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Fluid Vesicles with Viscous Membranes in Shear Flow
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The effect of membrane viscosity on the dynamics of vesicles in shear flow is studied. We present a new
simulation technique, which combines three-dimensional multiparticle collision dynamics for the solvent
with a dynamically triangulated membrane model. Vesicles are found to transit from steady tank treading
to unsteady tumbling motion with increasing membrane viscosity. Depending on the reduced volume and
membrane viscosity, shear can induce both discocyte-to-prolate and prolate-to-discocyte transformations.
This behavior can be understood from a simplified model.
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The dynamical behavior of lipid vesicles under shear
flow is an important subject not only of fundamental
research but also in medical applications [1]. For example,
in microcirculation, the deformation of red blood cells
reduces the flow resistance of microvessels. In diseases
such as diabetes mellitus and sickle cell anemia, red blood
cells have reduced deformability and often block micro-
vascular flow. Although red blood cells do not have a
nucleus and other intracellular organelles, they are more
complex than lipid vesicles, since their plasma membrane
has an attached spectrin network, which modifies its elastic
and rheological properties.

The dynamical behavior of vesicles in shear flow has
been studied experimentally [1,2], theoretically [3,4], and
numerically [5–7]. The vesicle shape is determined by the
competition of the curvature elasticity of the membrane,
the constraints of constant volume V and constant surface
area S, the viscoelastisticity of the membrane, and the
external hydrodynamic forces. One of the difficulties in
theoretical studies of the hydrodynamic effects on the
vesicle dynamics is the boundary condition for the em-
bedding fluid on the vesicle surface, which changes its
shape dynamically. In some previous studies, a fluid ves-
icle was therefore modeled as an ellipsoid with fixed shape
[3]. More recently, the time evolution of the shape was
studied numerically using a boundary integral method in
three spatial dimensions [5] or an advected-field method in
two spatial dimensions [6]. The red blood cell membrane
has also been modeled as an elastic capsule of discocyte
shape [7].

Two types of dynamics have been found in these studies,
a steady state with a tank-treading motion of the membrane
and a finite inclination angle with the flow direction, and an
unsteady state with a tumbling (flipping) motion. A tran-
sition from tank treading to tumbling with an increasing
viscosity of the internal fluid has been predicted for fluid
vesicles with fixed ellipsoidal shape in three dimensions
[3], and with the advected-field method in two dimensions
[6]. When the shape is relaxed dynamically in three di-
mensions, all discocyte vesicles were surprisingly found to
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transform into prolates in shear flow, even for the smallest
shear rates studied [5].

In this Letter, we focus on the effect of the membrane
viscosity on the dynamics of vesicles in shear flow. This is
an important question, because the membrane of red blood
cells, for example, becomes more viscous on aging [4,8] or
in diabetes mellitus [9]. Experiments indicate that the
energy dissipation in the membrane is larger than that
inside a red blood cell [4]. Furthermore, it has been shown
recently that vesicles can not only be made from lipid
bilayers, but also from bilayers of block copolymers [10].
These ‘‘polymersomes’’ have been shown to have a mem-
brane viscosity which is several orders of magnitude larger
than for liposomes [11].

Several mesoscopic simulation techniques for fluid flow
have been developed in recent years. We present here the
first simulation studies for a combination of a mesoscopic
model for the solvent and a coarse-grained, dynamically
triangulated surface model for the membrane. This ap-
proach has four main advantages: (i) The membrane is
described explicitly, so that their properties like the vis-
cosity can be varied easily; (ii) thermal fluctuation of both
the solvent and the membrane are fully and consistently
taken into account; (iii) the method can easily be general-
ized to more complex flow geometries; and (iv) no numeri-
cal instabilities can occur.

We employ a particle-based hydrodynamics method
[12–18] to simulate the solvent, which is called multi-
particle collision dynamics (MPCD) [17,18] or stochastic
rotation dynamics [14,15]. This method was applied, for
example, to polymer dynamics [13,18]. The fluids in the
interior and exterior of the vesicle are taken to be the same,
in particular, to have the same viscosity �0.

As the MPCD model is described in detail in Refs. [12–
15], we can be very brief in explaining the mesoscopic
simulation technique. The solvent is described byNs point-
like particles of mass ms moving in a rectangular box of
size Lx � Ly � Lz. The algorithm consists of alternating
streaming and collision steps. In the streaming step, the
particles move ballistically and the position of each parti-
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FIG. 1 (color online). Dependence of the average inclination
angle h�i ( � �=2 � � < �=2) on the membrane viscosity �


mb

for reduced shear rate _�
 � 0:92 and various reduced volumes
V
. The error bars are estimated from three independent runs
[24]. Squares and circles represent discocyte and prolate vesicles
at V
 � 0:59, respectively. Triangles and diamonds represent
prolate vesicles at V
 � 0:78 and V
 � 0:91, where the prolate
is the only stable shape. The solid lines and broken line are
calculated by KS theory with prolate (V
 � 0:59, 0.78, and 0.91)
and oblate ellipsoids (V
 � 0:59), respectively.
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cle ri is updated according to ri�t� h� � ri�t� � vi�t�h,
where vi is the velocity of particle i and h is the time
interval between collisions. In the collision step, the parti-
cles are sorted into cubic cells of lattice constant a. The
collision step consists of a stochastic rotation of the relative
velocities of each particle in a cell, v�new�i �t� � vcm�t� �
��’��vi�t� � vcm�t��, where vcm is the velocity of the
center of mass of all particles in the cell. The matrix
��’� rotates velocities by a fixed angle ’ around an
axis, which is chosen randomly for each cell. In our
simulation, the angle ’ � �=2 is employed. We apply a
random-shift procedure [14] before each collision step to
ensure Galilean invariance.

For the membrane, we employ a dynamically triangu-
lated surface model [19], in which the membrane is de-
scribed by Nmb vertices which are connected by tethers to
form a triangular network. The vertices have excluded
volume and mass mmb. The shapes and fluctuations of the
membrane are controlled by curvature elasticity with the
energy, Hcv � ��=2�

R
�C1 � C2�

2dS, where � is the bend-
ing modulus, and C1 and C2 are the principal curvatures at
each point of the membrane [20]. The curvature energy is
discretized as described in Ref. [21]. To model the fluidity
of the membrane, tethers can be flipped between the two
possible diagonals of two adjacent triangles. These bond
flips provide also a convenient way to vary the membrane
viscosity �mb, because it increases with decreasing bond-
flip rate. We determine �mb quantitatively from a simula-
tion of a flat membrane in two-dimensional Poiseuille flow.
In contrast to previous studies of dynamically triangulated
surfaces, which were all done by Monte Carlo simulations,
we introduce a smooth bond-interaction potential, which
makes the model amenable for molecular dynamics
simulations.

The solvent particles interact with the membrane in two
ways. First, the membrane vertices are included in the
MPCD collision procedure [13]. Second, the solvent par-
ticles are scattered elastically or via bounceback from
membrane triangles. We use here the procedure suggested
in Ref. [16] for a spherical particle.

To induce a shear flow, we employ Lees-Edwards
boundary conditions [15,22], which give a linear flow
profile �vx; vy; vz� � � _�z; 0; 0� in the MPCD fluid. The
particle density is set to � � 10ms=a3. For the system
size Lx � 50a, Ly � Lz � 30a, this implies Ns �

450 000. We have also done a few runs for smaller and
larger system sizes to estimate finite-size effects [23]. In
experimental conditions of red blood cells and liposomes,
the Reynolds number Re � _��R2

0=�0 is very small (Re�
10�3), where R0 �

������������
S=4�

p
is the effective vesicle radius.

Therefore, we chose a short mean free path h
�����������������
kBT=ms

p
�

0:025a, where kBT is the thermal energy [18]. Then the
viscosity of solvent fluid is �0 � 20:1

��������������
mskBT

p
=a2 [15].

We use � � 20kBT, Nmb � 500, and mmb � 10ms. The
volume V and surface area S � 405a2 of a vesicle are kept
25810
constant to about 1% accuracy. With these parameters, we
obtain a Reynolds number Re ’ 0:1. The results are con-
veniently expressed in terms of dimensionless variables:
the reduced volume V
 � V=�4�R3

0=3�, the intrinsic time
scale � � �0R

3
0=�, the reduced shear rate _�
 � _��, and

the relative membrane viscosity �

mb � �mb=�0R0. Details

of the numerical scheme will be published elsewhere [23].
At �


mb � 0, simulated vesicles exhibit tank-treading
motion for all investigated reduced volumes in the range
0:59 � V
 � 0:97. We calculate the average inclination
angles h�i, and find them to agree very well with those
obtained by the boundary integral method [5,24].

With increasing membrane viscosity �

mb, the inclina-

tion angle � decreases, as shown in Fig. 1. The qualitative
features of the simulation data are reproduced very well by
the theory of Keller and Skalak (KS) [3,4]. Note that there
are no adjustable parameters. Because of the approxima-
tions in the KS theory, an agreement on a quantitative level
cannot be expected: (i) an ellipsoidal shape is assumed,
which only mimics the real shapes of vesicles, (ii) the flow
on the surface of the droplet is not locally area conserving,
as it must be for an incompressible membrane, and (iii)
thermal fluctuations are ignored in the theory, but are
present in the simulations. In the KS theory, the vesicle
transits from tank treading to tumbling motion when the
angle � reaches 0. In contrast, we observe tumbling inter-
mittently to occur already for nonzero h�i, since our simu-
lation includes thermal fluctuation. For example, the
vesicle with V
 � 0:78 starts tumbling at �


mb � 1:22.
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This intermittent tumbling smoothes out the decrease in h�i
around the transition point; see Fig. 1.

We now focus on the case V
 � 0:59. At this reduced
volume, the discocyte shape is stable and the prolate and
stomatocyte shapes are metastable in the absence of shear
flow. Figure 2 shows the free-energy F as a function of the
asphericity !, calculated with a version of the generalized-
ensemble Monte Carlo method [25]. The asphericity
! � �1=2���"1 � "2�2 � �"2 � "3�

2 � �"3 � "1�2�=�"1 �
"2 � "3�2, with the eigenvalues "1 � "2 � "3 of the
moment-of-inertia tensor, is a convenient measure to dis-
tinguish oblate and prolate shapes, where ! � 0 for
spheres, ! � 1 for thin rods, and ! � 0:25 for thin discs
[26]. The free-energy minima agree well with previous
T � 0 calculations [27]. However, thermal fluctuations
and nonaxisymmetric shapes are important to obtain
F�!�. The shear flow changes this stability. A dynamical
phase diagram is shown in Fig. 3. For membrane viscosity
�

mb � 0 and shear rates _�
 * 1:6, the discocyte state is

found to be destabilized and to transform into a prolate, in
agreement with the results of Ref. [5]. However, for
smaller shear rates of _�
 & 1:0, the discocyte vesicle re-
tains its shape. Speculations about shear to be a singular
perturbation [5] can therefore be ruled out.

The inclination angle � of prolates decreases faster than
that of discocytes with increasing �


mb; see Fig. 1. At a
large membrane viscosity of�


mb � 1:62, the prolate enters
the tumbling phase, while the discocyte remains in the
tank-treading phase. The reason is that the discocyte has
a flat dimple region and is less affected by the membrane
viscosity than the prolate. Remarkably, for small shear
rates, the (metastable) prolate starts tumbling, but after a
� or 2� rotation, transforms into a tank-treading discocyte,
see Fig. 4. Only for larger shear rates, the tumbling con-
tinues—accompanied by shape oscillations between pro-
late and discocyte. At intermediate membrane viscosities,
�

mb � 0:49 or 0.87, and shear rate _�
 � 0:92, the prolate

transforms into a discocyte after tank-treading motion for a
time of �70� 40�� or �40� 20�� by thermal fluctuation,
respectively. For larger shear rates, the tumbling continues
intermittently.
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FIG. 2. Free-energy profile F�!� of the asphericity ! for V
 �
0:59 in the absence of shear flow. Cross sections of snapshots of
stable (discocyte) and metastable (prolate and stomatcyte)
shapes are also shown.
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KS theory [3,4] explains the �

mb dependence of the

stability of tank treading (compare Fig. 1), but cannot be
applied to describe the dynamics, including morphological
changes. We therefore suggest a simple phenomenological
model, which is defined by the equations

#! _! � ���1@F=@!� A _�
 sin�2�� (1)

_� � 0:5 _�
f�1� B�!� cos�2��g: (2)

The force @F=@! is calculated from the free-energy F�!�
of Fig. 2. The second term of Eq. (1) is the deformation
force due to the shear flow. Its � dependence can be
deduced from the shape equations of Ref. [5], while the
amplitude is assumed to be independent of the asphericity
! (to leading order). Equation (2) is adopted from KS
theory [3,4]. Here, B is a constant which depends on
viscosities and ellipsoid shape. For B> 1, a steady angle
� � 0:5 arccos�1=B� exists and tank-treading motion oc-
curs, while for B< 1, there is no stable angle and tumbling
motion occurs. In our case, the vesicle shape can be time
dependent, so that B is no longer constant. For simplicity,
we assume a linear dependence of B on the asphericity,
B�!� � B0 � B1!. To obtain tank-treading discocytes and
tumbling prolate, we need B�0:2�> 1 and B�0:7�< 1,
respectively. Then, Eqs. (1) and (2) reproduce the simu-
lated dynamics very well; see Fig. 4. The vesicle is found,
for example, to relax after some tumbling to a stable, tank-
treading discocyte state at _�
 � 1:84, and to relax to a
limit-cycle oscillation between discocyte and prolate at
_�
 � 2:76.

The smooth crossover from tank treading to tumbling in
Fig. 1 for V
 � 0:78 can also be obtained from this sim-
plified model when Eqs. (1) and (2) are extended to include
stochastic terms [23].

The simplified model also gives some insight into the
shape transformations with shear. Shear flow increases the
elongation of a vesicle in the tank-treading regime 0< �<
�=2 (where _�
 sin�2��> 0), but reduces the elongation for
��=2< �< 0 (where _�
 sin�2��< 0) during tumbling.
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FIG. 3. Dynamical phase diagram of vesicle in shear flow, with
V
 � 0:59. ‘‘D’’ and ‘‘P’’ denote discocyte and prolate shapes,
respectively. ‘‘tt’’ indicates tank treading. Symbols show simu-
lated parameter values. The broken lines are guides to the eye.
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FIG. 4 (color online). Time development of (a) asphericity !
and (b) inclination angle �, for V
 � 0:59, �


mb � 1:62, and
_�
 � 1:84. The broken lines are obtained from Eqs. (1) and (2)

with #! � 100, A � 15, and B�!� � 1:1� 0:18!.
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The force in the former case induces the discocyte-to-
prolate transformation; in the latter case the prolate-to-
discocyte transformation. With increasing membrane vis-
cosity �


mb, the inclination angle � of the tank-treading
discocyte decreases, and larger shear rates _�
 are necessary
to generate the required elongational forces to induce a
discocyte-to-prolate transition; compare Fig. 3.

It is also interesting to compare the effect of membrane
viscosity �mb and internal viscosity �in. In both cases, an
increase of the viscosity induces a decrease of the inclina-
tion angle � and a transition from tank treading to tum-
bling. However, the effect of internal viscosity �in is less
dependent on the vesicle morphology. KS theory [3] shows
that with increasing �in, the tank-treading phase of oblate
vesicles is destabilized a little faster (at �in=�0 � 2:8) than
that of prolates (at �in=�0 � 3:2) for �


mb � 0. Thus, only
a sufficiently high membrane viscosity �


mb can induce the
transformation from tumbling prolate to tank-treading
discocyte.

The membrane viscosity of human red blood cells is
estimated from the analysis of the tank-treading motion to
be �mb � 10�7 N s=m [4], while a micropipette recovery-
time technique gives �mb � 10�6 N s=m [8]. When the
viscosity of the external fluid is set to the same value of
the intracellular fluid, �0 � 10�2 Pa s, and R0 � 3:3 (m,
the relative membrane viscosity is found to be in the range
�

mb � 1 . . . 10. Thus, the effect of this membrane viscosity

is sufficiently large (compare Fig. 1) to strongly affect the
dynamics of erythrocytes. The viscoelasticity of membrane
can be changed by varying the chemical composition of the
solvent [1]. It is difficult to separate the effects of viscosity
and elasticity, however. On the other hand, polymersomes
seem to be very well suited for experimental studies of this
25810
effect, since their membrane viscosity can be changed over
a wide range by varying the polymer chain length.

In summary, we have shown that the MPCD method in
combination with dynamically triangulated surfaces is a
powerful tool to study vesicle hydrodynamics. The defor-
mations of viscoelastic vesicles and other flow geometries
will be interesting subjects in further studies.
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