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1 Introduction and Motivation

Hydrogeologists and soil physicists have developed cdsdepdescribe water flow and
transport of dissolved substances in soils and aquifersiled information on fundamen-
tal principals and basic equations describing flow and parisre presented, for instance,
in Bear, Busch et dl, or Delleuf. These basic equations are principally based on the
concept of a Representative Elementary Volume (REV) in wiie flow and transport
processes can be described using a spatially homogeneadifiee and transport param-
eters. The scale of the volume on which parameters can beiewpeally defined is lim-
ited by the measurement scale of water and solute fluxesr waitéents, pressure heads
and solute concentrations. For practical applicationdemiow and transport models
should describe flow and transport processes at the managsoaée of soil and ground-
water systems. A major problem for the practical applicatibflow and transport models
is therefore the large difference between management aadurement scales. Several
studies have revealed that parameters that are deterntitieel @measurement scale vary
considerably in space. Therefore, upscaling procedueeseguired to derive effective
parameters that describe the system’s behaviour at thegearemt scale. Effective pa-
rameters are parameters that lump the system’s subsca@&mfeneity and describe its
behaviour at a larger scale (e.g. Grayson and Blo8ghat the 'scale way’ (Vogel and
Rott??) approach, the smaller scale structure and heterogerigitg properties are explic-
itly considered to predict processes. The predicted psaseand variables at the smaller
scale are then averaged and effective parameters aredidratgpredict the spatially aver-
aged processes/variables at the larger scale.

To investigate the effect of spatial variability of flow andrsport parameters on
the larger scale processes, a three dimensional desoriptithe processes is required.
The 3-D flow and transport equations are presented in seiorin section 3, the
TRACE/PARTRACE computer codes that solve the flow and trartgxjuations numer-
ically are briefly presented. To solve flow and transport psses in three dimensions,
large computational grids are required. Therefore, the TCRARARTRACE codes were
designed for parallel computation, which is shown in secdo Applications of the
TRACE/PARTRACE models are shown in section 5. In subsediidn an example of
upscaling transport from the microscopic to the core sef@ésented. Section 5.2 dis-
cusses upscaling from the core scale to the field scale. Titebildy of the core-scale
parameters is treated in a stochastic framework and sokitib the stochastic flow and
transport are used to determine effective field-scale petens The field-scale parameters
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are subsequently used in a regional scale flow and transjpai¢iyof which an example is
given in Section 5.3.

2 Flow and Transport Equations

The basic equation to describe the water movement in theidals is the Richards equa-
tion:
00
5 =V KV +2) ~5(x), (1)
whered(L3L~3) is the volumetric water contenkK (LT ~!) the hydraulic conductivity
tensor,;y)(L) the pressure head(L) the elevation head, angi(x) (7~!) a sink term that
accounts for water uptake, among others water uptake by mats. In the unsaturated
zone, is negative due to capillary forces and is also called theimhead. In the sat-
urated zoney is positive and equal to the hydrostatic pressure head. (ntsturated
conditions, the water contefitand the hydraulic conductivitiK are related to the matric
head. The functiong(v) andK (v) are constitutive relationships that characterise the hy-
draulic soil properties. These functions are highly noredir and an approximate solution
of Eg. (1) can only be obtained using numerical methods.
Transport through porous media is described by the coraredispersion equation:
988—3 + p% =V6DVC — qVC + Q*, 2
whereC (M L~3) is the concentrations(M M ~!) sorbed concentration (mass of sorbed
compound per mass of sediment/sqif)\/ L—2) the bulk densityD (LT ~1) the disper-
sion tensorg (LT 1) the water flux vector, an@ = (M L—3T~1) a source/sink term. The
dispersion includes all diffusive and dispersive proce$sppening on the scales smaller
than the averaging scale of the water flow. In practice, theefdimit of this averag-
ing scale corresponds with the spatial discretization ithatsed to solve the flow equa-
tion numerically. An additional equation is required rilgtthe sorbed concentration to
the concentration in solution. When sorption and desonpdie@ instantaneous,andC'
can be directly related through the sorption isotherm. Rerdase of rate limited sorp-
tion/desorption, an additional equation describing thiptson kinetics is included.

3 Numerical Solutions

The TRACE code (Vereecken et%). was developed to solve the 3-D Richards equa-
tion numerically. The TRACE computer code uses the threeedsional Finite Element
(FE) Galerkin method with hexagonal isoparametric elesiand a finite difference time
discretization. Due to the non-linearity of the Richardsaipn (Eq. 1) a modified Picard-
iteration scheme (Celia et 4).is used to linearize the equations and update the solution
iteratively until convergence is reached. The resultirgiesy of linear equations is precon-
ditioned based on diagonal scaling of the matrix. To solNegkistem of linear equations
the Conjugated Gradient (CG) method is used. Time disatiiz is variable to include
changes in boundary conditions and to consider converdgegicaviour of the iterative
solution.
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The PARTRACE computer code (Neuenddyis a 3D particle tracking code using the
velocity field from TRACE. For this purpose the underlyingneection dispersion equation
(Eq. 2) is identified as the Ito Fokker Planck equation. A mefalation of the I1to Fokker
Planck equation leads to the nonlinear Langevin equatiba.llangevin equation in com-
bination with the Ito Fokker Planck equation, reformulafieda single particle, gives the
motion equation used in the particle tracking method (vampgert'). Thereby the con-
vective movement of a particle is computed using the flow cigldield from TRACE,
whereas the microdispersion is calculated using randoticfgamotion. Also the sim-
ulation of sorption processes is implemented in the partigicking code using junction
probabilities within the suitable sorption mechanism.

4 Parallel Processing

The computer code TRACE enables execution on massive @lacalinputers (Seide-
manrt?). To facilitate the partitioning of the FE-grid into subidg of approximately the
same size the following restriction for the discretizatadrihe FE-grid is introduced: the
hexagonal elements have to fill the FE-grid without any gah eonsequently, the number
of nodes is equal for each direction in space respectivetwBen the sub-grids an overlap
of one element permits the computation of outer nodes of obeaysid by computing inner
nodes inside the adjacent sub-grid and vice versa. Eackgsocsets up a system of linear
equations for one sub-grid.

Parallelization of the PARTRACE computer code follows pippally the strategy to
distribute equally the number of particles on the procesdeor relatively small numbers
of nodes in the flow velocity field all data of the flow velocitelfi are stored on each
processor. This is very fast for the computation, but is rassible for a great many of
nodes, due to the finite storage space of the working memdrighis case it is possible
to distribute the flow velocity field to several processonse Thterchange of data between
the processors is done using MPI.

5 Application of the TRACE/PARTRACE Models

5.1 Upscaling Transport Processes from the Microscopic to the Core Scale

Three-dimensional solute transport in a column packed giahs beads was simulated by
Herrmann et af. using the TRACE/PARTRACE models. They obtained the miaspsc
3-D structure of the hydraulic conductivity inside the aoluusing the Nuclear Magnetic
Resonance Imaging (NMRI) (Figure 1). From simulated cotregion distributions in
the column (Figure 1), an effective dispersion coefficieaswderived. This coefficient
was considerably larger than the diffusion coefficient lunparable with the effective
dispersion coefficient that was derived from breakthrougieement in the column. This
study illustrates and provides experimental evidenceltiger scale transport processes
may be predicted based on the spatial structure of smalidg s@nsport properties.
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Figure 1. Left Panel: velocity field in a column packed with glass beads derivaamfrNMRI (blue iso-
surfaces include regions with high flow velocity)Right Panel: Simulated tracer concentrations with the
TRACE/PARTRACE models.

5.2 Upscaling Flow and Transport from the Core Scaleto the Field Scale: Tests of
Approximate Analytical Solutions of Stochastic Flow and Transport Equations

Due to heterogeneity of the subsurface and practical ltioita to determine the param-
eters at each location, the spatial behavior of the parameftethe Richards and CDE
equations is treated in a probabilistic or stochastic fraork. A spatial parameter dis-
tribution u(x) is considered to be realization of a Random Space FunctR8BE),U (x),
which characterizes the stochastic or random spatial behal«(x). In general, a RSF
is defined through a set of multidimensional probabilitytrilisitions, F', which give the
probability of a set of observations at a set of points:

P(U(x) < u) = Fx(u)
P (U (x1) < u1, U (X2) < u2) = Fxyx, (U1, u2) 3)
P(U (Xl) < ul,...,U(xi) < UZ',...,U(Xn) < Un) = I’jxl,...,xi.,...,x71 (ulv"'vu’iv"'aun)a

whereP(U(x1) < u1,...,U(x;) < u4,...,U(x,) < uy,) is the probability of a simulta-
neous outcome df (x1) < ui,...,U(x;) < wiy ..., U(Xn) < Unp.

In practice, the multidimensional probability density &tions are assumed to be mul-
tivariate Gaussian and translation invariant. This imptteat the RSF is so-called station-
ary and fully characterized by a constant mean and a spati@riance which depends
only on the separation between the observations. When tiebljc conductivity is a
RSF, the Richards equation is a stochastic partial diftebequation. The solution of the
stochastic Richards equation renders the statisticahclexistics of the RSFs of the output
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variables: pressure hedd and water fluxg. More specifically, the spatial covarian€g,,
and cross-covariancés,, of the output and input parameters are determined:

Cuu(x,x +h) = ((u(x) = (u(x))) (u(x +h) = (u(x + h)))) (4)
Cuv(%,x + 1) = ((u(x) = (u(x))) (v(x + h) = (v(x + h)))) ()

where< - > is the expected value for all realizations of the input patamnfield.

In the transport equation, the water flgxs a stochastic input parameter and its spatial
statistics are obtained by solving the stochastic Richegdation. Also sorption and decay
parameters may be treated as stochastic input parametersagtthe pore-scale dispersion
coefficient and the water content are mostly consideredmé@téstic.

The output of the stochastic transport equation are the ategeconcentrations
(C(x,t)), the spatial/temporal centralized second moments of éggemncentrations
Xi;(t), T?(x) and the expected spatial/temporal centralized second misroéthe con-
centration fields/ breakthrough curves;(t)),(T?%(x)) that result from a point source
injection:

>

() = / wi; (ca(, ) dx — / 2 (e (%, 1)) dx / i lex(x, ) dx  (6)

/ (ce(x, 1)) dt — (/t(ct(x,t))d)2 )
</ 2i50x(%,1) dx—/xicx(x,t)dx/mjcx(x,t)dx> (8)
</t20t (x,t)dt — (/tct(x,t)d)2>, 9)

where
_ O(x,t)
ex(x:1) [ C(x,t)dx
and
C(x,t)
clx,t) = JC(x,t)dt

These moments are a measure of the spreading of a solute glerie heterogeneity
in flow velocity. In the first set of moments,; (t), T2(x) the uncertainty of the location
of the center of mass of the plume or the uncertainty of thd peacentration time are
included in the measure of spreading. Therefore, they septehe spreading of plumes
or breakthrough curves that result from an area wide irgactivhich can be considered
as a large number of point source injections. The secondfsebmentsX;;(t), T2(x)
characterize the average spreading of a plume/breakthraunye resulting from a point
source injection around its center of mass or peak arrira tilt represents the mixing or
dilution of mass that is injected in a heterogeneous aquifer

The moments form the basis for upscaling of the transporaggu In the upscaled
transport equation, the flow velocity is assumed to be deterministic at the larger scale.
The effect on the transport process of smaller scale vglwaitiations due to small scale
hydraulic conductivity variations is lumped in an effeetidispersion parametddes. Degt

413



is defined so that moments of concentration distributiceskthrough curves that are
predicted by the upscaled transport equation correspotidtivdse in the heterogeneous
medium. Two different effective dispersion coefficienta t& defined (e.g. Vanderborght
and Vereeckel):

Doy, = 22 (10
_ (X(t)
Deito = QJﬁ (11)

whereDeg; is an effective dispersion coefficient which describes greading of an area-
wide injected solute plume ardex a coefficient which describes the dilution of injected
mass.

Approximate analytical solutions of the stochastic flow &nachsport equations are ob-
tained by expanding the solution of the partial differelrgguation in an asymptotic series
of the input parameter perturbations. When the perturbataye small, the asymptotic
series may be truncated and higher order perturbation teegiected. Then closed form
approximate analytical solutions of a given order can baiabt (e.g. Dagai.

Another way to obtain solutions of stochastic flow and tramspquations is to apply
brute numerical force and carry out Monte-Carlo simulationa set of realizations of the
parameter fields. In one realization of the parameter fibklflow and transport equations
are solved numerically. The spatial statistics of the ddpanhvariables can then be derived
from the simulated variable fields. The TRACE/PARTRACE cotave been applied for
carrying out such Monte Carlo simulations. Because of thraerical burden, these simu-
lations are mostly done in 2-D and relatively small conduttifields (e.g. Bellin et af).
Using the parallelized TRACE/PARTRACE codes, flow and tpamscould be simulated
in 3-D fields of large spatial extent. In order to generatdizatons of the parameter
fields, a Kraichnan random field generator (KraichfaBchwarz&?) was coupled to the
TRACE/PARTRACE codes. The advantage of the Kraichnan geoeis that large ran-
dom fields can be generated with sufficient spectral resolliased on a much smaller
set of random numbers than the number of grid nodes. As a goaeee, the Kraichnan
generator requires less storage of random numbers andigsaetic operations to calcu-
late the parameter values at the grid nodes than regulabgsed spectral random fields
generators in which a random number must be drawn and storeath grid node.

Englerf carried out Monte Carlo simulations in 3-D hydraulic contiltity fields with
geostatistical parameters that were derived from hydraudnductivity estimates at the
test-site Krauthausen. In contrast to simulations in 2-B &D isotropic hydraulic con-
ductivity fields (e.g. Naff et al%), he found that in an hydraulic conductivity field with
an anisotropic spatial correlation (larger correlatiorthia horizontal than in the vertical
direction) the variance of the Darcy flow velocityis significantly larger than its first-
order approximate prediction. This is, however, in agregméth second-order correction
terms (Hsu and Neum&? that increase with increasing anisotropy. The Monte-€arl
simulations carried out by Englénvere the first to confirm this analytical result.

Transport simulations in a generated heterogeneous adifrire 2) were carried out
by Vanderborght et & using the TRACE/PARTRACE models.

Effective dispersivitiespe1 = Des1 /v @and ez = Defr2/v (v is the mean pore wa-
ter velocity), were derived from breakthrough curves aemefice planes perpendicular
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Figure 2. Left panel: Generated heterogeneous hydraulic conductivity figRight panel: simulated tracer
plume.

-

—— First-Order Theory eff—

— 3
é - - - First-Order Theory Aefr2
g 4 + MC Simulation
<
2 / Pore-Scale Dispersivity —
A = o B0 = £ i
B
1 - R
.-
..
0 T T T T T T |
0 10 20 30 40 50 60 70

Distance from injection (m)

Figure 3. Effective dispersivitieS\et, derive from first-order approximate solutions of the sastie flow and
transport equations (black lines) anf from Monte Carlo dations (symbols).

to the mean flow direction. The effective parameters derfveich numerical simulation
were similar to those derived from a first-order approxinsatetion of the stochastic flow
and transport equations (Figure 3). As a consequence thdy stiggests that first-order
approximations may be used to infer geostatistical pararsewhich characterize the het-
erogeneity of an aquifer, inversely from effective tranggparameters that are obtained
from groundwater tracer experiments.

5.3 Modédling Flow and Transport at the Regional Scale

Small-scale stochastic variations of flow and transpospeters cannot be considered ex-
plicitly at the regional scale but must be implicitly incomated in the model using effective
flow and transport parameters. As illustrated above, thifeetige parameters can be de-
fined by solving stochastic flow and transport equations hAtiarger scale, variability in
flow and transport parameters is due to variations in soiégypnd geology. Using soil
maps and geological information, this variability may beated in a deterministic sense.
Also spatial variations in land-use and vegetation are iigmo factors that influence flow
and transport. Since surface boundary conditions andniaktsiks (root water uptake) in
a water flow model are to a major extent controlled by plantsater flow model should
be coupled to a crop growth model. Therefore, a simple crogvtfr model SUCROS
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Figure 4. Information sources for a 3-D hydro-geologicaldeio

(Spitters et al®), which calculates dry matter accumulation of a crop as atfan of ir-
radiation, temperature and crop characteristics, wasledup the soil/groundwater flow
model TRACE.

A basic issue in modelling flow and transport at a larger sisikhe coupling between
predominantly vertical flow and transport processes in Huogze zone and the horizontal
processes in the groundwater. A fully 3-D variably satutdlew model like TRACE cir-
cumvents an iterative coupling between vadoze zone andhdveater simulation models.

In the frame of the PEGASE project, subsurface water fluxespasticide transport
are modelled in a 20 kmarea around the research centre Jillich in order to preusct t
groundwater quality. In a first step, a 3-D hydro-geologioaldel is built using the soil
map geological data and land-use information (Figure nthe soil map, four charac-
teristic soil profiles with typical soil layers were idengifi. Using a pedotransfer function,
the hydraulic functions were determined for the differagit yers. Geological informa-
tion was used to determine the basis of the unconfined aqiifer soil surface boundary
conditions: precipitation and potential evapotransprafre derived from meteorological
data.

The matrix potential at the soil surface, the actual evapmrand transpiration pre-
dicted by the TRACE model are shown in Figure 5 for two exemyptiys. Since the
model considers three dimensional flow, spatially varigbiéproperties and land use, the
spatial structure and heterogeneity of the flow processie a&oil atmosphere-surface are
represented by the model. Furthermore, the model alsogepi®the dynamics of water
flow in the soil in response to the dynamics of the boundarylitmms.

6 Concluding Remarks

The TRACE/PARTRACE codes were used to investigate the teffiethe spatial variabil-

ity of input parameters on flow and transport processes i3 aoid aquifers at different
scales. Parameter distributions were either generatedrived from soil maps and geo-
logical data. However, these information sources only @iorindirect information about
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Figure 5. Soil surface matric potential, evoporation, armpdranspiration at two exemplary days simulated by
the TRACE/SUCROS model.

the input parameters of the flow and transport models whigfgbralong uncertainty in
the estimated parameter distribution. Alternatively,gpaeters may be estimated using
inverse modelling, i.e. by fitting model predictions to otvesl variables. Using geo-
physical methods, processes in the subsurface can be masiviely and tomographically
monitored (e.g. Kemna et &). Using remote sensing techniques, surface state vasiable
and fluxes and their spatial variation can be obtained. Thihdu development of the
TRACE/PARTRACE codes will include the development of irsemodelling procedures
to derive spatially distributed parameters fields from thati®-temporal process informa-
tion obtained with remote sensing and geophysical methods.
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