat surface is squeezed against a nominally flat substrate. Let
s0 be the nominal pressure in the nominal contact area. Let
us first neglect the adhesional interaction. In this case the
contact area between the solids will typically depend on the
magnification as shown by the solid line in Fig. 3. When we
increase the magnification, the contact areaA(z) will con-
tinuously decrease while the local pressures in the~apparent!
contact areas increases. Let us study the system at the mag-
nification z5L/l, corresponding to the spatial resolutionl.
We now take into account the adhesional interaction. In a
first approximation the adhesional interaction will give rise
to an additional pressure so that the contact area at the mag-
nification z depends ons01sa(z), where the adhesion
pressure,8

sa~z!5Fpgeff~z!E*

l G1/2

. ~5!

In a typical case, because of surface roughness, the effective
interfacial surface energygeff,g is smaller than the~bar!
interfacial surface energyg5g11g22g12 observed when
two perfectly flat surfaces are brought together. However, as
the magnificationz increases~i.e., the resolutionl ap-
proaches an atomic distance!, geff will approachg. If we use
g instead ofgeff in ~5!, we get anoverestimationof the im-
portance of the adhesional interaction. As an illustration of
the usefulness of the concept of adhesion pressure, in the

FIG. 2. A rigid block squeezed against an elastic, randomly rough, substrate.
The system is studied at different magnifications. At the lowest magnifica-
tion z51, no surface roughness can be observed and the block makes ap-
parent contact with the substrate everywhere, resulting in a stress distribu-
tion in the form of a Dirac delta function centered at the applied stresss0 .
When the system is studied at increasing magnificationz.1, surface rough-
ness can be observed, resulting in a broadened stress distribution~see the
text for details!.

FIG. 3. The logarithm of the normalized contact area,A(z)/A0 , for a tire-
tread rubber block in contact with an asphalt road as a function of the
logarithm of the magnification,z ~lower scale!, or the spatial resolutionl
~upper scale!. The squeezing pressure is 0.4 MPa and the contact time 1 s.
The solid and dashed lines are without and with the adhesional interaction
included in the calculation.
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Appendix we present a short derivation of the standard JKR
result for the adhesion of an elastic ball to a rigid flat sub-
strate.

In a typical application, e.g., a tire on a road or during
the contact phase in a tack experiment, the external squeez-
ing pressure is of orders0'1 MPa. Assuming thatg has its
origin in the van der Waals interaction~as is almost always
the case in practical applications! we haveg'1 meV/Å2.
The equation,

FpgE*

l G1/2

'1 MPa

gives l'100 Å if E* 51 MPa, and l51 Å if E*
50.01 MPa. Note that at a given squeezing pressure, the
length-scalel where adhesion becomes important,decreases
with decreasing elastic modulus, and, as indicated above, for
very soft elastic solids, e.g. tack, the adhesional interaction
can in a typical case~wheres0;1 MPa) be neglected during
the contact formation process. But even for tire rubber the
adhesional interaction will become important only when we
study the contact area with a spatial resolution of leastl
5100 Å. This is illustrated in Fig. 3 for a tire tread rubber
squeezed against a road surface. Since rubber friction on
rough surfaces is mainly due to viscoelastic deformations of
the rubber on length scales larger than 1mm ~see Refs. 6,
28!, it is clear that the adhesional interaction will have a
small influence on the friction coefficient in this case. How-
ever, if we study a property such as the pull-off force that
only depend on the area of real contact, then the adhesion-
induced enhancement of the contact area may be important
in some cases. Note also that even if the area of real contact
is determined mainly by the squeezing force, as will be the
case in most applications to tack, the adhesional interaction
in the area of real contact will be thesole origin of the
pull-off force. However, the exact origin of the pull-off force
is a much more complicated problem than the contact forma-
tion process, in general, involving cavity formation, string-
ing, and other nonlinear processes, and cannot be success-
fully studied without a detailed knowledge of the linear and
nonlinear mechanical properties of the rubber itself.9–11

Note that the adhesional interaction becomes more im-
portant when the nominal contact pressures0 decreases.
Thus, adhesion is important whenl,la , where la

5gE* /s0
2 increases with decreasings0 . This effect may be

important for formula 1 tires~which are very wide!, for
which, in contrast to normal personal car tires, it is believed
that adhesion is important because of the special design of
the tread tire rubber~which contains sticky substances!.

III. GREENWOOD–WILLIAMSON „GW… CONTACT
THEORY FOR VISCOELASTIC SOLIDS

In the simplest description of a rough surface, the sur-
face asperities are all considered as spherical cups with equal
radiusR but random heights. Random surfaces have Gauss-
ian height distribution. However, for a Gaussian height dis-
tribution the GW model does not give a contact areaA that is
linearly dependent on the squeezing forceFN , as observed
in more realistic treatments as long as the contact area is

small compared to the nominal surface area. However, if the
height distribution is assumed to be exponential,P(h)
5B exp(2h/l), thenA will depend linearly onFN , and we
will therefore focus on this limiting case in the present sec-
tion.

We will need the following results obtained for a hard
spherical asperity squeezed against the flat surface of a vis-
coelastic solid. The contact area will be circular with a radius
r (t) and areaa5pr 2, related to the penetrationd(t) ~the
indentation depth into the elastic solid! via the standard
Hertz formulas,12

d~ t !5r 2~ t !/R, ~6!

a~ t !5pRd~ t !. ~7!

The normal~squeezing! force f N is related to the radiusr (t)
via

f N~ t !5
8

3R E
2`

t

dt8 E* ~ t2t8!
d

dt8
r 3~ t8!, ~8!

whereE* 5E/(12n2). These results are only valid as long
as the loading history is such that the contact areaincreases
with time, and we will only focus on this case in what fol-
lows.

Assume that the elastic solid is located atz5d(t) above
the rough substrate; see Fig. 4. If there areN0 spherical
asperities, then the number of asperities in contact with the
elastic wall will be

N~ t !5E
d~ t !

`

dh N0P~h!. ~9!

Sinced(t)5h2d(t), using~7! we get the area of real con-
tact,

A~ t !5E
d~ t !

`

dh N0P~h!pR@h2d~ t !#. ~10!

Using ~8!, the total normal forceFN is given by

FN~ t !5
8AR

3 E
d~ t !

`

dh N0P~h!E
2`

t

dt8 E* ~ t2t8!

3u@h2d~ t8!#
d

dt8
@h2d~ t8!#3/2. ~11!

Let us assume that the squeezing is turned on at timet50 so
that FN50 for t,0 andFN5F05const.0 for t.0. In this
case we get from~11! for t.0,

FIG. 4. Contact between a rough hard substrate and an elastic solid. All
asperities with heighth greater thand(t) makes contact.
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F05F0

E* ~ t !

E* ~0!
1

8AR

3 E
d~ t !

`

dh N0P~h!

3E
0

t

dt8 E* ~ t2t8!u@h2d~ t8!#
d

dt8
@h2d~ t8!#3/2.

~12!

Let us introduce

v~ t !52ḋ~ t !,

which is the relative velocity between the surfaces. Thus,
~12! can be written as

F05F0

E* ~ t !

E* ~0!
14ARE

d~ t !

`

dh N0P~h!

3E
0

t

dt8 E* ~ t2t8!u@h2d~ t8!#v~ t8!@h2d~ t8!#1/2.

~13!

Substituting

P~h!5Be2h/l

in ~9!, ~10!, and~12! and performing theh integrals gives

N~ t !5N0Ble2d~ t !/l, ~14!

A~ t !5N0BpRl2e2d~ t !/l, ~15!

F05F0

E* ~ t !

E* ~0!
1aE

0

t

dt8 E* ~ t2t8!v~ t8!e2d~ t8!/l ~16!

where

a52~pR!1/2l3/2N0B.

Equation~16! is an integral equation ford(t), which can
be solved as follows. Let us assume that

E* ~ t !5E01~E`2E0!e2t/t* , ~17!

so that

Ė* ~ t !5~E`2E0!~21/t* !e2t/t* ~18!

and

Ë* ~ t !52Ė* ~ t !/t* . ~19!

The time derivative of~16! gives

05F0

Ė* ~ t !

E* ~0!
1aE* ~0!v~ t !e2d~ t !/l

1aE
0

t

dt8 Ė* ~ t2t8!v~ t8!e2d~ t8!/l

or

v~ t !52
F0

aE* ~0!

Ė* ~ t !

E* ~0!
ed~ t !/l

2E
0

t

dt8
Ė* ~ t2t8!

E* ~0!
v~ t8!e@d~ t !2d~ t8!#/l. ~20!

Taking the time derivative of this equation and using~18!
and ~19! gives, after some simplifications,

v̇~ t !52
v~ t !

t
2

v2~ t !

l
, ~21!

wheret5(E` /E0)t* . From ~20! we get the boundary con-
dition

v~0!52
Ė* ~0!

E* ~0!

F0

aE* ~0!
ed~0!/l. ~22!

Equation~21! is easy to integrate to get

v~ t !5
l/t

Cet/t21
, ~23!

whereC is a constant. Next, using thatv52ḋ(t), we get

d~ t !5d01
1

l
ln~C2e2t/t!. ~24!

Now, in the limit t→0 the contact mechanics is determined
by the high-frequency elastic modulusE` so that it is easy to
calculate

F05aE`le2d~0!/l. ~25!

Using ~22! and ~25! gives

v~0!5
l

t* S 12
E0

E`
D . ~26!

But from ~23!,

v~0!5
l/t

C21
,

and combining this with~26! gives

C5
E`

E`2E0
. ~27!

Using ~24!, ~27!, and~15! gives

A~ t !5A1F11S E0

E`
21De2t/tG , ~28!

whereA1 is the contact area for large timet→`. Note that
the short-time contact areaA(0)5A1E0 /E`!A1 since typi-
cally E0 /E`'1023.

IV. PHENOMENOLOGICAL VISCOELASTIC
CONTACT THEORY

Consider an elastic solid with a flat smooth surface
squeezed against a randomly rough substrate. Contact me-
chanics theories6,13 show that as long as the area of real
contact,A, is small compared to the nominal contact area
A0 , the area of real contact is proportional to the normal
~squeezing! force FN . Thus, the theory developed in Ref. 6,
and briefly described in Sec. II, gives

A~z!5
2

pQ~z!

FN

E*
, ~29!

whereQ(z) depends on the surface roughness power spectra
C(q):
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Q5S E
0

qLz

dq q3C~q! D 1/2

. ~30!

Equation~29! can also be written as

E* P~z!5
2s0

pQ~z!
~31!

wheres05FN /A0 is the nominal normal~squeezing! stress,
andP(z)5A(z)/A0 the relative contact area at the magnifi-
cation z. If the stresss0(t) depend on time, the area of
contactA(z,t) will also depend on time and is given by~31!.

The results above was derived for a purely elastic solid.
We now generalize the theory to a viscoelastic solid, charac-
terized by the viscoelastic modulusE* (t). We tentatively
replace~31! with

E
2`

t

dt8 E* ~ t2t8!
]P~z,t8!

]t8
5

2s0~ t !

pQ~z!
. ~32!

Let us define the Fourier transform,

s̃0~v!5
1

2p E
2`

`

dt s0~ t !eivt,

and the inverse transform

s0~ t !5E
2`

`

dv s̃0~v!e2 ivt.

If we assume thats0(t) vanishes fort56` we get from
~32!,

Ê* ~v!~2 ivt !P̃~z,v!5
2s̃0~ t !

pQ~z!
, ~33!

where we have defined

Ê* ~v!5E
0

`

dt E* ~ t !eivt.

Using ~33!, we get

P̃~z,v!5
2

pQ~z!

s̃0~v!

Ê* ~v!~2 iv!
5

2

pQ~z!

s̃0~v!

E* ~v!

and

P~z,t !5
2

pQ~z!
E

2`

`

dv
s̃0~v!

E~v!
e2 ivt. ~34!

Now, assume that

E* ~ t !5E01~E`2E0!e2t/t* .

In this case,

Ê* ~v!5
E0

012 iv
1

E`2E0

1/t* 2 iv

and

E~v!5~2 iv!Ê~v!

5E01
~E`2E0!v

v1 i /t*
5

iE0 /t* 1E`v

v1 i /t*
. ~35!

Now, let us assume thats0(t)5s0 for 0,t,T and zero
otherwise. In this case,

s̃0~v!5
s0/2p

012 iv
~12eivT!. ~36!

Substituting~35! and ~36! in ~34! gives

P~z,t !5
2

pQ

s0

E`

~21!

2p i

3E
2`

`

dv
v1 i /t*

~v1 i /t!~v1 i01!
~12eivT!e2 ivt,

~37!

where 1/t5(E0 /E`)/t* . Performing the integral in~37!
givesP(z,t)50 for t,0, while for 0,t,T,

P~z,t !5
2

pQ

s0

E0
F11S E0

E`
21De2t/tG , ~38!

which agree with~28!. This equation is only valid for such
low load thatP(z,t)!1. However, we may tentatively ob-
tain an expression for all loads as follows: First, comparing
~38! with ~4! gives

G5
p

4 E
0

qLz

dq q3C~q!S E0

s0
D 2 F11S E0

E`
21De2t/tG22

.

We then use this expression in the formula~4b! to get

P~z,t !5erfS 1

2AG~z,t !
D .

More generally, if

P1~z,t !5
2

pQ~z!
E

2`

`

dv
s̃0~v!

E* ~v!
e2 ivt ~39!

denote the relative contact area to linear order ins0 , then in
analogy with~4b!, we propose to use

P~z,t !5erfS Ap

2
P1~z,t ! D , ~40!

for all values ofs0 . For the applied stress given by Eq.~36!,
we have

P1~z,t !5
2s0

pQ~z!

1

2p E
2`

`

dv
12eivT

2 iv

e2 ivt

E* ~v!

5
2s0

p2Q~z!
ReE

0

`

dv
12eivT

2 iv

e2 ivt

E* ~v!
. ~41!

This result does, of course, not depend onT as long ast
,T ~causality!. Thus, we are free to choose forT any value
larger than the timet under consideration. It turns out to be
convenient in the numerical evaluation ofP1(z,t) to choose
T5at wherea.1 but of order 1, e.g., 1.5. Equations~40!
and ~41! have been used in all the following numerical cal-
culations.
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V. NUMERICAL RESULTS AND APPLICATIONS

In this section we will present three different applica-
tions of the viscoelastic contact theory developed above,
namely to~a! tack of pressure-sensitive adhesives~PSA!, ~b!
rubber friction, and~c! sealing. We will not present any de-
tailed comparison of the theory with experiments, but rather
just indicate three different applications where viscoelastic
contact mechanics should be very important. In the future we
plan to present a detailed comparison of the theory with ex-
periments.

We will apply the theory for two different substrates,
namely a polished ‘‘steel’’ surface that is assumed to be self-
affine fractal,14 with the fractal dimensionD f52.2 ~corre-
sponding to the Hurst exponentH50.8), which is typical for
surfaces prepared, e.g., by sandblasting or~for brittle mate-
rials! by cleaving. The surface roughness power spectra
C(q) is shown in Fig. 5. Note thatC(q)5const forq,q0

563104 m21, and the self-affine fractal forq.q0 . The
‘‘steel’’ surface has the surface root-mean-square~rms!
roughness 1mm. In the context of tack we also consider
surfaces with other rms roughness amplitudes, namely,h0

50.25, 4, 5, 10, 20, and 100mm, but with all the other
parameters the same as above; we will refer to these surfaces
as ‘‘steel’’ surfaces.

The second surface is an asphalt road track for which we
have measured the height profileh(x) using an optical
method. From the measured data we have calculatedC(q)
using a recently developed computer code.15 The resulting
power spectra is also shown in Fig. 5. In this caseC(q) is
nearly perfectly self-affine fractal forq.q051694 m21, the
fractal dimension beingD f'2.3 and the root-mean-square
roughnesshrms50.26 mm.

For later convenience we define the cut-off or roll-off
wavelengthl052p/q0 . It is often convenient to refer the
magnificationz51 to the length scalel0 , rather than to the
linear sizeL of the rubber block. Thus, if we study the sys-
tem at the resolutionl, thenz5l0 /l. In this case it is clear
that if we study the system with a resolutionl.l0 ~but, of
course,l,L), thenz,1. In particular, when the resolution
equals the sizeL of the block~or the nominal contact area!,
then z5l0 /L, which is the smallest possiblez. Some sur-
faces, e.g., surfaces prepared by fracture, are self-affine frac-

tal the whole way up to the lateral sizeL of the surface. In
these case there is no roll-off wave vector in theC(q) spec-
tra, and the only reasonable definition of the magnification
refers to the length scaleL so thatz5L/l.1. In the follow-
ing the magnificationz51 will always refer to the roll-off
wavelengthl0 .

The viscoelastic modulus of the PSA rubber, rim rubber,
and tread rubber used in our numerical calculations are
shown in Fig. 6.

A. Tack

Pressure sensitive adhesives are used in many important
applications, e.g., for Scotch tape, post-it pads, and self-
adhesive labels and envelopes. The adhesive consist of a
very thin layer~usually of order;20–100mm! of a very soft
~weakly cross-linked! rubber compound. The low-frequency
elastic modulus is typically only 0.01 MPa, which is;100
times lower than the rubber used for tires; see Fig. 6. As a
result of the low elastic modulus, nearly complete contact
will occur in the apparent contact area, even for relative low
squeezing pressures and large surface roughness. This is in

FIG. 5. The logarithm of the power spectraC(q) as a function of the
logarithm of the wave vectorq. Results are shown for an asphalt road track
and for a steel surface.

FIG. 6. ~a! The real and~b! the imaginary part of the complex viscoelastic
modulusE(v), and ~c! the loss tangent ImE/ReE as a function of fre-
quency. Results are shown for a typical PSA rubber, and for a tire rim and
tread rubber.
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contrast to tire rubber that under similar conditions would
give a contact area of only a few % of the nominal contact
area ~see below!. The theory presented above and the nu-
merical results presented below are for a semi-infinite vis-
coelastic solid and not for a thin confined viscoelastic slab as
in most applications to tack. Nevertheless, if the amplitude
and the wavelength of the surface roughness are small com-
pared to the thickness of the viscoelastic slab, then the
present model should give approximately correct results also
for pressure-sensitive adhesives.

We have performed calculations for two different stan-
dard rubber tack compounds representative of acrylic PSA
used in applications, namely poly~2ethylhexyl acrylate!
~PEHA! and PEHA with 2% acrylic acid~PEHA-AA!. The
results are summarized later in Figs. 7, 10, 11, 12, and 13.

Figure 7 shows results for PEHA-AA atT520 °C, in
contact with ‘‘steel’’ surfaces with the rms roughness ampli-
tudesh050.25, 1, and 4mm. Figure 7~a! shows the loga-
rithm of the relative contact area for at the magnificationz
5105 corresponding to the wavelengthl'1 nm, as a func-
tion of the logarithm of the contact time, for the contact
pressures050.01 MPa. Figure 7~b! shows the logarithm of
the relative contact area~after 1 s of contact!, again at the
magnificationz5105, as a function of the logarithm of the
contact pressure.

It is interesting to compare the results in Fig. 7 with the
experimental data reported on in Ref. 16 and shown in Fig.
8. The figure shows the dependence of the maximum pull-off

force F on the contact time and contact pressure for smooth
and rough PSA on the same smooth steel surface. The tack
film is a standard polymer compound similar to PEHA. If
one assumes, as a first approximation, that the pull-off force
is proportional to the area of real contact, then if the smooth
and rough PSA films in the measurements would correspond
to the surfaces in Fig. 7, with the rms roughness 0.25 and 4
mm, the agreement between the theory and the experiment is
remarkably good~in Ref. 16 no numerical values of the rms
roughness was presented for any of the studied surfaces!.
Nevertheless, one cannot expect that the pull-off force is
strictly linearly related to the area of real contact. For ex-
ample, at high pressure, complete contact occurs, but even in
this caseF will depend on the contact time because of relax-
ation of the stress distribution at the interface~see below!.
Furthermore, many PSA are able to form chemical bonds
with the surface over rather long times~around 24 h!. This
situation is clearly excluded from our model.

It is clear from Fig. 7 and the experimental data reported
on in Fig. 8 that in most cases~at room temperature! one
would expect complete contact at the interface for pressures
above 0.1 MPa, unless the surfaces are very rough or the
contact time very short. However, even in situations where
complete contact occur at the interface one may expect a
dependence of the pull-off force on the contact time for the
following reason: If the surfaces are squeezed together with a
high pressure for a short time~leading to complete contact at
the interface!, a wide distribution of stresses may be ex-
pected at the interface. With increasing contact time~under a
fixed squeezing pressure! the stress distribution will relax.

FIG. 7. ~a! The logarithm of the relative contact area at the magnification
z5105 corresponding to the wavelengthl'1 nm, as a function of the loga-
rithm of the contact time. For the contact pressures050.01 MPa.~b! The
logarithm of the relative contact area~after 1 s of contact! at the magnifi-
cationz5105, as a function of the logarithm of the contact pressure. For a
self-affine fractal substrate surface with the fractal dimensionD f52.2, the
roll-off wave vector q0563104 m21 and rms roughness amplitudesh0

50.25, 1 and 4mm. For PEHA-AA at the temperaturesT520 °C.

FIG. 8. ~a! The logarithm of the pull-off forceF ~in arbitrary units! as a
function of the logarithm of the contact time. For the contact pressures0

50.01 MPa.~b! The logarithm of the pull-off force@with the same units as
in ~a!# after 1 s of contact, as a function of the logarithm of the contact
pressure. For three different surface roughnesses.
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When the applied contact pressure is removed, tensile
stresses will develop in the rubber in the valleys of the rough
substrate surface. If the contact time is long enough, these
tensile stresses may be small and no local detachment will
occur. However, if the contact time is short enough, very
large tensile stresses will develop when the external squeez-
ing stress is removed, which may lead to local detachment at
the bottom of some valleys; see Fig. 9. These detached re-
gions will then act as nucleation seeds for the cavities that
usually are observed during the pull-off process.17,18 ~In the
discussion above we have implicitly assumed that the contact
is perfect during the compression stage. However, it is pos-
sible that in some cases air pockets could be trapped in the
valleys. These too could act as seeds for cavities during
pull-off.19!

Let us study the stress relaxation at the interface when
the solids are squeezed into complete contact att50. For a
purely elastic solid the stress distributionP(s,z) at the mag-
nification z is ~approximately! given by

P~s,z!'
P1

2s0
expF2S s

s0
21D 2 p

4
P1

2G , ~42!

where P15P1(z) is given by ~4a!. Following the earlier
treatment, we will assume that this formula is approximately
valid also for a viscoelastic solid if we replaceP1(z) with
P1(z,t) given by ~41!. Thus, the stress distribution is ap-
proximately Gaussian with the root-mean-square width,

s1~z,t !5@^~s2s0!2&#1/25S 2

p D 1/2 s0

P1~z,t !
.

Note thatP1;s0 so thats1 is independent of the squeezing
pressures0 , which must be the case when complete contact
occurs at the interface. In Fig. 10 we shows1 ~the root mean
square of the fluctuating stress at the interface! for PEHA-
AA, at the magnificationz5105 corresponding to the wave-
lengthl'1 nm, as a function of the logarithm of the contact
time. The results are for steel surfaces with the rms rough-
ness amplitudesh051, 5, and 10mm, and for the tempera-
tureT520 °C. The calculations have been performed for the
squeezing pressures051 MPa, which is high enough to
give complete contact at the interface for the roughness am-
plitudes and contact times displayed in Fig. 10. When the
applied stress is reduced to zero, the probabilityF~s! to find
a stress smaller thans can be obtained from~42! with s0

50:

F~s!5
1

~2p!1/2E
2`

s/s1
dx e2x2/2.

Since there are roughlyN5A0 /l2 valleys on the substrate
surface areaA0 , the number of valleys with tensile stresses

higher than2s ~notes,0) will be NF(s). For example, if
usu/s155 and A051 cm2 and l51 nm, we getF'1027

andNF'107.
Assume that the localtensilestresss act in a small re-

gion of order l3l at the interface. Let us calculate the
change in the free energy when this region undergoes detach-
ment; see Fig. 9. Using standard crack theory we get

U'Dgl22s2l3/E0 ,

where E05E(v) for v50, is the low-frequency elastic
modulus. This quantity is negative, i.e., the detached state
has a lower free energy than the attached state, if

usu.s* 5S E0Dg

l D 1/2

.

The barrier separating the attached state from the detached
state has the height

DU55Dgl2/9. ~43!

If l51 nm, Dg'3 – 5 meV/Å2 andE5104 Pa, we gets*
50.6 MPa. If the local tensile stress takes at least this value,
the detached state will have smaller energy than the attached
state. However, only if the energy barrier that separates the
complete contact state from the~locally! detached state is
smaller than, say,;1 eV, will the system be able to jump~by
a thermal fluctuation! over the barrier on typical macroscopic
times, say 1 min. Using~43! we calculate the barrier height
DU'0.2 eV whenl'1 nm, whileDU;1 eV whenl is of
the order of a few nanometers. Thus, nanometer-sized de-
tached regions~which may act as a nucleus for the cavities
formed during pull-off! can form spontaneously if the tensile
stress at the interface~in the absence of a squeezing pressure!
becomes of order 0.6 MPa, which will be the case if the
surface roughness is large enough and the contact time short
enough. For example, if the rms roughness amplitude equal
h0510mm, then for the PEHA-AA adhesive with the con-
tact time 1 s we get~see Fig. 10! s1'0.12 MPa. Thus, with
usu50.6 MPa we getusu/s155 andF'1027. If the contact
area is 1 cm2, as in the example above, we getNF'107 sites

FIG. 9. A thermal fluctuation can give rise to a detached region at the
interface if the local tensile stress is high enough.

FIG. 10. The root-mean-square~rms! s1 of the fluctuating stress at the
interface for PEHA-AA, at the magnificationz5105 corresponding to the
wavelengthl'1 nm, as a function of the logarithm of the contact time. For
a self-affine fractal substrate surface with the fractal dimensionD f52.2, the
roll-off wave vector q0563104 m21 and rms roughness amplitudesh0

51, 5, and 10mm, and for the temperatureT520 °C and contact pressure
s051 MPa.
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at the interface where~nanometer-sized! detached regions
can be formed already without any applied pull-off stress.

It is important to note that when complete contact occur
at the interface, the nucleation of a detached region can only
occur by a thermal fluctuation. Thus, the local tensile stress
necessary for detachment~in the absence of thermal fluctua-
tions! is of order Dg/a'100 MPa ~where a is an atomic
distance!, which is much higher than the tensile stress during
pull-off, which usually is below 1 MPa. Thus, the complete
contact state can only be broken by~local! thermal fluctua-
tions.

As shown above, for pressures of order;0.1 MPa or
higher, and contact times of order 1 s or more, complete
contact will occur at the interface unless the surface rough-
ness amplitude of the substrate is very high. Most experi-
ments performed on tack are for substrate surface roughness
below a fewmm, but many surfaces of practical importance
have much larger roughness amplitudes. Here we present
some numerical results for very rough surfaces and for high
squeezing pressures.

Figure 11 shows the logarithm of the relative contact
area for PEHA~dashed line! and for PEHA-AA~solid line!,
as a function of the logarithm of the contact time. The results
are for a ‘‘steel’’ substrate surface with the rms roughness
h0520mm, at the highest magnificationz5105, corre-
sponding to the wavelengthl'1 nm. The temperatureT
520 °C, and the squeezing pressures050.4 MPa. In this
case complete contact is reached after about 0.1 s of contact
for PEHA and 1 s ofcontact for PEHA-AA.

Figure 12 shows the relative contact area as a function of
the logarithm of the magnification. Results are again shown
for PEHA ~dashed lines! and PEHA-AA ~solid lines! for T
520 °C, and for two different ‘‘steel’’ substrates with the
rms roughness amplitudes,h0520 and 100mm. In a practi-
cal application the tack film may be of order 100mm thick,
in which case the present result obtained for a semi-infinite
viscoelastic solid may be of only qualitative validity.

Figure 13 shows the relative contact area for PEHA-AA
as a function of the logarithm of the magnification for the

temperaturesT5220 °C, 0 °C, and 20 °C. As expected, the
contact area decreases with decreasing temperature; at very
low temperature~not shown! the polymer film is in a hard
glassy state and the contact area is very small.

B. Rubber friction

Many sliding systems exhibit astiction spike, i.e., a
start-up friction force that is higher than the steady-state fric-
tion force, as illustrated in Fig. 14. The heightDF of the
stiction spike depends on many parameters, e.g., the time
period the solids have been in contact with before sliding, the
sliding or pull-velocity, and the temperature.20 Very many
different physical processes can give rise to a stiction spike.
For example, for two polymers in contact, chain interdiffu-
sion may lead to a stiction spike. Another mechanism that
has been observed for very many materials, e.g., metals, pa-
per, stone, glass and glassy polymers, is a slow increase in
the contact area between the solids as a result of thermally
induced plastic flow~creep!, which always will occur when
the local stress in the contact areas is close to the plastic

FIG. 11. The logarithm of the relative contact area for PEHA~dashed line!
and PEHA-AA~solid line!, at the magnificationz5105 corresponding to the
wavelengthl'1 nm, as a function of the logarithm of the contact time. For
a self-affine fractal substrate surface with the fractal dimensionD f52.2, the
roll-off wave vector q0563104 m21 and rms roughness amplitudesh0

520mm, and for the temperatureT520 °C and contact pressures0

50.4 MPa.

FIG. 12. The relative contact area as a function of the logarithm of the
magnification for a self-affine fractal substrate surface with the fractal di-
mensionD f52.2 and the roll-off wave vectorq0563104 m21. Results are
shown for PEHA~dashed lines! and PEHA-AA~solid lines! for T520 °C,
for two different substrate rms roughness amplitudes,h0520mm and 100
mm. After 1 s ofcontact at the pressures050.4 MPa.

FIG. 13. The relative contact area for PEHA-AA as a function of the loga-
rithm of the magnification for a self-affine fractal substrate surface with the
fractal dimensionD f52.2, the roll-off wave vectorq0563104 m21, and
the rms roughness amplitudesh0520mm. Results are shown for the tem-
peraturesT5220 °C, 0 °C, and 20 °C. After 1 s ofcontact at the pressure
s050.4 MPa.
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yield stress of the solids. Experiment21 and theory20,22 have
shown that the area of real contact increases with the contact
time t according to

A~ t !'a1b ln~11t/t!,

wheret is a characteristic time. If one assume that the shear
stressS necessary to break the contact junctions depends
linearly on the perpendicular pressure,S5a1bP, it follows
that the stiction spikeDF increases roughly logarithmically
with the contact time, as is indeed observed in most cases.

The contact area between a rubber block and a hard,
rough, substrate also increases roughly logarithmically with
the contact time~as long as the contact area is small com-
pared to the nominal contact area!. This is illustrated in Figs.
15 for tire tread rubber in contact with an asphalt road.~Fig-
ure 16 shows for the same system the dependence of the
contact area on the magnification.! However, for rubber the
physical origin of this enhancement of the contact area is
very different from that for most other solids since rubber
does usually not yield plastically, but rather deforms purely
elastically. For rubber, the time dependence of the contact

area is due to thermally activated flips of polymer segments.
That is, the segments of the polymer chains can take many
different positions or orientations, which correspond to dif-
ferent local minima of the total potentialV of the polymer
system. At a given temperature the polymer segments per-
form thermally activated jumps between these local minima.
When an external force act on a rubber block, it will deform
the potential energy surface in such a way that the local
potential minima become deeper for such chain configura-
tions that correspond to an elongation of the rubber block in
the direction of the external force. The polymer segments
will spend more time in the deeper minima, which corre-
spond to a macroscopic deformation of the rubber along the
direction of the external force. A glassy~disordered! material
such as rubber has a very wide distribution of barrier heights,
separating the local minima. Since a very long waiting time
is necessary in order for a thermal fluctuation to be able to
flip a polymer segment over a high potential energy barrier,
the wide distribution of barrier heights gives rise to the wide
distribution of relaxation times observed for most rubberlike
materials, and to the asymptotically very slow~approxi-
mately logarithmic! increase in the contact area with the con-
tact time.

Does rubber friction exhibit stiction spikes due to the
~slow! increase in the contact area? At first one may think
that the increase in the contact area with the time of station-
ary contact observed for rubber will give rise to stiction
peaks, just as is observed for metals and other materials that
yield plastically in the contact areas~see above!. However,
the situation for rubber is more complex because the origin
of the increase in the contact area is different for rubber than
for most other solids.

In an earlier publication one of us has developed a
theory of rubber friction for nonstationary sliding on a hard
~randomly rough! substrate,23,24but neglecting the flash tem-
perature~see below!. For this case no stiction spike was ob-
served when the sliding velocity was abruptly increases from
a valuev1 to a higher valuev2 , as long as bothv1 andv2 are
below the velocityvc for which the steady-state kinetic fric-
tion coefficientmk(v) is maximal. In this theory rubber fric-

FIG. 14. A block is pulled on a substrate. The spring force is shown as a
function of time. The heightDF of the stiction spike depends on the timet
of stationary contact.

FIG. 15. The relative contact area as a function of the logarithm of the
contact time for a tread tire rubber at the temperatureT560 °C, and for the
nominal pressuress050.4 MPa. Results are shown for three different mag-
nifications:z510, 100, and 1000. The surface power spectra correspond to
an asphalt track with 0.26 mm root-mean-square roughness, and the roll-off
wave vectorq051694 m21, so that the magnificationz51 corresponds to
the wavelengthl052p/q0'0.4 cm. Note that the contact area increases
with about 50% when the contact time increases from 1 s to 1 h.

FIG. 16. The relative contact area after one second of contact, as a function
of the magnification, wherez51 corresponds to the wavelengthl0

52p/q0'0.4 cm. The highest magnificationz5105 corresponds tol
'0.04mm. Results are shown for the nominal pressuress050.2 and 0.4
MPa. For the same tread tire rubber and surface roughness power spectra as
in Fig. 15, at the temperatureT560 °C.
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tion is attributed to the bulk viscoelasticity of the rubber, and
mk→0 asv→0 as a consequence of the fact that ImE(v)
→0 asv→0.25 Thus, we can imagine a limiting case where
both the force acting on the rubber block, and the sliding
velocity, arearbitrary smallbefore it is abruptly increased to
a valuev2 @below the maximum of themk(v) curve#.26 For
this case the rubber friction theory23 would predict no stic-
tion spike. The physical reason for this is that the area of
contact gradually decreases during the~tangential! load
phase, and when full sliding occurs the contact area is al-
ready reduced to the value it has during steady sliding at the
given sliding velocity. Since this situation is very similar to
the situation described above, involving a rubber block in
stationary contact with the substrate for some given waiting
time before sliding, it is plausible to assume that no stiction
spike may occur in a stop–start experiment at very low pull-
ing velocity. This result is confirmed by the experiments re-
ported on in Ref. 27 and below. Thus, in Fig. 17 we show the
sliding dynamics when a rubber block~in the form of a cyl-

inder with the diameter 29 mm! with the vertical loadFN

5132 N is pulled on~a! a safety walk pavement, and~b! a
steel surface. The spring force~i.e., the force in the pulling
wire! is shown as a function of time, starting from the equi-
librium state prepared by having the surfaces in stationary
contact for 10 and 1800 s; we refer to these time periods as
the waiting time. In~c! we show the rubber block velocity as
a function of time~for the case of 1800 s waiting time!.

Note that for the safety walk paper~a! the spring force is
nearly independent of the waiting time. For the smooth steel
surface no stiction spike is observed, but the kinetic friction
coefficient fort.10 s is about 8% higher after 1800 s con-
tact time, as compared to the case of 10 s contact time. We
attribute this to the following effect: before sliding the sur-
face of the rubber block was abraded with sandpaper to re-
move the top rubber surface layer, which may have different
properties from the underlying rubber, but which is of no
interest in tire application as it is removed after a short run-in
time period. As a result the rubber surface may be rougher
than the polished steel surface. When the rubber is in station-
ary contact with the steel surface, the rubber–steel asperity
contact areas will increase with time because of the vis-
coelastic flow of the rubber~see above!. If the steel surface is
much smoother than the rubber surface, then during sliding
the rubber will mainly make contact with the steel in the
same rubber surface regions as during the stationary time
period. Thus, even during sliding the rubber–steel contact
area will be largest for the case with the longest waiting time
period. This will increase the rubber friction, in particular, if
there is a contribution from the adhesive rubber–steel inter-
action ~which depends on the area of real contact!. The in-
creased friction during the first 5 mm of sliding distance in
~b! ~1800 s contact time! cannot be a flash temperature ef-
fect, since then it should also be observed for the 10 s wait-
ing time case. Finally, we note that the present data shows
that there is no contribution to the stiction spike from pin-
ning effects at the rubber–substrate interface arising from
thermally activated rearrangement of the rubber polymer
chains in the substrate potential during the time of stationary
contact. This is an important and nontrivial result.28

C. Seals

Surface roughness is an important factor that influences
the rate of leakage through seals. Vacuum seals are a special
case where the limit on the leakage rate is particularly rigor-
ous. The exact mechanism of the roughness-induced leakage
is not well understood.29 In this section we present a new
way of looking at this problem.

Viscoelastic materials such as rubber are often used for
sealing. Here we consider the tire-rim sealing. The rim is
made from steel. We assume that the steel surface is a self-
affine fractal forq.q0 , with the fractal exponentD52.2
~i.e., H50.8). The surface root-mean-square roughness is
assumed to be 1mm, as is typical for polished steel surfaces.
The long distance roll-off wave vector is assumed to beq0

563104 m21, corresponding to the wavelengthl0

52p/q0'100mm. The power spectra for the surface is
shown in Fig. 5.

FIG. 17. A rubber block~in the form of a cylinder with the diameter 29 mm!
with the vertical loadFN5132 N is pulled on~a! a safety walk pavement,
and ~b! a steel surface. The spring force~i.e., the force in the pulling wire!
is shown as a function of time, starting from the equilibrium state prepared
by having the surfaces in stationary contact for 10 and 1800 s; we refer to
these time periods as the waiting time. In~c! we show the rubber block
velocity as a function of time~for the 1800 s waiting time!. The experiments
were performed at room temperature using a standard tire tread rubber.
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Figure 18 shows the relative contact area after one sec-
ond of contact for tread tire rubber~a!, and for rim tire rub-
ber ~b!, and the root-mean-square roughness~c!, as a func-
tion of the magnification. Here we have defined

hrms5S 2pE
zq0

q1
dq qC~q! D 1/2

.

The results are for the nominal pressuress050.1, 0.2, and
0.4 MPa, at the temperatureT560 °C. Figure 19 shows the
relative contact area~at the highest magnificationz5105) as
a function of the logarithm of the contact timet, for the
nominal pressuress050.1 MPa.

We now study the rubber–steel interface at an increasing
magnification. At the lowest magnificationz,1 complete
contact occurs at the interface; see Fig. 20~left!. When we
increase the magnification, we observe noncontact areas or
islands. The magnification is now increased until the noncon-
tact area percolates, i.e., until a channel of noncontact sur-
face area, extending from the high-pressure internal region of
the tire to the outside~atmospheric pressure region!, is first
observed. As the magnification is increased further, new non-
contact region will be observed, but the separation between

the surfaces in these new noncontact areas will be smaller
than along the percolation channel. Since the gas flowṄ
~number of molecules per unit time! through a rectangular
pore of heighth depends asṄ;h3 ~see below! we will as-
sume that most gas will leak through the percolation channel.

Assuming that the contact regions at any magnification
are approximately randomly distributed in the apparent con-
tact region, we expect from percolation theory that the non-
contact region will percolate whenA/A0'12pc , wherepc

is the site percolation number.30 For a hexagonal lattice,
which is the most plausible lattice structure in the present
case, one haspc'0.7, while for a square lattice~as in Fig.
20! percolation occurs atpc'0.6. Thus, the exact value of
the percolation threshold does not depend sensitively on the
symmetry of the unit cell.

We assume that the main gas leakage comes from gas
flow through the percolation channel. The most narrow pass
in this channel can be considered as a rectangular pore of
heighth, and of width and lengthl, wherel is determined
by the magnificationzc at the point whereA/A0'0.3. The
height h of the pore is determined by the rms roughness at
the magnificationzc . In the present case, if the tire gas pres-
sure is in the range 0.2–0.3 MPa, from Fig. 18~b! we get
zc'10 and from Fig. 18~c!, h'0.1mm.

We divide the tire-rim contact area intom square areas
B3B, whereB is the width of the tire-rim contact area~we

FIG. 18. The relative contact area after one second of contact~a! ~for tread
tire rubber!, ~b! ~for rim tire rubber!, and the root-mean-square roughness
~c!, as a function of the magnification, wherez51 corresponds to the wave-
lengthl052p/q0'100mm. The highest magnificationz5105 correspond
to l'1 nm. Results are shown for the nominal pressuress050.1, 0.2, and
0.4 MPa, at the temperatureT560 °C. For substrate surface with the rms
roughness,h051 mm and the roll-off wave vectorq0563104 m21.

FIG. 19. The relative contact area at the highest magnification,z5105 ~cor-
responds tol'1 nm) as a function of the logarithm of the contact timet.
For the nominal pressures,s050.1 MPa. For a tread tire rubber compound,
and for a compound used in the tire-rim area, at the temperatureT
560 °C. The substrate is self-affine fractal with the fractal dimensionD
52.2, and with the rms roughness 1mm, and withq0563104 m21.

FIG. 20. When the interface between the solids is studied at low magnifi-
cation, there appears to be complete contact~black area! between the solids.
When the magnification is increased it is observed that only partial contact
occur. At high enough magnification the noncontact~white! surface area will
percolate and one~or several! airflow channels will be visible at the inter-
face.
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expectB to be of order a few cm!. The number of squares is
m52pR/B, whereR is the radius of the tire at the rim. We
expectm'100.

Let us study the gas flow through a rectangular pore of
heighth and width and length~in the flow direction! l. We
assume stationary and laminar flow, and thath!l. In this
case the basic equations of hydrodynamics become

“P'm¹2v,

“"~nv!'0,

whereP is the gas pressure,v the flow velocity,m the vis-
cosity, andn the gas number density. We assume constant
temperature, and that the pressureP is related to the number
densityn via the ideal gas law:

P5nkBT .

Using the equations above the number of molecules that flow
through the pore per unit time is

Ṅ'
~P1

22P0
2!h3

24mkBT
,

whereP1 andP0 are the pressure inside and outside the tire,
respectively. Here we have implicitly assumed that the full
pressure dropP12P0 occur over the pore. IfN1(t) denote
the number of gas phase molecules in the tire~which is pro-
portional to the pressureP1 in the tire!, we get for the typical
caseP1@P0 :

Ṅ1'2
mP1

2h3

24mkBT
.

Thus, the time it takes for the pressure in the tire to drop with
'4% is

Dt5
m

P1

V1

h3 ,

whereV15V0 /m ~whereV0 is the air volume in the tire! is
the volume of air in an angular section of the tire of widthB.
With B'3 cm we getV1'331024 m3, and using the vis-
cosity of airm'1731026 Ns/m2 givesDt'1 year. This is
an upper limit of the leakage time, since when the interfacial
contact area is studied at higher magnification new pore
channels through which the air can leak will be detected. The
discussion above is only valid if the mean-free path for the
gas phase molecules~at the pressureP1) is shorter than the
pore heighth. If this is not the case the hydrodynamic de-
scription presented above is not valid, and one must take into
account the nonspecular scattering of the gas phase mol-
ecules from the pore surfaces.

It is interesting to note that the adhesional interaction
between the rubber surface and the steel rim is likely to have
negligible influence on the leakage rate. Adhesion will affect
the ~apparent! contact area only at very high magnification
~see Sec. II!, but most of the gas leakage occur via the much
larger air flow channels, which can be observed at low mag-
nification.

VI. SUMMARY AND CONCLUSION

In this paper we have studied the time-dependent contact
area as a viscoelastic solid is squeezed against a randomly
rough substrate. Using a recently developed contact mechan-
ics theory we presented results for the dependence of the
contact area on time and on the magnificationz. All numeri-
cal results were obtained for self-affine fractal surfaces. De-
tailed applications to tack, rubber friction, and sealing have
been presented, and compared with experimental data.

The theory we describe can only be applied when the
contact area increases with time, which always will be the
case if the system is exposed to a constant squeezing pres-
sure for timet.0. The detailed behavior of the tack film
during pull-off is a much more complicated topic in general
involving bond breaking, cavity formation, stringing, and
highly nonlinear elongation processes. This topic cannot be
studied analytically with the same accuracy as the contact
formation process discussed in this paper. Nevertheless, de-
tailed information about the contact area as a function of
magnification and contact time, and information about the
stress distribution at the interface at the onset of pull-off,
forms a necessary background for the discussion of the tack-
film dynamics during pull-off.

The contact mechanics theory presented above neglect
the adhesional interaction between the solids.31 We believe
that this is a good approximation in most of the applications
presented in this paper involving relative rough substrates.
However, following the theory recently developed for elastic
solids,8 it should be possible to generalize the viscoelastic
contact mechanics theory to include the adhesional interac-
tion.
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APPENDIX: SIMPLE DERIVATION
OF THE JKR EQUATIONS

Here we illustrate how the concepts of the adhesion
pressure can be used to obtain the standard JKR32 result for
an elastic sphere~radiusR! adhering to a flat rigid surface. In
the absence of an applied load, the radius of the contact area,
according to the JKR theory, is

r 5S 9pR2g

2E* D 1/3

. ~A1!

This equation can be derived using the adhesion pressure
arguments as follows: When an elastic ball is squeezed
against a flat without adhesion, the Hertz theory gives a cir-
cular contact area with the radius

r 5
3pRs0

4E*
, ~A2!
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wheres05F/(pr 2) is the nominal~or average! squeezing
pressure. To obtain the contact radius for the case of adhesive
contact without a squeezing force we must, according to the
discussion in Sec. II, just replace the squeezing pressures0

with the adhesion pressuresa given by

sa5S pgE*

l D 1/2

, ~A3!

where the lateral resolutionl now corresponds to the diam-
eter 2r of the contact area~we need to go to this resolution
before we can observe that there actually is contact between
the two objects!. Substituting~A3! in ~A2! gives

r 5S 9p3R2g

32E* D 1/3

, ~A4!

which, except for a factor (p2/16)1/3'0.9, agree with~A1!.
The pull-off force is given by the product between the adhe-
sion stress and the contact area:

Fpull-off'sapr 25
3p3

16
gR, ~A5!

which is the JKR result to within a factorp2/8'1.2.

1J. A. Greenwood, inFundamentals of Friction, Macroscopic and Micro-
scopic Processes, edited by I. L. Singer and H. M. Pollack~Kluwer, Dor-
drecht, 1992!; J. A. Greenwood and J. B. P. Williamson, Proc. R. Soc.
London, Ser. A295, 300 ~1966!.

2C. Creton and L. Leibler, J. Polym. Sci., Part B: Polym. Phys.34, 545
~1996!.

3C. Y. Hui, Y. Y. Lin, and J. M. Baney, J. Polym. Sci., Part B: Polym. Phys.
38, 1485~2000!.

4J. F. Archard, Proc. R. Soc. London, Ser. A243, 190 ~1957!; K. L.
Johnson,Contact Mechanics~Cambridge University Press, Cambridge,
1985!.

5B. N. J. Persson, F. Bucher, and B. Chiaia, Phys. Rev. B65, 184106
~2002!.

6B. N. J. Persson, J. Chem. Phys.115, 3840~2001!.
7B. N. J. Persson, Phys. Rev. Lett.87, 116101~2001!.
8B. N. J. Persson, Eur. Phys. J. E8, 385 ~2002!.
9H. Lakrout, P. Sergot, and C. Creton, J. Adhes.69, 307 ~1999!.

10C. Creton, J. C. Hooker, and K. R. Shull, Langmuir17, 4948~2001!.
11K. Brown, J. C. Hooker, and C. Creton, Macromol. Mat. Eng.287, 163

~2002!.

12K. L. Johnson,Contact Mechanics~Cambridge University Press, Cam-
bridge, 1985!.

13A. W. Bush, R. D. Gibson, and T. R. Thomas, Wear35, 87 ~1975!; A. W.
Bush, R. D. Gibson, and G. P. Keogh, Mech. Res. Commun.3, 169
~1976!.

14J. Feder,Fractals ~Plenum, New York, 1988!; M. V. Berry and Z. V.
Lewis, Proc. R. Soc. London, Ser. A370, 459 ~1980!.

15B. N. J. Persson~unpublished!.
16F. H. Hammond, ASTM Spec. Tech. Publ.360, 123 ~1964!.
17K. R. Brown and C. Creton, Eur. Phys. J. E9, 35 ~2002!.
18A. Chiche, P. Pareige, and C. Creton, C. R. Acad. Sci., Ser IV: Phys.,

Astrophys.1, 1197~2000!.
19C. Gay and L. Leibler, Phys. Rev. Lett.82, 936 ~1999!; I. Chikina and C.

Gay, ibid. 85, 4546~2000!.
20B. N. J. Persson,Sliding Friction: Physical Principles and Applications,

2nd ed.~Springer-Verlag, Heidelberg, 2000!.
21J. H. Dieterich and B. D. Kilgore, PAGEOPH143, 283 ~1994!.
22B. N. J. Persson, Phys. Rev. B61, 5949~2000!.
23B. N. J. Persson and A. I. Volokitin, Phys. Rev. B65, 134106~2002!.
24Theories of rubber friction for stationary sliding~neglecting the flash tem-

perature effect! have been presented in Ref. 6 and by M. Klu¨ppel and G.
Heinrich, Rubber Chem. Technol.73, 578 ~2000!.

25The kinetic sliding friction depends very weakly on the sliding velocity
for low sliding velocities, and extremely low velocities are necessary in
order for the friction to be strongly reduced; thus, calculations and experi-
ment show that even sliding velocities as small as 10210 m/s may give rise

to relatively large kinetic friction.
26According to calculations~Ref. 6! ~neglecting temperature effects! and

measurements@see K. A. Grosch, Proc. R. Soc. London, Ser. A274, 21
~1963!# ~performed at low sliding velocities and different temperatures
and then shifted to a common temperature utilizing the frequency–
temperature WLF transform!, the maximum ofmk(v) typically occurs at

very high velocities, say 1000 m/s.
27A. Galliano, S. Bistac, and J. Schultz, J. Colloid Interface Sci.265, 372

~2003!; A. Galliano, S. Bistac, and J. Schultz, J. Adhes.79, 973 ~2003!.
28B. N. J. Persson~unpublished!.
29T. R. Thomas, Rough Surfaces, 2nd ed.~Imperial College Press, London,

1999!.
30D. Stauffer and A. Aharony,Percolations Theory~VCH, Weinheim, 995!.
31K. N. G. Fuller and D. Tabor, Proc. R. Soc. London, Ser. A345, 327

~1975!; G. A. D. Briggs and B. J. Briscoe, J. Phys. D10, 2453~1977!; K.
N. G. Fuller and A. D. Roberts,ibid. 14, 221 ~1981!; K. Kendall, ibid. 4,
1186~1971!; 6, 1782~1973!; 8, 115 ~1975!; See also the beautiful review
article of K. Kendall, Contemp. Phys.21, 277 ~1980!.

32K. L. Johnson, K. Kendall, and A. D. Roberts, Proc. R. Soc. London, Ser.
A 324, 301 ~1971!.

8793J. Chem. Phys., Vol. 120, No. 18, 8 May 2004 Contact between a viscoelastic solid and a rough substrate

Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


