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1 Introduction

The electromagnetic structure of the nucleon as revealed in elastic electron–nucleon scat-
tering is parameterized in terms of four form factors.#4 The understanding of these form
factors is of utmost importance in any theory or model of the strong interactions. Abundant
data on these form factors over a large range of momentum transfer already exist, and this
data base will considerably improve in the few GeV region as soon as further experiments
at CEBAF will be completed and analyzed. In addition, experiments involving polarized
beams and/or targets are also performed at lower energies to give better data in particular
for the electric form factor of the neutron, but also for the magnetic proton and neutron
ones. Such kinds of experiments have been performed or are under way at NIKHEF, MAMI,
ELSA, MIT–Bates and other places. Clearly, theory has to provide a tool to interpret these
data in a model–independent fashion. For small momentum transfer, this can be done in the
framework of baryon chiral perturbation theory (ChPT), which is the effective field theory of
the Standard Model at low energies. This will be the main topic of the present investigation.

To put our work presented here into a better perspective, let us recall what is already known
from chiral perturbation theory studies of the electromagnetic form factors. Already a long
time ago it was established that the isovector (Dirac and Pauli) charge radii diverge in the
chiral limit of vanishing pion mass [1]. The first systematic investigation in the framework
of relativistic baryon ChPT was given in [2], in particular, it was shown that the analytic
structure of the one–loop representation of the isovector spectral functions is in agreement
with the one deduced from unitarity (in the low energy region, that is on the left wing of the
rho resonance). That approach, however, suffers from the fact that due to the use of standard
dimensional regularization, the one–to–one correspondence between the expansion in loops
and the one in small momenta was upset. If one considers the nucleon as a very heavy
static source, a consistent power counting is possible, the so–called heavy baryon chiral
perturbation theory (HBChPT). Within that approach, the electromagnetic form factors
were studied in [3, 4], the latter also containing the extension to an effective field theory
including the delta resonance. It was found that the chiral description already fails for values
of the four–momentum transfer squared of about Q2 ≃ 0.2 GeV2. In [5], the isovector and
isoscalar spectral functions were investigated in the heavy nucleon approach. It was pointed
out that due to the heavy mass expansion, the analytic structure of the isovector spectral
function is distorted, making the chiral expansion fail to converge in certain regions of
small momentum transfer. This can be overcome in the recently proposed Lorentz–invariant
formulation of [6] making use of the so–called “infrared regularization”. Being relativistic,
this approach leads by construction to the correct behavior of the spectral functions in the
low energy domain. Furthermore, it is expected to improve the convergence of the chiral
expansion. This will be one of the main issues to be addressed here. We perform a complete
one–loop analysis of the form factors, i.e. taking into account all terms up to fourth order.
We will demonstrate that one can achieve a good description of the neutron charge form

#4As will be discussed in more detail later, one can either work with the Dirac and Pauli form factors F1

and F2 or the Sachs form factors GE and GM of the proton and the neutron.
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factor for momentum transfer squared up to about Q2 = 0.4 GeV2. The other three form
factors cannot be precisely reproduced by the pion cloud plus local contact terms to this
order. The source of this deficiency is readily located – it stems from the contribution of
vector mesons. We show how to incorporate these in a chirally symmetric manner without
introducing additional free parameters (the new parameters related to the vector mesons
are taken from dispersion–theoretical analyses of the form factors, see [7, 8, 9]). Within
that framework, we obtain a very precise description of the large “dipole–like” form factors
without destroying the good result for the neutron form factor obtained in the pure chiral
expansion. It is also important to stress that the results obtained in the heavy baryon
approach can be straightforwardly deduced from the framework employed here, shedding
some more light on previous HBChPT results.

The manuscript is organized as follows. In section 2, some basic definitions concerning the
electromagnetic form factors are collected. The one–loop representation of the nucleon form
factors is given in section 3. The effective Lagrangian on which our investigation is based is
briefly reviewed in subsection 3.1. In particular, infrared regularization and the treatment
of loop integrals are discussed in some detail in subsection 3.2. The pertinent results based
on this complete one–loop representation are presented and discussed in subsections 3.3 and
3.4. Particular emphasis is put on a direct comparison with the results obtained in heavy
baryon chiral perturbation theory, which is a limiting case of the procedure employed in this
manuscript. The inclusion of vector mesons in harmony with chiral symmetry is presented in
section 4. We give some technicalities in subsection 4.1 and display the results for the form
factors in 4.2, followed by some remarks on resonance saturation in 4.3. Concluding remarks
are given in section 5. Some further technical aspects are relegated to the appendices.

2 Nucleon form factors

The structure of the nucleon (denoted by ‘N ’) as probed by virtual photons is parameterized
in terms of four form factors,

〈N(p′) | Jµ |N(p)〉 = e ū(p′)
{

γµF
N
1 (t) +

iσµνq
ν

2mN

F N
2 (t)

}

u(p) , N = p, n , (2.1)

with t = qµq
µ = (p′ − p)2 the invariant momentum transfer squared, Jµ the isovector vector

quark current, Jµ = q̄Qγµq (Q is the quark charge matrix), and mN the mean nucleon mass.
In electron scattering, t is negative and it is often convenient to define the positive quantity
Q2 = −t > 0. F1 and F2 are called the Dirac and the Pauli form factor, respectively, with
the normalizations F p

1 (0) = 1, F n
1 (0) = 0, F p

2 (0) = κp and F n
2 (0) = κn. Here, κ denotes the

anomalous magnetic moment. One also uses the electric and magnetic Sachs form factors,

GE(t) = F1(t) +
t

4m2
N

F2(t) , GM(t) = F1(t) + F2(t) . (2.2)

In the Breit–frame, GE and GM are nothing but the Fourier–transforms of the charge and the
magnetization distribution, respectively. In a relativistic framework, as it is used throughout
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this text, the Dirac and Pauli form factors arise if one constructs the most general nucleonic
matrix element of the electromagnetic current consistent with Lorentz invariance, parity and
charge conjugation. In the non–relativistic limit on the other hand, in which the nucleon
can be considered as a very heavy static source, one naturally deals with the Sachs form
factors. Therefore, as first stressed in [3], these arise in the heavy baryon approach to chiral
perturbation theory. Since we will frequently compare our results to those obtained in that
framework, we will consider both Pauli and Dirac and the Sachs form factors. For the
theoretical analysis, it is advantageous to work in the isospin basis,

F s,v
i (t) = F p

i (t) ± F n
i (t) , (i = 1, 2) , (2.3)

since the photon has an isoscalar (I = s) and an isovector (I = v) component (and similarly
for the Sachs form factors). It is important to note that the lowest hadronic states to which
the isoscalar and isovector photons couple are the two and three pion systems, respectively.
These are the corresponding thresholds for the absorptive parts of the isoscalar and isovector
nucleon form factors.

The slope of the form factors at t = 0 is conventionally expressed in terms of a nucleon
radius 〈r2〉1/2,

F (t) = F (0)
(

1 +
1

6
〈r2〉 t + . . .

)

(2.4)

which is rooted in the non–relativistic description of the scattering process in which a point–
like charged particle interacts with a given charge distribution ρ(r). The mean square radius
of this charge distribution is given by

〈r2〉 = 4π
∫ ∞

0
dr r2ρ(r) = − 6

F (0)

dF (Q2)

dQ2

∣

∣

∣

∣

Q2=0
. (2.5)

Eq. (2.5) can be used for all form factors except Gn
E and F n

1 which vanish at t = 0. In these
cases, one simply drops the normalization factor 1/F (0) and defines e.g. the neutron charge
radius via

〈(rn
E)2〉 = −6

dGn
E(Q2)

dQ2

∣

∣

∣

∣

Q2=0
. (2.6)

It is important to note that the slopes of Gn
E and F n

1 are related via

dGn
E(Q2)

dQ2

∣

∣

∣

∣

Q2=0
=

dF n
1 (Q2)

dQ2

∣

∣

∣

∣

Q2=0
− F n

2 (0)

4m2
N

, (2.7)

where the second term in eq. (2.7) is called the Foldy term. It gives the dominant contribution
to the slope of Gn

E.

The large body of electron scattering data spanning momentum transfers from Q2 ≃ 0 to
Q2 ≃ 35 GeV2 can be analyzed in a largely model–independent fashion using dispersion
relations [7, 8, 9]. Here, we are interested in the region of small momentum transfer, Q2 ≤
0.5 GeV2. Nevertheless, since there is still some substantial scatter in the data in this range
of momentum transfer, we will also use the results of the dispersive analysis for comparison
to the ones obtained in the chiral expansion. A recent review on the theory of the form
factors is given in [10], the status of the data as of 1999 is discussed in [11].
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3 One–loop representation

3.1 Effective Lagrangian

Our starting point is an effective field theory of asymptotically observable relativistic spin–
1/2 fields, the nucleons, chirally coupled to the pseudo–Goldstone bosons of QCD, the pions,
and external sources (like e.g. the photon field). The theory shares the symmetries of QCD
(spontaneously and explicitly broken chiral symmetry, parity, charge conjugation, time re-
versal invariance, and Lorentz covariance) and can be formulated in such a way as to obey
systematic power counting, which will be discussed at length in the following section. Exter-
nal momenta and quark (pion) mass insertions are treated as small quantities in comparison
to the scale of chiral symmetry breaking, Λχ ≃ 1 GeV. The most direct link of the effective
field theory to the underlying one, QCD, comes from the analysis of the chiral Ward iden-
tities as stressed by Leutwyler [12]. Any contribution to S–matrix elements or transition
currents has the form

M = qν f
(

q

λ
, g

)

, (3.1)

where q is a generic symbol for any small quantity, f a function of order one, λ a regularization
scale, and g a collection of coupling constants. Chiral symmetry demands that the power ν
is bounded from below. The expansion in increasing powers of this parameter is called the
chiral expansion. At a given order, one has to consider tree as well as loop diagrams, the
latter ones restoring unitarity in a perturbative fashion. The machinery to perform this is
based on an effective Lagrangian, which consists of a string of terms of increasing (chiral)
dimension,

Leff = L(2)
ππ + L(1)

πN + L(2)
πN + L(3)

πN + L(4)
πN + . . . , (3.2)

where the ellipsis denotes terms of higher order not needed here. We note that we perform a
complete one–loop analysis, i.e. taking tree graphs with insertions from all terms indicated
in eq. (3.2) and one–loop diagrams with insertions from L(1)

πN and at most one insertion from

L(2)
πN .

We will now consider the terms relevant to our problem (for a more detailed description,
we refer the reader to [13]). The chiral effective pion Lagrangian, which to leading order
contains two parameters, the pion decay constant (in the chiral limit) F and the pion mass
(its leading term in the quark mass expansion) M , is given by

L(2)
ππ =

F 2

4
〈uµu

µ + χ+〉 , (3.3)

where the triplet of pion fields is collected in the SU(2) valued matrix U(x) = u2(x), and
the chiral vielbein is related to u via uµ = i{u†,∇µu}. ∇µ is the covariant derivative on the
pion fields including external vector (vµ) and axial (aµ) sources, ∇µU = ∂µU − i(vµ +aµ)U +
iU(vµ − aµ). The mass term is included in the field χ+ via the definitions χ = 2B(s + i p)
and χ± = u†χu† ± uχ†u, with s and p being scalar and pseudoscalar sources, respectively,
the former including the quark mass matrix, s = M + . . . . Furthermore, 〈. . .〉 denotes the
trace in flavor space.
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The pion–nucleon Lagrangian at leading order reads

L(1)
πN = Ψ̄

(

iD/ − m +
gA

2
u/γ5

)

Ψ , (3.4)

where the bi–spinor Ψ collects the proton and neutron fields and gA is the axial–vector
coupling constant measured in neutron β–decay, gA = 1.26. To be more precise, the nucleon
mass and the axial coupling should be taken at their values in the two flavor chiral limit
(mu = md = 0, ms fixed at its physical value). To this order, the photon field only couples
to the charge of the nucleon. It resides in the chiral covariant derivative, DµΨ = ∂µΨ+ΓµΨ,
with the chiral connection given by Γµ = 1

2
[u†, ∂µu] − i

2
u†(vµ + aµ)u − i

2
u(vµ − aµ)u†.

The minimal Lagrangians at second and third order have been given in [14]. We only show
the terms needed for the calculation of the form factors,

L(2)
πN = Ψ̄

{

c1〈χ+〉 −
c2

8m2

(

〈uµuν〉{Dµ, Dν} + h.c.
)

+
i c4

4
σµν [uµ, uν ]

+
c6

8m
σµνF+

µν +
c7

8m
σµν〈F+

µν〉
}

Ψ , (3.5)

L(3)
πN = Ψ̄

{

i d6

2m

(

[Dµ, F̂+
µν ]Dν + h.c.

)

+
i d7

2m

(

[Dµ, 〈F+
µν〉]Dν + h.c.

)

}

Ψ . (3.6)

Here, F+
µν = u†Fµνu + uFµνu

†, and Fµν = ∂µAν − ∂νAµ is the conventional photon field
strength tensor. Furthermore, we have adopted the notation introduced in [14] for traceless
operators in SU(2), Â = A − 1

2
〈A〉. The ci and di are the so–called low energy constants

(LECs), which encode information about the more massive states not contained in the effec-
tive field theory or other short distance effects. These parameters have to be pinned down
from some data. In our case, the LECs c1, c2, c4, which only appear in loop diagrams, can
be taken from analyses of πN–scattering, whereas c6, c7 parameterize the leading magnetic
photon coupling to the nucleon, and d6, d7 have to be fitted to the charge radii of proton
and neutron.

The minimal pion–nucleon Lagrangian to fourth order has been worked out in [15]. Of the
118 terms given there, we only show the four which are of interest here,

L(4)
πN = Ψ̄

{

−e54

2
[Dλ, [Dλ, 〈F+

µν〉] ] σµν − e74

2
[Dλ, [Dλ, F̂

+
µν ] ] σ

µν

−e105

2
〈F+

µν〉 〈χ+〉 σµν − e106

2
F̂+

µν〈χ+〉 σµν
}

Ψ . (3.7)

Two more terms (numbered 107 and 108 respectively in [15]) only contribute when taking
into account effects due to mu 6= md. We shall disregard these in what follows. We also
note that the terms ∼ e105, e106 only amount to a quark mass renormalization of the leading
magnetic couplings ∼ c6, c7,

c6 → c̃6 = c6 − 16 m M2 e106 ,

c7 → c̃7 = c7 − 8 m M2
(

2e105 − e106

)

. (3.8)

When it comes to numerical evaluation, we will just use the renormalized constants c̃6 and
c̃7 and will not regard e105 and e106 as additional parameters to be fitted.
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3.2 Infrared regularization

Chiral perturbation theory in the meson sector as an effective theory for weakly interacting
Goldstone bosons allows for a systematic expansion of physical observables simultaneously
in powers of small momenta and quark masses. For example, in the isospin limit (mu = md)
the quark mass expansion of the pion mass takes the form

M2
π = M2

{

1 − M2

32π2F 2
ℓ̄3

}

+ O(M6) , (3.9)

where the renormalized coupling ℓ̄3 depends logarithmically on the quark mass, M2dℓ̄3/dM2

= −1. The infinite contribution of the pion tadpole ∼ 1/(d− 4), see graph (a) in fig. 1, has
been absorbed in the infinite part of this LEC. In this scheme, there is a consistent power
counting since the only mass scale (i.e. the pion mass) vanishes in the chiral limit mu =
md = 0. If one uses the same method in the nucleon case, one encounters a scale problem:
for instance, if the nucleon field is treated relativistically based on standard dimensional
regularization, the nucleon mass shift calculated from the self–energy diagram (see graph
(b) in fig. 1) can be expressed via [2]

mN − m =
3g2

Am2

32π2F 2
m

{

c̄0 + c̄1µ
2 − πµ3 − µ4 log µ +

∞
∑

ν=4

aνµ
ν
}

, (3.10)

with µ = M/m, and c̄0, c̄1 are renormalized LECs (the precise relation of which to previously
defined LECs is of no relevance here). This expansion is very different from the one for the
pion mass, in that the nucleon mass already receives a (infinite) renormalization in the chiral
limit. This difference is due to the fact that the nucleon mass does not vanish in the chiral
limit and thus introduces a new mass scale apart from the one set by the quark masses.
Therefore, any power of the quark masses can be generated by chiral loops in the nucleon
case, whereas in the meson case a loop order corresponds to a definite number of quark
mass insertions. This is the reason why one has introduced the heavy mass expansion in the
nucleon case. Since in that formalism the nucleon mass is transformed from the propagator
into a string of vertices with increasing powers of 1/m, a consistent power counting can be
formulated. However, this method has the disadvantage that certain types of diagrams are
at odds with strictures from analyticity. The best example is the so–called triangle graph,
which enters e.g. the scalar form factor or the isovector electromagnetic form factors of the
nucleon (see graph (6) in fig. 2). This diagram has its threshold at t0 = 4M2

π but also a
singularity on the second Riemann sheet, at tc = 4M2

π −M4
π/m2

N = 3.98M2
π , i.e. very close to

threshold. To leading order in the heavy baryon approach, this singularity coalesces with the
threshold and thus causes problems (a more detailed discussion can be found e.g. in [5, 16]).
In a fully relativistic treatment, such constraints from analyticity are automatically fulfilled.

It was recently argued in [17] that relativistic one–loop integrals can be separated into “soft”
and “hard” parts. While for the former, a similar power counting as in HBChPT applies, the
contributions from the latter can be absorbed in certain LECs. In this way, one can combine
the advantages of both methods. A more formal and rigorous implementation of such a
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program is due to Becher and Leutwyler [6]. They call their method, which we will also use
here, “infrared regularization”. Any one–loop integral H is split into an infrared singular
and a regular part by a particular choice of Feynman parameterization. Consider first the
regular part, called R. If one chirally expands these terms, one generates polynomials in
momenta and quark masses. Consequently, to any order, R can be absorbed in the LECs
of the effective Lagrangian. On the other hand, the infrared singular part I has the same
analytical properties as the full integral H in the low–energy region and its chiral expansion
leads to the non–trivial momentum and quark–mass dependences of ChPT, like e.g. the chiral
logarithms or fractional powers of the quark masses. It is this infrared singular part I that is
closely related to the heavy baryon expansion: there, the relativistic nucleon propagator is
replaced by a heavy baryon propagator plus a series of 1/m–suppressed insertions. Summing
up all heavy baryon diagrams with all internal–line insertions yields the infrared singular
part of the corresponding relativistic diagram.

To be specific, consider the self–energy diagram (b) of fig. 1. In d dimensions, the corre-
sponding scalar loop integral is

H(p2) =
1

i

∫ ddk

(2π)d

1

[M2 − k2 − iǫ][m2 − (p − k)2 − iǫ]
. (3.11)

At threshold, p2 = s0 = (M + m)2, this results in

H(s0) = c(d)
Md−3 + md−3

M + m
= I + R , (3.12)

with c(d) some constant depending on the dimensionality of space–time. The infrared sin-
gular piece I is characterized by fractional powers in the pion mass and generated by loop
momenta of order Mπ. For these soft contributions, the power counting is fine. On the other
hand, the infrared regular part R is characterized by integer powers in the pion mass and
generated by internal momenta of the order of the nucleon mass (the large mass scale). These
are the terms which lead to the violation of the power counting in the standard dimensional
regularization discussed above. For the self–energy integral, this splitting can be achieved
in the following way:

H =
∫ ddk

(2π)d

1

AB
=

∫ 1

0
dz

∫ ddk

(2π)d

1

[(1 − z)A + zB]2

=
{∫ ∞

0
−

∫ ∞

1

}

dz
∫

ddk

(2π)d

1

[(1 − z)A + zB]2
= I + R , (3.13)

with A = M2 − k2 − iǫ, B = m2 − (p − k)2 − iǫ. Any general one–loop diagram with
arbitrary many insertions from external sources can be brought into this form by combining
the propagators to a single pion– and a single nucleon–propagator. It was also shown that this
procedure leads to a unique, i.e. process–independent result, in accordance with the chiral
Ward identities of QCD. This is essentially based on the fact that terms with fractional versus
integer powers in the pion mass must be separately chirally symmetric. Consequently, the
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transition from any one–loop graph H to its infrared singular piece I defines a symmetry–
preserving regularization. However, at present it is not known how to generalize this method
to higher loop orders. Also, its phenomenological consequences have not been explored in
great detail so far. It is, however, expected that this approach will be applicable in a larger
energy range than the heavy baryon approach.

Some remarks concerning renormalization within this scheme are in order. To leading order,
the infrared singular parts coincide with the heavy baryon expansion, in particular the infi-
nite parts of loop integrals are the same. Therefore, the β–functions for low energy constants
which absorb these infinities are identical. However, infrared singular parts of relativistic
loop integrals also contain infinite parts which are suppressed by powers of µ, which hence
cannot be absorbed as long as one only introduces counter terms to a finite order: exact
renormalization only works up to the order at which one works, higher order divergences
have to be removed by hand. Closely related to this problem is the one of the new mass
scale λ which one has to introduce in the process of regularization and renormalization. In
dimensional regularization and related schemes, loop diagrams depend logarithmically on
λ. This log λ dependence is compensated for by running coupling constants, the running
behavior being determined by the corresponding β–functions. In the same way as the con-
tact terms cannot consistently absorb higher order divergences, their β–functions cannot
compensate for scale dependence which is suppressed by powers of µ. In order to avoid
this unphysical scale dependence in physical results, the authors of [6] have argued that the
nucleon mass mN serves as a “natural” scale in a relativistic baryon ChPT loop calculation
and that therefore one should set λ = mN everywhere when using the infrared regularization
scheme. This was already suggested in [3] for the framework of a relativistic theory with
ordinary dimensional regularization. We will follow this idea, hence in our formulae, what
would actually be log(Mπ/λ) will always be spelled out as log µ.

In the following calculation, we frequently compare our results to the equivalent heavy baryon
ones. We wish to emphasize that one can always regain the heavy baryon result from the
infrared regularized relativistic one by performing a strict chiral expansion of all involved
loop functions. As a simple example, we again show the expansion of the nucleon mass up
to third order corresponding to eq. (3.10), but this time using infrared regularization. The
result is

mN − m = −4c1M
2 +

3g2
A

2F 2
mM2I(m2) , (3.14)

where the loop integral I(m2) is given by

I(m2) = −µ2
(

L +
1

16π2
log µ

)

+
µ

16π2

{

µ

2
−

√

4 − µ2 arccos
(

−µ

2

)}

. (3.15)

(Definitions and results for this and all other loop functions needed in this work can be found
in appendix A.) Expanding to leading order, one finds

I(m2) = − µ

16π
+ O(µ2) , (3.16)
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which leads to the well–known result

mN − m = −4c1M
2 − 3g2

AM3

32πF 2
+ O(µ4) , (3.17)

yielding a contribution non–analytic in the quark masses. As explained before, the loop
function I(m2) contains a non–leading divergence which cannot be absorbed to this order,
but will be by an appropriate contact term at fourth order. The calculation of the nucleon
mass to fourth order and the reduction to the heavy baryon limit is done in detail in [6].

An essential ingredient to the treatment of loop integrals as described in the previous para-
graphs is the fact that higher order effects are included as compared to the “strict” chiral
expansion in the heavy baryon formalism. This was justified in [6] by improved convergence
properties in the low energy region, it introduces however a certain amount of arbitrariness
as to which of these higher order terms to keep and which to dismiss. It is therefore manda-
tory to exactly describe our treatment of these terms. The philosophy in [6] was, above
all, to preserve the correct relativistic analyticity properties. This was achieved by keeping
the full denominators of loop integrals (and evaluating them by the infrared regularization
prescription), while expanding the numerators to the desired chiral order only. In addition,
e.g. crossing symmetry is to be conserved. We explore a different approach here: as we
anticipate the neutron electric form factor to be highly sensitive to recoil effects, we keep
all terms which occur according to the infrared regularization prescription and do not even
expand the numerators of loop integrals. However, three effects involving low energy con-
stants have to be discussed separately, all in the spirit of avoiding “artificial” higher order
counterterms:

• Loop diagrams with second order insertions proportional to c1 can easily be summarized
by a shift of the “bare” nucleon mass to its renormalized value at second order, m →
mN = m − 4c1M

2
π + O(q3). In principle, this does not occur in those loop diagrams

which have insertions from other second order low energy constants. As we do not
want to artificially introduce this additional LEC by discriminating between m and
mN in our formulae, we allow for this renormalization everywhere.

• As detailed in the previous section, the second order LECs c6, c7 receive a renormal-
ization ∼ M2

π at fourth order. In principle, to this order only the unrenormalized ci

appear in loop diagrams. We disregard this difference and use the same values both
on tree level and for the loops.

• From the definitions of the various electromagnetic form factors, it is obvious that these
are not all calculated to the same accuracy in terms of chiral orders. A calculation
employing chiral Lagrangians up to and including O(q4) will be able to give the Dirac
form factor F1 to O(q3) and the Pauli form factor F2 to O(q2). When combining these to
the Sachs form factors GE and GM , the chiral orders are “mixed”, see eq. (2.2). When
we, in the following, talk about “third”/“fourth” order calculations of the various
form factors, we always refer to the projections of the third/fourth order amplitude
onto these observables. We truncate exactly one kind of term in this process: the
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O(q3) counterterms which enter the electric (charge) radii are really “GE counterterms”
in the sense that they appear in F1 and F2 with opposite signs in order to cancel
exactly in GM . In addition, there are, at O(q4), F2 counterterms fixing the magnetic
radii. Therefore, GE receives q4 counterterms inherited from (q2/4m2)F2. As a genuine
polynomial contribution of this kind only appears in an O(q5) calculation, we drop
these terms in GE .

3.3 Chiral expansion of the nucleon form factors

The chiral expansion of a form factor F (being a genuine symbol for any of the four elec-
tromagnetic nucleon form factors) consists of two contributions, tree and loop graphs. The
tree graphs comprise that of lowest order with a fixed coupling (the nucleon charge) as well
as counterterms from the second, third, and fourth order Lagrangians. As one–loop graphs,
we have both those with just lowest order couplings and those with exactly one insertion
from L(2)

πN . The pertinent tree and loop graphs are depicted in fig. 2 (we have not shown
the diagrams leading to wave function renormalization). The first four of these comprise the
tree graphs with insertions up to dimension four, and diagrams (5) to (9) ((10) to (12)) are
the third (fourth) order loop graphs. Consequently, any form factor can be written as

F (t) = F tree(t) + F loop(t) . (3.18)

In appendix B, we have listed the contributions to the Dirac and Pauli form factors from the
various diagrams, including the nucleon Z–factor. This allows to reconstruct the pertinent
expressions for F p,n

1,2 in a straightforward manner. We refrain from giving the complete
expressions here. The corresponding Sachs form factors Gp,n

E,M are obtained by use of eq. (2.2)
under the restrictions discussed in the preceding section. We only show the explicit formulae
for the magnetic moments, the electric and the magnetic radii (in terms of renormalized, i.e.
physical, masses and coupling constants). The magnetic moments read

κv = c̃r
6

− µ2g2
Am2

N

(4πFπ)2

{

3

2
µ2 +

(

2 − µ2

4

)

c6

+
arccos(−µ

2
)

µ
√

4 − µ2

[

2
(

8 − 13µ2 + 3µ4
)

− µ2
(

8 − 5

2
µ2

)

c6

]

+
[

2
(

7 − 3µ2
)

+
(

4 − 5

2
µ2

)

c6

]

log µ
}

+
µ2m2

N

(4πFπ)2

{

3

4
µ2mN c2 −

(

3µ2mN c2 − 8mN c4 + 2c6

)

log µ
}

, (3.19)

κs = c̃r
6 + 2c̃r

7

− 3µ2g2
Am2

N

(4πFπ)2

{

µ2

4

(

2 + c6 + 2c7

)

− µ arccos(−µ
2
)√

4 − µ2

[

2
(

3 − µ2
)

+
(

4 − 3

2
µ2

)

(

c6 + 2c7

)

]
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+
[

2
(

1 − µ2
)

+
(

2 − 3

2
µ2

)(

c6 + 2c7

)

]

log µ
}

+
3µ4m3

N c2

(4πFπ)2

(

1

4
− log µ

)

, (3.20)

with µ = Mπ/mN ≃ 1/7. Note that the magnetic moments are finite in the chiral limit. We
remind the reader of the definitions of c̃6 and c̃7 in eq. (3.8). We have distinguished between
the renormalized and the unrenormalized LECs (at tree level and in loop contributions,
respectively) only for reasons of formal exactitude, and will disregard this difference from
now on. Note however that, in contrast to c6, c7, these renormalized LECs inherit infinite
parts from e105, e106 which are needed in order to remove the leading order divergences in
the magnetic moments (as explained in section 3.2). Their poles in (d − 4) are determined
by the corresponding β–functions,

βe105
= − 3g2

A

16mN

(

1 + c6 + 2c7

)

, (3.21)

βe106
= − 1

8mN

[

7g2
A − 4mNc4 + (1 + 2g2

A)c6

]

. (3.22)

c̃r
6, c̃r

7 in eqs. (3.19), (3.20) denote the finite LECs, i.e. with the poles subtracted. Next, the
charge radii can be brought into the form

(rv
E)2 = −12 dr

6 +
3 κv

2m2
N

− g2
A

(4πFπ)2

{

7 − 8µ2 − 3

4
µ4

(

1 − c6

)

− µ arccos(−µ
2
)√

4 − µ2

[

70 − 74µ2 + 15µ4 + 3µ2
(

3 − µ2
)

c6

]

+
[

10 − 44µ2 + 15µ4 + 3µ2
(

1 − µ2
)

c6

]

log µ
}

− 1

(4πFπ)2

(

1 + 2 log µ
)

, (3.23)

(rs
E)2 = −24 d7 +

3 κs

2m2
N

+
3µ2g2

A

(4πFπ)2

{

2

4 − µ2
+

µ2

4

[

1 + 3
(

c6 + 2c7

)]

− µ arccos(−µ
2
)

(4 − µ2)3/2

[

54 − 34µ2 + 5µ4 + 3
(

12 − 7µ2 + µ4
)(

c6 + 2c7

)]

+
[

4 − 5µ2 + 3
(

1 − µ2
)(

c6 + 2c7

)]

log µ
}

. (3.24)

The isovector charge radius diverges logarithmically in the chiral limit, while the isoscalar one
is finite. dr

6 denotes the renormalized LEC d6, i.e. without the infinite part that removes the
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leading order divergence in the isovector electric form factor, the corresponding β–function
being given by [18, 14]

βd6
= −1 + 5g2

A

6
. (3.25)

The LEC d7 entering the isoscalar radius is, in contrast, finite. Finally, the magnetic radii
are given by

µv(rv
M)2 = 24 mN er

74

+
g2

A

(4πFπ)2

{

1

4(4 − µ2)

[

112 − 36µ2 − 8µ4 + 3µ6 − µ2
(

8 − 8µ2 + µ4
)

c6

]

+
arccos(−µ

2
)

µ(4 − µ2)3/2

[

32 − 152µ2 + 126µ4 − 34µ6 + 3µ8 − µ4
(

6 − 6µ2 + µ4
)

c6

]

+
[

14 − 16µ2 + 3µ4
(

3 − c6

)]

log µ
}

− 1

(4πFπ)2

(

1 + 2 log µ
)(

1 + 4mN c4

)

, (3.26)

µs(rs
M)2 = 48 mN e54

− 3µ2g2
A

(4πFπ)2

{

8 − 8µ2 + µ4

4(4 − µ2)
+

µ arccos(−µ
2
)

(4 − µ2)3/2

(

6 − 6µ2 + µ4
)

+ µ2 log µ
}

×
(

1 + c6 + 2c7

)

, (3.27)

where, again, er
74 has the infinite part, which is given by

βe74
= − 1

3mN

(

3g2
A − mNc4

)

, (3.28)

subtracted, while e54 in the isoscalar radius (in analogy to d7 for the electric isoscalar radius)
is finite. The isovector magnetic radius explodes like 1/Mπ as the pion mass goes to zero,
while, again, the isoscalar radius is finite in the chiral limit. These chiral limit results are
to be expected because the Sachs form factors inherit the well known chiral singularities of
the isovector Dirac and Pauli form factors, more precisely, the corresponding radii diverge
in the chiral limit as

(rv
1)

2 = −10g2
A + 2

(4πFπ)2
log

Mπ

mN
+ . . . ,

(rv
2)

2 =
g2

AmN

8πF 2
πκvMπ

+ . . . , (3.29)

where the ellipsis denotes subleading terms as the pion mass vanishes. This dominant pion
loop effect in the nucleon form factors has already been established a long time ago [1]. It
can also be expected on physical grounds: the pion cloud, which is Yukawa suppressed for
finite pion mass, becomes long–ranged in the chiral limit leading to a divergent contribution.
Such phenomena are also observed in two–photon observables like e.g. the electromagnetic
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polarizabilities of the nucleon. Also, as a consequence of analyticity, in the heavy baryon
approach (i.e. in a strict chiral expansion) the isoscalar form factors are, to one–loop order,
given simply by a polynomial subsuming tree and counterterm contributions. There are,
however, isoscalar loop effects as higher order corrections, as is obvious from the above.
These stem from the diagrams with the photon coupling to the nucleons (see graphs (5)
and (10) in fig. 2), which only yield constant terms needed for renormalization in HBChPT,
but also contain higher order t–dependent terms. As the spectral function corresponding to
these diagrams only starts to contribute for t ≥ 4m2

N , these t–dependent terms (in the real
part) are highly suppressed.

In section 3.2, we already mentioned the marked difference in the threshold behavior of the
isovector spectral functions in the relativistic and the heavy baryon approach. We only quote
the results for the threshold behavior here and relegate the full results to appendix C. Note
that these have already been given in the literature, the relativistic results to third order
in [2], the additional fourth order contribution as well as the heavy baryon expansions in
[5]. We reemphasize that the imaginary parts in the infrared regularization approach do not
differ from those in a fully relativistic calculation. For ImF v

1 (t), the relativistic threshold
expansion is given by

Im F v
1 (t) =

1

192πF 2
π M3

π

{

g2
A

(

4m2
N − M2

π

)

+ M2
π

}

(t − 4M2
π)3/2 + O

(

(t − 4M2
π)5/2

)

, (3.30)

and for Im F v
2 (t), one finds

Im F v
2 (t) =

mN c4

48πF 2
π Mπ

(t − 4M2
π)3/2 + O

(

(t − 4M2
π)5/2

)

. (3.31)

In the heavy baryon scheme, however, the heavy mass expansion yields the expressions

Im F v
1 (t) =

g2
A

96πF 2
π

{

√

1 − 4M2
π

t

(

5t − 8M2
π

)

− 3π

4mN

3t2 − 12M2
πt + 8M4

π

t1/2

}

+
1

96πF 2
π

(t − 4M2
π)3/2

t1/2
+ O(q4) , (3.32)

Im F v
2 (t) =

g2
A mN

32F 2
π

{

t − 4M2
π

t1/2
− 4

πmN

√

1 − 4M2
π

t

(

t − 2M2
π

)

}

+
mN c4

24πF 2
π

(t − 4M2
π)3/2

t1/2
+ O(q3) , (3.33)

which evidently violate the required threshold behavior ImF v
i (t) ∼ (t − 4M2

π)3/2 as pointed
out in [5]. As remarked before, this is due to the fact that the two–pion threshold and
the singularity on the second Riemann sheet, inherited from the ππ → N̄N partial waves,
coalesce in the heavy baryon limit. In contrast, the relativistic approach of course yields the
correct analytical structures (for a more pedestrian discussion of this point, see e.g. [16]).
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3.4 Results and discussion

First, we must fix parameters. We use Fπ = 92.4 MeV, Mπ = 139.57 MeV, gA = 1.26, and
mN = (mp +mn)/2 = 938.92 MeV. The LECs c2 and c4 are taken from the analysis of pion–
nucleon scattering [14, 19], c2 = 3.2 GeV−1 and c4 = 3.4 GeV−1. The LECs c6 and c7 can be
pinned down from the well known magnetic moments of proton and neutron. The remaining
two “electric” (d6, d7) and two “magnetic” LECs (e54, e74) are determined from the electric
and magnetic radii as given by the dispersion theoretical analysis of [8], these values are
rp
E = 0.847 fm, (rn

E)2 = −0.113 fm2, rp
M = 0.836 fm and rn

M = 0.889 fm. We note that the
long standing discrepancy of the proton charge radius determination from electron–proton
scattering [20] and Lamb shift measurements [21] has been resolved, converging to a value of
rp
E = (0.88± 0.01) fm. We do not use this value here because so far no dispersion theoretical

analysis exists using this novel information.

As already stated, the Dirac and Pauli form factors are the natural quantities in any rela-
tivistic approach like the one used here. However, for easier comparison to existing heavy
baryon calculations and to the low energy data, which are often presented in terms of Sachs
form factors, we will discuss these in detail.

First we discuss the neutron charge form factor, as shown in fig. 3. The third and fourth order
results compare well to the dispersion theoretical analysis and the trend of the novel data up
to Q2 = 0.4 GeV2. The latter have been obtained using tensor polarized deuterium, polarized
3He and polarization transfer on deuterium [22]. Although it seems that the third order curve
meets the novel data even better, we observe that the fourth order one is basically identical
to the dispersion theoretical fit up to Q2 = 0.2 GeV2. Also given in that figure are the heavy
baryon results to third [4] and fourth [23] order. These curves can easily be obtained from
our analysis by performing the large mass expansion as explained before. Clearly, neither of
these two curves is in acceptable agreement with the data, and, what is more, there is no
sign of convergence so far. The resummation of the 1/m terms in the relativistic approach
vastly improves the convergence of the chiral representation. This sensitivity of the neutron
charge form factor to such recoil corrections was already anticipated in [24]. We remark
however that the only fourth order contributions to the electric form factors in the heavy
baryon approach are 1/m–corrections to third order diagrams, in other words, the full fourth
order heavy baryon result for these can already be obtained from expanding the third order
relativistic one. Therefore, the difference that does show up between the relativistic third
and fourth order curves is really, in terms of strict chiral power counting, of higher order and
hence (comparably) small.

Consider the proton electric form factor next, shown in fig. 4. As in the neutron case, the
third and fourth order curves are very close (where, however, the remarks made about the
reasons for the smallness of this difference apply equally here), but here essentially show the
linear behavior from the term proportional to the charge radius. Compared to the dispersion
theoretical result (which describes the data very well in this range of momentum transfer),
there is clearly not enough curvature. Polynomial terms of order t2 (and higher) are not
included up to fourth order, and the curvature coming solely from loop functions in the
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one–loop approximation is obviously not sufficient. Fig. 4 also displays the results of the
third [3, 4] and fourth [23] order heavy baryon calculation. While the general trend of the
heavy baryon results is similar to what is obtained in the relativistic approach (far too small
curvature to meet the data), we note that, while there is at least a slight improvement from
the third to the fourth order relativistic calculation, the description visibly worsens for the
fourth order heavy baryon result, as compared to the third order one.

We now turn to the magnetic form factors of proton and neutron as shown in figs. 5, 6. The
qualitative behavior of the different curves is very similar for both of them: To third order,
the momentum dependence is given parameter–free because the LECs at this order only
affect the normalization. We see that the 1/m corrections present in our approach visibly
worsen the prediction obtained previously in the heavy baryon limit. That result is based on
the leading chiral singularities given in eq. (3.29) because to this order, the corresponding
isoscalar form factor is simply constant. We conclude that the recoil corrections are rather
large and that the leading chiral limit behavior is not a good approximation for the Goldstone
boson contribution to the magnetic radii in the case of finite pion masses. At fourth order,
due to the presence of the counterterms from L(4)

πN , the radius can be fixed at its empirical
value. Consequently, the full relativistic result and its heavy baryon limit are not very
different any more. The absence of curvature terms of order t2 (and higher) is clearly visible
in figs. 5, 6.

The physics underlying this deficiency will be addressed in section 4. Only a uniformly
reliable description for all four form factors is acceptable, and hence it is absolutely necessary
to understand what is missing in the three dipole–shaped form factors: with large corrections
for these, one might expect large corrections also for the neutron charge form factor, such
that its very good description presented here might turn out to be only accidental. In the
following, we shall show that this is indeed not the case.

4 Inclusion of vector mesons

It is well established that the vector mesons contribute significantly to the nucleon form
factors. For example, extended unitarity allows one to reconstruct the isovector spectral
functions [25] below t ≃ 1 GeV2 from the pion form factor and the analytically continued
ππ → N̄N isovector partial wave amplitudes. Besides the important contribution of the
two–pion continuum, the ρ meson clearly shows up. Similarly, in the isoscalar channel, the
ω and the φ dominate the spectral function at low positive t. All these effects are clearly
visible in dispersion theoretical analyses of the nucleon form factors, see [7, 8, 9]. In the
chiral expansion performed in the preceding sections, such effects are included in the low
energy constants. This follows directly from the low momentum expansion of any vector
meson propagator (for simplicity, we do not show the explicit Lorentz structures),

1

1 − t/M2
V

= 1 +
t

M2
V

+
t2

M4
V

+ O(t3) . (4.1)
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In a fourth order chiral analysis as presented here, one is sensitive up to the terms linear
in t, which contribute to the various electromagnetic radii. Stated differently, any vector
meson contribution is hidden in the fit values of the various LECs. As we discussed before,
the curvature effects on the electric and magnetic form factor of the proton as well as the
magnetic neutron form factor are much too small. This can be cured in two ways. One could
either attempt a higher order analysis or include vector mesons dynamically. While the first
approach would be more systematic, we choose here the second, for various reasons. With
explicit vector mesons (VM), we not only account for all terms in the expansion eq. (4.1)
but also do not introduce any new unknown parameter. This can be understood as follows:
adding the vector mesons in a chirally symmetric manner and retaining the corresponding
dimension two, three and four counterterms, any LEC αi takes the form

αi → α̂i + vector meson−contribution , (4.2)

where the remainder α̂i parameterizes the physics not related to the explicitly included vector
meson contribution. For such a decomposition to make sense, the scale dependent LECs
should be taken at λ = MV . Since in the infrared regularization procedure, the nucleon
mass is taken to be the intrinsic scale for all loop integrals as described in section 3.2,
here we neglect scale mismatch due to MV 6= mN (which is probably justified because of
log(mN/Mρ) ≈ 0.2). The vector meson propagator generates a whole string of higher order
terms, hopefully resumming the most important contributions not included at fourth order.
The parameters appearing in the vector meson contributions will be taken from existing
dispersive analyses of the nucleon electromagnetic form factors. We therefore only need
to refit the low energy constants α̂i. This also allows to study the concept of resonance
saturation. It was already shown in [26] that the numerical values of the dimension two
LECs can be understood from s–channel baryon and t–channel meson resonance excitations,
in particular from the ∆(1232) and the ρ. In the case at hand, we can investigate this
concept for the LECs c6, c7, d6, d7, e54, and e74. It was already noted in [26] that c6 and c7

are largely saturated by vector meson contributions.

4.1 Chiral Lagrangians including vector mesons

We employ the tensor field representation of spin-1 fields as advocated in [27], i.e. the vector
mesons are written in terms of antisymmetric tensor fields

Wµν = −Wνµ (4.3)

with the three degrees of freedom Wij (i, j = 1, 2, 3) frozen out. This representation is most
natural for constructing chirally invariant couplings of vector mesons to pions and photons
because no particular dynamical character of the vector mesons is assumed (in contrast e.g.
to the massive Yang–Mills or hidden symmetry approaches as reviewed in [28, 29].) In this
section, we temporarily switch to SU(3) chiral Lagrangians, because the φ meson contributes
to the isoscalar form factors. The free Lagrangian then takes the form

LV = −1

2
∂µW a

µν∂ρW
ρν,a +

M2
V

4
W a

µνW
µν,a , (4.4)
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where

Wµν =









ρ0

√
2

+ ω√
2

ρ+ K∗+

ρ− − ρ0

√
2

+ ω√
2

K∗0

K∗− K
∗0 −φ









µν

. (4.5)

Here, we have written the vector meson matrix in terms of physical particles, assuming ideal
φ–ω mixing. From eq. (4.4), one easily derives the vector meson propagator as given in [30],

Gµν,ρσ(x, y) = 〈0|T{Wµν(x), Wρσ(y)}|0〉

=
i

M2
V

∫

d4k

(2π)4

eik·(x−y)

M2
V − k2 − iǫ

×
[

gµρgνσ(M2
V − k2) + gµρkνkσ − gµσkνkρ − (µ ↔ ν)

]

. (4.6)

According to [31], the lowest order interaction with Goldstone boson fields as well as external
vector and axial–vector sources can be written as

LW =
1

2
√

2

(

FV 〈W µνF+
µν〉 + iGV 〈W µν [uµ, uν]〉

)

, (4.7)

where the couplings GV and FV can e.g. be determined from the decay widths ρ → ππ and
ρ → e+e−. Following [30], the lowest order couplings of massive spin–1 fields to baryons can
be written in terms of a chirally invariant Lagrangian as

LφBW = RD/F 〈B̄σµν(Wµν , B)±〉 + RS 〈B̄σµνB〉 〈Wµν〉
+SD/F 〈B̄γµ([Dν , Wµν ], B)±〉 + SS 〈B̄γµB〉 〈[Dν, Wµν ]〉
+UD/F 〈B̄σλν(Wµν , [Dλ, [D

µ, B]])±〉 + US 〈B̄σλν [Dλ, [D
µ, B]]〉〈Wµν〉 , (4.8)

where, as usually in SU(3), the index D refers to the anticommutator (A, B)+ = {A, B},
while the index F accompanies the commutator (A, B)− = [A, B]. In addition, we introduced
singlet couplings with indices S. These coupling constants are related to the ones used in
the Lagrangian of the standard vector representation of the ρ,

LρN =
1

2
gρNNΨ̄

{

γµ
ρµ ·τ − κρ

2mN

σµν∂νρµ ·τ
}

Ψ , (4.9)

by

gρNN =
MV√

2

(

mN (UD + UF ) − 2(SD + SF )
)

, (4.10)

gρNN κρ = −4
√

2mN

MV

(RD + RF ) . (4.11)

In analogy, one finds for the ω and φ couplings

gωNN =
MV√

2

(

mN(UD + UF + 2US) − 2(SD + SF + 2SS)
)

, (4.12)
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gωNN κω = −4
√

2mN

MV

(RD + RF + 2RS) , (4.13)

gφNN = −MV

(

mN (UD − UF + US) − 2(SD − SF + SS)
)

, (4.14)

gφNN κφ =
8mN

MV
(RD − RF + RS) . (4.15)

In [30], one additional term (proportional to new couplings TD/F ) of higher order in deriva-
tives was introduced,

L′
φBW = TD/F 〈B̄γµ([Dλ, Wµν ], [D

λ, [Dν , B]])±〉 + TS 〈B̄γµ[Dλ, [Dν , B]]〉 〈[Dλ, Wµν ]〉 ,
(4.16)

which was subsequently shown to contribute to the electric form factors as a term O(q4),
therefore beyond the order to which we are working here; the authors of [30] however left
out a term

L′′
φBW = VD/F 〈B̄σνλ([Dλ, [D

µ, Wµν ]], B)±〉 + VS 〈B̄σνλB〉 〈[Dλ, [D
µ, Wµν ]]〉 (4.17)

which enters the magnetic radius, i.e. contributes a term O(q2) to the magnetic form factors
and hence should be considered in a O(q4) calculation. However, as nothing is known from
elsewhere about such couplings, we shall not introduce these here.#5 Note that, via the
q2–expansion of the resonance pole, the contributions to the magnetic moments stemming
from the RD/F/S terms do of course induce additional q2–dependence in the magnetic form
factors.

There is no generalization of chiral perturbation theory which fully includes the effects of
vector mesons as intermediate states to arbitrary loop orders. As the masses of the vector
mesons do not vanish in the chiral limit, they introduce a new mass scale which, when
appearing inside loop integrals, potentially spoils chiral power counting in a similar manner
as the nucleon mass in a “naive” relativistic baryon ChPT approach. In analogy to the heavy
fermion theories, “heavy meson effective theory” has been used to investigate vector meson
properties like masses and decay constants when coupling these to Goldstone bosons in a
chirally invariant fashion (see [33] or for some special processes [34]). This approach does
not work with the heavy particle number not conserved as in processes with these resonances
being virtual intermediate states. However, these difficulties do not arise as long as there is
no loop integration over intermediate vector meson momenta. Indeed, to the order we are
working here, we can even set up a “power counting scheme” for diagrams including vector
mesons which allows to calculate corrections to the simple tree diagrams (where the photon
couples to the nucleon via an intermediate vector meson). We count

1. the couplings of vector mesons to the photon and of the ρ to two pions as O(q2) (see
eq. (4.7) and the usual power counting for F+

µν and uµ);

2. the tensor coupling of vector mesons to nucleons (RD/F/S in our notation) as O(q0),
the vector coupling (SD/F/S , UD/F/S) as O(q1);

#5The terms in eq. (4.16) were allowed for in the analysis [32] of πN–scattering and found to be very small.
This lends credit to the omission of higher order couplings here.
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3. the vector meson propagator as O(q0) (see eq. (4.6)).

Up to O(q4), we therefore have to include the diagrams shown in fig. 7. The numbering
indicates the correspondence to diagrams with contact terms as shown in fig. 2: the tree
level coupling of the vector mesons to the nucleon via the tensor coupling, diagram (2∗),
enters the magnetic moments as do the LECs c6, c7 in diagram (2), diagrams (10) and (10∗)
as well as (11) and (11∗) yield vertex corrections to these due to pion loops, the vector
coupling in diagram (3∗) compares to the LECs d6, d7 as shown in diagram (3), and finally
the ρ–exchange in diagram (12∗) contributes to the ππNN–coupling ∼ c4 in diagram (12).

Explicitly, the analytic results for the form factors including vector mesons can be gained
from those with contact terms only by the following replacements:

c6 → ĉ6 + gρNN κρ
FρMρ

M2
ρ − t

, (4.18)

c7 → ĉ7 −
gρNN κρ

2

FρMρ

M2
ρ − t

+
gωNN κω

2

FωMω

M2
ω − t

+
gφNN κφ

2

FφMφ

M2
φ − t

, (4.19)

dr
6 → d̂r

6 −
gρNN

2

Fρ

Mρ

1

M2
ρ − t

, (4.20)

d7 → d̂7 −
gωNN

4

Fω

Mω

1

M2
ω − t

− gφNN

4

Fφ

Mφ

1

M2
φ − t

. (4.21)

Especially, these hold for the loop diagrams with pion loops as vertex corrections to photon
couplings via c6, c7, see diagrams (10), (11) in fig. 2 and (10∗), (11∗) in fig. 7. At leading
order, resonance saturation for c6, c7 has already been investigated in [26]. The vector
meson contributions to the magnetic moments and the electric radii can be found trivially
from eqs. (3.19)–(3.24) by using eqs. (4.18)–(4.21) at t = 0. The vector meson contributions
to the magnetic radii, finally, yield a more complicated replacement law for e54, e74 due to
the aforementioned loop corrections, which, however, at leading order reads

e54 → ê54 +
1

8mN

{

gωNN κω
Fω

M3
ω

+ gφNN κφ
Fφ

M3
φ

}

+ O(µ2) , (4.22)

er
74 → êr

74 +
1

4mN

gρNN κρ
Fρ

M3
ρ

+ O(µ2) . (4.23)

Finally, resonance saturation for the LEC c4 has also been analyzed in [26], where it was
found that c4 is completely saturated by ρ, ∆, and (a very small) Roper contribution. Here,
we only want to replace the ρ contribution by its dynamical analogue, therefore setting

c4 → ĉ4 +
gρNN κρ

2mN

GρMρ

M2
ρ − t

= ĉ4 +
κρ

4mN

M2
ρ

M2
ρ − t

, (4.24)

where, in the second step, a universal ρ–hadron coupling g = gρNN = gρππ ≡ GρMρ/F
2
π and

the KSFR relation M2
ρ = 2g2F 2

π [35] were assumed.
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4.2 Results and discussion

Before presenting results for the four form factors, including the effects of dynamical vector
mesons, we have to discuss the values for the miscellaneous coupling constants introduced
thereby. First of all, for the vector meson masses we use Mρ = 770 MeV, Mω = 780 MeV,
Mφ = 1020 MeV. The couplings to the photon have been fixed from the partial widths of
V → e+e− (in analogy to [8]) to be Fρ = 152.5 MeV, Fω = 45.7 MeV, Fφ = 79.0 MeV,
the ratios being in satisfactory agreement with what one would expect from exact SU(3)–
symmetry (plus ideal φ–ω mixing), FV = Fρ = 3Fω = 3/

√
2Fφ.

The couplings of vector mesons to nucleons are taken from the most recent dispersive analysis
[8]. The respective values (adjusted to our conventions) are

gρNN = 4.0 , κρ = 6.1 ,
gωNN = 41.8 , κω = −0.16 ,
gφNN = −18.3 , κφ = −0.22 .

(4.25)

The resulting electric and magnetic form factors of the proton and the neutron are shown in
figs. 8–11. Consider the electric form factors first. The vector meson contribution already
supplies sufficient curvature for an adequate description of the proton charge form factor
at third order, cf. fig. 8. This is achieved without new adjustable parameters, but simply
due to the higher order terms induced by the inclusion of the vector mesons. It is worth
noting that at fourth order, the chiral plus vector meson representation is in almost perfect
agreement with the result of the dispersive analysis up to momenta of Q2 = 0.4 GeV2, i.e.
for much higher momenta than considered so far in chiral perturbation theory approaches.
However the already well–described neutron electric form factor, see fig. 9, is, at fourth
order, only very mildly affected by the vector meson contribution, but is of course also most
sensitive to the precise choice of the vector meson couplings. We only want to state that for
a reasonable choice of these parameters, the good result of the chiral one–loop representation
is not spoiled.#6

Turning now to the magnetic form factors, see figs. 10, 11, we find that both the third and
the fourth order curves yield reasonable descriptions of the data, in both cases the fourth
order results being slightly better than the respective third order ones. The latter show
the right slope at the origin (which is fitted in the fourth order case), and all curves have
approximately the right curvature, which is a bit stronger at fourth order.

We have, in addition, plotted the third and fourth order curves for Gp
E , Gp

M , and Gn
M

(including vector mesons), normalized and divided by the dipole form factor

GD(Q2) =
1

(

1 + Q2/0.71 GeV2
)2 , (4.26)

#6We also note that the dispersive analysis of [8] does not include most of the new data [22]. Refitting the
vector meson parameters accordingly to the new data base will also lead to an improvement of the fourth
order curve in our analysis.
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see figs. 12–14. Here, again, we see that the fourth order prediction for the proton charge
form factor agrees extremely well with the data up to Q2 = 0.4 GeV2. For the neutron
magnetic form factor, the fourth order curve, though rising above dipole and dispersion
theoretical fit, still is within the error range given by the data, while the fourth order result
for the proton magnetic form factor deviates from the data above Q2 = 0.3 GeV2.

It is worth pointing out the following essential conclusions drawn from this discussion:

1. In section 3.4 we saw that the “prediction” of the magnetic radii in a third order cal-
culation worsens considerably when comparing the relativistic and the heavy baryon
approach. This observation indicated that the large contribution of the pion cloud
to the magnetic radii was an artifact of the 1/m–expansion to O(q3). Inspection of
the third order curves including explicit vector meson effects shows that this reduc-
tion of the pion cloud effect is indeed consistent with the fairly conventional vector
meson parameters, yielding in total excellent results for the magnetic radii which are
still “predicted” and not fitted. We here show these “predictions” with the separate
contributions of pion–cloud and vector mesons,

(rp
M)2 = (rp

M)2
π + (rp

M)2
VM = (0.18 + 0.49) fm2 = (0.82 fm)2 , (4.27)

(rn
M)2 = (rn

M)2
π + (rn

M)2
VM = (0.26 + 0.44) fm2 = (0.84 fm)2 , (4.28)

in good agreement with the values from dispersion analyses, rp
M = 0.836 fm and

rn
M = 0.889 fm. Note however that, although we did not fit any new parameters

to the magnetic radii, additional experimental information enters via the vector meson
couplings which in turn have been fitted to the form factors in the dispersive approach.

2. This analysis indicates that a “strict” ChPT calculation to higher–than–fourth order is
probably only moderately sensible. Apart from various two–loop contributions which
amount only to vertex corrections of diagrams already present in the one–loop case,
the major “new” contribution is the three–pion continuum entering the isoscalar form
factors, which was already shown to yield a negligibly small correction to the ω/φ–
peak in the isoscalar spectral function [5]. Therefore, an analysis to O(q5) or O(q6)
would basically result in fitting new counterterm parameters in order to reproduce
the resonance contributions considered explicitly here. Apart from that, it is so far
not known how to generalize the infrared regularization scheme to higher loop orders,
and therefore for such a higher order calculation one would have to retrieve to the
non–relativistic formalism.

4.3 Remarks on resonance saturation

As we have not assumed resonance saturation of the various low energy constants, but taken
the resonance parameters from elsewhere and refitted the contact terms, we may now check
how well resonance saturation by the lowest lying vector mesons actually works. Table 1
shows the values for the low energy constants, fitted at third and fourth order, with and
without vector meson contributions. The vector meson contribution to the LEC c4 as given
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q3 q4 q3+VM q4+VM

c6 5.03 4.77 0.20 −0.06

c7 −2.72 −2.55 −0.27 −0.09

dr
6 0.67 0.74 1.34 1.40

d7 −0.70 −0.69 −0.04 −0.03

e54 — 0.26 — −0.04

er
74 — 1.65 — −1.15

Table 1: Values for the various low energy constants, with and without vector meson con-
tributions. Note that the third and the fourth columns, strictly speaking, refer to the LECs
α̂i instead of αi. c6, c7 are dimensionless, the di are given in GeV−2, the ei in GeV−3.

in eq. (4.24) numerically amounts to 1.6 GeV−1 (see also [26]) which reduces the value of ĉ4

by about 50%. This remainder which is due to (mainly) ∆ and a small Roper contribution
is still represented by a contact term.

We conclude that the low energy constants entering the magnetic moments (c6, c7) as well as
those fitted to the isoscalar radii, both electric (d7) and magnetic (e54), are nearly perfectly
saturated by the lowest lying vector meson nonet, while the contact terms entering the
isovector radii (d6, e74) are not at all. This can be interpreted to the effect that ω and
φ are already sufficient to describe the isoscalar channel of the vector form factors to good
accuracy, while higher resonances are mandatory for an adequate description of the isovector
form factors. This is in agreement with what is found in dispersive analyses. However this
does not necessarily invalidate our approach, as these higher resonances have much larger
masses (the ρ(1450) being the lowest lying of them) and therefore will hardly contribute to
the curvature of the form factors (which is the change we are looking for, compared to linear
contact terms).

5 Summary

We have studied the electromagnetic form factors of the nucleon in a manifestly Lorentz
invariant form of baryon chiral perturbation theory to one–loop (fourth) order. As discussed,
in this scheme based on the so–called infrared regularization of loop graphs, one is able to
set up a systematic power counting scheme in harmony with the strictures from analyticity.
The pertinent results of our investigation can be summarized as follows:

(1) To fourth order, the neutron and proton electric form factors each contain one low–
energy constant which can be fixed from the empirical information on the corresponding
radii. This gives a good description of the neutron charge form factor up to four–
momentum transfer squared of Q2 = 0.4 GeV2 and, furthermore, exhibits convergence
in that the corrections when going from third to fourth order are small. This is in
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contrast to the heavy baryon expansion and can be traced back to the proper resum-
mation of the recoil terms in the relativistic expansion. For the electric form factor
of the proton, the one–loop representation gives too little curvature and thus deviates
from the data already at Q2 ≃ 0.2 GeV2, similar to the heavy baryon description.
However, no large fourth order corrections are found below Q2 = 0.4 GeV2.

(2) To third order, the momentum dependence of the magnetic proton and neutron form
factor is given parameter–free. The 1/m corrections present in our approach worsen
the prediction for the magnetic radii based on the leading chiral singularities, like
e.g. in the heavy baryon approach. The leading chiral limit behavior is not a good
approximation for the Goldstone boson contribution to the magnetic radii. At fourth
order, the magnetic radii can be fixed. Again, there is not enough curvature in the
one–loop representation and one observes large corrections when going from third to
fourth order already at Q2 ≃ 0.1 GeV2.

(3) We have demonstrated explicitly that the spectral functions of the isovector form
factors have the correct threshold behavior. The strong momentum–dependence of
these spectral functions close to threshold is due to the branch point singularity on the
second Riemann sheet inherited from the ππ → N̄N P–wave partial wave amplitudes.

(4) We have included the low–lying vector mesons ρ, ω, φ in a chirally symmetric manner
based on an antisymmetric tensor field representation. This does not introduce any new
parameters since these (masses and coupling constants) are taken from the PDG tables
and from a dispersion theoretical analysis. Refitting the previously defined low–energy
constants by subtracting the vector meson contribution, we find a good description
of all four form factors already at third order, with small fourth order contributions,
which further improve the theoretical description. In particular, we demonstrate that
the vector meson contributions cancel to a large extent in the neutron charge form
factor, thus solidifying the result obtained in the chiral expansion.

(5) The inclusion of vector mesons allows to investigate the resonance saturation hypothesis
for these couplings. We find that the couplings related to the magnetic moments and
the isoscalar radii are almost completely saturated by the low–lying vector mesons.
This is, however, not the case for the LECs entering the isovector radii. This can be
traced back to the fact that while the ω and the φ already give a good description of
the isoscalar form factors, for the isovector ones one has to include higher mass states
than the ρ, in agreement with findings from dispersion theory.
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A Loop integrals

In this appendix, we define the loop integrals needed in this paper and evaluate them in the
infrared regularization scheme. Several of these results have already been given in [6].

A.1 Definition of the loop integrals

We use the following notation:

p′µ + pµ = Qµ , p′µ − pµ = qµ , t = q2 ,

µ =
Mπ

mN

, τ =
t

m2
N

, θ =
t

M2
π

.

In addition, everywhere except in the loop integrals with just one meson and one nucleon
propagator, we only need the case where the nucleon momenta are on–shell, i.e. p2 = p′2 =
m2

N .

Define the following loop integrals:

1

i

∫

I

ddk

(2π)d

1

M2
π − k2

= ∆π , (A.1)

1

i

∫

I

ddk

(2π)d

1

[M2
π − k2][M2

π − (k + q)2]
= J(t) , (A.2)

1

i

∫

I

ddk

(2π)d

kµ

[M2
π − k2][M2

π − (k + q)2]
= −1

2
qµJ(t) , (A.3)

1

i

∫

I

ddk

(2π)d

kµkν

[M2
π − k2][M2

π − (k + q)2]
=

(

qµqν − gµνt
)

J (1)(t)

+ qµqν J (2)(t) , (A.4)

1

i

∫

I

ddk

(2π)d

1

[M2
π − k2][m2

N − (p − k)2]
= I(p2) , (A.5)

1

i

∫

I

ddk

(2π)d

kµ

[M2
π − k2][m2

N − (p − k)2]
= pµ I(1)(p2) , (A.6)

1

i

∫

I

ddk

(2π)d

1

[M2
π − k2][m2

N − (p − k)2][m2
N − (p′ − k)2]

= IA(t) , (A.7)

1

i

∫

I

ddk

(2π)d

kµ

[M2
π − k2][m2

N − (p − k)2][m2
N − (p′ − k)2]

= Qµ I
(1)
A (t) , (A.8)

1

i

∫

I

ddk

(2π)d

kµkν

[M2
π − k2][m2

N − (p − k)2][m2
N − (p′ − k)2]

= gµν I
(2)
A (t)

+ QµQν I
(3)
A (t)

+ qµqν I
(4)
A (t) , (A.9)
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1

i

∫

I

ddk

(2π)d

1

[M2
π − k2][M2

π − (k + q)2][m2
N − (p − k)2]

= I21(t) , (A.10)

1

i

∫

I

ddk

(2π)d

kµ

[M2
π − k2][M2

π − (k + q)2][m2
N − (p − k)2]

= Qµ IQ
21(t)

− 1

2
qµ I21(t) , (A.11)

1

i

∫

I

ddk

(2π)d

kµkν

[M2
π − k2][M2

π − (k + q)2][m2
N − (p − k)2]

= gµν I00
21 (t)

+ QµQν IQQ
21 (t)

+ qµqν Iqq
21(t) (A.12)

−
(

qµQν + qνQµ

) 1

2
IQ
21(t) ,

where
∫

I symbolizes loop integration according to the infrared regularization scheme.

A.2 Reduction of the tensorial loop integrals

The reduction of the tensorial loop integrals to the corresponding scalar ones can be per-
formed in the standard way and leads to the following results:

J (1)(t) =
1

4(d − 1) t

{

(t − 4M2
π)J(t) + 2∆π

}

, (A.13)

J (2)(t) =
1

4
J(t) − 1

2t
∆π , (A.14)

I(1)(p2) =
1

2p2

{

(p2 − m2
N + M2

π)I(p2) + ∆π

}

, (A.15)

I
(1)
A (t) =

1

4m2
N − t

{

I(m2
N) + M2

πIA(t)
}

, (A.16)

I
(2)
A (t) =

1

d − 2

{

IA(t) − I
(1)
A (t)

}

M2
π , (A.17)

I
(3)
A (t) =

1

(d − 2)(4m2
N − t)

{

(

(d − 1)I
(1)
A (t) − IA(t)

)

M2
π +

d − 2

2
I(1)(m2

N )
}

, (A.18)

I
(4)
A (t) =

1

(d − 2) t

{

(

I
(1)
A (t) − IA(t)

)

M2
π − d − 2

2
I(1)(m2

N )
}

, (A.19)

IQ
21(t) =

1

2(4m2
N − t)

{

(2M2
π − t)I21(t) − 2I(m2

N) + 2J(t)
}

, (A.20)

I00
21 (t) =

1

4(2 − d)

{

2I(m2
N) − (4M2

π − t)I21(t) + 2(2M2
π − t)IQ

21(t)
}

, (A.21)

IQQ
21 (t) =

1

4(d − 2)(4m2
N − t)

{

2I(m2
N) − 2(d − 2)I(1)(m2

N)

−(4M2
π − t)I21(t) + 2(d − 1)(2M2

π − t)IQ
21(t)

}

, (A.22)
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Iqq
21(t) =

1

4(d − 2)t

{

−2(d − 3)I(m2
N) + 2(d − 2)I(1)(m2

N)

−
(

4M2
π − (d − 1) t

)

I21(t) + 2(2M2
π − t)IQ

21(t)
}

. (A.23)

A.3 Scalar loop integrals

The scalar loop integrals are found to be

∆π = 2M2
π

{

L +
1

16π2
log µ

}

, (A.24)

J(t) = −2
{

L +
1

16π2
log µ

}

− 1

16π2

(

1 + k(t)
)

, (A.25)

I(m2
N) = −µ2

(

L +
1

16π2
log µ

)

+
µ

16π2

{

µ

2
−

√

4 − µ2 arccos
(

−µ

2

)}

, (A.26)

IA(t) = −f(t)

m2
N

{

L +
1

16π2

(

log µ +
1

2

)}

+
1

16π2

µ

2m2
N

g(t) , (A.27)

I21(t) =
f(t)

m2
N

{

L +
1

16π2

(

log µ +
1

2

)}

+
1

16π2

1

2m2
N

(

h1(t) +
2 − µ2

µ
h2(t)

)

, (A.28)

where the following loop functions have been reduced to integrals over one Feynman param-
eter:

k(t) =
∫ 1

0
dx log

(

1 − x(1 − x) θ
)

=

√

4 − θ

−θ
log

(

√
4 − θ +

√
−θ√

4 − θ −
√
−θ

)

− 2 , (A.29)

f(t) =
∫ 1

0
dx

dx

1 − x(1 − x) τ
=

2√
−τ(4 − τ)

log
(

√
4 − τ +

√
−τ√

4 − τ −
√
−τ

)

, (A.30)

g(t) =
∫ 1

0
dx

arccos
(

− µ

2
√

1−x(1−x)τ

)

(

1 − x(1 − x) τ
)
√

1 − µ2

4
− x(1 − x) τ

, (A.31)

h1(t) =
∫ 1

0
dx

log
(

1 − x(1 − x) θ
)

1 − x(1 − x) τ
, (A.32)

h2(t) =
∫ 1

0
dx

arccos
(

− µ( 1

2
−x(1−x) θ)√

(1−x(1−x) τ) (1−x(1−x) θ)

)

(

1 − x(1 − x) τ
)
√

1 − µ2

4
− x(1 − x) θ

. (A.33)

B Form factor contributions from separate diagrams

In this section, we give the contributions to the form factors F1(t), F2(t), coming from the
various diagrams shown in fig. 2 .
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B.1 Contributions to F1

E1+3 = 1 −
(

τ 3 d6 + 2 d7

)

t , (B.1)

E5 =
g2

A

8F 2
π

(3 − τ 3)
{

∆π − 4m2
NI(1)(m2

N ) − 4m2
NM2

πIA(t)

+8m2
NI

(2)
A (t) + 32m4

NI
(3)
A (t)

}

, (B.2)

E6 = − g2
A

F 2
π

τ 3
{

tJ (1)(t) + 4m2
NI00

21 (t) + 16m4
NIQQ

21 (t)
}

, (B.3)

E7 =
g2

A

F 2
π

τ 3
{

∆π − 2m2
NI(1)(m2

N )
}

, (B.4)

E8 = − τ 3

2F 2
π

∆π , (B.5)

E9 =
τ 3

F 2
π

t J (1)(t) , (B.6)

E10 =
m2

Ng2
A

F 2
π

(

(3 − τ 3)c6 + 6c7

)

t I
(3)
A (t) , (B.7)

E11 =
3M2

π

4mNF 2
π

(1 + τ 3) c2

{

∆π − M2
π

32π2

}

. (B.8)

B.2 Contributions to F2

M2+3+4 =
1

2
(1 + τ 3) c6 + c7 +

(

τ 3 d6 + 2 d7

)

t + 2mN

(

2 e54 + τ 3 e74

)

t

−8mNM2
π

(

2 e105 + τ 3 e106

)

, (B.9)

M5 = − g2
A

F 2
π

(3 − τ 3) 4m4
N I

(3)
A (t) , (B.10)

M6 =
g2

A

F 2
π

τ 3 16m4
NIQQ

21 (t) , (B.11)

M10 = −m4
Ng2

A

8F 2
π

(

(3 − τ 3) c6 + 6c7

){

∆π − 4m2
NI(1)(m2

N) + 4m2
NM2

πIA(t)

−16m2
NI

(2)
A (t) + 8m2

N t
(

I
(3)
A (t) − I

(4)
A (t)

)}

, (B.12)

M11 = − 3M2
π

4mNF 2
π

(1 + τ 3) c2

{

∆π − M2
π

32π2

}

− τ 3

2F 2
π

c6 ∆π , (B.13)

M12 =
4mN

F 2
π

τ 3 c4 t J (1)(t) . (B.14)
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B.3 Z–factor

We here spell out the Z–factor needed for wave function renormalization up to fourth order.
For the evaluation of the form factor F1, the nucleon charge has to be multiplied by ZN ,
while for F2, the anomalous magnetic moment (a second order contribution) only has to be
renormalized by the Z–factor up to third order, i.e. the term ∼ c2 can be dropped.

ZN = 1 +
3g2

A

4F 2
π

{

M2
πI(m2

N) − 2m2
NI(1)(m2

N ) + 4m2
NM2

π

(

IA(0) − 2I
(1)
A (0)

)

}

− c2
3M2

π

2mNF 2
π

(

∆π − M2
π

32π2

)

. (B.15)

C Imaginary parts and spectral functions

Out of the diagrams depicted in fig. 2, only graphs (6), (9), and (12) contribute to the
spectral functions of the isovector form factors in the low energy region, i.e. starting at the
threshold t = 4M2

π . The separate contributions can be calculated either from the imaginary
parts of the two basic loop functions involved (see also [2]),

Im J(t) =
1

16π

√

1 − 4M2
π

t
, (C.1)

Im I21(t) =
1

8π

1
√

t(4m2
N − t)

arctan

√

(4m2
N − t)(t − 4M2

π)

t − 2M2
π

, (C.2)

or directly by using Cutkosky rules. This leads to the following expressions:

Im E6 =
τ 3 g2

A

192πF 2
π (4m2

N − t)2

√

1 − 4M2
π

t

×
{

16m4
N

(

5t − 8M2
π

)

+ 4m2
N t

(

5t − 14M2
π

)

− t2
(

t − 4M2
π

)

(C.3)

−48m2
N

m2
N

(

3t2 − 12M2
πt + 8M4

π

)

+ M4
πt

√

(4m2
N − t)(t − 4M2

π)
arctan

√

(4m2
N − t)(t − 4M2

π)

t − 2M2
π

}

,

Im M6 =
τ 3 g2

A m4
N

4πF 2
π (4m2

N − t)2

√

1 − 4M2
π

t

{

−3
(

t − 2M2
π

)

+2

(

2m2
N + t

)(

t − 4M2
π

)

+ 6M4
π

√

(4m2
N − t)(t − 4M2

π)
arctan

√

(4m2
N − t)(t − 4M2

π)

t − 2M2
π

}

, (C.4)

Im E9 =
τ 3

192πF 2
π

(t − 4M2
π)3/2

t1/2
, (C.5)

Im M12 =
mN c4 τ 3

48πF 2
π

(t − 4M2
π)3/2

t1/2
. (C.6)

For these results, see also [2, 5].
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Figures

(b)

(a)

Figure 1: Lowest order loop diagrams contributing to the mass renormalization of (a) the
pion at O(q4), and (b) the nucleon at O(q3). Solid and dashed lines refer to nucleons and
pions, respectively.
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Figure 2: Feynman diagrams contributing to the electromagnetic form factors up to fourth
order. Solid, dashed, and wiggly lines refer to nucleons, pions, and the vector source, re-
spectively. Vertices denoted by a heavy dot / a square / a diamond refer to insertions from
the second / third / fourth order chiral Lagrangian, respectively. Diagrams contributing via
wave function renormalization only are not shown.
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Figure 3: The neutron electric form factor in relativistic baryon chiral perturbation theory
(solid lines) to third (blue curve) and fourth (red curve) order. For comparison, the results
of the heavy baryon approach are also shown (blue/red dashed line: third/fourth order).
All LECs are determined by a fit to the neutron charge radius measured in neutron–atom
scattering. Also given is the result of the dispersion theoretical analysis (black dot–dashed
curve). The data are from [22].
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Figure 4: The proton electric form factor in relativistic baryon chiral perturbation theory
(solid lines) to third (blue curve) and fourth (red curve) order. For comparison, the results
of the heavy baryon approach are also shown (blue/red dashed line: third/fourth order).
All LECs are determined by a fit to the proton charge radius as given by the dispersion
theoretical result (black dot–dashed curve).
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Figure 5: The proton magnetic form factor in relativistic baryon chiral perturbation theory
(solid lines) to third (blue curve) and fourth (red curve) order. For comparison, the results of
the heavy baryon approach are also shown (blue/red dashed line: third/fourth order). The
third (fourth) order LECs are determined by a fit to the proton magnetic moment (radius).
Also given is the dispersion theoretical result (black dot–dashed curve).
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Figure 6: The neutron magnetic form factor in relativistic baryon chiral perturbation theory
(solid lines) to third (blue curve) and fourth (red curve) order. For comparison, the results of
the heavy baryon approach are also shown (blue/red dashed line: third/fourth order). The
third (fourth) order LECs are determined by a fit to the neutron magnetic moment (radius).
Also given is the dispersion theoretical result (black dot–dashed curve).
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Figure 7: Feynman diagrams including explicit vector meson contributions to the electro-
magnetic form factors up to fourth order. Solid, dashed, double–dashed, and wiggly lines
refer to nucleons, pions, vector mesons, and the vector source, respectively. The vertex de-
noted by an open dot refers to the vector coupling of the vector mesons to the nucleon which
is of subleading chiral order as compared to the tensor coupling.
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Figure 8: The proton electric form factor in relativistic baryon chiral perturbation theory
including vector mesons (solid lines) to third (blue curve) and fourth (red curve) order.
For comparison, the results without vector mesons are also shown (blue/red dashed line:
third/fourth order). All LECs are determined by a fit to the proton charge radius as given
by the dispersion theoretical result (black dot–dashed curve).
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Figure 9: The neutron electric form factor in relativistic baryon chiral perturbation theory
including vector mesons (solid lines) to third (blue curve) and fourth (red curve) order.
For comparison, the results without vector mesons are also shown (blue/red dashed line:
third/fourth order). All LECs are determined by a fit to the neutron charge radius. Also
given is the result of the dispersion theoretical analysis (black dot–dashed curve). The data
are from [22].

39



0 0.1 0.2 0.3 0.4
Q

2
 [GeV

2
]

0

0.5

1

1.5

2

2.5

3

G
M

p (Q
2 )

Figure 10: The proton magnetic form factor in relativistic baryon chiral perturbation theory
including vector mesons (solid lines) to third (blue curve) and fourth (red curve) order.
For comparison, the results without vector mesons are also shown (blue/red dashed line:
third/fourth order). All LECs at third (fourth) order are determined by a fit to the proton
magnetic moment (radius). Also given is the dispersion theoretical result (black dot–dashed
curve).
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Figure 11: The neutron magnetic form factor in relativistic baryon chiral perturbation theory
including vector mesons (solid lines) to third (blue curve) and fourth (red curve) order.
For comparison, the results without vector mesons are also shown (blue/red dashed line:
third/fourth order). All LECs at third (fourth) order are determined by a fit to the neutron
magnetic moment (radius). Also given is the dispersion theoretical result (black dot–dashed
curve).
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Figure 12: The proton electric form factor in relativistic baryon chiral perturbation theory
including vector mesons to third (blue curve) and fourth (red curve) order, divided by the
dipole form factor. For comparison, we show the dispersion theoretical result (black dot–
dashed curve) and the world data available in this energy range.
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Figure 13: The proton magnetic form factor in relativistic baryon chiral perturbation theory
including vector mesons to third (blue curve) and fourth (red curve) order, divided by the
dipole form factor. For comparison, we show the dispersion theoretical result (black dot–
dashed curve) and the world data available in this energy range.
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Figure 14: The neutron magnetic form factor in relativistic baryon chiral perturbation theory
including vector mesons to third (blue curve) and fourth (red curve) order, divided by the
dipole form factor. For comparison, we show the dispersion theoretical result (black dot–
dashed curve) and the world data available in this energy range, where the data points
denoted by squares (instead of circles) refer to the more recent measurements [36]. The
older data can be traced back from [8].
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