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The electron energy band alignment betw&H0)Si and several complex transition/rare eqRIk)

metal oxidegLaScQ;, GdScQ, DyScG;, and LaAlG;, all in amorphous formis determined using

a combination of internal photoemission and photoconductivity measurements. The band gap width
is nearly the same in all the oxid€5.6—5.7 eV yielding the conduction and valence band offsets

at the Si/oxide interface of 2.0+0.1 and 2.5+0.1 eV, respectively. However, band-tail states are

observed and these are associated with Jahn-Teller relaxation of transition metal and RE cations
which splits theird* states. ©2004 American Institute of PhysidDOl: 10.1063/1.1829731

Complex rare eartlRE) and transition metaiTM) ox- X 1073 mbar N, ambient using the pulsed laser ablation tech-
ides attract considerable interest as candidate gate insulatangjue. The film composition was evaluated using Rutherford
for silicon metal-oxide-semiconduct@vOS) devices. With-  backscattering spectrometry, giving a RE:TM concentration
out impairing the high dielectric permittivify,they allow ratio close to 1:1. The x-ray diffraction analysis indicates that
one, by changing the oxide composition, to engineer the inall the layers are amorphous and retain this structure even
sulator band gap and the band offsets in order to establisafter rapid annealing at temperatures in excess of 800 °C.
energy barriers at the interfaces with Si sufficiently high toSome of the samples were thermally oxidized i, O
block electron/hole tunnelintj® While the upper valence (1.1 atm at 650 °C for 30 min to grow a silicate interlayer
band(VB) in the oxides is commonly derived from the same between Si and the complex oxide. MOS structures were
occupied D states of O atoms, the lowest conduction bandformed by evaporation of semitransparébhb nm thick Au
(CB) consists of empty electron states of metal catbns.  or Al electrodes of 0.4 mfarea. Electrical analysis, in par-

There are several factors affecting the electron states iticular, indicates a high dielectric constant of the deposited
the CB of a complex oxide as compared to the simple one. Afilms (k~=22-24. Here we focus on the IPE and PC experi-
first, in a complex phase the separate TM and RE networkments in the photon energy range=2-6.8 eV. The quan-
arediluted resulting in a reduced overlap between the statesum yield (Y) was defined as the photocurrent normalized to
of ions of the same softSecond, the reduction in symmetry the incident photon fluk.
of the RE/TM ion surrounding, particularly in an amorphous IPE/PC spectral curves are shown in Figa)las mea-
network, may split the unoccupied stateinally, the energy  sured in MOS capacitors with Au electrodes. The open and
position of the unoccupiedf4states in the RE ions is a func- filled symbols correspond to positive and negative bias on
tion of the shell occupancy which causes oxide band gaghe metal, respectively, at an average strength of electric field
variation/ To clarify the impact of these factors on the bandin the oxide of 1 MV/cm. The field reversal strongly affects
alignment at the interfaces of Si with several complex oxideghe low-photon energy2 < hv < 4.5 e\) portion of the spec-
(LaScG;, GdScQ, DyScG;, LaAlO;) we report here on the  tra suggesting the photocurrent to be due to IPE of charge
direct determination of the oxide band gap width and thecarriers from the electrodes of the MOS structures into the
CB/VB offsets using internal photoemissiohPE) and pho-  insulator. In the spectral range >4.5 eV the spectra are
toconductivity(PC) measurements. similar for both bias polarities indicating intrinsic PC which

The samples studied were prepared by deposition of 5 tg also corroborated by the high quantum yield of the process
39 nm-thick layers of four complex oxidesLaScQ;,  (Y>10%). To determine the PC threshofdorresponding to
GdScQ, DyScO;, LaAlOg) on low-doped(ng=10*cm™)  the band gap width the spectral curves are re-plotted in Fig.
n-type (100)Si substrates covered with a 0.7 nm chemicali(p) in YY2-hy coordinates, as was done before for other
SiO,. The deposition was performed at 600 °C in a 1.2amorphous oxide insulatofsS. These plots correspond to the
positive metal bias data only—those measured under oppo-

IAuthor to whom correspondence should be addressed; electronic maiit€ bias are very Simila}(nOt _ShOW')- The Scanqates and
valeri.afanasiev@fys.kuleuven.ac.be LaAlO; exhibit a well-defined linear portion allowing one to
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[which differ in energy by=1 eV (Ref. 8] is negligible as
PHOTON ENERGY (eV) compared to the IPE of electrons and holes from Si into the

FIG. 1. IPE yield(a) and its square roab) as a function of photon energy oxide under either positive or negative bias polarity. This

measured in SRETMO, (~20 nm/Au capacitors. The open and filed CONClUSiON gained further support from the comparison of
symbols correspond to applied oxide electric field of +1 and -1 Mv/cm,the IPE/PC spectra obtained from the MOS structures with

respectively. The inset in panéb) illustrates determination of the IPE as-deposited GdSgQnsulators with those subjected to ad-
_thrgsholds from(m—hv_plot. The IPE and photoconductivity thresholds are djtional oxidation, as shown in Fig. 2: The PC yield is af-
indicated by arrows. Lines guide the eye. fected only marginally, while the IPE vyield is strongly re-
duced after additional oxidation indicating suppression of the
infer the oxide band gap valu&,), as indicated in Fig. (b), electron/hole IPE by the grown 2-3-nm-thick Siike
and a 1-eV wide low-energy “tail” with an apparent thresh-interlayer-> The same trend is also observed in the oxidized
old E;~4.5 eV. The PC thresholl in scandates is found LaScQ;, DyScG;, and LaAlO; sampleg(not shown.
to be in the range of 5.6—5.7 eV and weakly sensitive to the  IPE threshold energies were derived using ¥&-hv
RE type(cf. Table ). plots' as shown in the inset in Fig(H). The electron IPE
Next we compared the PC spectra in scandates to thogepen symbolg of both scandates and LaA{Cexhibits a
measured in LaAl@ (V, ¥ in Fig. 1). One can see that, spectral threshold ab.=3.0—3.1 eV. When extrapolated to
despite the narrower band gap of pure@g(E;~4.2 eV as  zero field bias using the Schottky platot shown, this re-
can be evaluated from the optical data in Ref.th@an that of ~ sults in an energy barrier between the top of the Si VB and
unannealed deposited &; [E;=6 eV (Refs. 6 and 8, the bottom of the oxide CB ob,=3.1+0.1 eV. In addition,
there is no impact of Sc substitution by Al on the PC spectrathere is observed a low-energy IPE tail with an effective
This suggests no measurable contribution of the 8t 3 threshold®, ~2.2 eV [cf. inset in Fig. 1b)].
stategwhich constitute the lowest CB in 805 (Ref. 11] to The hole IPE threshold,, was determined in a similar
the density of states near the bottom of the scandate CBvay using the data obtained under negative bias on the metal
Apparently then, the unoccupied states determining the P€lectrode(filled symbols in Fig. 1 The YY3~hv plot shown
originate from the RE &* states. in the inset in Fig. (b) indicates that all the complex oxides
In order to determine the band offsets at the interfaces ofiave the samé,, of 3.7+0.1 eV which, being observed to
the complex oxides with Si, we analyzed the low-energy parbe nearly independent on electric field strength, represents
of the IPE spectra. It appears that the replacement of the Athe barrier between the top of oxide VB and the bottom of Si
metal electrode with an Al onécurves not shownhas no  CB. This value coincides wittby, found at thg(100)Si/HfO,
significant effect neither on the spectra measured ainterfacé” indicating that the energy position of the O

TABLE I. Energy band diagram parameters of interfaces between Si and different deposited metal oxides.

Oxide LaScQ GdScQ DyScO; LaAlO, AlLO, HfO,
E,+0.1 eV 5.7 5.6 5.7 5.7 6.2 5.6
D.+0.1 eV 3.1 3.1 3.1 3.1 3.25 3.1
AE.+0.1 eV 2.0 2.0 2.0 2.0 2.15 2.0
$,£0.1 eV 3.6 3.6 3.6 3.7 3.6

AE 0.1 eV 2.5 2.5 2.5 2.6 3.0 2.5
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Yarg wae| RrRETMO,| B X // potential danger: The effectively reduce the conduction band
2l 3, Eser oo A 12-t0ld offset down todDZ—Eg(Si)zl eV and enable electron tun-
sl E(RETMO) sso- . neling. The local deviations in the oxide composition and
Sc,03 GdScO; Gdy03 distortions of the RE surrounding may add to a lower energy

. . . _ of the d* states as discussed above. The same trend can be
FIG. 3. (a) Energy band diagram of tH&00)Si/RETMO; interface inferred ted if h fi in th | id il
from IPE and PC experiments. The origin of the energy scale is placed at thgxpecied If a phase SePara lon 1n the complex oxide wi
top of Si VB. The values of the band diagram parameters are listed in Tabl®CCUr as a result of, for instance, thermal treatment. There-
| for the four oxides studied and for the elementaj@j and HfO, (Ref. 8. fore, the choice of a particular scandate will be largely de-
(b) The scheme of coupling betwedhstates of Sc and those of Gd, Dy and tarmined by its phase separation properties and thermody-
other REd* states in complex oxides, BB, derived from the x-ray ab- namic stability. while th lectronic pr i r ntob
sorption spectra near the I, edge. amic stability, . .e e electronic p op_e es are seen o be
only weakly sensitive to the sort of RE ion.

. . " To conclude, we have determined the energy band dia-

2p-derived states is nearly unaffected by the composition of oy

the sixth-period cation network. However, the measured oxJram at the interfaces gL00'Si with several RE/TM mixed

. oxides(LaScQ;, GdScQ, DyScG;, LaAlO3) and have com-
f:waiz?ﬂg;%ﬁ:ffg a{ygst(oc;. Table ) suggest &=0.5 eV pared it to that previously determined for elementajQy
3 .

By combining the PC and the IPE results one can obtair?‘nd HIQ,. NO sfubstaCl)'lt_ialLim{)acitéqu t:? REftﬁ;heII qgcu— f
the complete energy band diagram of the Si/oxide interfac ancy, varying from 9 in La to .2 In Hi, on the position o
as sketched in Fig.(3). The CB(AEc) and VB (AE,) off- B and VB in complex oxides is found. Moreover, the en-

sets are calculated by subtracting the band aap width 6f Si€"9Y of the oxide VB edge appears to be virtually insensitive
E.(Si)=1.12 gV at 38/0 E fromltr?e measure% l?);\r”rielﬁb@ 'to the kind of the RE ion. The lowest portion of the oxide CB
9 ' e

and @y, respectively, and listed in Table I. As the hole IPE is derived mostly from the unoccupiedsstates of RE ions

barrierd, does not indicate an oxide VB splitting, the lowest 2"d this corresponds to a band gap-e6.6-5.7 eV, and a

portion of the oxide CB must includeal eV tail subband CB Offset energy of~2.0 eV. A band tail observed in the
as depicted in Fig. 3. The latter is consistent with the obser!P’E measurements is attributed to mixing of RE and @M

vation of a similar tail in the subthreshold PC in the complexStates and may have a significant effect on the performance

oxides. Further reassuring the consistency of the interpret2f these complex oxides in gate dielectric applications

tion is that the oxide band gap width derived from the electhrough a reduction of CB offset energiestd eV.

tron and hole IPE barriefSy(ox)=®.+®P,—E4(Si) coincides | _
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