View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Juelich Shared Electronic Resources

JOURNAL OF CHEMICAL PHYSICS VOLUME 115, NUMBER 24 22 DECEMBER 2001

Theory and simulations of squeeze-out dynamics in boundary lubrication

S. Zilberman
School of Chemistry, Tel Aviv University, Tel-Aviv, Israel 69978

B. N. J. Persson
IFF, FZ-Juich, D-52425 Jlich, Germany

A. Nitzan
School of Chemistry, Tel Aviv University, Tel-Aviv, Israel 69978

(Received 20 June 2001; accepted 3 October 001

The dynamics of expulsion of the last liquidlike monolayer of molecules confined between two
surfacegmeasured recently for the first tifig. Chem. Physl14, 1831(2001)]) has been analyzed

by solving the two-dimensional Navier—Stokes equation combined with kinetic Monte Carlo
simulations. Instabilities in the boundary line of the expelled film produce a rough boundary for all
length scales above a critical value. The squeeze-out of liquid is shown to result from the
2D-pressure gradient in the lubrication film in the contact area. The Monte Carlo simulations agrees
well with experiments, reproducing most qualitative and quantitative features. In particular it shows
the formation of small islands, whicfin the absence of pinning mechanisdrift slowly to the
periphery of the contact area. We calculate the drift velocity analytically as a function of the distance
of the island to the periphery of the contact area. Experiments indicate that some kind of pinning
mechanism prevails, trapping fluid pockets for very long times. When including such pinning areas
in the simulations, three distinct squeeze phases and time scales were ob&Bneitial fast
squeeze of most of the flui@?2) slower squeeze of unpinned fluid pock&®);long term pinning of

fluid pockets. We also show that a distribution of small pinning areas may produce a synergistic
effect, slowing down the second phase of the squeeze, compared to a small number of big pinning
areas. The paper presents a new stochastic numerical approach to problems of moving boundaries
which naturally accounts for thermal fluctuations and their effect in unstable dynamic200®
American Institute of Physics[DOI: 10.1063/1.1421105

I. INTRODUCTION imaging the lateral variation of the gap between the solid
surfaces as a function of time. As explained below, the state
n=0 corresponds to two strongly bound monolayene
bound to each plajethat cannot be removed by squeezing.
We present a detailed discussion of the dynamics of the

Sliding friction is one of the oldest problems in physics,
and has undoubtedly a huge practical importancdn re-
cent years, the ability to produce durable low-friction sur-
faces and lubricants has become an important factor in thg dary i tina the=1 andn=0 : duri
miniaturization of moving components in technologically ad- oundary fine separating andn regions auring

vanced devices. For such applications, the interest is focuset ueeze-out. In an earlier paper we discussed the nature of

on the stability under pressure of thin lubricant films, sincel® layering ggglsltlon when the lubrication film is in a 2D-

the complete squeeze-out of the lubricant from an interfacgClidlike stat . . . .
may give rise to cold-welded junctions, resulting in high fric- 1€ dynamics of the layering transition has been studied

tion and catastrophically large wear. with the Surface Forces Apparatus by imaging the gap region
In this paper we investigate the late stages of the apll tWO dimensions’ The experiment was performed with a
proach of two elastic solids limited by two curved surfaces,chain alcohol GH,;0H, where the amount of liquid ex-
wetted by a lubricant film of microscopic thickneskinder ~ Pelled in the layering transitions during slow approach ex-
these conditions, the behavior of the lubricant is mainly deleriments corresponds to a bilayer of molecules with the
termined by its interaction with the solids that induce layer-OH-groups pointing toward each ottiéin the much faster
ing in the perpendicular directioh’? The thinning of the approach used in Ref. 17 the structure of expelled liquid
lubrication film occurs stepwise, by expulsion of individual layer is not known, and could also be in the form of a single
layers. These layering transitions appear to be thermallynonolayer of flat lying molecules. This, however, does not
activated->**Under strong confinement conditions, some lu-change the nature of the phenomena. The mica surfaces are
bricants become solidlik&*? Other liquids, notably covered by strongly bounéia the OH-group monolayers
water?>6 remain liquidlike up to the last layer that can be of C;;H»;0H, that cannot be removed by squeezing, leading
removed upon squeezing. The system considered here beffectively to a CH-terminated substrate for any additional
longs to the second class. material inside the galf. These coated surfaces are very in-
We study the spreading of the=1—0 layering transi- ert, and the additional alcohol does not wet the surfaces.
tion, which was recently observed for the first tirfe}®by ~ Shear experiments showed that the static friction force re-
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ering transition occurs off-center. Since the lubrication film
is assumed to be in a 2D-liquidlike state, the basic equations
of motion for the lubrication film are the continuity equation
and the(generalizegd Navier—Stokes equation for the 2D-
velocity field v(x,t) (we assume an incompressible 2D

fluid): 113
| V.v=0, (1)
i Vv= ! Vp+ vVav— n 2
v v——mna p+vVav—r1v, (2

where p is the 2D-pressurey the 2D-kinematic viscosity,
and mn, is the mass density. The last term in E8) de-
scribes the “drag-force” from the solid walls acting on the
{ fluid. It is possible to showsee Appendix Aby dimensional
arguments that, to a good approximation, one can neglect the
nonlinear and the viscosity terms in E&), and assume that
FIG. 1. Snapshot during squeeze out1—0. From Ref. 17. the velocity field changes so slowly that the time derivative
term can be neglected. Thus

mains zeroand no stick-slip is observedip to and includ- Vp+mn,pv=0. ©)
ing the last alcohol layer, indicating that this layer<1) is ) ) i .
in a 2Ddiquidlike state. This is further supported by viscosity . 1 NS duasi-staticapproximation assumes that the flow
measurements performed by studying the damping of micgeld is a_lble rearrange |ts_elf much faster than the interfacial
oscillationst® which shows liquidiike behavior down to the Ne motion. From Eq(3) it follows that
last expelled layer. Once this layer is expelledrrespond- v=Vo, (4)
ing to the n=0 situation, the contact between the
CHs,-terminated films leads to solidlike friction, with a non- Where
zero static friction force, and stick-slip during sliding. The &
experimental data in Ref. 17 correspond to thel—0 lay-
ering transition. The continuity equatioril) then gives

The dynamics of the layering transition separates into V24=0 ©®)
two phases. In the first phase, the system is trapped in a '
metastable state at the initial film thickness, i.e., one Experimental resulté*® indicates that the squeeze-out
(bi-)layer of alcohol molecules between the substrate-boung@rocess is affected by pinning centers, where fluid islands are
monolayer. Thermal fluctuations of the two-dimensional dentrapped. To account for this behavior, we assume that the

siFy in this !ayer eventually lead to thg forma.tion of a hole friction ; [see Eq.(2) abovd may be position dependent.
with a radius that exceeds the critical radius. Once theviore explicitly, we assume that most of the fluid is subjected
nucleus is formed the growth phase begins, and the rest % a “regular” friction (estimated to be oforde_yz 10851,

the layer is quickly expelled. A snapshot picture taken duringq o¢s 17 18 and much higher value at sonminning re-
squeeze-out is shown in Fig.(4ee also Ref. 17 The circle gioné Eq,uation(6) is then replaced by

essentially marks the contact area out of which the fluid will
eventually squeeze out. The bright and dark regions corre- V-[e(r)Vp]=0 (7)
spond to remaining fluid and squeeze-out areas, respectiveb(/
The squeeze process from which this snapshot was taken h
started at the upper left side of the contact area, and is seen
have propagated faster along the edges of this &rea. 1

The paper is organized as follows. Section Il presents the e(r)= mn,p(r)’ ®)
general theory of hydrodynamic squeeze out, and a special
derivation for the dynamics of small fluid pockets. Then SecWhere the 2D pressune behave analogously to an electro-
Il discusses the details of the numerical method and simuStatic potential. At the outer boundary=R of the contact

lation results are analyzed. We conclude in Sec. IV with sum&réa, the pressurp=p, is constant, while at the inner
mary and conclusions. boundary, at the interface with the=0 area, it depends

linearly on the perpendicular 3D-pressuPér) (0<r<R)
via the relation

In this paper we consider the dynamics of expulsion for P1(r)=Po*P(ra, ©
2D-liquidlike films. We focus on the evolution of the bound- whereR is the radius of the contact aregy the spreading
ary line separating th@=1 andn=0 regions during the pressurt*?®anda the thickness of the monolayésee Ap-
layering transitiom=1—0 when the nucleation of the lay- pendix B and Ref. 18 From Hertz contact theory?*

=—p/mn,7. (5)

hich has the form of a Laplace equation with a position
@gpendendielectric function

Il. THEORY
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2

3 1/2
P(r)= EPO( 1- ﬁz

10 The experimental boundary line for{,;0H is indeed

rough at this length scale, while it is smooth on shorter
length scales. Based on this result one may also argue that
where P, is the average perpendicular pressiesternal  the |inear size of the trapped fluid islands should be of order
f_orc_e per unit areaon the contact_ area. Thus,_the problgm of}\c (or larged, which again agrees with the observations.
finding ¢ [Eq. (6)] or p [Eq. (7)] is mathematically equiva- Finally, let us consider the motion of a smatbmpared
lent to finding the electrostatic potential beiween two cylin-ig the size of the contact aneisland, located a distanae
ders at different potentialspo=—po/mn,n and ¢,(r)  from the center of the contact area. We assume the island
=—p,(r)/mn,y, where the outer cylinder has a circular does not experience any pinning forces. We will calculate the
shape(radius R), and the inner cylinder has an unknown dependence of the radial velocity(r) of the island on its
(time-dependentshape that should be determined. Exceptpositionr. First, note that the elastic energy stored in the
for the different boundary conditions, this situation is math-deformation field in the solids in the vicinity of the island is
ematically very similar to viscous fingering, where the anal-U~ 7b?P(r)a, whereb is the radius of the island, is the

ogy to electrostatics has already been pointed(se¢, e.g., distance of the center of the island from the center of the
Ref. 25. If we assume that the squeeze-out process nucleat®ntact area, and is the thickness of the monolayer. The
at the center of the contact area, then the theory of Perssaadial force acting on the island is thus

and Tossatt? which assumes that the squeezed area proceeds

with Ci_rcular symmetry, yields the following expression for F=— ﬂ: — 7b?P’(1)a. (15)
the fluid areaA(t) at timet: ar
A(t) A(t) t This force moves the island in the radial direction to-
1- Ao Inj 1— Ao -1 :_E’ (11 ward the periphery of the contact area. We assume over-

damped motion, and can thus neglect the inertial force acting

whereA,= 7R is the contact area, angis the time it takes  on the island, so that the driving forégr) must just balance
to completely squeeze out the fluid from the contact areape frictional drag force from the solid walls:

The squeeze-out timg is given by

2 o —
to=Rlv, 12 mh namayu(r)=F (16)
with or
a
bom o 0 a3 v=-——=P'(r). an
2 n,Rmy Namz

It is easy to show that the time evolution of the boundary linelf P(r) is given by the Hertz expressidfhO) then this gives
is unstable with respect to small perturbations. Consider the o —1y

evolution of a circular squeeze-out region at the centerofthe Y _ " [, _ r_)
contact area. Assume that, due to a fluctuation, a small pro- vo R R '
trusion is formed on the boundary line, which will locally
decrease the distance to the outer boundary lindR. By
analogy to electrostatics, this will give rise to an enhance . o ;
“drain?r?g” velocity of the fluid at thg protrusion, so that the r=R. However, for any finite size islantadiusb), when

boundary line at the protrusion will move faster toward ther:R_b the island will make contact with the region outside

periphery than in the other regions. This argument is valiome.ContaCt area; computer smulaﬂdsge sec. I anq ex-
for protrusions of any size, and it follows that, within the periment have shown'that this result n the formaﬂon of a
model discussed above, the boundary line willrbagh at neck toward Fhe outside, through V\.’h.'Ch the ﬂl.“d will be
all length scalesThis argument, however, disregards the "nesqueezed. Usmg=dr/dj[ andx_z_r/R, Itis easy_to Integrate
energy. Taking into account the line tensibn(free energy Eq. (.18) to get the rad""?ll posmonr('Q of the |_sland as a
per unit length of the boundary lihndeads to a boundary line function of time. In particular, the t|me:__t(_r) It takes to
that is smooth on all length scales below some critical Cutofﬁqueeze—out an island that starts at positiois given by

length\ ., while it is rough on longer length scafég® t fl 1 12
"
r'R

(18

wherevy was defined in Eq(13). The function Eq(18) is
&hown in Fig. 2a). Note that the velocity goes to infinity for

_ -1 (19)
v2
Ne=2m(DImn,gu0) 2 (14) o Jur X

whereuv is the velocity of the boundary line. The line ten- wherer=r(0) is the initial distance of the island from the
sion I has a contribution from unsaturated bonds at thecenter of the contact area, ang=R/v,y. This function is
boundary line ¢0.01 eV/A, Ref. 13 and another much shown in Fig. 2b). If pinning centers occur at the interface,
larger contribution from the energy stored in the elastic deit will result in fluctuations in the velocity (r) of the island,
formation field in the confining solids in the vicinity of the and in a distribution of squeeze-out tinfésr identical start-
boundary line &1 eV/A, Refs. 14, 17, 18 Under the ex- ing distances (0)]; the study of the motion of islands would
perimental conditions of Ref. 17, Eq14) predictsA\.~5  hence give information about the nature of the pinning dy-
pm, which equals 1/10 of the diameter of the contact areanamics.
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6 @ Numerical solutions of moving boundaries problems

could in principle be obtained using deterministic boundary
evolution algorithms(e.g., Ref. 29 which generates deter-
ministic solutions within the numerical accuracy. As dis-
cussed in Sec. Il and in Ref. 14, the natural instability of the
Laplace flow model Eqg6), (7) makes the time evolution of
the interfacial lines sensitive to random thermal fluctuations.
Therefore, we have chosen to use a stochastic line propaga-
tion mechanism, which on the average propagates the inter-
face in the flow directions on the one hand, and naturally
incorporates fluctuations on the other. The mechanism dis-
cussed below has the advantage of simplicity, compared to
deterministic numerical line propagators.

Having solved the Laplace equatio(®, (7) we get the
pressure field from Eg. (5) on every grid point. Next we
associate a velocity with every segment of the interfacial line
separating a fluid and a squeezed cell, using the given value
of potentials¢ at the center of the corresponding fluid cell
and the interfacial line. The latter is given from the boundary
condition, Eq.(9). By definition, this velocity is perpendicu-
lar to the corresponding line segment. These velocities are
used to determine the propagation of the interfacial line, i.e.,
o T— the conversion of interfacial cells from fluid to squeezed, or
0 0.2 04 06 08 1 from squeezed to fluid state, according to the following al-

"R gorithm. Define for each such célithe velocity parameter

V/Vo

FIG. 2. (a) The radial velocityv of a small island as a function of the

distancer from the center of the contact are@d) The timet it takes to 0= 2 |v- | (20)
squeeze out a small island as a function of the initial distanfrem the I 10 it

center of the contact area.

where the sum is over those boundary line segmgijsof

cell I for which the line velocity computed above points
I1l. COMPUTER SIMULATIONS towards the cell. We use the resulting, as a measure of the
tendency of this cell to switch its state. The probability that a
switch takes place in the current Monte Carlo step is taken to

We have performed kinetic Monte Car(MC) simula- be

tions[based on Eq91)—(10)] to study the squeeze-out pro-
cess in detail. The basic reasoning behind the MC modeling p ()= L_
of the system is quite straightforward. We start with a small maxv,}

initial squeezed regiofusually taken to be circulaof radii Thus the probability to accept a tentative MC move that
greater then the critical radii for the formation of such achanges the state of celllis linearly proportional tov,
squeezed hole. The initial formation process is a separaigqaning that ormveragethe interface line would change as

issue that is not studied here. At each step we solve thgaiormined by the velocity field. Note, however, that the
Laplace equation on a two-dimensional cell centered grid hysical time is not simply proportional to the number of
and move the interface line between fluid and squeezed are steps because the velocity normalization in E2) is

In-a manner Fhat ffolk:ovxéls flow llmgs. In this scnetr)’ne v(\;e M- gitferent at each such step. The physical time increment as-
pose continuity of the flow velocity across cell boundaries,g,qiaiaq with a single MC step should therefore be counted

which is equivalent to the continuity of the dielectric dis- asAto 1/maxu,}. We define the MC time of the process by
placement in electrostatics. :

We have used an area discretization scHémembined 1
with a successive over relaxation iterative procedure for "MC™ StEepS m
solving the Laplace equation§), (7).22 We used a square
grid, typically of size 28 280. This grid divides the system With this definition, the real physical time is proportional to
into square cells and the grid points are taken to be at thethe MC time
centers. The interfacial line is taken along these grid lines, so t=ar 23)
that a grid cell has a unique attribute, either squeezed or Me:
fluid. As discussed in Sec. Il, the boundary conditions areA possible way to determine is discussed below.
p=po on the external peripheryr ER), andp=p4(r) [cf. At each MC step the interfacial propagation should be
Eqg. (9)] on the interfacial line between squeezed and fluidsupplemented by a line smoothening process that simulate
areas at position. The actual value of the spreading pressurethe effect of the line tension. We have chosen a stochastic
Po is unimportant, and it was set to zero in our calculationsline relaxation process, in which neighboring squeezed and

A. Methodology

(21)

(22
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FIG. 3. Snapshots of the layering tran-
sition computed with Hertz contact
pressure, with(top) and without(bot-
tom) taking line tension into account
(see text for details The black section
represent squeezed-out area, and the
white section is fluid area. Time
propagation is from left to right.

fluid cells may interchange so as to reduce the line energynethod, but both treatments should give the same result if
Each line relaxation step is taken to be composed of M micrenough boundary relaxation moves are used, so that the
exchange steps, where M is the number of squeezed celloundary line is close to thermal equilibrium at all stages
along the interface line. At each micro step, a squeezed irduring squeeze out.
terface cell and a neighboring fluid cell are chosen at random Calculation of interface length (discussed aboyebe-
for an exchange process. The probability for accepting théween squeezed and fluid areas involves some subtle issues
exchange is (see Appendix € Simply summing over the lengths of cell
edges along the interface was found to be problematic. A
q AE=<O0 : .
e (24) ~ process based on this procedgre tequ to form rectangularlike
qe ” AE>0, interfaces due to the underlying grid symmetry, unless un-
physically low line tension is used. Alternatively, we calcu-
late| as the sum over straight lines connecting the centers of
our grid cells. It can easily be shown that in doing so we
overcome the tendency to form rectangularlike interfaces,
and realistic line tension could be used in the model. How-
ever, we found very little(if any) differences between the
results of the two approaches, meaning the low line energy in
the first approach acts as an effective relaxation parameter.
In our calculations we have used reduced units, in which
e 2D-pressure was expressed in units of the pregguat

P(E)=

where g=min(1,7s/ 7;), and ns, 7; are the values of the
sliding friction » at the squeezed and fluid cells, respectively.
AE=TAl is the change in line free energy; is the line
tension andAl is the change in the length of the interface
line caused by the exchange. Theactor is added to the
normal Metropolis criteria in order to prevent the line relax-
ation steps to easily move fluid patches out of high friction
areas, as discussed above.

For every MC step we usually had few tens of line re- i

laxation steps, and unless specified otherwise, line tensio_n Wwe center. The length was in units of the contact area radius
1 eV/A was used. It should be noted that the number of IlneR, and the dielectric functiofiEq. (8)] was in units of its

relaxation moves shouI(_j_be restricted, in order to not C_hangsalue outside the pinning areas. In all calculations, the initial
the center of mass position of sméompare to mesh siye squeezed area was taken to be circular with radiRQdnd

fluid poc.kets. This restriction siill leaves a large marginnless otherwise stated, its position was centered around ra-
where this number does not affect the resulting dynamics. dial coordinate 0.R

An alternative way to introduce the line tension effect is
via the boundary conditions. It has been sh&tihat the line
tension adds another curvature dependent term to the boun ) )
ary conditions at the interface between squeezed and fluid: Generic behavior
area. Then the boundary conditions E@) changes locally We focus on the dynamics of the layering transition
to py(r), where =1—0. Figure 3(bottom) shows snapshot pictures of the

, layering transition for a Hertzian contact pressure and with

P1(r)=ps(r) = «T, (25 th)é Iinegtensiori“=0. The resulting boundgry line is rough
wherex is the local curvature ang,(r) was defined in Eq. (fracta) on all length scales above the low distance cutoff
(9). This approach is harder to implement in a grid basedjiven by the mesh size. This behavior is in sharp contrast to

5. Numerical results
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FIG. 4. Snapshots of the layering tran-
sition computed with constant contact
pressure, with(top) and without(bot-
tom) taking line tension into account
(see text for details The black section
represents squeezed-out area, and the
white section is fluid area. Time
propagation is from left to right.

experimental observatiorisee Fig. L Figure 3(top) shows through which liquid is squeezed out. This is exactly what is
snapshots pictures of the layering transition when the lin@bserved in the experiments, see Fig. 1 and Ref. 17. How-
tension'=1 eV/A. In this case the fractal pattern occurs onever, in these experiments some islands are also found to be
all length scales above a cutoff length, determined by the pinned, indicating that there may be defects or contamination
line tension. This illustrate the fundamental importance ofon the solid walls used in the experiments. In order to simu-
the line tension for a correct description of the squeeze-oufte pinning we have introduced small circu(aigh friction)
process. areas, wherey was taken to be up to £@imes higher than in
Figure 4 shows the same as Fig. 3, but now with a conthe remaining area. This produces pinning of the fluid in
stant contact pressure difference, corresponding to a constaifese areas, resulting in a finite amount of trapped liquid
perpendicular 3D-pressure. Note that the fast propagation @ven for very large times.
the boundary line along the periphery of the contact area  Figure 5 shows the time evolution of the relative remain-
causes trapping of a huge fluid island. When a Hertzian coning fluid area. The circles were obtaiffeflom the experi-
tact pressure is assumed, interfacial velocity close to the penental results of Mugele and Salmerdrit®by image analy-
riphery is much smallefsinceP—0 asr —R), which makes  sis of a squeeze sequence of snapshots such as the one shown
it possible to squeeze out much more fluid from the interionn Fig. 1. The solid line shows the computed fractional area
of the contact area, resulting in much smaller “trapped” is- occupied by the fluid as a function of time for an initial
lands, in qualitative agreement with experiment. We als@osition of the nucleus at=0.7R, with a concentration of
note that in Fig. 4 the squeeze-out process stops when thfinning areas covering about 13% of the total contact area.
drained area encircles the trapped island. At this point therghe factora relating the MC time to the real timsee Eq.

is no pressure difference across the fluid and the dynamic®3)] has been used as a timescale fitting parameter.
stops. This is in sharp contrast to the Hertzian contact pres-

sure case, where a squeeze-out force acts radially on any
island of “trapped” fluid. Thus, in the latter case it is neces-
sary to introduce pinning centers in order for fluid to remain
trapped for large times, as observed in the experiments. Figure 6 shows the variation of the fractional area occu-
During squeeze-oUtFig. 3 (top)] the local curvature of pied by the fluid as a function of time withogsolid line)
the boundary line between the=1 andn=0 regions be- and with (dotted and dashed-dotted lingsinning centers,
comes negative in some areas. Some of these areas evenfissuming that the initiah=0 nucleus occur at=0.7R.
ally detach from the boundary and leave behind pockets ofith the pinning centers included, about 13% of the liquid
n=1 layer trapped material in the final=0 state. We note remain trapped at the interface for large times.
that unless an island is centered in the center of the contact One can clearly observe three distinct time scales asso-
area, there will be a net tangential force acting on the islandiated with the squeeze-out process. The first stage is a fast
due to the spatial variation in the normal stress from a maxisqueeze-out of most of the fluid, but leaving behind many
mum at the center to zero at the periphery of the contact areselatively big fluid pockets. The second slower stage is the
Thus, without defectgpinning centers the pockets move squeeze-out of nonpinned fluid pockets while the third stage
towards the edge as a whole. There they form little neckss the long term pinning. The second stage process takes a

2. Time scales
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FIG. 6. The fractional area occupied by the fluid as a function of time
without (solid line) and with (dashed line and dashed-dotted Jiqenning
centers, and with the squeeze-out nucleus=a0.7R. The inset shows the
long time behavior on a log—log scale.

FIG. 5. The fractional area occupied by the fluid as a function of time with
the initial position of the squeeze nucleusrat0.7R. Solid line: theory.
Circles: experimental.

long time because islands originally located close to the cen- dashed-dotted i i th disti
ter of the contact area experience a very weak net lateraf O- /R (dashed-dotted lineNote again that one can distin-
force. as discussed in Sec. II. guish between two phases of squeeze-out: an initial “fast

It is easy to understand the dynamics of the first stag@ase. and a slower phase where the fluid islands are
based on the Persson-Tosatti mof&d. (11)]. Simulation squeezed out. In contrast with the second squeeze stage, the

results show that the Ihs of E4L1) depends linearly on the closer_the init_ial position to the cent.er of the contact area, tr_\e
MC time for short times, even for off center squeeze nucleusf.""Ste,r is the f|r§t stage. The dynamics of the boundgry line in
Thus the model appears to qualitatively describe the ver;E1e first stage is dgtermmed by the pressure gradient at the
short time dynamics, however it fails at longer timsill oundary Eq(4) W,h'Ch results from t_h,e SOIU“Q” of Laplace
within the first stage The success of Eq11) at short time equationg6), (7) with boundary conditions derived from the

can serve as a rough way for direct time scaling of simulal1ertz pressure Eqg9), (10). These gradients are greater the
tion results to real systems, without any fitting parametersCl0Ser the interfacial line to the center. In the second stage
Equation(11) could be recasted as the gradients orlgmates mainly from thg derl_vat|ve of the
Hertz pressure itself Eq10), thus becoming higher as we
A(t) A(t) @ depart from the centeisee Fig. 2
1— ——|{In|1- —=| -
Ao Ao

! :_QTMC’ (26) We have also considered possible cooperative effects:
wheret, [cf. Eq.(12)] is determined by the parameters of the

would a distribution of small pinning areas be more efficient
physical system. Therefore using E@6) in the early parts then a few big areas, in delaying the squeeze-out process.
of the simulation provides an estimate of the proportionality
factor a of Eq. (23).

During the second stage of squeeze-out, we found that
the fluid area scales @(t)~t~°. When pinning centers are 081
absent, the exponent is=1.5. Inclusion of pinning centers 0.8
slowed down the dynamics, yielding~0.6—0.7 in the ex-
amples shown in Fig. 6. This indicates that the pinned areas g
influence the squeeze-out well beyond their physical loca- 50-5
tion.

The third stage is clearly influenced by the pinning
strength; increasing the relative friction in the pinning cen-
ters extends the life span of trapped fluid pockets, as ex- 03f
pected. Therefore one can, in principle, gain information ¢,
about the pinning strength of real surface defects by compar-
ing with simulations.

0.7

e
o
T

Relative Flui
I
B

3. Other effects MC time

. - P . FIG. 7. The fractional area occupied by the fluid as a function of time with
Figure 7 shows the fractional area occupied by the ﬂUICfhe initial position of the squeeze nucleus at the cefdefid line), atr

as a function (?f time for an initial position O_f the nucleus: at g 4 (dotted ling and forr=0.7R (dashed-dotted line Without pinning
the center(solid line), at r=0.4R (dotted ling, and atr areas.
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APPENDIX A: DIMENSIONAL ANALYSIS
OF THE NAVIER-STOKES EQUATIONS

Relative Fluid Area
<o
N

0.18 Here we justify neglecting various terms in the Navier—
016 Stokes equation€). In the experimental system of Mugele
and Salmerot*8the typical length scale B~ 10 um (con-
0145 tact area radiysand the typical squeeze-out time scale
012} ~1 second. Then the relative magnitude of the terms in Eq.
04 , (2) are as follows:
10’ 10° 10°
MC time v U2 Ap VU

— =l —.mV. Al
FIG. 8. Cooperative effects at the second and third phases of the squeeze- 7 R Rmn, R2 U (A1)

out process.

Now, if we divide every term in Eq.AL) by »v and put

v~R/T we get

Figure 8 shows two such limiting cases in which the overall
high friction areas was roughly equal, aboutl2%. The 1. 1 rp v 1 (A2)
example shows that some cooperative effects may occur #n7 57’ Rzmnan' 7RZ
mainly at the late stages of the second squeeze phase. These 3 117 _ ,
effects were also observed in visual inspection of simulatio Ince »=~ 10 S the first two te”‘.‘s n E_q(AZ) are
snapshots. At the third phase the ability of small pinningneghglble. Typical values for the bulk kinematic viscosity of

. . - . — 73 2 .
centers to trap fluid for long time is weaker compared to the?'9anic liquids is of the order of~10"" m®/s, making the

case of few big centers. It seems that small fluid pocketgOurth term of the order of 10° and again negligible. Lastly,

formed by small pinning areas are more sensitive to randorH"e third term has to come out to be of ordef in order for

fluctuations in which small fluid patches detach from theEq',(z) to hold. Using Eq/(9) we see that&szpa, where
P, is the external pressure amds the change in the sepa-

fluid pocket. Once it happened, they slip out due to the lat- © b h i lids d H
eral force, as discussed in Sec. Il above. We found that th tion between the con INing Solids due t.Ot @ squeezeoput
e order of molecular diameberPutting in the parameters

cooperative effects are very sensitive to the distribution of

the pinning centers; some distributions do not produce thesféo_m Ref. 17 the third term is indeed of order unity, as re-

effects at all, though the behavior at the third phase is conduired.

sistent.

APPENDIX B: BOUNDARY CONDITIONS

IV. SUMMARY AND CONCLUSIONS From thermodynamics we know that the pressure is

A lubrication fluid confined between two approaching given by
surfaces form, in the limit of thin interfaces, well-defined IE
layers of molecular thickness, whose number decreases in p:( ) ,
discontinuous steps with increasing applied pressure. We N/q
have studied the dynamics of the squeeze-out by solving thgnere F is the free energy an¥ is the volume. Its 2D
2D Navier—Stokes equations with an interfacial friction gquivalent is
term, and found the results to be in good agreement with the
experimental data. We note that it is very important to use a
variable(Hertzian contact pressure profile and to include the

line tension: Ifl'=0 or if the contact pressure is assumed to hereA is th The 2D i iust th ‘
be constant rather than Hertzian, the computer simulation§ '€"€A IS the-areéa. The sD-pressure 1S Just ihe surtace en-
rgy (per unit areg and we would express the boundary

disagree qualitatively with the experiment. We have also™'9Y (F .
studied the motion of small islands, and pointed out thaf:()nd't'()nS by the surface energy change during squeeze-out.

fluctuations in the velocity may give information about the Now suppose the bounding solid Wa”S. are rigid and we form
nature of the pinning dynamics. a hole. The free energy change per unit area when fluid flows

into the hole is called the spreading presspge Everywhere

else in the fluid film the pressure has to be constant and equal

to the spreading pressure, otherwise fluid would flow from
The authors thank E. Brener and P. Graf for useful dis-igh to low pressure areas leaving empty holes bekisd

cussions. B.P. and A.N. thank BMBF for a grant related tosuming constant densijty

the German-Israeli Project Cooperation “Novel Tribiological Pressure; on the boundaries of the formed hole has to

Strategies from the Nano- to Meso-Scales.” B.P. thankde greater then the spreading pressure in order for the

(B1)

dF

p= _) =7, (BZ)
T

dA
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squeeze out process to propagate. Its value is determined ¢
follows. We make a small variation in the boundary line at
given point, to convert a squeezed surface element into ¢
fluid element. The free energy change is the boundary value
p; [Eq. (B2)]. Its value would be the energy required to
“lift” the confining solids to distancea apart plusp,, the
energy change due to fluid spread. Therefgre=p,
+P(x,y)a, and P(x,y) is the local perpendicular 3D-
pressure.

APPENDIX C: CALCULATION OF INTERFACE
LENGTH

1. Model |

Within line tension model |, interface length was calcu-
lated as a sum over the rectangular edges of the @&lis 9).
Now we will show that within that model rectangularlike
shape have lower line energy, then quasicurved ones. Henc
high (realistig values ofI" (line tension would render the
interface to have straight rectangularlike shape. In order tc
avoid it one has to make the line tension small letting the
thermal fluctuations make the interface more “curved” as
seen in experiments.

Our starting point is the quasi-circular shape demon-
strated in Fig. 10. The diameter of the circle iIR2NA,
whereN is the number of cells along the diameter akhds ) o ) )
the grid discretization. It follows that the perimeter of the V& start with examining one quarter of a discretized
circle isL.=4NA. Circle area is approximatehR&A) S, C|rcl_e. I_ts perimeter is composed lost_egments parallel to the
= wR2~7N2A2/4. Suppose we have a rectangle of equa-aXis;] segments parallel to theaxis andk diagonal seg-

area as the circl§,=S,. Then its perimeter i1r=4\/§ ment. It is easy to see that in each axis direction:

FIG. 10. Quasi-circular shape on a rectangular grid.

=2mNA, and the ratioL./L,>1. Therefore the quasi- i+k=N/2, (C1)
circle has a longer perimeter than the rectangle. ]
The mechanism described above is a purely model arti- jtk=N7/2, (C2)

fact, resulting from the underlying rectangular symmetry ofimplying thati=j=x and k=N/2—x. The total perimeter
the grid. When we use very low line tension, simulation re-length of the circle is then

sults agree well with experiments and intuition. Nevertheless
it is bothering to have a line tension which is 4-5 orders of ~ Le=4[2X+(N/2=x) V2]a

magnitudes smaller then real values. —ANA[I2+ (2= 2)al2] (C3)

where a=x/(N/2) is the fraction of straightnondiagonal
2. Model i segments. Testing again the ratiQ/L, we can find the
A simple remedy, within the line relaxation paradigm, to maximum value ofa for which the ratio is smaller then 1,
the line tension problem is as follows. We could in principle and it turns out to bex~0.61. Therefore even if in a given
calculate the interface length in a slightly modified form, axis (say x-axis) we have up to 61% of straight line seg-
connecting the centers of the cells via straight lines insteathents, the discretized circle would have shorter perimeter
of summing over the edgéf&ig. 11).

Fluid Area
Fluid Area

Interface line
e Tnterface line

i

FIG. 11. Model Il of the interface line length between squeezed and fluid
FIG. 9. Model | of interface line length between squeezed and fluid areasareas.
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