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1 Introduction and Motivation

Hydrogeologists and soil physicists have developed concepts to describe water flow and
transport of dissolved substances in soils and aquifers. Detailed information on fundamen-
tal principals and basic equations describing flow and transport are presented, for instance,
in Bear, Busch et al.1, or Delleur6. These basic equations are principally based on the
concept of a Representative Elementary Volume (REV) in which the flow and transport
processes can be described using a spatially homogeneous set of flow and transport param-
eters. The scale of the volume on which parameters can be experimentally defined is lim-
ited by the measurement scale of water and solute fluxes, water contents, pressure heads
and solute concentrations. For practical applications, water flow and transport models
should describe flow and transport processes at the management scale of soil and ground-
water systems. A major problem for the practical application of flow and transport models
is therefore the large difference between management and measurement scales. Several
studies have revealed that parameters that are determined at the measurement scale vary
considerably in space. Therefore, upscaling procedures are required to derive effective
parameters that describe the system’s behaviour at the management scale. Effective pa-
rameters are parameters that lump the system’s subscale heterogeneity and describe its
behaviour at a larger scale (e.g. Grayson and Blöschel8). In the ’scale way’ (Vogel and
Roth22) approach, the smaller scale structure and heterogeneity of the properties are explic-
itly considered to predict processes. The predicted processes and variables at the smaller
scale are then averaged and effective parameters are derived that predict the spatially aver-
aged processes/variables at the larger scale.

To investigate the effect of spatial variability of flow and transport parameters on
the larger scale processes, a three dimensional description of the processes is required.
The 3-D flow and transport equations are presented in section2. In section 3, the
TRACE/PARTRACE computer codes that solve the flow and transport equations numer-
ically are briefly presented. To solve flow and transport processes in three dimensions,
large computational grids are required. Therefore, the TRACE/PARTRACE codes were
designed for parallel computation, which is shown in section 4. Applications of the
TRACE/PARTRACE models are shown in section 5. In subsection5.1, an example of
upscaling transport from the microscopic to the core scale is presented. Section 5.2 dis-
cusses upscaling from the core scale to the field scale. The variability of the core-scale
parameters is treated in a stochastic framework and solutions of the stochastic flow and
transport are used to determine effective field-scale parameters. The field-scale parameters
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are subsequently used in a regional scale flow and transport model, of which an example is
given in Section 5.3.

2 Flow and Transport Equations

The basic equation to describe the water movement in the subsurface is the Richards equa-
tion:

∂θ

∂t
= ∇ · K∇(ψ + z) − S(x), (1)

whereθ(L3L−3) is the volumetric water content,K(LT−1) the hydraulic conductivity
tensor,ψ(L) the pressure head,z(L) the elevation head, andS(x) (T−1) a sink term that
accounts for water uptake, among others water uptake by plant roots. In the unsaturated
zone,ψ is negative due to capillary forces and is also called the matric head. In the sat-
urated zone,ψ is positive and equal to the hydrostatic pressure head. Under unsaturated
conditions, the water contentθ and the hydraulic conductivityK are related to the matric
head. The functionsθ(ψ) andK(ψ) are constitutive relationships that characterise the hy-
draulic soil properties. These functions are highly non-linear and an approximate solution
of Eq. (1) can only be obtained using numerical methods.

Transport through porous media is described by the convection dispersion equation:

θ
∂C

∂t
+ ρ

∂s

∂t
= ∇θD∇C − q∇C +Q∗, (2)

whereC(ML−3) is the concentration,s(MM−1) sorbed concentration (mass of sorbed
compound per mass of sediment/soil),ρ(ML−3) the bulk density,D(L2T−1) the disper-
sion tensor,q(LT−1) the water flux vector, andQ ∗ (ML−3T−1) a source/sink term. The
dispersion includes all diffusive and dispersive processes happening on the scales smaller
than the averaging scale of the water flow. In practice, the lower limit of this averag-
ing scale corresponds with the spatial discretization thatis used to solve the flow equa-
tion numerically. An additional equation is required relating the sorbed concentration to
the concentration in solution. When sorption and desorption are instantaneous,s andC
can be directly related through the sorption isotherm. For the case of rate limited sorp-
tion/desorption, an additional equation describing the sorption kinetics is included.

3 Numerical Solutions

The TRACE code (Vereecken et al.21) was developed to solve the 3-D Richards equa-
tion numerically. The TRACE computer code uses the three dimensional Finite Element
(FE) Galerkin method with hexagonal isoparametric elements and a finite difference time
discretization. Due to the non-linearity of the Richards equation (Eq. 1) a modified Picard-
iteration scheme (Celia et al.4) is used to linearize the equations and update the solution
iteratively until convergence is reached. The resulting system of linear equations is precon-
ditioned based on diagonal scaling of the matrix. To solve this system of linear equations
the Conjugated Gradient (CG) method is used. Time discretization is variable to include
changes in boundary conditions and to consider convergencebehaviour of the iterative
solution.
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The PARTRACE computer code (Neuendorf15) is a 3D particle tracking code using the
velocity field from TRACE. For this purpose the underlying convection dispersion equation
(Eq. 2) is identified as the Ito Fokker Planck equation. A reformulation of the Ito Fokker
Planck equation leads to the nonlinear Langevin equation. The Langevin equation in com-
bination with the Ito Fokker Planck equation, reformulatedfor a single particle, gives the
motion equation used in the particle tracking method (van Kampen11). Thereby the con-
vective movement of a particle is computed using the flow velocity field from TRACE,
whereas the microdispersion is calculated using random particle motion. Also the sim-
ulation of sorption processes is implemented in the particle tracking code using junction
probabilities within the suitable sorption mechanism.

4 Parallel Processing

The computer code TRACE enables execution on massive parallel computers (Seide-
mann17). To facilitate the partitioning of the FE-grid into sub-grids of approximately the
same size the following restriction for the discretizationof the FE-grid is introduced: the
hexagonal elements have to fill the FE-grid without any gap and, consequently, the number
of nodes is equal for each direction in space respectively. Between the sub-grids an overlap
of one element permits the computation of outer nodes of one sub-grid by computing inner
nodes inside the adjacent sub-grid and vice versa. Each processor sets up a system of linear
equations for one sub-grid.

Parallelization of the PARTRACE computer code follows principally the strategy to
distribute equally the number of particles on the processors. For relatively small numbers
of nodes in the flow velocity field all data of the flow velocity field are stored on each
processor. This is very fast for the computation, but is not possible for a great many of
nodes, due to the finite storage space of the working memories. In this case it is possible
to distribute the flow velocity field to several processors. The interchange of data between
the processors is done using MPI.

5 Application of the TRACE/PARTRACE Models

5.1 Upscaling Transport Processes from the Microscopic to the Core Scale

Three-dimensional solute transport in a column packed withglass beads was simulated by
Herrmann et al.9 using the TRACE/PARTRACE models. They obtained the microscopic
3-D structure of the hydraulic conductivity inside the column using the Nuclear Magnetic
Resonance Imaging (NMRI) (Figure 1). From simulated concentration distributions in
the column (Figure 1), an effective dispersion coefficient was derived. This coefficient
was considerably larger than the diffusion coefficient but comparable with the effective
dispersion coefficient that was derived from breakthrough experiment in the column. This
study illustrates and provides experimental evidence thatlarger scale transport processes
may be predicted based on the spatial structure of smaller scale transport properties.
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Figure 1. Left Panel: velocity field in a column packed with glass beads derived from NMRI (blue iso-
surfaces include regions with high flow velocity).Right Panel: Simulated tracer concentrations with the
TRACE/PARTRACE models.

5.2 Upscaling Flow and Transport from the Core Scale to the Field Scale: Tests of
Approximate Analytical Solutions of Stochastic Flow and Transport Equations

Due to heterogeneity of the subsurface and practical limitations to determine the param-
eters at each location, the spatial behavior of the parameters of the Richards and CDE
equations is treated in a probabilistic or stochastic framework. A spatial parameter dis-
tributionu(x) is considered to be realization of a Random Space Functions (RSF),U(x),
which characterizes the stochastic or random spatial behavior of u(x). In general, a RSF
is defined through a set of multidimensional probability distributions,F , which give the
probability of a set of observations at a set of points:

P (U(x) < u) = Fx(u)

P (U (x1) < u1, U (x2) < u2) = Fx1x2
(u1, u2) (3)

P (U (x1) < u1, . . . , U (xi) < ui, . . . , U (xn) < un) = Fx1,...,xi,...,xn
(u1, . . . , ui, . . . , un) ,

whereP (U(x1) < u1, . . . , U(xi) < ui, . . . , U(xn) < un) is the probability of a simulta-
neous outcome ofU(x1) < u1, . . . , U(xi) < ui, . . . , U(xn) < un.

In practice, the multidimensional probability density functions are assumed to be mul-
tivariate Gaussian and translation invariant. This implies that the RSF is so-called station-
ary and fully characterized by a constant mean and a spatial covariance which depends
only on the separation between the observations. When the hydraulic conductivity is a
RSF, the Richards equation is a stochastic partial differential equation. The solution of the
stochastic Richards equation renders the statistical characteristics of the RSFs of the output
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variables: pressure headψ, and water fluxq. More specifically, the spatial covarianceCuu

and cross-covariancesCuv of the output and input parameters are determined:

Cuu(x,x + h) = 〈(u(x) − 〈u(x)〉) (u(x + h) − 〈u(x + h)〉)〉 (4)

Cuv(x,x + h) = 〈(u(x) − 〈u(x)〉) (v(x + h) − 〈v(x + h)〉)〉 (5)

where< · > is the expected value for all realizations of the input parameter field.
In the transport equation, the water fluxq is a stochastic input parameter and its spatial

statistics are obtained by solving the stochastic Richardsequation. Also sorption and decay
parameters may be treated as stochastic input parameters whereas the pore-scale dispersion
coefficient and the water content are mostly considered deterministic.

The output of the stochastic transport equation are the expected concentrations
〈C(x, t)〉, the spatial/temporal centralized second moments of expected concentrations
Xij(t), T 2(x) and the expected spatial/temporal centralized second moments of the con-
centration fields/ breakthrough curves〈Xij(t)〉,

〈

T 2(x)
〉

that result from a point source
injection:

Xij(t) =

∫

xixj 〈cx(x, t)〉 dx −

∫

xi 〈cx(x, t)〉 dx

∫

xj 〈cx(x, t)〉 dx (6)

T 2(x) =

∫

t2 〈ct(x, t)〉 dt−

(
∫

t 〈ct(x, t)〉 d

)2

(7)

〈Xij(t)〉 =

〈
∫

xixjcx(x, t)dx −

∫

xicx(x, t)dx

∫

xjcx(x, t)dx

〉

(8)

〈

T 2(x)
〉

=

〈

∫

t2ct(x, t)dt−

(
∫

tct(x, t)d

)2
〉

, (9)

where

cx(x, t) =
C(x, t)

∫

C(x, t)dx

and

ct(x, t) =
C(x, t)

∫

C(x, t)dt
.

These moments are a measure of the spreading of a solute plumedue to heterogeneity
in flow velocity. In the first set of momentsXij(t), T 2(x) the uncertainty of the location
of the center of mass of the plume or the uncertainty of the peak concentration time are
included in the measure of spreading. Therefore, they represent the spreading of plumes
or breakthrough curves that result from an area wide injection, which can be considered
as a large number of point source injections. The second set of momentsXij(t), T 2(x)
characterize the average spreading of a plume/breakthrough curve resulting from a point
source injection around its center of mass or peak arrival time. It represents the mixing or
dilution of mass that is injected in a heterogeneous aquifer.

The moments form the basis for upscaling of the transport equation. In the upscaled
transport equation, the flow velocityq is assumed to be deterministic at the larger scale.
The effect on the transport process of smaller scale velocity variations due to small scale
hydraulic conductivity variations is lumped in an effective dispersion parameter,Deff. Deff
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is defined so that moments of concentration distributions/breakthrough curves that are
predicted by the upscaled transport equation correspond with those in the heterogeneous
medium. Two different effective dispersion coefficients can be defined (e.g. Vanderborght
and Vereecken19):

Deff1 =
Xij(t)

2t
(10)

Deff2 =
〈Xij(t)〉

2t
(11)

whereDeff1 is an effective dispersion coefficient which describes the spreading of an area-
wide injected solute plume andDeff2 a coefficient which describes the dilution of injected
mass.

Approximate analytical solutions of the stochastic flow andtransport equations are ob-
tained by expanding the solution of the partial differential equation in an asymptotic series
of the input parameter perturbations. When the perturbations are small, the asymptotic
series may be truncated and higher order perturbation termsneglected. Then closed form
approximate analytical solutions of a given order can be obtained (e.g. Dagan5).

Another way to obtain solutions of stochastic flow and transport equations is to apply
brute numerical force and carry out Monte-Carlo simulations in a set of realizations of the
parameter fields. In one realization of the parameter field, the flow and transport equations
are solved numerically. The spatial statistics of the dependent variables can then be derived
from the simulated variable fields. The TRACE/PARTRACE codes have been applied for
carrying out such Monte Carlo simulations. Because of the numerical burden, these simu-
lations are mostly done in 2-D and relatively small conductivity fields (e.g. Bellin et al.2).
Using the parallelized TRACE/PARTRACE codes, flow and transport could be simulated
in 3-D fields of large spatial extent. In order to generate realizations of the parameter
fields, a Kraichnan random field generator (Kraichnan13, Schwarze16) was coupled to the
TRACE/PARTRACE codes. The advantage of the Kraichnan generator is that large ran-
dom fields can be generated with sufficient spectral resolution based on a much smaller
set of random numbers than the number of grid nodes. As a consequence, the Kraichnan
generator requires less storage of random numbers and less arithmetic operations to calcu-
late the parameter values at the grid nodes than regular gridbased spectral random fields
generators in which a random number must be drawn and stored for each grid node.

Englert7 carried out Monte Carlo simulations in 3-D hydraulic conductivity fields with
geostatistical parameters that were derived from hydraulic conductivity estimates at the
test-site Krauthausen. In contrast to simulations in 2-D and 3-D isotropic hydraulic con-
ductivity fields (e.g. Naff et al.14), he found that in an hydraulic conductivity field with
an anisotropic spatial correlation (larger correlation inthe horizontal than in the vertical
direction) the variance of the Darcy flow velocityh is significantly larger than its first-
order approximate prediction. This is, however, in agreement with second-order correction
terms (Hsu and Neuman10) that increase with increasing anisotropy. The Monte-Carlo
simulations carried out by Englert7 were the first to confirm this analytical result.

Transport simulations in a generated heterogeneous aquifer (Figure 2) were carried out
by Vanderborght et al.20 using the TRACE/PARTRACE models.

Effective dispersivities,λeff1 = Deff1/v andλeff2 = Deff2/v (v is the mean pore wa-
ter velocity), were derived from breakthrough curves at reference planes perpendicular
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Figure 2. Left panel: Generated heterogeneous hydraulic conductivity field.Right panel: simulated tracer
plume.

Figure 3. Effective dispersivities,λeff, derive from first-order approximate solutions of the stochastic flow and
transport equations (black lines) anf from Monte Carlo simulations (symbols).

to the mean flow direction. The effective parameters derivedfrom numerical simulation
were similar to those derived from a first-order approximatesolution of the stochastic flow
and transport equations (Figure 3). As a consequence this study suggests that first-order
approximations may be used to infer geostatistical parameters, which characterize the het-
erogeneity of an aquifer, inversely from effective transport parameters that are obtained
from groundwater tracer experiments.

5.3 Modelling Flow and Transport at the Regional Scale

Small-scale stochastic variations of flow and transport parameters cannot be considered ex-
plicitly at the regional scale but must be implicitly incorporated in the model using effective
flow and transport parameters. As illustrated above, these effective parameters can be de-
fined by solving stochastic flow and transport equations. At the larger scale, variability in
flow and transport parameters is due to variations in soil types and geology. Using soil
maps and geological information, this variability may be treated in a deterministic sense.
Also spatial variations in land-use and vegetation are important factors that influence flow
and transport. Since surface boundary conditions and internal sinks (root water uptake) in
a water flow model are to a major extent controlled by plants, awater flow model should
be coupled to a crop growth model. Therefore, a simple crop growth model SUCROS
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Figure 4. Information sources for a 3-D hydro-geological model.

(Spitters et al.18), which calculates dry matter accumulation of a crop as a function of ir-
radiation, temperature and crop characteristics, was coupled to the soil/groundwater flow
model TRACE.

A basic issue in modelling flow and transport at a larger scale, is the coupling between
predominantly vertical flow and transport processes in the vadoze zone and the horizontal
processes in the groundwater. A fully 3-D variably saturated flow model like TRACE cir-
cumvents an iterative coupling between vadoze zone and groundwater simulation models.

In the frame of the PEGASE project, subsurface water fluxes and pesticide transport
are modelled in a 20 km2 area around the research centre Jülich in order to predict the
groundwater quality. In a first step, a 3-D hydro-geologicalmodel is built using the soil
map geological data and land-use information (Figure 4). From the soil map, four charac-
teristic soil profiles with typical soil layers were identified. Using a pedotransfer function,
the hydraulic functions were determined for the different soil layers. Geological informa-
tion was used to determine the basis of the unconfined aquifer. The soil surface boundary
conditions: precipitation and potential evapotranspiration are derived from meteorological
data.

The matrix potential at the soil surface, the actual evaporation and transpiration pre-
dicted by the TRACE model are shown in Figure 5 for two exemplary days. Since the
model considers three dimensional flow, spatially variablesoil properties and land use, the
spatial structure and heterogeneity of the flow processes atthe soil atmosphere-surface are
represented by the model. Furthermore, the model also represents the dynamics of water
flow in the soil in response to the dynamics of the boundary conditions.

6 Concluding Remarks

The TRACE/PARTRACE codes were used to investigate the effect of the spatial variabil-
ity of input parameters on flow and transport processes in soils and aquifers at different
scales. Parameter distributions were either generated or derived from soil maps and geo-
logical data. However, these information sources only contain indirect information about
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Figure 5. Soil surface matric potential, evoporation, and crop transpiration at two exemplary days simulated by
the TRACE/SUCROS model.

the input parameters of the flow and transport models which brings along uncertainty in
the estimated parameter distribution. Alternatively, parameters may be estimated using
inverse modelling, i.e. by fitting model predictions to observed variables. Using geo-
physical methods, processes in the subsurface can be non-invasively and tomographically
monitored (e.g. Kemna et al.12). Using remote sensing techniques, surface state variables
and fluxes and their spatial variation can be obtained. The further development of the
TRACE/PARTRACE codes will include the development of inverse modelling procedures
to derive spatially distributed parameters fields from the spatio-temporal process informa-
tion obtained with remote sensing and geophysical methods.
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a mathematical model for reactive transport in 3D variably saturated porous media,
Internal Report KFA-ICG-4-501494, Jülich (1994).
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