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It has been recently shown that the velocity autocorrelation function of a tracer particle immersed
in a simple liquid scales approximately with the inverse of its mass@J. Chem. Phys.118, 5283
~2003!#. With increasing mass the amplitude is systematically reduced and the velocity
autocorrelation function tends to a slowly decaying exponential, which is characteristic for
Brownian motion. We give here an analytical proof for this behavior and comment on the usual
explanation for Brownian dynamics which is based on the assumption that the memory function is
proportional to a Dirac distribution. We also derive conditions for Brownian dynamics of a tracer
particle which are entirely based on properties of its memory function. ©2004 American Institute
of Physics. @DOI: 10.1063/1.1642599#

Recently, a numerical method was published which al-
lows one to extract memory functions reliably from molecu-
lar dynamics simulations.1,2 The concept of memory func-
tions was introduced by Zwanzig to describe the dynamics of
liquids in terms of a generalized Langevin equation.3,4 The
method proposed in Refs. 1 and 2 is based on an autoregres-
sive model for the time series of the dynamical variable un-
der consideration. This approach was used to examine under
which conditions the dynamics of a tracer particle in a
simple solvent can be described by Brownian dynamics.5 For
this purpose both the size and the mass of the tracer particle
were varied independently. It was demonstrated that the size
of a tracer particle strongly influences the form of its velocity
memory function, whereas a change of its mass leads essen-
tially to a global scaling of the latter. With increasing mass
the amplitude of the memory function is reduced and the
corresponding velocity autocorrelation function~VACF!
tends to a slowly decaying exponential. The smaller the
tracer particle, the stronger the effect. The scaling behavior
for the memory function is exactly understood for timet
50,4 and more subtle finite size effects predicted by Espan˜ol
and Zuñiga6 could be reproduced in Ref. 5. As far as we
know, a scaling of the memory function forall times upon a
change of the particle mass has not yet been reported.

Usually the tendency towards an exponential VACF is
explained by assuming an increasingly short-ranged memory
function, whereas we find that the amplitude of the memory
function is globally reduced with increasing mass. This is not
a contradiction, since the memory function decays rapidly
relative to the VACF. To discuss this point in more detail we
start from the memory function equation for the VACF which
has been derived by Zwanzig3,4

ċ~ t !52E
0

t

dtj~ t2t!c~t!. ~1!

Herec(t) is the normalized VACF of one Cartesian compo-
nentv(t) of the particle velocity

c~ t !5
^v~ t !v~0!&

^v2&
~2!

and j(t) is the corresponding memory function. The latter
can be expressed asj(t)5^v̇ exp(i@12P#Lt) v̇&/^v2&. Here
L is the Liouville operator of the system andP is a projector.
Its action on an arbitrary function in phase spacef is defined
through Pf 5v^v f &/^v2&. Details about the derivation of
j(t) can be found in the book of Boon and Yip.4 It is impor-
tant to note that the memory function equation defined in Eq.
~1! is exact. The classical Brownian dynamics approximation
of c(t) is retrieved by settingj(t)5gd(t), such that

ċ~ t !52gc~ t ! ~3!

and c(t)5exp(2g t). It must be emphasized that an expo-
nential form forc(t) is an approximation. Sincec(t) is an
even differentiable function it follows that

ċ~0!50. ~4!

With c(t)5exp(2g t) one finds, however,ċ(0)52g. This
contradiction shows that an exponentially decaying VACF
cannot be valid on all time scales and motivates the intro-
duction of a coarse grained time scale for Brownian dynam-
ics.

Let us now study the influence of a global scaling of the
memory function, as observed in our computer simulations,
and the effect on the corresponding VACF. We emphasize
that we do not aim at giving an explanation for the scaling
behavior ofj(t). The goal is here to show why the observed
scaling behavior leads to exponential VACFs. For this pur-
pose we consider the Laplace transform ofc(t), which is
defined as
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ĉ~s!5E
0

`

dt exp~2st!c~ t !, R$s%.0. ~5!

Because of Eq.~1! one has

ĉ~s!5
1

s1 ĵ~s!
. ~6!

If we changej(t)→aj(t), wherea.0, it follows from the
linearity of the Laplace transform thatĵ(s)→aĵ(s), and
therefore

ca~ t !5
1

2p i R
C
ds

exp~st!

s1aĵ~s!
,

5
s→s/a 1

2p i R
C8

ds
exp~sat !

s1 ĵ~as!
.

The last line shows thatca(t) is obtained in two steps:

~i! The memory function is rescaled as

j~ t !→ 1

a
jS t

a D . ~7!

Here one uses the scaling property of the Laplace transform
(1/a) f (t/a)↔ f̂ (as) (a.0), for any function f (t) whose
Laplace transformf̂ (s) exists.

~ii ! The rescaled memory function in Eq.~7! is used to
evaluate the corresponding VACF on the ‘‘stretched’’
time scalet→at.

If the integral ofj(t) exists, such that

E
0

`

dtj~ t ![g,`, ~8!

the scaling applied in Eq.~7! leads toj(t)'gd(t) if a!1.
Since the corresponding VACF is evaluated on the time scale
t→at, one obtains

ca~ t !'exp~2agt !. ~9!

The limit a→0 is not meaningful since the corresponding
exact VACF would not decay at all. This is in agreement
with property~4! of c(t) and simply indicates that Brownian
motion must be described on a coarse grained time scalet
5nDt (n50,1,2,...). The exponential decay of the VACF
must be considered on that time scale.

We will now discuss criteria that allow us to determine
Dt and to predict the validity of the exponential model from
the memory function. In a discrete model an exponentially
decaying VACF is the solution of the difference equation

c~ t1Dt !2c~ t !

Dt
52gc~ t !, ~10!

which replaces the differential equation~3!. If we set

a512gDt, ~11!

the solution of the difference equation~10! takes the simple
form

c~nDt !5an. ~12!

If gDt,1, the VACF has the form of a discrete decaying
exponential, and forgDt!1 one approximates a continuous
exponential function.

A VACF which has the form given in Eq.~12! is pro-
duced by an autoregressive~AR! stochastic process of order
1.7 Here the time evolution of the particle velocity is mod-
eled as

v~ t1Dt !5av~ t !1e~ t1Dt !. ~13!

In the above AR modela is a constant ande(t) is white
noise with amplitudes. If Eq. ~13! is multiplied byv(0) and
averaged over time one obtains a difference equation for
c(t), using that̂ e(t1Dt)v(0)&50,

c~ t1Dt !5ac~ t !. ~14!

One easily sees that Eq.~12! is the solution of the difference
equation~14! for the initial conditionc~0!51. Settingt50
in Eq. ~14! one finds that

a5c~Dt !. ~15!

The noise amplitudes is obtained by multiplying Eq.~13!
with v(t1Dt), performing a time average, and assuming
that v(t) is a stationary time series, such that one can set
^v2(t1Dt)&5^v2(t)&[^v2&. The result is

s25^v2&~12a2!. ~16!

It is clear that the amplitude of the error signal, which can
also be viewed as prediction error of an optimal linear
predictor,7 ṽ(t1Dt)5av(t), becomes small ifa is close to
unity, but not equal to unity. One can conclude thatc(Dt)
should be representable by a Taylor expansion aroundt50
which is truncated after the first term describing a deviation
from c~0!51. Using thatċ(0)50 and c̈(0)52j(0), one
finds

c~Dt !'12
Dt2

2
j~0!. ~17!

This approximation is valid if

Dt!
1

Aj~0!
. ~18!

On the other hand,a5c(Dt) should have the form given in
Eq. ~11!. This yields the condition

gDt5
Dt2

2
j~0!. ~19!

Using definition~8! of the friction constant it follows that

Dt52E
0

`

dt
j~ t !

j~0!
. ~20!

The minimum step on the coarse grained time scale is thus
given by twice the integral over the normalized memory
function. From Eq.~20! it is obvious thatDt does not change
upon a scalingj(t)→aj(t). In contrast, amplitude scaling
of the memory function has an impact on condition~18!. The
latter would be increasingly better fulfilled with decreasing
a. This is exactly what we saw in the numerical study.5
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Figure 1 shows the normalized memory functions and
the corresponding VACFs of tracer particles which are im-
mersed in a solvent consisting of 2047 molecules of liquid
argon at a temperature of 90.0 K. The tracer particles are
modified argon molecules whose massesM have been suc-
cessively changed fromm to 1000m, wherem is the mass of
one argon atom. Simulation details can be found in Ref. 5.
The figure shows that all memory functions have almost the
same form. Only the one forM5m has a slightly shorter
range. The ratios of the memory function at timet50 and
the corresponding value for a normal argon atom are 0.1003,
0.0105, 0.0013 for M /m510, M /m5100, and M /m
51000, respectively. The corresponding theoretical values
are 0.1005, 0.0105, and 0.0015. The method we used to ex-
tract the memory function from the simulations has been
described in detail in previous articles.1,2 The essential point
is to represent the velocity of the tracer particle as an autore-
gressive stochastic processv(t)5(n51

P an
(P)v(t2nDt)

1eP(t), whereP is the order of the AR process,Dt is the
sampling time step, the$an

(P)% are constants, andeP(t) is
white noise of zero mean. This step allows us to write down
an analytical form for the~one-sided! z-transformed VACF
C.(z)5(n50

` z2nc(nDt)5(k50
P bkzk /(z2zk). Here the

$zk% are the roots of the characteristic polynomialp(z)5zP

2(k51
P akz

p2k and the$bk% are constants which are com-
puted from the roots$zk%. One can now solve the
z-transformed discrete version of the memory function equa-
tion ~1! for the z-transformed memory functionJ.(z)
5(1/Dt2)@z/C.(z)112z#, and insert the analytical ex-
pression forC.(z). The memory function in the time do-
main is then obtained by inversez transform which can be
efficiently performed by polynomial division.

Table I shows for increasing mass ratiosM /m the char-
acteristic Brownian dynamics time scaleDt defined in Eq.

~20! and the value 1/Aj(0) on the right-hand side of condi-
tion ~18!. In addition, the friction constantg and the corre-
sponding value obtained from a least-squares fit of an expo-
nential model toc(t) are given. As all memory functions
have a similar form,Dt is similar in all cases. In contrast, the
reference value 1/Aj(0) increases with increasing mass,
such that the criterion~18! is fulfilled for very massive tracer
particles. Correspondingly, the VACFs appear as straight
lines in the log-linear representation shown in the inset of
Fig. 1.

As already mentioned, the scaling behavior ofj~0! is

exactly understood. Sincec̈(0)52j(0) and c̈(0)
52^v̇2&/^v2&, it follows thus thatj(0)5^dF2&/(MkBT),
where^dF2& is the mean square fluctuation of the force on
the tracer particle. The massM has to be replaced by the
reduced mass in case of a system with finite number of sol-
vent molecules.5,6 In that light there exists a proof that the
criterion~18! is systematically better fulfilled with increasing
mass. It is worth noting that—similar to the simulation
results—some analytical models also yield aglobal down-
scaling of the memory function with increasing mass of the
tracer particle.8–10 In all cases the scaling behavior is a result
of the respective forms forj(t), which fulfil j(0)
5^dF2&/(MkBT) by construction. We note that this is one of
the sum rules which can be derived for the memory function.
For a concise and complete review we refer to the book by
Boon and Yip.4

The above considerations explain why reducing the am-
plitude of the memory function leads formally to exponential
VACFs. In this context we have presented formal criteria for
Brownian motion which are derived from the memory func-
tion only. An essential point here is the introduction of a
Brownian dynamics time step which is determined by the
form of the memory function.
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FIG. 1. The figure shows the normalized memory functionj(t)/j(0) for
different masses of the tracer particle. Compared to the memory function of
a normal argon atom, the scaling factors are 0.1003, 0.0105, 0.0013 for
tracer particles withM /m510, M /m5100, andM /m51000, respectively.
More details are given in Ref. 5. The corresponding VACFs are shown in the
inset, using a log-linear representation. We give here also the relative errors
of c(t) andj(t)/j(0), which havebeen estimated from calculations for the
three equivalent Cartesian components of the velocity of the tracer particle.
For the above mass ratios~in increasing order! we obtainsc50.22, 0.34,
3.09, 3.24% for the error ofc(t), andsj50.16, 0.16, 0.47, 1.36% for the
error of j(t).

TABLE I. The table shows~columns from left to right! for different masses
of the tracer particle the Brownian dynamics time stepDt defined in Eq.
~20!, the value 1/Aj(0) appearing in condition~18!, the friction constantg
defined in Eq.~8!, and the corresponding value obtained from a fit ofc(t)
'exp(2gfitt) to the VACF.

M /m Dt @ps# 1/Aj(0) @ps# g @ps21# gfit @ps21]

1 0.2754 0.1378 7.3323 6.2288
10 0.3486 0.4326 0.9314 0.9110

100 0.3794 1.3374 0.1061 0.1024
1000 0.3894 3.8483 0.0132 0.0131
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