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Theory and simulations of squeeze-out dynamics in boundary lubrication
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The dynamics of expulsion of the last liquidlike monolayer of molecules confined between two
surfaces~measured recently for the first time@J. Chem. Phys.114, 1831~2001!#! has been analyzed
by solving the two-dimensional Navier–Stokes equation combined with kinetic Monte Carlo
simulations. Instabilities in the boundary line of the expelled film produce a rough boundary for all
length scales above a critical value. The squeeze-out of liquid is shown to result from the
2D-pressure gradient in the lubrication film in the contact area. The Monte Carlo simulations agrees
well with experiments, reproducing most qualitative and quantitative features. In particular it shows
the formation of small islands, which~in the absence of pinning mechanism! drift slowly to the
periphery of the contact area. We calculate the drift velocity analytically as a function of the distance
of the island to the periphery of the contact area. Experiments indicate that some kind of pinning
mechanism prevails, trapping fluid pockets for very long times. When including such pinning areas
in the simulations, three distinct squeeze phases and time scales were observed:~1! initial fast
squeeze of most of the fluid;~2! slower squeeze of unpinned fluid pockets;~3! long term pinning of
fluid pockets. We also show that a distribution of small pinning areas may produce a synergistic
effect, slowing down the second phase of the squeeze, compared to a small number of big pinning
areas. The paper presents a new stochastic numerical approach to problems of moving boundaries
which naturally accounts for thermal fluctuations and their effect in unstable dynamics. ©2001
American Institute of Physics.@DOI: 10.1063/1.1421105#
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I. INTRODUCTION

Sliding friction is one of the oldest problems in physic
and has undoubtedly a huge practical importance.1–3 In re-
cent years, the ability to produce durable low-friction s
faces and lubricants has become an important factor in
miniaturization of moving components in technologically a
vanced devices. For such applications, the interest is focu
on the stability under pressure of thin lubricant films, sin
the complete squeeze-out of the lubricant from an interf
may give rise to cold-welded junctions, resulting in high fri
tion and catastrophically large wear.

In this paper we investigate the late stages of the
proach of two elastic solids limited by two curved surfac
wetted by a lubricant film of microscopic thickness.4 Under
these conditions, the behavior of the lubricant is mainly
termined by its interaction with the solids that induce lay
ing in the perpendicular direction.5–12 The thinning of the
lubrication film occurs stepwise, by expulsion of individu
layers. These layering transitions appear to be therm
activated.13,14Under strong confinement conditions, some
bricants become solidlike.5–12 Other liquids, notably
water,15,16 remain liquidlike up to the last layer that can b
removed upon squeezing. The system considered here
longs to the second class.

We study the spreading of then51→0 layering transi-
tion, which was recently observed for the first time,17–19 by
11260021-9606/2001/115(24)/11268/10/$18.00
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imaging the lateral variation of the gap between the so
surfaces as a function of time. As explained below, the s
n50 corresponds to two strongly bound monolayer~one
bound to each plate! that cannot be removed by squeezin
We present a detailed discussion of the dynamics of
boundary line separating then51 andn50 regions during
squeeze-out. In an earlier paper we discussed the natu
the layering transition when the lubrication film is in a 2D
solidlike state.20,21

The dynamics of the layering transition has been stud
with the Surface Forces Apparatus by imaging the gap reg
in two dimensions.17 The experiment was performed with
chain alcohol C11H23OH, where the amount of liquid ex
pelled in the layering transitions during slow approach e
periments corresponds to a bilayer of molecules with
OH-groups pointing toward each other.19 In the much faster
approach used in Ref. 17 the structure of expelled liq
layer is not known, and could also be in the form of a sing
monolayer of flat lying molecules. This, however, does n
change the nature of the phenomena. The mica surface
covered by strongly bound~via the OH-group! monolayers
of C11H23OH, that cannot be removed by squeezing, lead
effectively to a CH3-terminated substrate for any addition
material inside the gap.18 These coated surfaces are very i
ert, and the additional alcohol does not wet the surfac
Shear experiments showed that the static friction force
8 © 2001 American Institute of Physics
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11269J. Chem. Phys., Vol. 115, No. 24, 22 December 2001 Dynamics of boundary simulation
mains zero~and no stick-slip is observed! up to and includ-
ing the last alcohol layer, indicating that this layer (n51) is
in a 2D-liquidlike state. This is further supported by viscosi
measurements performed by studying the damping of m
oscillations,18 which shows liquidlike behavior down to th
last expelled layer. Once this layer is expelled~correspond-
ing to the n50 situation!, the contact between th
CH3-terminated films leads to solidlike friction, with a non
zero static friction force, and stick-slip during sliding. Th
experimental data in Ref. 17 correspond to then51→0 lay-
ering transition.

The dynamics of the layering transition separates i
two phases. In the first phase, the system is trapped
metastable state at the initial film thickness, i.e., o
~bi-!layer of alcohol molecules between the substrate-bo
monolayer. Thermal fluctuations of the two-dimensional d
sity in this layer eventually lead to the formation of a ho
with a radius that exceeds the critical radius. Once
nucleus is formed the growth phase begins, and the res
the layer is quickly expelled. A snapshot picture taken dur
squeeze-out is shown in Fig. 1~see also Ref. 17!. The circle
essentially marks the contact area out of which the fluid w
eventually squeeze out. The bright and dark regions co
spond to remaining fluid and squeeze-out areas, respecti
The squeeze process from which this snapshot was taken
started at the upper left side of the contact area, and is se
have propagated faster along the edges of this area.22

The paper is organized as follows. Section II presents
general theory of hydrodynamic squeeze out, and a spe
derivation for the dynamics of small fluid pockets. Then S
III discusses the details of the numerical method and sim
lation results are analyzed. We conclude in Sec. IV with su
mary and conclusions.

II. THEORY

In this paper we consider the dynamics of expulsion
2D-liquidlike films. We focus on the evolution of the boun
ary line separating then51 and n50 regions during the
layering transitionn51→0 when the nucleation of the lay

FIG. 1. Snapshot during squeeze outn51→0. From Ref. 17.
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ering transition occurs off-center. Since the lubrication fi
is assumed to be in a 2D-liquidlike state, the basic equati
of motion for the lubrication film are the continuity equatio
and the~generalized! Navier–Stokes equation for the 2D
velocity field v(x,t) ~we assume an incompressible 2
fluid!:1,13

¹•v50, ~1!

]v

]t
1v•¹v52

1

mna
¹p1n¹2v2h̄v, ~2!

where p is the 2D-pressure,n the 2D-kinematic viscosity,
and mna is the mass density. The last term in Eq.~2! de-
scribes the ‘‘drag-force’’ from the solid walls acting on th
fluid. It is possible to show~see Appendix A! by dimensional
arguments that, to a good approximation, one can neglec
nonlinear and the viscosity terms in Eq.~2!, and assume tha
the velocity field changes so slowly that the time derivat
term can be neglected. Thus

¹p1mnah̄v50. ~3!

This quasi-staticapproximation assumes that the flo
field is able rearrange itself much faster than the interfa
line motion. From Eq.~3! it follows that

v5¹f, ~4!

where

f52p/mnah̄. ~5!

The continuity equation~1! then gives

¹2f50. ~6!

Experimental results17,18 indicates that the squeeze-o
process is affected by pinning centers, where fluid islands
trapped. To account for this behavior, we assume that
friction h̄ @see Eq.~2! above# may be position dependen
More explicitly, we assume that most of the fluid is subject
to a ‘‘regular’’ friction ~estimated to be of orderh̄51013 s21,
Refs. 17, 18!, and much higher value at somepinning re-
gions. Equation~6! is then replaced by

¹•@e~r !¹p#50 ~7!

which has the form of a Laplace equation with a positi
dependentdielectric function

e~r !5
1

mnah~r !
, ~8!

where the 2D pressurep behave analogously to an electr
static potential. At the outer boundaryr 5R of the contact
area, the pressurep5p0 is constant, while at the inne
boundary, at the interface with then50 area, it depends
linearly on the perpendicular 3D-pressureP(r ) (0,r ,R)
via the relation

p1~r !5p01P~r !a, ~9!

whereR is the radius of the contact area,p0 the spreading
pressure13,23 and a the thickness of the monolayer~see Ap-
pendix B and Ref. 13!. From Hertz contact theory:1,24
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



o
-
in

ar
n
p

th
al

ea
ss
ee
or

e

in
th
th
pr
ly

e
e
he
li
e

ne

to

-
th

de
e

e

ter
that

der

land
the

he
is

the
e

o-
ver-
ting

r

e

f a
e

e

e,

d
y-
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P~r !5
3

2
P0S 12

r 2

R2D 1/2

, ~10!

where P0 is the average perpendicular pressure~external
force per unit area! on the contact area. Thus, the problem
finding f @Eq. ~6!# or p @Eq. ~7!# is mathematically equiva
lent to finding the electrostatic potential between two cyl
ders at different potentials,f052p0 /mnah̄ and f1(r )
52p1(r )/mnah̄, where the outer cylinder has a circul
shape~radius R), and the inner cylinder has an unknow
~time-dependent! shape that should be determined. Exce
for the different boundary conditions, this situation is ma
ematically very similar to viscous fingering, where the an
ogy to electrostatics has already been pointed out~see, e.g.,
Ref. 25!. If we assume that the squeeze-out process nucl
at the center of the contact area, then the theory of Per
and Tossati,13 which assumes that the squeezed area proc
with circular symmetry, yields the following expression f
the fluid areaA(t) at time t:

F12
A~ t !

A0
G H lnF12

A~ t !

A0
G21J 52

t

t0
, ~11!

whereA05pR2 is the contact area, andt0 is the time it takes
to completely squeeze out the fluid from the contact ar
The squeeze-out timet0 is given by13

t05R/v0 ~12!

with

v05
3

2

aP0

naRmh̄
. ~13!

It is easy to show that the time evolution of the boundary l
is unstable with respect to small perturbations. Consider
evolution of a circular squeeze-out region at the center of
contact area. Assume that, due to a fluctuation, a small
trusion is formed on the boundary line, which will local
decrease the distance to the outer boundary liner 5R. By
analogy to electrostatics, this will give rise to an enhanc
‘‘draining’’ velocity of the fluid at the protrusion, so that th
boundary line at the protrusion will move faster toward t
periphery than in the other regions. This argument is va
for protrusions of any size, and it follows that, within th
model discussed above, the boundary line will berough at
all length scales. This argument, however, disregards the li
energy. Taking into account the line tensionG ~free energy
per unit length of the boundary line!, leads to a boundary line
that is smooth on all length scales below some critical cu
lengthlc , while it is rough on longer length scales14,26

lc52p~G/mnah̄v0!1/2, ~14!

wherev0 is the velocity of the boundary line. The line ten
sion G has a contribution from unsaturated bonds at
boundary line (;0.01 eV/Å, Ref. 13!, and another much
larger contribution from the energy stored in the elastic
formation field in the confining solids in the vicinity of th
boundary line (;1 eV/Å, Refs. 14, 17, 18!. Under the ex-
perimental conditions of Ref. 17, Eq.~14! predictslc;5
mm, which equals 1/10 of the diameter of the contact ar
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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The experimental boundary line for C11H23OH is indeed
rough at this length scale, while it is smooth on shor
length scales. Based on this result one may also argue
the linear size of the trapped fluid islands should be of or
lc ~or larger!, which again agrees with the observations.

Finally, let us consider the motion of a small~compared
to the size of the contact area! island, located a distancer
from the center of the contact area. We assume the is
does not experience any pinning forces. We will calculate
dependence of the radial velocityv(r ) of the island on its
position r. First, note that the elastic energy stored in t
deformation field in the solids in the vicinity of the island
U'pb2P(r )a, whereb is the radius of the island,r is the
distance of the center of the island from the center of
contact area, anda is the thickness of the monolayer. Th
radial force acting on the island is thus

F52
]U

]r
52pb2P8~r !a. ~15!

This force moves the island in the radial direction t
ward the periphery of the contact area. We assume o
damped motion, and can thus neglect the inertial force ac
on the island, so that the driving forceF(r ) must just balance
the frictional drag force from the solid walls:

pb2namh̄v~r !5F ~16!

or

v52
a

namh̄
P8~r !. ~17!

If P(r ) is given by the Hertz expression~10! then this gives

v
v0

5
r

R S 12
r 2

R2D 21/2

, ~18!

wherev0 was defined in Eq.~13!. The function Eq.~18! is
shown in Fig. 2~a!. Note that the velocity goes to infinity fo
r 5R. However, for any finite size island~radiusb), when
r 5R2b the island will make contact with the region outsid
the contact area; computer simulations~see Sec. III! and ex-
periment have shown that this result in the formation o
neck toward the outside, through which the fluid will b
squeezed. Usingv5dr/dt andx[r /R, it is easy to integrate
Eq. ~18! to get the radial positionr (t) of the island as a
function of time. In particular, the timet5t(r ) it takes to
squeeze-out an island that starts at positionr, is given by

t

t0
5E

r /R

1

dxS 1

x2 21D 1/2

, ~19!

wherer 5r (0) is the initial distance of the island from th
center of the contact area, andt05R/v0 . This function is
shown in Fig. 2~b!. If pinning centers occur at the interfac
it will result in fluctuations in the velocityv(r ) of the island,
and in a distribution of squeeze-out times@for identical start-
ing distancesr (0)#; the study of the motion of islands woul
hence give information about the nature of the pinning d
namics.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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III. COMPUTER SIMULATIONS

A. Methodology

We have performed kinetic Monte Carlo~MC! simula-
tions @based on Eqs.~1!–~10!# to study the squeeze-out pro
cess in detail. The basic reasoning behind the MC mode
of the system is quite straightforward. We start with a sm
initial squeezed region~usually taken to be circular! of radii
greater then the critical radii for the formation of such
squeezed hole. The initial formation process is a sepa
issue that is not studied here. At each step we solve
Laplace equation on a two-dimensional cell centered g
and move the interface line between fluid and squeezed a
in a manner that follows flow lines. In this scheme we im
pose continuity of the flow velocity across cell boundari
which is equivalent to the continuity of the dielectric di
placement in electrostatics.

We have used an area discretization scheme27 combined
with a successive over relaxation iterative procedure
solving the Laplace equations~6!, ~7!.28 We used a square
grid, typically of size 2803280. This grid divides the system
into square cells and the grid points are taken to be at t
centers. The interfacial line is taken along these grid lines
that a grid cell has a unique attribute, either squeezed
fluid. As discussed in Sec. II, the boundary conditions
p5p0 on the external periphery (r 5R), andp5p1(r ) @cf.
Eq. ~9!# on the interfacial line between squeezed and fl
areas at positionr. The actual value of the spreading pressu
p0 is unimportant, and it was set to zero in our calculatio

FIG. 2. ~a! The radial velocityv of a small island as a function of the
distancer from the center of the contact area.~b! The time t it takes to
squeeze out a small island as a function of the initial distancer from the
center of the contact area.
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Numerical solutions of moving boundaries problem
could in principle be obtained using deterministic bounda
evolution algorithms~e.g., Ref. 29! which generates deter
ministic solutions within the numerical accuracy. As di
cussed in Sec. II and in Ref. 14, the natural instability of t
Laplace flow model Eqs.~6!, ~7! makes the time evolution o
the interfacial lines sensitive to random thermal fluctuatio
Therefore, we have chosen to use a stochastic line prop
tion mechanism, which on the average propagates the in
face in the flow directions on the one hand, and natura
incorporates fluctuations on the other. The mechanism
cussed below has the advantage of simplicity, compare
deterministic numerical line propagators.

Having solved the Laplace equations~6!, ~7! we get the
pressure fieldp from Eq. ~5! on every grid point. Next we
associate a velocity with every segment of the interfacial l
separating a fluid and a squeezed cell, using the given v
of potentialsf at the center of the corresponding fluid ce
and the interfacial line. The latter is given from the bounda
condition, Eq.~9!. By definition, this velocity is perpendicu
lar to the corresponding line segment. These velocities
used to determine the propagation of the interfacial line, i
the conversion of interfacial cells from fluid to squeezed,
from squeezed to fluid state, according to the following
gorithm. Define for each such cellI the velocity parameter

v I5(
j (I )

uv j (I )u, ~20!

where the sum is over those boundary line segmentsj (I ) of
cell I for which the line velocity computed above poin
towards the cellI. We use the resultingv I as a measure of the
tendency of this cell to switch its state. The probability tha
switch takes place in the current Monte Carlo step is take
be

PV~ I !5
v I

max$v I%
. ~21!

Thus the probability to accept a tentative MC move th
changes the state of cellI is linearly proportional tov I ,
meaning that onaveragethe interface line would change a
determined by the velocity field. Note, however, that t
physical time is not simply proportional to the number
MC steps because the velocity normalization in Eq.~20! is
different at each such step. The physical time increment
sociated with a single MC step should therefore be coun
asDt}1/max$vI%. We define the MC time of the process b

tMC5 (
steps

1

max$v I%
. ~22!

With this definition, the real physical time is proportional
the MC time

t5atMC . ~23!

A possible way to determinea is discussed below.
At each MC step the interfacial propagation should

supplemented by a line smoothening process that simu
the effect of the line tension. We have chosen a stocha
line relaxation process, in which neighboring squeezed
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 3. Snapshots of the layering tran
sition computed with Hertz contac
pressure, with~top! and without~bot-
tom! taking line tension into accoun
~see text for details!. The black section
represent squeezed-out area, and
white section is fluid area. Time
propagation is from left to right.
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fluid cells may interchange so as to reduce the line ene
Each line relaxation step is taken to be composed of M m
exchange steps, where M is the number of squeezed
along the interface line. At each micro step, a squeezed
terface cell and a neighboring fluid cell are chosen at rand
for an exchange process. The probability for accepting
exchange is

Pl~E!5H q DE<0

qe2bDE DE.0,
~24!

where q5min(1,h̄s/h̄ f), and h̄s, h̄ f are the values of the
sliding friction h̄ at the squeezed and fluid cells, respective
DE5GD l is the change in line free energy;G is the line
tension andD l is the change in the length of the interfa
line caused by the exchange. Theq factor is added to the
normal Metropolis criteria in order to prevent the line rela
ation steps to easily move fluid patches out of high fricti
areas, as discussed above.

For every MC step we usually had few tens of line r
laxation steps, and unless specified otherwise, line tensio
1 eV/Å was used. It should be noted that the number of l
relaxation moves should be restricted, in order to not cha
the center of mass position of small~compare to mesh size!
fluid pockets. This restriction still leaves a large marg
where this number does not affect the resulting dynamic

An alternative way to introduce the line tension effect
via the boundary conditions. It has been shown14 that the line
tension adds another curvature dependent term to the bo
ary conditions at the interface between squeezed and
area. Then the boundary conditions Eq.~9! changes locally
to p18(r ), where

p18~r !5p1~r !2kG, ~25!

wherek is the local curvature andp1(r ) was defined in Eq.
~9!. This approach is harder to implement in a grid bas
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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method, but both treatments should give the same resu
enough boundary relaxation moves are used, so that
boundary line is close to thermal equilibrium at all stag
during squeeze out.

Calculation of interface lengthl ~discussed above! be-
tween squeezed and fluid areas involves some subtle is
~see Appendix C!. Simply summing over the lengths of ce
edges along the interface was found to be problematic
process based on this procedure tends to form rectangula
interfaces due to the underlying grid symmetry, unless
physically low line tension is used. Alternatively, we calc
late l as the sum over straight lines connecting the center
our grid cells. It can easily be shown that in doing so w
overcome the tendency to form rectangularlike interfac
and realistic line tension could be used in the model. Ho
ever, we found very little~if any! differences between the
results of the two approaches, meaning the low line energ
the first approach acts as an effective relaxation parame

In our calculations we have used reduced units, in wh
the 2D-pressure was expressed in units of the pressurepc at
the center. The length was in units of the contact area ra
R, and the dielectric function@Eq. ~8!# was in units of its
value outside the pinning areas. In all calculations, the ini
squeezed area was taken to be circular with radii 0.1R, and
unless otherwise stated, its position was centered around
dial coordinate 0.7R.

B. Numerical results

1. Generic behavior

We focus on the dynamics of the layering transitionn
51→0. Figure 3~bottom! shows snapshot pictures of th
layering transition for a Hertzian contact pressure and w
the line tensionG50. The resulting boundary line is roug
~fractal! on all length scales above the low distance cut
given by the mesh size. This behavior is in sharp contras
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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FIG. 4. Snapshots of the layering tran
sition computed with constant contac
pressure, with~top! and without~bot-
tom! taking line tension into accoun
~see text for details!. The black section
represents squeezed-out area, and
white section is fluid area. Time
propagation is from left to right.
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experimental observations~see Fig. 1!. Figure 3~top! shows
snapshots pictures of the layering transition when the
tensionG51 eV/Å. In this case the fractal pattern occurs
all length scales above a cutoff lengthlc , determined by the
line tension. This illustrate the fundamental importance
the line tension for a correct description of the squeeze
process.

Figure 4 shows the same as Fig. 3, but now with a c
stant contact pressure difference, corresponding to a con
perpendicular 3D-pressure. Note that the fast propagatio
the boundary line along the periphery of the contact a
causes trapping of a huge fluid island. When a Hertzian c
tact pressure is assumed, interfacial velocity close to the
riphery is much smaller~sinceP→0 asr→R), which makes
it possible to squeeze out much more fluid from the inter
of the contact area, resulting in much smaller ‘‘trapped’’
lands, in qualitative agreement with experiment. We a
note that in Fig. 4 the squeeze-out process stops when
drained area encircles the trapped island. At this point th
is no pressure difference across the fluid and the dynam
stops. This is in sharp contrast to the Hertzian contact p
sure case, where a squeeze-out force acts radially on
island of ‘‘trapped’’ fluid. Thus, in the latter case it is nece
sary to introduce pinning centers in order for fluid to rema
trapped for large times, as observed in the experiments.

During squeeze-out@Fig. 3 ~top!# the local curvature of
the boundary line between then51 andn50 regions be-
comes negative in some areas. Some of these areas ev
ally detach from the boundary and leave behind pockets
n51 layer trapped material in the finaln50 state. We note
that unless an island is centered in the center of the con
area, there will be a net tangential force acting on the isl
due to the spatial variation in the normal stress from a ma
mum at the center to zero at the periphery of the contact a
Thus, without defects~pinning centers!, the pockets move
towards the edge as a whole. There they form little ne
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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through which liquid is squeezed out. This is exactly wha
observed in the experiments, see Fig. 1 and Ref. 17. H
ever, in these experiments some islands are also found t
pinned, indicating that there may be defects or contamina
on the solid walls used in the experiments. In order to sim
late pinning we have introduced small circular~high friction!

areas, whereh̄ was taken to be up to 104 times higher than in
the remaining area. This produces pinning of the fluid
these areas, resulting in a finite amount of trapped liq
even for very large times.

Figure 5 shows the time evolution of the relative rema
ing fluid area. The circles were obtained4 from the experi-
mental results of Mugele and Salmeron,17,18by image analy-
sis of a squeeze sequence of snapshots such as the one s
in Fig. 1. The solid line shows the computed fractional a
occupied by the fluid as a function of time for an initi
position of the nucleus atr 50.7R, with a concentration of
pinning areas covering about 13% of the total contact a
The factora relating the MC time to the real time@see Eq.
~23!# has been used as a timescale fitting parameter.

2. Time scales

Figure 6 shows the variation of the fractional area oc
pied by the fluid as a function of time without~solid line!
and with ~dotted and dashed-dotted lines! pinning centers,
assuming that the initialn50 nucleus occur atr 50.7R.
With the pinning centers included, about 13% of the liqu
remain trapped at the interface for large times.

One can clearly observe three distinct time scales a
ciated with the squeeze-out process. The first stage is a
squeeze-out of most of the fluid, but leaving behind ma
relatively big fluid pockets. The second slower stage is
squeeze-out of nonpinned fluid pockets while the third st
is the long term pinning. The second stage process tak
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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long time because islands originally located close to the c
ter of the contact area experience a very weak net lat
force, as discussed in Sec. II.

It is easy to understand the dynamics of the first st
based on the Persson-Tosatti model@Eq. ~11!#. Simulation
results show that the lhs of Eq.~11! depends linearly on the
MC time for short times, even for off center squeeze nucle
Thus the model appears to qualitatively describe the v
short time dynamics, however it fails at longer times~still
within the first stage!. The success of Eq.~11! at short time
can serve as a rough way for direct time scaling of simu
tion results to real systems, without any fitting paramete
Equation~11! could be recasted as

F12
A~ t !

A0
G H lnF12

A~ t !

A0
G21J 52

a

t0
tMC , ~26!

wheret0 @cf. Eq.~12!# is determined by the parameters of t
physical system. Therefore using Eq.~26! in the early parts
of the simulation provides an estimate of the proportiona
factor a of Eq. ~23!.

During the second stage of squeeze-out, we found
the fluid area scales asA(t);t2b. When pinning centers ar
absent, the exponent isb'1.5. Inclusion of pinning center
slowed down the dynamics, yieldingb'0.6– 0.7 in the ex-
amples shown in Fig. 6. This indicates that the pinned ar
influence the squeeze-out well beyond their physical lo
tion.

The third stage is clearly influenced by the pinni
strength; increasing the relative friction in the pinning ce
ters extends the life span of trapped fluid pockets, as
pected. Therefore one can, in principle, gain informat
about the pinning strength of real surface defects by com
ing with simulations.

3. Other effects

Figure 7 shows the fractional area occupied by the fl
as a function of time for an initial position of the nucleus:
the center~solid line!, at r 50.4R ~dotted line!, and at r

FIG. 5. The fractional area occupied by the fluid as a function of time w
the initial position of the squeeze nucleus atr 50.7R. Solid line: theory.
Circles: experimental.
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50.7R ~dashed-dotted line!. Note again that one can distin
guish between two phases of squeeze-out: an initial ‘‘fa
phase, and a slower phase where the fluid islands
squeezed out. In contrast with the second squeeze stage
closer the initial position to the center of the contact area,
faster is the first stage. The dynamics of the boundary line
the first stage is determined by the pressure gradient at
boundary Eq.~4! which results from the solution of Laplac
equations~6!, ~7! with boundary conditions derived from th
Hertz pressure Eqs.~9!, ~10!. These gradients are greater th
closer the interfacial line to the center. In the second st
the gradients originates mainly from the derivative of t
Hertz pressure itself Eq.~10!, thus becoming higher as w
depart from the center~see Fig. 2!.

We have also considered possible cooperative effe
would a distribution of small pinning areas be more efficie
then a few big areas, in delaying the squeeze-out proc

FIG. 6. The fractional area occupied by the fluid as a function of ti
without ~solid line! and with ~dashed line and dashed-dotted line! pinning
centers, and with the squeeze-out nucleus atr 50.7R. The inset shows the
long time behavior on a log–log scale.

FIG. 7. The fractional area occupied by the fluid as a function of time w
the initial position of the squeeze nucleus at the center~solid line!, at r
50.4 ~dotted line! and for r 50.7R ~dashed-dotted line!. Without pinning
areas.
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Figure 8 shows two such limiting cases in which the ove
high friction areas was roughly equal, about;12%. The
example shows that some cooperative effects may o
mainly at the late stages of the second squeeze phase. T
effects were also observed in visual inspection of simulat
snapshots. At the third phase the ability of small pinni
centers to trap fluid for long time is weaker compared to
case of few big centers. It seems that small fluid pock
formed by small pinning areas are more sensitive to rand
fluctuations in which small fluid patches detach from t
fluid pocket. Once it happened, they slip out due to the
eral force, as discussed in Sec. II above. We found that
cooperative effects are very sensitive to the distribution
the pinning centers; some distributions do not produce th
effects at all, though the behavior at the third phase is c
sistent.

IV. SUMMARY AND CONCLUSIONS

A lubrication fluid confined between two approachin
surfaces form, in the limit of thin interfaces, well-define
layers of molecular thickness, whose number decrease
discontinuous steps with increasing applied pressure.
have studied the dynamics of the squeeze-out by solving
2D Navier–Stokes equations with an interfacial frictio
term, and found the results to be in good agreement with
experimental data. We note that it is very important to us
variable~Hertzian! contact pressure profile and to include t
line tension: IfG50 or if the contact pressure is assumed
be constant rather than Hertzian, the computer simulat
disagree qualitatively with the experiment. We have a
studied the motion of small islands, and pointed out t
fluctuations in the velocity may give information about t
nature of the pinning dynamics.
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APPENDIX A: DIMENSIONAL ANALYSIS
OF THE NAVIER–STOKES EQUATIONS

Here we justify neglecting various terms in the Navie
Stokes equations~2!. In the experimental system of Mugel
and Salmeron17,18 the typical length scale isR;10 mm ~con-
tact area radius! and the typical squeeze-out time scalet
;1 second. Then the relative magnitude of the terms in
~2! are as follows:

v
t

:
v2

R
:

Dp

Rmna
:
nv

R2
:hv. ~A1!

Now, if we divide every term in Eq.~A1! by hv and put
v;R/t we get

1

ht
:

1

ht
:

tDp

R2mnah
:

n

hR2
:1. ~A2!

Since h'1013 s21,17 the first two terms in Eq.~A2! are
negligible. Typical values for the bulk kinematic viscosity
organic liquids is of the order ofn'1023 m2/s, making the
fourth term of the order of 1026 and again negligible. Lastly
the third term has to come out to be of order;1 in order for
Eq. ~2! to hold. Using Eq.~9! we see thatDp5P0a, where
P0 is the external pressure anda is the change in the sepa
ration between the confining solids due to the squeeze ou~of
the order of molecular diameter!. Putting in the parameter
from Ref. 17 the third term is indeed of order unity, as r
quired.

APPENDIX B: BOUNDARY CONDITIONS

From thermodynamics we know that the pressure
given by

p5S ]F

]VD
T

, ~B1!

where F is the free energy andV is the volume. Its 2D
equivalent is

p5S ]F

]AD
T

[g, ~B2!

whereA is the area. The 2D-pressure is just the surface
ergy ~per unit area!, and we would express the bounda
conditions by the surface energy change during squeeze
Now suppose the bounding solid walls are rigid and we fo
a hole. The free energy change per unit area when fluid flo
into the hole is called the spreading pressurep0 . Everywhere
else in the fluid film the pressure has to be constant and e
to the spreading pressure, otherwise fluid would flow fro
high to low pressure areas leaving empty holes behind~as-
suming constant density!.

Pressurep1 on the boundaries of the formed hole has
be greater then the spreading pressure in order for

ze-
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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squeeze out process to propagate. Its value is determine
follows. We make a small variation in the boundary line
given point, to convert a squeezed surface element in
fluid element. The free energy change is the boundary va
p1 @Eq. ~B2!#. Its value would be the energy required
‘‘lift’’ the confining solids to distancea apart plusp0 , the
energy change due to fluid spread. Thereforep15p0

1P(x,y)a, and P(x,y) is the local perpendicular 3D
pressure.

APPENDIX C: CALCULATION OF INTERFACE
LENGTH

1. Model I

Within line tension model I, interface length was calc
lated as a sum over the rectangular edges of the cells~Fig. 9!.
Now we will show that within that model rectangularlik
shape have lower line energy, then quasicurved ones. H
high ~realistic! values ofG ~line tension! would render the
interface to have straight rectangularlike shape. In orde
avoid it one has to make the line tension small letting
thermal fluctuations make the interface more ‘‘curved’’
seen in experiments.

Our starting point is the quasi-circular shape dem
strated in Fig. 10. The diameter of the circle is 2R5ND,
whereN is the number of cells along the diameter andD is
the grid discretization. It follows that the perimeter of th
circle is Lc54ND. Circle area is approximately (R@D) Sc

5pR2'pN2D2/4. Suppose we have a rectangle of eq
area as the circleSr5Sc . Then its perimeter isLr54ASr

52ApND, and the ratioLc /Lr.1. Therefore the quasi
circle has a longer perimeter than the rectangle.

The mechanism described above is a purely model a
fact, resulting from the underlying rectangular symmetry
the grid. When we use very low line tension, simulation
sults agree well with experiments and intuition. Neverthel
it is bothering to have a line tension which is 4–5 orders
magnitudes smaller then real values.

2. Model II

A simple remedy, within the line relaxation paradigm,
the line tension problem is as follows. We could in princip
calculate the interface length in a slightly modified form
connecting the centers of the cells via straight lines inst
of summing over the edges~Fig. 11!.

FIG. 9. Model I of interface line length between squeezed and fluid are
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We start with examining one quarter of a discretiz
circle. Its perimeter is composed ofi segments parallel to the
x-axis, j segments parallel to they-axis andk diagonal seg-
ment. It is easy to see that in each axis direction:

i 1k5N/2, ~C1!

j 1k5N/2, ~C2!

implying that i 5 j [x and k5N/22x. The total perimeter
length of the circle is then

Lc54@2x1~N/22x!A2#D

54ND@1/A21~22A2!a/2#, ~C3!

wherea5x/(N/2) is the fraction of straight~nondiagonal!
segments. Testing again the ratioLc /Lr we can find the
maximum value ofa for which the ratio is smaller then 1
and it turns out to bea'0.61. Therefore even if in a given
axis ~say x-axis! we have up to 61% of straight line seg
ments, the discretized circle would have shorter perime

s.

FIG. 10. Quasi-circular shape on a rectangular grid.

FIG. 11. Model II of the interface line length between squeezed and fl
areas.
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then the corresponding rectangle. In practice the percen
is much lower, hence favoring curved shapes naturally.

One subtle issue is how to assign consistent line ene
for a squeezed area consisting of just one or two cells,
sulting from a fluctuation. In reality such small fluid pocke
are very unstable due to the very high line energy and sm
area. Since it is undesirable to have these small fluctua
we have used anad hocsolution in which a very high inter-
face length is associated with them, thus preventing th
formation.
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