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It has been recently shown that the velocity autocorrelation function of a tracer particle immersed
in a simple liquid scales approximately with the inverse of its nfds<Chem. Phys118 5283
(2003]. With increasing mass the amplitude is systematically reduced and the velocity
autocorrelation function tends to a slowly decaying exponential, which is characteristic for
Brownian motion. We give here an analytical proof for this behavior and comment on the usual
explanation for Brownian dynamics which is based on the assumption that the memory function is
proportional to a Dirac distribution. We also derive conditions for Brownian dynamics of a tracer
particle which are entirely based on properties of its memory function2004 American Institute

of Physics. [DOI: 10.1063/1.1642599

Recently, a numerical method was published which alHere ¢(t) is the normalized VACF of one Cartesian compo-
lows one to extract memory functions reliably from molecu-nentw (t) of the particle velocity
lar dynamics simulations? The concept of memory func- (0
tions was introduced by Zwanzig to describe the dynamics of W(t)= M 2
liquids in terms of a generalized Langevin equatidrThe (v?)

method proposed in_ Refs. 1 and 2 is based onan a_utoregreéﬁd &(t) is the corresponding memory function. The latter
sive model for the time series of the dynamical variable Un—an be expressed @t) = (o exp@[l—P]Lt)i;)/(vz> Here

hich diti he d i ¢ icle | ?'is the Liouville operator of the system aftiis a projector.
which -con ftions the ynamics ol a traper particle In a,¢ action on an arbitrary function in phase spacedefined
simple solvent can be described by Brownian dynamiest }hrough Pf=v(vf)/(v?). Details about the derivation of

this purp.osde.bgth thz S|z|e alnd thedmass of thec;[ra;]cer Eam,igt) can be found in the book of Boon and Yipt is impor-
were varied independently. It was demonstrated that the Sizg i 1 note that the memory function equation defined in Eqg.

of a tracer particle strongly influences the form of its velocity(l) is exact The classical Brownian dynamics approximation
memory function, whereas a change of its mass leads essefy W(t) is retrieved by settingi(t) = y3(t), such that
tially to a global scaling of the latter. With increasing mass ) '

the amplitude of the memory function is reduced and the  (t)=— yi(t) 3

corresponding velocity qutocorrelatlor_l functiofVACF) and y(t) = exp(—y1). It must be emphasized that an expo-

tends to a slowly decaying exponential. The smaller thenential form forg(t) is an approximation. Since(t) is an

tracer particle, the stronger the effect. The scaling behavior . b N app ) ¢

o9 . even differentiable function it follows that

for the memory function is exactly understood for tirhe _

=02 arlq rr;ore subtle finite size effe;cts predicted by Espan #(0)=0. (4)

and Zunga® could be reproduced in Ref. 5. As far as we i : .

know, a scaling of the memory function fatl times upon a ~ With #(t) =exp(=y ) one finds, however)(0)=—y. This

change of the particle mass has not yet been reported. contradiction shows that an exponentially decaying VACF
Usually the tendency towards an exponential VACF iscannot be valid on all time scales and motivates the intro-

explained by assuming an increasingly short-ranged memo@UCt'O” of a coarse grained time scale for Brownian dynam-

function, whereas we find that the amplitude of the memoryCs: _ _

function is globally reduced with increasing mass. Thisis not L&t us now study the influence of a global scaling of the

a contradiction, since the memory function decays rapidlynemory function, as observed in our computer simulations,

relative to the VACF. To discuss this point in more detail we @nd the effect on the corresponding VACF. We emphasize

start from the memory function equation for the VACF which that we do not aim at giving an explanation for the scaling

has been derived by ZwanZify behavior ofé(t). The goal is here to show why the observed
scaling behavior leads to exponential VACFs. For this pur-
: ft pose we consider the Laplace transformygt), which is
t)y=— | dré(t— . 1 '
(1) . TE(t— 1) (7 () defined as
0021-9606/2004/120(4)/1667/3/$22.00 1667 © 2004 American Institute of Physics
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zAp(s)= f;dtexp(—st)zp(t), R{s}>0. (5)

Because of Eq(l) one has

(6)

b(s)= .
(s) STE(S)
If we changeg(t)— a£(t), wherea>0, it follows from the
linearity of the Laplace transform that(s)— «£(s), and
therefore

1 exp(st)
Vo) =5 ; Sm,
s—sla 1 exp(sat)
= — S——.
2@ Jcor s+ é(as)

The last line shows that,(t) is obtained in two steps:
(i) The memory function is rescaled as

1 [t
f(t)ﬂaﬁ(;)- (7)

Here one uses the scaling property of the Laplace transfor

(Ya)t(t/a) < f(as) (a>0), for any functionf(t) whose
Laplace transfornf(s) exists.

(i) The rescaled memory function in Eq7) is used to

G. R. Kneller and G. Sutmann

If yAt<1, the VACF has the form of a discrete decaying
exponential, and foyAt<1 one approximates a continuous
exponential function.

A VACF which has the form given in Eq.12) is pro-
duced by an autoregressiV&R) stochastic process of order
1.” Here the time evolution of the particle velocity is mod-
eled as

v(t+At)=av(t)+e(t+At). (13

In the above AR modeh is a constant and(t) is white
noise with amplituder. If Eq. (13) is multiplied byv (0) and
averaged over time one obtains a difference equation for
(1), using that e(t+ At)v(0))=0,

P(t+At) =ay(t).

One easily sees that E({.2) is the solution of the difference
equation(14) for the initial conditiony(0)=1. Settingt=0
in Eqg. (14) one finds that

a=y(At).

The noise amplituder is obtained by multiplying Eq(13)
with v(t+At), performing a time average, and assuming
that v(t) is a stationary time series, such that one can set

(14)

(15

To2(t+At))=(v2(t))=(v?). The result is

a?=(v?)(1-a?). (16)

It is clear that the amplitude of the error signal, which can

evaluate the corresponding VACF on the “stretched”also be viewed as prediction error of an optimal linear

time scalet— at.
If the integral of&(t) exists, such that

j:dtat)zy@o, ®

the scaling applied in Eq7) leads to&(t)~ yd(t) if a<l.

predictor’ 7 (t+At)=av(t), becomes small i1 is close to
unity, but not equal to unity. One can conclude thjdiAt)
should be representable by a Taylor expansion arden@l
which is truncated after the first term describing a deviation
from (0)=1. Using thaty(0)=0 and (0)=—£&(0), one
finds

Since the corresponding VACF is evaluated on the time scale At?
t— at, one obtains PAY~1——-&0). (17)
P (t)~exp(—ayt). (9)  This approximation is valid if
The limit a—0 is not meaningful since the corresponding 1
exact VACF would not decay at all. This is in agreement At< . (18
V&(0)

with property(4) of ¢(t) and simply indicates that Brownian
motion must be described on a coarse grained time gcalegp, the other handa= (At) should have the form given in
=nAt(n=0,1,2,...). The exponential decay of the VACF Eq. (11). This yields the condition
must be considered on that time scale.

We will now discuss criteria that allow us to determine
At and to predict the validity of the exponential model from
the memory function. In a discrete model an exponentially = . i - .
decaying VACF is the solution of the difference equation Using definition(8) of the friction constant it follows that

2

At
YAt=—-£(0). (19

Y(t+AD — y(1) _ f 50
R ZL0 o A72) Aoy (20
which replaces the differential equati¢d). If we set The minimum step on the coarse grained time scale is thus
given by twice the integral over the normalized memory
a=1-vyAt, (11)  function. From Eq(20) it is obvious thatAt does not change

upon a scalingé(t) — aé(t). In contrast, amplitude scaling
of the memory function has an impact on conditi@8). The
latter would be increasingly better fulfilled with decreasing
«. This is exactly what we saw in the numerical stddy.

the solution of the difference equatidh0) takes the simple
form

Y(nAt)=a". (12
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T r TABLE |. The table showscolumns from left to rightfor different masses
1\ of the tracer particle the Brownian dynamics time stepdefined in Eq.
(20), the value 1{/£(0) appearing in conditiofi18), the friction constanty

defined in Eq(8), and the corresponding value obtained from a fit/¢f)
— ] | ~exp(—yt) to the VACF.

— M-m VACF
------- M=10m 2
-==--M=100m ’

\

\

08y
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1
i
i

0.6

0.1

. M/m At[ps] 1E(O) [ps] y[ps i [ps™]

1 0.2754 0.1378 7.3323 6.2288
] 10 0.3486 0.4326 0.9314 0.9110

100 0.3794 1.3374 0.1061 0.1024
R 1 1000 0.3894 3.8483 0.0132 0.0131

4 6
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(20) and the value 3/£(0) on the right-hand side of condi-
tion (18). In addition, the friction constany and the corre-
sponding value obtained from a least-squares fit of an expo-

nential model toy(t) are given. As all memory functions

FIG. 1. The figure shows the normalized memory functégt)/£(0) for
different masses of the tracer particle. Compared to the memory function qf.lave a similar formAt is similar in all cases. In contrast, the
a normal argon atom, the scaling factors are 0.1003, 0.0105, 0.0013 fo A ) '

r —— . S .

tracer particles withM/m=10, M/m= 100, andM/m= 1000, respectively. reference value /f(O) increases with Increasing mass,
More details are given in Ref. 5. The corresponding VACFs are shown in théuch that the criteriofiL8) is fulfilled for very massive tracer
inset, using a log-linear representation. We give here also the relative erroisarticles. Correspondingly, the VACFs appear as straight
of (1) and&(t)/£(0), which havebeen estimated from calculations for the lines in the Iog—linear representation shown in the inset of
three equivalent Cartesian components of the velocity of the tracer particIeF. 1

For the above mass rati¢s increasing ordgrwe obtaino,=0.22, 0.34, 1g. 1.

3.09, 3.24% for the error of(t), ando,=0.16, 0.16, 0.47, 1.36% for the As already mentioned, the scaling behavior &0) is
error of &(t).

exactly understood. Sincey(0)=—¢(0) and #(0)
=—(v?)/{v?), it follows thus that£(0)=(SF2)/(MkgT),
Figure 1 shows the normalized memory functions andvhere(sF?) is the mean square fluctuation of the force on
the corresponding VACFs of tracer particles which are im-the tracer particle. The madd has to be replaced by the
mersed in a solvent consisting of 2047 molecules of liquideduced mass in case of a system with finite number of sol-
argon at a temperature of 90.0 K. The tracer particles argent molecules:® In that light there exists a proof that the
modified argon molecules whose massésiave been suc- criterion (18) is systematically better fulfilled with increasing
cessively changed fromnto 1000m, wheremis the mass of mass. It is worth noting that—similar to the simulation
one argon atom. Simulation details can be found in Ref. 5fesults—some analytical models also yieldjlabal down-
The figure shows that all memory functions have almost thé&caling of the memory function with increasing mass of the
same form. Only the one foM=m has a slightly shorter tracer particl€*°In all cases the scaling behavior is a result
range. The ratios of the memory function at time0 and Of the respective forms forg(t), which fulfil £(0)
the corresponding value for a normal argon atom are 0.10037(8F2)/(MkgT) by construction. We note that this is one of
0.0105, 0.0013 forM/m=10, M/m=100, and M/m  the sum rules which can be derived for the memory function.
=1000, respectively. The corresponding theoretical value§0r a concise and complete review we refer to the book by
are 0.1005, 0.0105, and 0.0015. The method we used to eoon and Yip?
tract the memory function from the simulations has been  The above considerations explain why reducing the am-
described in detail in previous articlé8 The essential point plitude of the memory function leads formally to exponential
is to represent the velocity of the tracer particle as an autore/ACFs. In this context we have presented formal criteria for
gressive stochastic process;(t)=2§:1af1p)v(t—nAt) Brownian motion which are derived from the memory func-
+ ep(t), whereP is the order of the AR procesat is the  tion only. An essential point here is the introduction of a
Samp“ng time Step, théagp)} are ConstantS, andp(t) is Brownian dynamiCS time Step which is determined by the
white noise of zero mean. This step allows us to write dowrform of the memory function.
an analytical form for thgone-sidedl ztransformed VACF
Vo (2)=37_oz "y(nAt)=3F_,Bz/(z—z). Here the
{z} are the roots of the characteristic polynompgk)=z" G- Kneller and K. Hinsen, J. Chem. Phyid5 11097(2002.
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a 2 . . 1980.
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pression for¥.(z). The memory function in the time do- °p. Espanl and I. Z{figa, J. Chem. Phy€8, 574 (1992.

main is then obtained by inversetransform which can be
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