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Elephants can always remember: Exact long-range memory effects in a
non-Markovian random walk
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We consider a discrete-time random walk where the random increment at time dgepnds on the full
history of the process. We calculate exactly the mean and variance of the position and discuss its dependence
on the initial condition and on the memory paramegieAt a critical valuepf:l):llz where memory effects
vanish there is a transition from a weakly localized regimbere the walkefelephant returns to its starting
poinf] to an escape regime. Inside the escape regime there is a second critical value where the random walk
becomes superdiffusive. The probability distribution is shown to be governed by a non-Markovian Fokker-
Planck equation with hopping rates that depend both on time and on the starting position of the walk. On large
scales the memory organizes itself into an effective harmonic oscillator potential for the random walker with a
time-dependent spring constakt (2p—1)/t. The solution of this problem is a Gaussian distribution with
time-dependent mean and variance which both depend on the initiation of the process.
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Memory effects in non-Markovian stochastic processedor the random walk on lattice scale, then passing to an evo-
are often incorporated heuristically on a coarse-grained scalation equation for the probability distributioin formal
into time evolution equations for physical observables, re-analogy to passing to a Fokker-Planck equatieRE in the
cently discussed ifil—3]. A fundamental concept of a non- case of Markov processesand finally coarse graining by
Markovian process is the continuous-time random walk in-taking the limit of large space and time scales. As the result
troduced some years agd]. This theory has numerous we get a FPE with a time-dependent drift term. Recently
important applications, studied for instancd & or recently  stochastic processes leading to FPE with time-dependent co-
in [6]. A broad variety of examples in biology is analyzed in efficients, are discussed by several autf@&-2Q. In view
[7]. Alternatively, one may derive a formally exact evolution of those more heuristic approaches our model yields a more
equation for an observable by a projection mechar{id/9] microscopic foundation for a special realization of a FPE
and then apply some approximation scheme for the solutiowith a time-dependent term. _ y .
of the equation. Techniques of this type are used in the con- Specifically we are interested in conditions under which
text of diffusive dynamics where memory effects may lead todn unbounded memory can induce qualitative changes in the
anomalous diffusion or even localization. In recent studiesdISt“bUt_lon of the_ position as compared to the Markowgn
this has been demonstrated within a one-loop renormalize£2S€ with Gaussian distribution on large space and time
tion group approachi0], by other analytical studig41] and §cales. It is well known from the Self-av0|d|n.g walwhich
confirmed by numerical method42]. A more fundamental IS a rare hexar(rjlple_lfcc)jr a randorln Wa"T( with 1unbohunded
approach to anomalous diffusion based on a nonequilibriun;EemoryW ere detailed exact results are knoi17) ) that

I TS . . . e memory of the previously visited sites changes the scal-
statistical description is already _d|scusse<ﬂ]_JE]. Wh!le_very ing behavior of the distribution and leads to a superdiffusive
successful both phenomenologically and in predicting inter

i HectdAl two intrinsic short > ‘mean square displacement. Here we investigate how a very
esting new memory effectsi4], two intrinsic shor f:omlngs_ different unbounded memory affects the random walk statis-
of these traditional approaches deserve attention: There is fa.q andinducesa transition to superdiffusive behavior. For
quantitative control over the error induced by approxima-yefiniteness and simplicity of notation we mainly consider a
tions, and the microscopic origin of the memory term is fre-5 e _gimensional random walk, e 7 on the infinite lattice.

quen'tlly obscured. In pgr_ticular, therg is usual!y no simplérpe random walk starts at some specific pofgtat timet,
transition from an explicit and physically motivated non- _g 4nq has a complete memory of its whole history. In allu-
Markovian noise term to an associated non-Markovian evogjon g the traditional saying that elephants can always re-
lution equation for the probability density which is often emper, we shall refer to the random walker as elephant. In
employed in the framework described abqus]. It is the  gach giscrete time step the elephant moves one step to the

aim of this paper to .skirt_ the§e probI_ems in the invgst_igatior}ight or left, respectivelysimple random walk so the sto-
of memory effects in diffusive motion by first defining a .pastic evolution equation is given by

simple “microscopic” non-Markovian stochastic dynamics

XH_]_:X'["‘ Ot+1, (1)
whereo,;=%1 is a random variable. The memory consists
*Electronic address: g.schuetz@fz-juelich.de of the set of random variables;, at previous time steps
"Electronic address: trimper@physik.uni-halle.de which the elephant remembers as follows:
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(D1) Attime t+1 a numben’ from th'e. se{1,2,...1}is (Giar]oy .0y = S aPlowy=oloy, ... 01]
chosen randomly with uniform probability ./ o=t1
(D2) o144 is determined stochastically by the rule 2p-1
) - ) = (X = Xo)- (7)
ow1=0y With probabilitypand =-o, with 1 -p. t
(2)  These relations form the basis of the subsequent analysis of
the process. Below we shall frequently use the shifted param-
At the first time steg=1 the process is initiated as follows: €ters
(D3) The elephant starting af;, moves to the right with

. . o . a=2p-1, B=29-1, (8)
probability g and to the left with probability 1g, i.e.,
which are in the range-1, 1]. Negativea corresponds to the
o,=1 with probabiltyg and =-1 with 1-q. “reformer,” positive « parametrizes the “traditionalist’ele-
3) phant. The effectively memoryless Markovian casevis0.
From(7) the conventional mean valgebtained by summing
It is obvious from the definition that over all previous realizations of the procgssgiven by
o
t (o0 = —((Xp = Xo), 9
t
X=Xo+ 2 oy @) o _ |
t'=1 and gives rise to the recursion for the mean displacement
(X =(Xp=Xo
The question is to which extent the memory of the history
influences the distribution of the particle position. For (Xop) = (1 + 2><Xt> fort=1. (10)
p<1/2 the elephant behaves metaphorically speaking like a t

dedicatedbut not very stringentreformer: At each step he
is preferentially doing the opposite of what l@ndomly
remembers to have been decided in the pastpPet/2 the
elephant is a more traditional type; he preferentially sticks to T(t+a) B
his former decision. Notice that three special cases of our <Xt>:<Ul>F( DI  Tlasl)
model are trivial(i) In the borderline casp=1/2 thechoice “« “«
of 0.1 is 1 with equal probability, no matter what the his- (11

toryllkwars]_. rl?ence one has the standard Mark(l)vian ran:jor]aor a<0 (reformej) the mean displacement vanishes for
walk, which converges to Brownian motion on large scales,gat aigebraically, the elephant stays on average essentially
In this case the initial parametgmlays only a marginal role \nare it started. For> 0 (traditionalisy the mean displace-

W'_tq nr? rgacrosg:opltc): S|gn|f|cance|.|) IIT tge “m'.t'r.‘g.cas; ment increases indefinitely, albeit with decreasing velocity.
p=1 the dynamics become essentially deterministic. GIVeRryq girection of the escape from the starting position is de-

the ﬁrSt. Qecisior(v_vh?ch is randory, the elephz_;mt Moves With_ termined by the firstrandom decision. If the first move is
probability 1 (ballistically) always one step in the same di- positive, the average direction of motion is to the right. Oth-

rection lalls ml the {'f?t rgove._:ll-llezntcr(]a the first sF?p 'SfTﬁcro'erWise the elephant moves on average to the left. At the
scopically relevantii) Forq= emean postlion ot e - hsition pointa(cl):o the mean displacement is independent

elephant is zero for al. Nevertheless the distribution o of time, as is known for the usual Markovian random walk.

depends nontrivially omp. Recursion relations for higher-order moments also follow

To study the mean positiotX;) we first note that given : .
straightforwardly from5). They obey recursions of the form
the previous history{oy,...,01} one has the conditional g y froms) y y

probability that the increment;,, takes the valuer=+1 My =fito My fort=1, (12

For the first time step one has;)=(o;)=2q-1=8. The so-
lution of (10) is obtained by iteration

t* for t>1.

where M, is some moment and,,g, are known functions,
related to lower moments. The general solution(b?) is

t
1
Plowi=0loy, ...,0]= Z_tz [1+(2p-Doyo] fort=1.
k=1

given by
(5) t-1 t-1 t-1
Me=My[Tae+ 2 | fo IT o], (13)
k=1 n=1 k=n+1

This follows from the definitiongD1), (D2) of the process.
Fort=0 we get in accordance with rul®3) which is easily verified. In particular for the second moment
of the displacement one finds the recursion

1
P[a-lza-]ZE[l‘F(Zq_l)(T]. (6) <X12+l>:1+(1+27a)<xt2>. (14

Thus fort=1 the conditional mean increment is given by Using (13) it is solved by
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t T(t+ 2a) 1[ a }
2
Xf) = -1]. 15 P(Y,t+1X5,0 ==| L - —(Y=-Xp+1) [P(Y +1,tX,,0
(x) 2a—1{F(t+1)1“(2a) } (15 ( X0,0) > t( Xo+1) |P( X0,0)
. . . 1 a
We first notice t_h:_;\t_ the mean square dl_splacement dges not + _[1 +—(Y=X,- 1)] P(Y - 1,t/X,,0).
depend on the initial decision parametrized dpgince (x7) 2 t
=1 for anyq. Asymptotically one has (18

t This equation(valid for t=1) may be interpreted in terms of
<xt2> =——, p<3l4; <xt2> =tint, p=3/4; a time-inhomogeneous random walk which does not memo-
3—4p rize its full history, but only its initial position at time=0. It

describes a hopping process where in each step the walker at
t4p-2 position Y hops to the right with probabilityp, =[1+a(Y
@p-3Tdp-2' "~ 3/4. (16)  —xy)/t]/2 and to the left with probabilityp,=[1-a(Y
-Xp)/t]/2, respectively. At first sight these stochastic dy-
Before discussing this result we remind the reader that théamics look like a time-inhomogeneous Markov chain where
displacement,=X,— X, refers to the displacement from the Xo is some parameter. However, we stress thatlig) the
initial position, not to the displacement of the actual positionguantity X, is not a parameter, but the initial position of the
from its mean. Remarkably there is no qualitative change aglephant. The hopping probabilities implicit {d8) are not

af:l):o where the transition to the escape regime occurs, yé(alid for an elephant starting at a position different fron

there are two distinct regimes inside the escape regime. O Which starts aK, at a later timet > 0. The non-Markovian

(1) For a<1/2 (corresponding top<3/4) the mean character of the dynamics is expressed in the fact that the
square displacement increases asymptotically linearly ig€volution equatior{18) is different for each initial position;
time. Hence the localized regime<af:l)=0 corresponds to see[l@ for a ggneral dlscuss'lon. of similar non-Markovian
a weak localization in the sense that the initial mean dis_evqlutlon equations. The qualitative features o_f the elephan_t
placement vanishes for large but the variance increases Which became apparent through the study of its mean posi-
diffusively with a diffusion coefficienD=1/(6—8p). In the 10N aré expressed in the hopping probabiliges For posi-

range Gsa<<1/2 (corresponding to 1/2p<3/4) the tive « the local bias
mean displacement divergésscape regime but with an

0) =

ax
exponenta<<1/2. Therefore, the mean square displacement b(x,t) =p; —py = T (19

is still larger than the square of the mean and the variance

(x4 —(x)? remains diffusive. is positive for positive displacement, hence the particle on

(2) For a>1/2 (corresponding top>3/4) the mean average escapes. On the other hand, for negatitke bias
square displacement increases stronger than lineatty>  is opposite to the actual displacement, reminiscent of some
and is of the same order as the square of the mean, but wigffective restoring force. This becomes very transparent in
a different prefactor. Hence the variance becomes superdithe continuum limit(large displacemenx and timet). In
fusive with an effective diffusion coefficient depending bothterms ofx,t (18) takes the form
on time and oryg.

2
(3) At the critical valuea(cz):llz (corresponding top M = }(g_zp(x,t) _gi[xp(xlt)], t>0 (20

=3/4) the right-hand side of(16) reduces to=!_, t/n ot 29X tax

~tInt. The elephant is marginally superdiffusive. of a FPE for a Brownian particle in a harmonic oscillator

The results of the previous section are sufficient for thepotential with spring constark=/t. The last relation is a
characterization of the large scale walk properties of the e"special case of more general FPE with time-dependent coef-
ephant only if the increments;, are independent random ficients that has been investigated in several pajies2Q.
variables, i.e., for=0. In this case the central limit theorem Whereas the approach in those papers is phenomenologi-
guarantees convergence of the distributiorkpfo a Gauss- 4|1y we demonstrate in the frame of a microscopic model
ian. In order to obtain information about the distribution for ¢, origin of such FPE. From E0) one obtains recursion

a#0we .EO”SidE?r the complex-valued characteristic functiong|ations for the moments of the distribution. Let us denote
Qi(k)=(e"%). Using (5) it obeys the equation the even and the odd moments by

a,() =0 b,(t) = (™Y withn=0,1,2, ... .

a . d
(Qu1(K)) = cosk Qy(k) + 7Sin ka(Qt(k)- (17) 21)

The Fourier transfornP,(x) is the probability that the dis- Using Eq.(20) we obtain for the even moments

placement at time takes the valu. This is equal to the d 2na

conditional probabilityP(Y,t|X,,0) that the positionX of d—tan(t) - Tan(t) =n(2n - L)a,4(1), (22

the elephant at timeequalsY=X,+Xx, given that it started at

Xo att=0. From(17) we find a discrete evolution equation and a similar equation for the odd moments. In particular, we
formally analogous to the FPE for usual random walks, have
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d a the rules(D1)—(D3) are generalized accordingly. Equation
d_t<x> = ?<X> (23 (4) is changed to an equation fordadimensional vector and
correspondingly the conditional probabilit§l8) depends
with the solution also on thed-dimensional position vector. In the continuous
t\a limit the evolution equation reads
(X(t)) = <X(t0)>(g> =x(t) with t=t,>0, (24 IPEL 1

2v2p(s 1) — 2 v IsP(%
Py —2V P(X,t) tV[xP(x,t)]. (30)

in agreement with{11). Heret, is the temporal cutoff scale,
reflecting the breakdown of the continuum approximation forBased on that evolution equation we find also the equations

t— 0. For second moment we find for the even and odd moments. In particular, the even mo-
)= (2\7 o )
(@) = At) +R(0), (25) :Foe;ntan(t,d) ((x)") satisfies instead of Eq22) the equa
with x(t) given by(24) and d ona
£ \2a i £\ 201 gt - ——an(tid) =nld+2(n - Dlaq(td). (1)
A(t)=<—> [<X2(to)>-7(to)]+—[<—) - }
to 2a/ - 1 to

A solution of this equation that yields the even centered mo-
(26) ments is

Since the initial distribution is assumed to be concentrated at r g+
Xo the initial variance and so the first term (B6) vanishes. n
Thus we can read off the effective diffusion coefficient a,(t;d) = —d[ZtD(t)]”- (32)
l" —
1 t 2a-1 ( )
D(t) = {(—) - 1} 27 2
4a=2[ \t The odd momentb?(t; d)=((x2)"x;) obey the equation
n el y q
of the elephant. 1i22) one recognizes the recursion relations 2n+1)a
for the moments of a Gaussian distribution. Indeed, one can—bﬁ(t;d) - —bﬁ(t;d) =n(2n+ d)bﬁ_l(t;d) (33
straightforwardly verify that dt t
_ 2 for the odd moments of d-dimensional Gaussian distribu-
[x=x®)] .
P(X,t) = ——exp)\ ————— (28)  tion.
V4mtD(t) 4D(1) Starting with a microscopic model of a random walk with

unbounded long-time memof(the “elephant}, we have cal-
culated the exact mean and variance, respectively, as well as
the single-time probability distribution for the position of the
M,y = (X=X =(2n-1) !l [2tD(D)]", (29 elephant on large scales. Surprisingly the memory effects
incorporated in the probability distribution at tilhemount

to a time-inhomogeneous random walk where only the initial
position and starting time play a role.

solves the evolution equatiofi?7) for the initial condition
S(Y—Xp) =8 x—-X(ty)]. The centered even moments

which satisfy the recursion relatiof22) are given by the
usual expression for a Gaussian distribution.

The result can be generalized to telimensional case
with a separate memory for each space direction. To this aim This work was supported by the DRGFB 418.
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