
FORSCHUNGSZENTRUM JÜLICH GmbH
Zentralinstitut für Angewandte Mathematik

D-52425 Jülich, Tel. (02461) 61-6402

Technical Report

Draft Proceedings of the Workshop on
Declarative Programming in the Context

of Object-Oriented Languages
(DP-COOL’03)

Jörg Striegnitz, Kei Davis∗ (Eds.)

FZJ-ZAM-IB-2003-11

August 2003

(last change: 22.08.2003)

(∗) Modelling, Algorithms, and Informatics Group, CCS-3 MS B256
Los Alamos National Laboratory
Los Alamos, NM 87545, USA

Table of Contents

SOUL and Smalltalk - Just Married . 1
Kris Gybels

Syntax sugar for FC++: lambda, infix, monads, and more 15
Brian McNamara and Yannis Smaragdakis

Importing alternative paradigms into modern object-oriented languages. . 43
Andrey V. Stolyarov

Program Templates: . 67
Francis Maes

JSetL: Declarative Programming in Java with Sets . 87
Elisabetta Poleo and Gianfranco Rossi

SML2Java: A Source to Source Translator . 105
Justin Koser, Haakon Larsen, Jeffrey A. Vaughan

Constraint Imperative Programming with C++ . 117
Olaf Krzikalla

Patterns in Datatype-Generic Programming . 131
Jeremy Gibbons

Unifying Tables, Objects and Documents . 145
Erik Meijer and Wolfram Schulte

ii

SOUL and Smalltalk - Just Married

Evolution of the Interaction Between a Logic and an
Object-Oriented Language Towards Symbiosis

Kris Gybels?

Programming Technology Lab
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Elsene, Belgium
kris.gybels@vub.ac.be

1 Introduction

The Smalltalk Open Unification Language is a Prolog-like language embedded
in the object-oriented language Smalltalk [5]. Over the years, it has been used
as a research platform for applying logic programming to a variety of problems
in object-oriented software engineering, some examples are: representing domain
knowledge explicitly [3]; reasoning about object-oriented design [15, 14]; checking
and enforcing programming patterns [11]; ; checking architectural conformance
[16] and making the crosscuts in Aspect-Oriented Programming more robust
[6]. These examples fit in the wider research of Declarative Meta Programming,
where SOUL is used as a meta language to reason about Smalltalk code.

Recently, we explored a different usage of SOUL in connecting business rules
and core application functionality [2], which involves reasoning about Smalltalk
objects. We found we had to improve on SOUL’s existing mechanism for inter-
acting with those objects because it was not transparent: it was clear from the
SOUL code when rules were invoked and when messages were sent to objects,
vice-versa solving queries from methods was rather clumsy. Ideally we would like
to achieve a linguistic symbiosis between the two languages: the possibility for
programs to call programs written in another language as if they were written
in the same [8, 13]. Such a transparent interaction would make it easy to selec-
tively change the paradigm parts of an application are written in: if we find that
a Smalltalk method is better written as a logic rule we should be able to replace
it as such without having to change all messages invoking that method.

We will here take a historical approach to describing the SOUL/Smalltalk
symbiosis. We would like to provide an insight into our motivation for and ap-
proach to achieve the symbiosis by contrasting three distinct stages in its evo-
lution. In a first stage, SOUL was developed as a direct Prolog-derivate with
some additional mechanisms for manipulating Smalltalk objects as Prolog val-
ues. In a second and third stage we explored alternative mechanisms and a more
Smalltalk-fitting syntax for SOUL. Interestingly, when we performed a survey of
other combinations of object-oriented and logic programming we found we could

? Research assistant of the Fund for Scientific Research - Flanders (Belgium) (F.W.O.)

1

easily categorize their approaches into one of our three ”stages”. The following
sections discuss the stages in detail and the ”Related Work” section at the end
briefly discusses the survey.

2 Stage 1: Escaping from SOUL

The interaction mechanism found in the original SOUL can best be characterized
as an escape mechanism. But before we go into this, let us make some general
points about this version of SOUL:

Syntax: We assume readers are familiar with Prolog, the differences with this
language and SOUL in this stage are:

Variable notation: in Prolog, variables are written as names starting with
a capital letter, in SOUL they are written as names preceded with a
question mark, thus Something translates to ?something.

List notation: in Prolog, square brackets ([]) are used to write lists,
these are replaced with angular brackets in SOUL (< >).

Rule notation: the ’if’ operator :- linking conclusion to conditions is re-
placed with the if operator in SOUL.

The combination of Smalltalk’s Meta-Object Protocol and SOUL’s embed-
ding in Smalltalk lead to the insight that the simplest way to let SOUL programs
reason about Smalltalk code is to give them access to the meta-objects directly.
For this reason there are additional differences with Prolog:

Values: any Smalltalk object (not just the meta-objects) can be bound as a
value to a logic variable.

Syntax: the Smalltalk term, a snippet of Smalltalk code enclosed in square
brackets []. The Smalltalk code can contain logic variables wherever
Smalltalk variables are allowed.

Semantics: when Smalltalk terms are encountered as conditions in rules, they
are ”proven” by executing the Smalltalk code. The return value should be a
boolean, which is interpreted as success or failure of the ”proof”. Smalltalk
terms can also be used as arguments to conditions, then they are evaluated
and the resulting value is used as the value of the argument. Unification deals
with Smalltalk objects as follows: two references to an object unify only if
they refer to the same object.

Primitive predicates: a primitive predicate generate can be used to gener-
ate elements of a Smalltalk collection as successive solutions for a variable.

The example set of rules in figure 1 are taken from SOUL’s library for Declar-
ative Meta Programming and show how Smalltalk terms are used. A predicate
class is defined which reifies class meta-objects into SOUL; two different rules
are defined for it to deal efficiently with different argument binding patterns. The
subclass predicate expresses that two classes are related by a direct subclassing

2

class(?x) if

var(?x),

generate(?x, [System allClasses])

class(?x) if

nonvar(?x),

[?x isClass]

subclass(?super, ?sub) if

class(?sub),

equals(?super, [?sub superclass])

hierarchy(?root, ?child) if

subclass(?root, ?child)

hierarchy(?root, ?child) if

subclass(?root, ?direct),

hierarchy(?direct, ?child)

Fig. 1. Example rules defining predicates for reasoning about Smalltalk programs.

argumentArray := Array with: (Array with: #x with: someClass).

evaluator := SOULEvaluator eval: ’if hierarchy(?x, ?y)’ withArgs: argumentArray.

results := evaluator allResults.

ysolutions := results bindingsForVariableNamed: #y.

Fig. 2. Code illustrating how the SOUL evaluator is called from Smalltalk and how
the results are retrieved.

relationship when one is the answer to the subclass message sent to the other.
The hierarchy predicate extends this to indirect subclassing relationships.

The example rules are indicative for the way SOUL interacts with Smalltalk
in this stage: the use of Smalltalk terms is limited to a small collection of pred-
icates such as class and subclass, which are organized in the so-called ”basic
layer”. Other, more high-level predicates such as hierarchy make use of the
predicates in the basic layer to interact with Smalltalk objects. This organiza-
tion avoids pollution of the higher-layer predicates with explicit escape code1. In
a way, the basic layer provides a gateway between the two languages by trans-
lating messages to predicates and vice-versa.

The other direction of interaction, from Smalltalk to SOUL, is done through
explicit calling of the SOUL evaluator with the query to be evaluated passed
as a string. Figure 2 illustrates how the hierarchy predicate is to be called.
On the second line, an evaluator object is created by sending the message
eval:withArgs: to the SOULEvaluator class, the message is passed the query

1 Another reason why this is done is to make the higher-layer predicates less dependent
on Smalltalk, so that they may later be used when reasoning about code in other
OO languages [4].

3

to evaluate and variable bindings as arguments. The variable bindings are passed
as an array of variable-object pairs. In the example, the logic variable ?x will
be bound to the value of the Smalltalk variable someclass, so the query will
search for all child classes of that class. These child classes will then be bound
as solutions to the variable ?y. These solutions can be retrieved by sending an
allResults message to the evaluator object, which returns a result object. The
result object then needs to be sent the message bindingsForVariableNamed to
actually retrieve the bindings, which are returned as a collection.

3 Stage 2: Predicates as Messages

A second stage of SOUL-Smalltalk interaction, which we reported on at a pre-
vious multi-paradigm programming workshop [1], aimed at providing more of
a transparent interaction. Our motivation then was especially to improve on
the way Smalltalk programs can invoke queries, and do it in a way that would
provide linguistic symbiosis. To do so, we tried to map invocation of predicates
more directly to the concept of sending a message.

The term linguistic symbiosis refers to the ability for programs to call pro-
grams written in another language as if they were written in the same. Having
this ability would also imply that transparent replacement is possible: replacing
a ”procedure” (= procedure/function/method/...) in the one language with a
”procedure” in the other, without having to change the other parts of the pro-
gram that make use of that ”procedure”. In fact, the term was coined in the
work of Ichisugi et al. on an interpreter written in C++ which could have all of
its parts replaced with parts written in the language it interprets. Such usage
of linguistic symbiosis to provide reflection was further explored in the work of
Steyaert [13].

While these earlier works provided us with solutions, we also had an added
problem: the earlier works dealt with combining two languages founded on the
object-oriented paradigm, while we aimed at combining an object-oriented and
a logic language. The earlier works dealt with mapping a message in the one
language to a message in the other, while we needed to map messages to queries.

To provide a mapping of messages and queries, we had five issues to resolve:

Unbound variables: how does one specify in such a message that some argu-
ments are to be left unbound? The concept of ’unbound variables’ is foreign
to Smalltalk.

Predicate name: how is the name of the predicate to invoke derived from the
name of the message?

Returning multiple variables: how will the solutions be returned when
there are multiple variables in the query?

Returning multiple bindings: if there are multiple solutions for a variable,
how will these be returned?

Receiver: which object will the message be sent to?

4

Message Query

Main add: 1 with: 2 to: 3 if Main.add:with:to:(1,2,3)

Main add: 1 with: 2 if Main.add:with:to:(1,2,?res)

Main add: 1 if Main.add:with:to:(1,?y,?res)

Main add if Main.add:with:to:(?x,?y,?res)

Main addwith: 2 if Main.add:with:to:(?x,2,?res)

Main addwithto: 3 if Main.add:with:to:(?x,?y,3)

Main addwith: 2 to: 3 if Main.add:with:to:(?x,2,3)

Main add: 1 withto: 3 if Main.add:with:to(1,?y,3)

Table 1. Mapping a predicate to messages

We combined the solution for the first two issues by assuming that predicate
names, like Smalltalk messages, would be composed of keywords, one for each
argument. To specify which variables to leave unbound we adopted a scheme for
combining these keywords into a message name from which that specification can
be derived. To invoke a predicate from Smalltalk one would write the message
as: the name of the first keyword, optionally followed by a colon if the first
argument is to be bound and a Smalltalk expression for the argument’s value,
then the second keyword, concatenated to the first if that one was not followed
by a colon, and again itself followed by a colon if needed for an argument and so
on for the other keywords until no more keywords need to follow which take an
argument. This is best illustrated with an example. Table 1 shows the 23 ways
of invoking a predicate called add:with:to: and the equivalent query in SOUL.

For the issue of needing a receiver object for the message, we mapped layers to
objects stored in global variables. Because in Smalltalk classes are also objects
stored in global variables, this has the effect of making a predicate-invoking
message seem like a message to a class. The basic layer is for example stored in
Basic.

We proposed two alternative solutions to the issues of returning bindings.
The first was simply to return as result of the message a collection of collec-
tions: a collection containing for each variable a collection of all the bindings
for that variable. The alternative consisted of returning a collection of message
forwarding objects, one for each variable. Sending a message to such a forward-
ing object would make it send the same message to all the objects bound to the
variable. The idea was to provide an implicit mechanism for iterating over all
the solutions of a variable, very much how like SOUL can backtrack to loop over
all the solutions for a condition. This however lead to matters such as whether
forwarding objects should also start backtracking over solutions etc., so it was
discarded as a viable solution. We coined the term paradigm leak to refer to this
problem of concepts ”leaking” from one paradigm to the other.

We also used the predicate and message mapping to replace SOUL’s earlier
use of Smalltalk terms. Instead of using square brackets to escape to Smalltalk
for sending a message, the same message can now be written more implicitly as
an invocation of a predicate in an object ”pretending to be a SOUL module”.

5

Here, the reverse of the above translation happens: SOUL will transform the
predicate to a Smalltalk message by associating the arguments of the predicate
to the keywords in its name. The predicate’s last argument will be unified with
the result of the actual message send. Take the following example:

if Array.with:with:with:(10,20,30, ?instance), ?instance.at:(2,?value)

The first condition in the example query will actually be evaluated by send-
ing the message with: 10 with: 20 with: 30 to the class Array. The result
of that message is a new Array instance, which will be bound to the variable
?instance. In the second condition, the message at: 2 will be sent to the in-
stance and the result, 20 in this case, will be bound to the variable ?value.

While in this second-stage SOUL mixing methods and rules is entirely trans-
parent from a technical standpoint, it is obvious which code is intended to invoke
what to a human interpreter. Technically there is no more need in SOUL for an
escape mechanism, and the same language construct is used to invoke rules and
messages. Similarly in Smalltalk, queries no longer have to be put into strings
to let them escape to SOUL and can just be written as message sends. However,
a Smalltalk programmer would frown when seeing messages such as addwith:

2 to: 3. Furthermore, he would probably guess that the result of that message
would be the value 5, instead it will be a collection with a collection containing
the value 5. The keyword-concatenated predicate names in SOUL also lead to
awkward looking programs in that language.

4 Stage 3: Linguistic Symbiosis?

The next, and currently last, stage in the SOUL-Smalltalk symbiosis uses a
new syntax for SOUL to avoid the clumsy name mappings from the previous
stage. For this stage we also had a specific application for the symbiosis in mind,
business rules [2], which influenced its development in certain respects. One
difference is that previously we wanted to allow Smalltalk programs to call the
existing library of SOUL code-reasoning predicates, while for supporting business
applications the idea is rather to use SOUL to write new rules implementing so-
called business rules of the application. This also implies another shift: reasoning
about (business) objects rather than meta objects.

In the new syntax predicates look like message sends. Let us illustrate with an
example, figure 3 contrasts the classic member predicate with its new contains:

counterpart.
The second rule for contains: can be read declaratively simply in Prolog-

style as ”for all ?x, ?y and ?rest the contains: predicate over <?y | ?rest>

and ?x holds if”. A declarative message-like interpretation could read ”for
all ?x, the answer to the message contains: ?x of objects matching <?y |

?rest> is true if the answer of the object ?rest to contains: ?x is true.” Both
interpretations are equivalent, though the second one is really the basis for the
new symbiosis.

6

member(?x, <?x | ?rest>).

member(?x, <?y | ?rest>) if

member(?x, ?rest).

<?x | ?rest> contains: ?x.

<?y | ?rest> contains: ?x if

?rest contains: ?x.

Fig. 3. Comparison of list-containment predicate in classic and new SOUL syntax.

?product discountFor: ?customer = 10 if

?customer loyaltyRating = ?rating &

?rating isHighRating

Fig. 4. Example of a rule using the equality operator.

Because messages can return values other than booleans, we added another
syntactic element to SOUL to translate this concept to logic programming. The
equality sign is used to explicitly state that ”the answer to the message on the
left hand side of = is the value on the right hand side”. Figure 4 shows an
example.

The new syntax has a two-fold impact on how the switching between
Smalltalk and SOUL occurs. It is no longer necessary to employ a complicated
scheme with concatenation of keywords to get the name of a predicate. Another
is that there is no more mapping of objects to SOUL modules and vice-versa,
modules were dropped from SOUL as the concept of having a ”receiver” for a
predicate now comes as part of the message syntax.

A Smalltalk program no longer has to send a message to a SOUL module
”pretending to be an object” to invoke a query. Instead, a switch between the
two languages now occurs as an effect of method and rule lookup: we changed
Smalltalk so that when a message is sent to an object and that object has no
method for it, the message is translated to a query. In SOUL, when a rule is not
found for the predicate of a condition, the condition is translated to a message.
This new scheme makes it much easier and much more transparent to actually
interchange methods and rules.

The translation of queries and messages is straightforward and we’ll simply
illustrate with another example. Figure 5 shows a price calculation method on a
class Purchasewhich loops through all products a customer bought and sums up
their total price minus a certain discount. When the discountFor: customer

message is sent to the products, Smalltalk will find no method for that message,
so it will be translated to the query:

if ?arg1 discountFor: ?arg2 = ?result

Where ?arg1 and ?arg2 are already bound to the objects that were passed
as arguments to the message. When the query is finished, the object in ?result

7

Purchase instanceVariables: ’shoppingBasket customer’

Purchase>>totalPrice

| totalPrice discountFactor |

totalPrice := 0.

shoppingBasketContents do: [:aProduct |

discountedFactor := (100 - (aProduct discountFor: customer)) / 100

totalPrice := totalPrice + (discountFactor * aProduct price)

]

Fig. 5. Example price calculation method on Purchase class

is returned as result of the ”message”. This returning of results is actually a bit
more involved, we’ll discuss it further in the next section.

For the inverse interaction, we can take the loyaltyRating = condition in
the discountFor: rule (fig. 4) as an example. For a small business the loyalty
rating of a customer can simply be stored as a property of the customer ob-
ject which can be accessed through the loyaltyRating message. In that case,
SOUL will find no rule for the ”predicate” loyaltyRating and will translate
the condition simply to the message loyaltyRating which is then sent to the
customer object in the variable ?customer. After it returns, the result of the
message is unified with the variable ?rating. Of course, for a bigger business
we might want to replace the calculation of loyaltyRating with a set of more
involved business rules which we’d prefer to implement with logic programming,
for example ”a high rating is given to a customer when she has already spent a
lot in the past few months”. With the transparent symbiosis such a replacement
is easy to do.

5 Limits and Issues

At the end of the ”Stage 2” section, we remarked that our solution then was only
technically transparent, it was rather obvious to a programmer which code was
intended to invoke which paradigm. In the previous section we demonstrated
that this is now much less the case, it is fairly easy now to interchange meth-
ods and rules without this becoming obvious. There are however limits to this
interchanging and there are still subtle hints that may reveal what paradigm
is invoked. These limits and issues stem from differences in programming style
between the object-oriented and logic paradigms.

One important style difference between the paradigms is the way multiplic-
ity is dealt with. In logic programming, there is no difference between using
a predicate that has only one solution and one that has multiple solutions. In
object-oriented programming there is an explicit difference between having a
message return a single object or a collection of objects (even, or especially, if

8

?child ancestor = ?parent if

?child parent = ?parent.

?person ancestor = ?ancestor if

?person parent = ?parent,

?parent ancestor = ?ancestor

Fig. 6. Rules expressing the ancestor relationship between Persons

Person instanceVariables: ’name parent’

Person>>parent

^ parent

Person>>name

^ name

Person>>printOn: stream

name , ’ descendant of ’ printOn: stream.

self ancestor do: [:ancestor |

ancestor name , ’ and ’ printOn: stream

]

Fig. 7. Instance variables and some methods of the Person class

there’s only one object in that collection). This difference leads to an issue in
how results are returned from queries to Smalltalk, and one in how predicates
and messages are named.

When a Smalltalk message invokes a SOUL query and the query has only
one solution, should the solution object be simply returned or should a single-
ton collection with that object be returned? The invoking method may expect
a collection of objects, which would then just happen to contain just a single
item, or it may generally be expecting there to be only one result. It is diffi-
cult for SOUL however to know which is the case. To deal with this we made
SOUL return single solutions in a FakeSingleItemCollection wrapper. The
FakeSingleItemCollection class implements most of the messages expected of
collections in Smalltalk, any other messages are forwarded to the object that is
being wrapped. There is thus an ”automatic adaptation” to the expectations of
the invoking method.

Plurality, or lack thereof, in the names of predicates and messages can cause
some programming style difficulties. Figures 6 and 7 illustrate the modeling of
persons and their ancestral relations through a class and some logic rules. In-
voking these rules from the printOn: method is however awkward: it is quite
natural for a logic programmer to write the relationship as ”ancestor” even
though there will be multiple ancestors for each Person, the object-oriented pro-
grammer would however prefer to write the plural ”ancestors” to indicate that a

9

collection of results is expected. One solution to this problem is to implement a
rule for ancestors which simply maps to ancestor, this would however defeat
the purpose of having an automatic mapping of messages and queries. A poten-
tial solution could be to take this style difference into account when doing the
mapping by adding or removing the suffix -s when needed.

When comparing the stage 2 and stage 3 symbiosis, stage 3 may seem more
limited in the variables that can be left unbound when invoking queries from
Smalltalk. In stage 2 the mapping of predicate names to message names implicitly
also indicated which variables to leave unbound, while in stage 3 the mapping of
messages to queries only leaves unbound the result variable, the one on the right
hand side of the equality sign in the query. Actually, we did implement a means
for leaving other variables unbound as well. We changed the way Smalltalk deals
with temporary variables to allow for the following code to be written:

| products customers discounts |

discounts := products discountFor: customers

Normally the Smalltalk development environment would warn that this code
uses temporary variables before they are assigned. Now however, the message
products discountFor: customers will result in the query:

if ?arg1 discountFor: ?arg2 = ?result

Where all of ?arg1, ?arg2 and ?result are left unbound. When the query is
finished, the result of the message will be as described earlier and additionally the
temporary variables products and customers will also be assigned the solutions
of the variables ?arg1 and ?arg2.

This leaving unbound of temporary variables is however another example
of a paradigm leak, it is quite unnatural code for a Smalltalk programmer to
write. We consider it as something that should be used with care and preferably
avoided. While in stage 2 the equivalent mechanism seemed most necessary be-
cause the motivation was to allow access to all existing SOUL predicates, our
focus shift to implementing new business rules makes it less necessary: its better
to design the rules differently. Nevertheless many of the rules will be designed
to be used from other rules, not to be replaced with methods and callable in a
multi-way fashion. On occasion, these rules may need to be used directly from
a method, so we kept the unbound temporaries mechanism in place.

There is also a limitation in leaving arguments unbound the other way
around: when translating a condition to a message, all of its arguments are ex-
pected to be bound. SOUL will currently generate an error otherwise. It would
be possible though to at least deal with the ”receiver” argument of the condition
in a more logic-like way: when it is unbound, SOUL could send the message to
some random object from memory which support a method for the message. If
the message’s result is true, the object is a solution for the ”receiver” variable.
On backtracking all of the other objects supporting the message would be tried.
A problem here would be the accidental invocation of object-mutating messages

10

due to polymorphism: when posing the query ?game draw we may simply be
interested in all chess games that ended in a draw but may wind up also draw-
ing all graphical objects on the screen. In practice though this may not be so
much of a problem as normally the messages invoked from SOUL would have a
keyword ”is” or ”has” in their name because they are written as invocation of
predicates, and it is a convention normally applied by Smalltalk programmers
as well.

6 Related work

We examined several existing systems which were designed or could be used
for business rule development and in which object-oriented and logic program-
ming are combined [2]. The interaction mechanisms we encountered fit in one of
three categories similar to the three stages we discussed here: use of an escape
mechanism, some explicit mapping of predicates and methods or a syntactic and
semantic integration of the two languages. We limit our discussion here mostly
to a few systems that aim for the third category as well.

NéOpus also extends Smalltalk with logic programming, though with
production-rule based logic rather than proof-based logic [12]. Rules consist of
conditions and actions, rather than conclusions, which are respectively expressed
as boolean messages to objects and state-changing messages to objects. The con-
cept of a ”conclusion” as something separate from a direct effect on the state of
objects is thus dropped. Rules are also not invoked through queries, but rather
are triggered by changes in the state of objects and there is no backtracking
to generate multiple solutions. This means that some of the issues we had to
deal with do not occur in NéOpus: the problems of mapping predicates and
methods, returning of multiple results etc. Pachet in fact argues against adding
backward chained inferencing to NéOpus because he finds there’s a contradiction
between the desire to use the OO language to express rules in and allow back-
ward chaining [12], which may come down to our issues. Note that we made the
rule language resemble the object-oriented one as closely as possible and needed
to allow for symbiosis, we did not simply use the OO language directly to express
rules. Besides what form of chaining to use, Pachet also discusses other ques-
tions which we had to resolve as well. Most importantly what happens to pattern
matching and object encapsulation. Often in logic programming a data structure
is accessed directly through unification of its constituent parts. In some of the
other systems we examined, like CommonRules [7] , this is still done this way by
mapping objects to predicates with an argument for each instance variable. In
SOUL, as in NéOpus, we chose to uphold object encapsulation and only allow
accessing objects through message sending.

LaLonde and Van Gulik used Smalltalk’s reflection to turn ordinary methods
into backtracking methods [10]. They built a small framework2 to support the
backtracking methods. Most important in there is a message which makes its

2 Small enough to have the full code listed in their paper.

11

calling method return with a certain value but remembers the calling point,
the method can then be made to resume execution from that point on. This
is achieved by exploiting Smalltalk’s ability to access the execution stack from
any method. The backtracking takes care of undoing changes to local variables,
though not to instance variables and globals . Local variables are thus used to
simulate logic variables, but they are assigned rather than unified and there
is no simulation like our unbound temporaries for calling methods with some
arguments left unbound, so backtracking methods are no full simulation of logic
rules. Despite the similarities in the use of Smalltalk expressions, programming
in this system seems quite different from programming in symbiotic SOUL.

Kiev [9] extends Java with logic rules, which can be added directly to classes
and called through message sending. To call a rule with unbound arguments,
one passes an empty wrapper object as argument which will then be bound by
the rule. A new for-construct can be used to iterate over all solutions. There is
no equivalent for our equality operator construct, calling a rule from a method
as a message always returns a boolean to indicate success or failure. This is a
subtle but important difference with symbiotic SOUL: returning objects from
rules requires the use of sending a message with unbound arguments, making
calling rules not as transparent.

7 Summary and Conclusions

We presented the history of a combination of Smalltalk with a logic language.
Three distinct stages appeared in its evolution of the interaction between the
two languages which we also encountered in studying other combinations of
object-oriented and logic programming: a stage where the languages could bind
each other’s values to variables and manipulate these values by ”escaping” to the
other language, a stage where the escape mechanism was made more transparent
by an automatic mapping of predicates and methods and the current final stage
in which the syntax of the logic language has been adapted to that of the host
language to allow not only for technical but programming style transparency as
well. The aim was to achieve a linguistic symbiosis so that methods and rules
can be easily and transparently interchanged. This is not just of theoretical
interest but has an application in the development of business rule applications:
an existing application without business rule separation may need to be turned
into one that does, or new developments in the policies of the business may make
it more interesting to turn methods into rules.

We compared our earlier and current solution for such issues as how to
map messages and queries, return multiple results from a query to Smalltalk
etc. There are unfortunately still some minor issues to resolve such as how to
deal properly with the difference in use of plurality in names between the two
paradigms and avoiding the invocation of state-changing messages. Nevertheless
we have found the current version of symbiotic SOUL to be a great improvement
over previous versions.

12

References

[1] Johan Brichau, Kris Gybels, and Roel Wuyts. Towards a linguistic symbiosis of
an object-oriented and logic programming language. In Jörg Striegnitz, Kei Davis,
and Yannis Smaragdakis, editors, Proceedings of the Workshop on Multiparadigm
Programming with Object-Oriented Languages, 2002.

[2] Maja D’Hondt and Kris Gybels. Linguistic symbiosis for the automatic connection
of business rules and object-oriented application functionality. (to appear), 2003.

[3] Maja D’Hondt, Wolfgang De Meuter, and Roel Wuyts. Using reflective logic
programming to describe domain knowledge as an aspect. In First Symposium on
Generative and Component-Based Software Engineering, 1999.

[4] Johan Fabry and Tom Mens. Language-independent detection of object-oriented
design patterns. In Proceedings of the European Smalltalk User Group’s confer-
ence, 2003. (Conditionally accepted).

[5] Adele Goldberg and Dave Robson. Smalltalk-80: the language. Addison-Wesley,
1983.

[6] Kris Gybels and Johan Brichau. Arranging language features for more robust
pattern-based crosscuts. In Proceedings of the Second International Conference of
Aspect-Oriented Software Development, 2003.

[7] IBM. Business rules for electronic commerce: Project at IBM T.J. Watson re-
search, 1999. http://www.research.ibm.com/rules/.

[8] Yuuji Ichisugi, Satoshi Matsuoka, and Akinori Yonezawa. Rbcl: a reflective object-
oriented concurrent language without a runtime kernel. In IMSA’92 International
Workshop on Reflection and Meta-Level Architectures, 1992.

[9] Maxim Kizub. Kiev language specification, July 1998.
http://www.forestro.com/kiev/kiev.html.

[10] Wilf R. LaLonde and Mark Van Gulik. Building a backtracking facility for
Smalltalk without kernel support. In Proceedings of the conference on Object-
Oriented Languages, Systems and Applications. ACM Press, 1988.

[11] Kim Mens, Isabel Michiels, and Roel Wuyts. Supporting software development
through declaratively codified programming patterns. In Proceedings of the 13th
SEKE Conference, 2001.

[12] Francois Pachet. On the embeddability of production rules in object-oriented
systems. Journal of Object-Oriented Programming, 8(4), 1995.

[13] Patrick Steyaert. Open Design of Object-Oriented Languages. PhD thesis, Vrije
Universiteit Brussel, 1994.

[14] Roel Wuyts. Declarative reasoning about the structure of object-oriented systems.
In Proceedings of TOOLS-USA 1998, 1998.

[15] Roel Wuyts. A Logic Meta Programming Approach to Support the Co-Evolution
of Object-Oriented Design and Implementation. PhD thesis, Vrije Universiteit
Brussel, 2001.

[16] Roel Wuyts and Kim Mens. Declaratively codifying software architectures using
virtual software classifications. In Proceedings of TOOLS-Europe 1999, 1999.

13

Syntax sugar for FC++:

lambda, infix, monads, and more

Brian McNamara and Yannis Smaragdakis

College of Computing
Georgia Institute of Technology

http://www.cc.gatech.edu/∼yannis/fc++/

lorgon,yannis@cc.gatech.edu

Abstract. We discuss the FC++ library, a library for functional pro-
gramming in C++. We give an overview of the library’s features, but
focus on recent additions to the library. These additions include the de-
sign of our “lambda” sublanguage, which we compare to other lambda
libraries for C++. Our lambda sublanguage contains special syntax for
programming with monads, which we also discuss in detail. Other re-
cent additions which we discuss are “infix function syntax” and “full
functoids”.

1 Introduction

FC++[7, 8] is a library for functional programming in C++. We have recently
added a number of new features to the FC++ library, most notably an expression
template library for creating a lambda sublanguage. The lambda sublanguage
contains special syntax for programming with monads in the style of Haskell.
We focus our discussion on the design of this portion of the library (Section 5
and Section 6), but begin with a run-down of the features of FC++ (Section 2
and Section 3) as well as some important implementation details (Section 4).

2 Overview

In FC++, programmers define and use functoids. Functoids are the FC++ rep-
resentation of functions; we will discuss them in more detail in Section 4. The
latest version (v1.5) of the FC++ library supports a number of useful features,
including

– higher order, polymorphic functoids (“direct” functoids)
– lazy lists
– a large library of functoids, combinators, and monads (most of which dupli-

cate a good portion of the Haskell Standard Prelude[2])
– currying
– infix functoid syntax
– dynamically-bound functoids (“indirect” functoids)

15

– a small library of effect combinators
– interfaces to C++ Standard Library data structures and algorithms via it-

erators
– ways to transform methods of classes and normal C++ functions into func-

toids
– reference-counted “smart” pointers for memory management (used internally

by, e.g., our lazy list data structure)

We’ll briefly discuss each of these features in the next section. Later on we will
discuss

– special syntax to mimic functional language constructs, including lambda, let,
and letrec, as well as do-notation and comprehensions for arbitrary monads

in detail.
The FC++ library is about 9000 lines of C++ code, and is written with

strict conformance to the C++ standard[4], which makes it portable to all of
the major brands of compilers.

3 Short Examples of various features

FC++ functoids can be simultaneously higher order (able to take functoids
as arguments and return them as results) and polymorphic (template functions
which work on a variety of data types). For example, consider the library function
compose(), which takes two functoids and returns the composition:

// compose(f, g)(args) == f(g(args))

We could define a polymorphic functoid addSelf(), which adds an argument to
itself:

// addSelf(x) == x + x

We could then compose addSelf with itself, and the result would still be a
polymorphic functoid:

int x = 3;

std::string s = "foo";

compose(addSelf, addSelf)(x) // yields 12

compose(addSelf, addSelf)(s) // yields "foofoofoofoo"

Section 4 describes the infrastructure of these “direct functoids”, which enables
this feat to be implemented.

FC++ defines a lazy list data structure called List. Lists are lazy in that
they need not compute their elements until they are demanded. For example,
the functoid enumFrom() takes an integer and returns the infinite list of integers
starting with that number:

enumFrom(1) // yields infinite list [1, 2, 3, ...]

A number of functoids manipulate such lists; for instance map() applies a func-
toid to each element of a list:

16

map(addSelf, enumFrom(1)) // yields infinite list [2, 4, 6, ...]

The FC++ library defines a wealth of useful functoids and data types. There
are named functoids for most C++ operators, like

plus(3,4) // 3+4 also minus, multiplies, etc.

There are many functoids which work on Lists, including map. Most of the
List functions are identical those defined in Haskell[2]. Additionally, a num-
ber of basic functions (like the identity function, id), combinators (like flip:
flip(f)(x,y)==f(y,x)), and data types (like List and Maybe; Maybe will be
discussed in Section 6) are designed to mimic exactly their Haskell counterparts.
We also implement functoids for such C++ constructs as constructor calls and
new calls:

construct3<T>()(x,y,z) // yields T(x,y,z)

new2<T>()(x,y) // yields new T(x,y)

and many more (some of which are described below).
Functoids are curryable. That is, we can call a functoid with some subset of

its arguments, returning a new functoid which expects the rest of the arguments.
Currying of leading arguments can be done implicitly, as in

minus(3) // yields a new function "f(x)=3-x"

Any argument can be curried explicitly using the placeholder variable _ (defined
by FC++):

minus(3,_) // yields a new function "f(x)=3-x"

minus(_,3) // yields a new function "f(x)=x-3"

We can even curry all N of a function’s arguments with a call to curryN(),
returning a thunk (a zero-argument functoid):

curry2(minus, 3, 2) // yields a new thunk "f()=3-2"

FC++ functoids can be called using a special infix syntax (implemented by
overloading operator^):

x ^f^ y // Same as f(x,y). Example: 3 ^plus^ 2

This syntax was also inspired by Haskell; some function names (like plus) are
more readable as infix than as prefix.

FC++ defines indirect functoids, which are function variables which can be
bound to any function with the same (monomorphic) signature. Indirect func-
toids are implemented via the FunN classes, which take N template arguments
describing the argument types, as well as a template argument describing the
result type. For example:

// Note: plus is polymorphic, the next line selects just "int" version

Fun2<int,int,int> f = plus;

f(3,2); // yields 5

f = minus;

f(3,2); // yields 1

17

Indirect functoids are particularly useful in the implementation of callback li-
braries and some design patterns[11].

The FC++ library defines a number of effect combinators. An effect combi-
nator combines an effect (represented as a thunk) with another functoid. Here
are some example effect combinators:

// before(thunk,f)(args) == { thunk(); return f(args); }

// after(g,thunk)(args) == { R r = g(args); thunk(); return r; }

An example: suppose you’ve defined a functoid writeLog() which takes a string
and writes it to a log file. Then

before(curry1(writeLog, "About to call foo()"), foo)

results in a new functoid with the same behavior as foo(), only it writes a
message to the log file before calling foo().

FC++ interfaces with normal C++ code and the STL. The List class imple-
ments the iterator interface, so that lists can work with STL algorithms and other
STL data structures can be converted into Lists. The functoid ptr_to_fun()
transforms normal C++ function pointers into functoids, and turns method
pointers into functions which take a pointer to the receiver object as an extra
first object. Here are some examples, which use currying to demonstrate that
the result of ptr_to_fun is a functoid:

ptr_to_fun(&someFunc)(x)(y) // someFunc(x,y)

ptr_to_fun(&Foo::meth)(aFooPtr)(x) // aFooPtr->meth(x)

FC++ comes with its own reference-counted smart pointers: Ref and IRef.
Ref<T> works just like a T*, only with reference counting. IRef<T> implements
intrusive reference counting; an efficient form of reference counting which requires
supportive help from the type being used (here, T). Internally, the library uses
IRefs in the implementation of Lists and indirect functoids.

4 Where is the magic?

In the previous section we saw how functoids can be used. Nevertheless, we have
not shown you how the polymorphic functoids inside FC++ are implemented or
how to define your own polymorphic functoids. In this section we show how func-
toids are defined, and how they gain the special functionality FC++ supports
(like currying and infix syntax).

4.1 Defining polymorphic functoids

To create your own polymorphic functoid, you need to create a class with two
main elements: a template operator() and a member structure template named
Sig. To make things concrete, consider the definition of map (or rather, the class
Map, of which map is a unique instance) shown in Figure 1. This definition uses the
helper template FunType, which is a specialized template for different numbers
of arguments. For two arguments, FunType is essentially:

18

struct Map {

template <class F, class L>

struct Sig : public FunType<F,L,List<typename F::template

Sig<typename L::ElementType>::ResultType> > {};

template <class F, class T>

typename Sig<F, List<T> >::ResultType

operator()(const F& f, const List<T>& l) const {

if(null(l))

return NIL;

else

return cons(f(head(l)), curry2(Map(), f, tail(l)));

}

} map;

Fig. 1. Defining map in FC++

template <class A1, class A2, class R> struct FunType {

typedef R ResultType; typedef A1 Arg1Type; typedef A2 Arg2Type; };

We can now analyze the implementation of Map. The operator() will allow
instances of this class to be used with regular function call syntax. What is
special in this case is that the operator is a template, which means that it can
be used with arguments of multiple types. When an instance of Map is used with
arguments f and l, unification will be attempted between the types of f and l,
and the declared types of the parameters (const F&, and const List<T>&). The
unification will yield the values of the type parameters F and T of the template.
This will determine the return type of the functoid.

Now, let’s examine the Sig member class of the Map class. By FC++ con-
vention, the Sig member should be a template over the argument types of the
function you want to express (in this case the function type F and the list type
L). The Sig member template is used to answer the question “what type will
your function return if I pass it these argument types?” The answer in the Map
code is:

List< F::Sig<L::ElementType>::ResultType >

(we have elided the typename and template keywords for readability). This
means: “map returns a List of what F would return if passed an element like
the ones in list L”.

In Haskell, one would express the type signature of map as:

map :: (a -> b) -> [a] -> [b]

The Sig members of FC++ functoids essentially encode the same information,
but in a computational form: Sigs are type-computing compile-time functions
that are called by the C++ unification mechanism for function templates and
implement the FC++ type system. This type system is completely independent

19

from the native C++ type system—map’s type as far as C++ is concerned is just
class Map. Other FC++ functoids, however, can read the FC++ type informa-
tion from the Sig member of Map and use it in their own type computations.
The map functoid itself uses that information from whatever functoid happens to
be passed as its first argument (see the F::Sig<L::ElementType>::ResultType
expression, above).

4.2 Using the FullN wrappers to gain functionality

The definition of map in the previous subsection creates what we call a “basic
direct functoid” in FC++. However, a number of features of functoids (such as
currying and infix syntax, which we saw in Section 3, and lambda-awareness,
which will shall describe in Section 5) only work on so-called “full functoids”.

Transforming a normal functoid into a full functoid is easy. For example, to
define map as a full functoid, we change the definition from Figure 1 from

struct Map { /* ... */ } map;

to

struct XMap { /* ... */ };

typedef Full2<XMap> Map;

Map map;

That is, FullN<F> is the type of the full functoid created out of the basic N -
argument functoid F. The FullN template classes serve as a wrapper around
basic functoids. They add all of the FC++ features we are accustomed to (such
as currying and infix syntax) to the basic functoid.

Full functoids are a new feature of the FC++ library. Legacy code can pro-
mote its basic functoids into full functoids either by making the minor modifi-
cation to the definition described above, or within an expression by calling the
functoid makeFullN(), which takes an N -argument basic functoid as an argu-
ment and returns the corresponding full functoid as a result.

5 Lambda

Lambda is no stranger to C++. There are a number of existing C++ libraries
which enable clients to create new, anonymous functions on-the-fly. Some such
libraries, like the C++ STL[12] and its “binders”, or previous versions of FC++,
allow the creation of new functoids on-the-fly only either by binding some subset
of a functions arguments to values (currying) or by using combinators (like
compose). Other libraries, like the Boost Lambda Library[6] and FACT![9] enable
the creation of arbitrary lambdas by using expression templates.

20

5.1 Motivation

We were motivated to implement lambda by our interest in programming with
monads. Experience with previous versions of FC++ made it clear that arbitrary
lambdas are a practical necessity if one wants to program with monads. Older
versions of FC++ had a number of useful combinators which made it possible
to express most arbitrary functions, but lambda makes it practical by making
it readable. For example, while implementing a monad, in the middle of an
expression you might discover that you need a function with this meaning:

lambda(x) { f(g(x),h(x)) }

It is possible to implement this function using combinators (without lambda),
but the resulting code is practically unreadable:

duplicate(compose(flip(compose)(h),compose(f,g)))

Alternatively, you can define the new functoid at the top level, give it a name,
and then call it:

struct XFoo {

template <class X> struct Sig : public FunType<X,

typename RT<F<typename RT<G,X>::ResultType,

typename RT<H,X>::ResultType>::ResultType> {};

template <class X>

typename Sig<X>::ResultType operator()(const X& x) const {

return f(g(x),h(x));

}

};

typedef Full1<XFoo> Foo;

Foo foo;

// later use "foo"

but clearly this is way too much work, especially when the function in question is
a one-time-use (“throwaway”) function. Lambda is the only reasonable solution
when you need to define short, readable, arbitrary functions on-the-fly.

5.2 Problematic issues with expression-template lambda libraries

Despite the advantages to lambda, we have always maintained a degree of wari-
ness when it comes to C++ lambda libraries (or any expression template library),
owing to the intrinsic limitations and caveats of using expression templates in
C++. The worrisome issues with expression template libraries in general (or
lambda libraries in particular) fall into four major categories:

– Accidental/early evaluation. The biggest problem with expression tem-
plate lambda libraries comes from accidental evaluation of C++ expressions.
Consider a short example using the Boost Lambda Library:

int a[] = { 5, 3, 8, 4 };

for_each(a, a+4, cout << _1 << "\n");

21

The third argument to for_each() creates an anonymous function to print
each element of the array (one element per line). The output is what we
would expect:

5

3

8

4

If we want to add some leading text to each line of output, it is tempting to
change the code like this:

int a[] = { 5, 3, 8, 4 };

for_each(a, a+4, cout << "Value: " << _1 << "\n");

But (surprise!), the new program prints the added text only once (rather
than once per line):

Value: 5

3

8

4

This is because “cout << "Value: "” is a normal C++ expression that
the C++ compiler evaluates immediately. Only expressions involving place-
holder variables (like _1)1 get “delayed” from evaluation by the expression
templates. These accidents are easy to make, and hard to see at a glance.

– Capture semantics (lambda-specific). Since C++ is an effect-ful lan-
guage, it matters whether free variables captured by lambda are captured
by-value or by-reference. The library must choose one way or the other, or
provide a mechanism by which users can choose explicitly.

– Compiler error messages. C++ compilers are notoriously verbose when it
comes to reporting errors in template libraries. Things are even worse with
expression template libraries, both because there tend to be more levels
of depth of template instantiations, and because the expression templates
typically expose clients to some new/unfamiliar syntax, which makes it more
likely for clients to make accidental errors. Indecipherable error messages
may make an otherwise useful library be too annoying for clients to use.

– Performance. Expression template libraries sometimes take orders of mag-
nitude longer to compile than comparably-sized C++ programs without ex-
pression templates. Also, the generated binary executables are often much
larger for programs with expression templates.

For the most part, these problems are intrinsic to all expression template libraries
in C++. As a result, when we set out to design a lambda library for FC++, we
kept in mind these issues, and tried to design so as to minimize their impact.

1 Additionally, one can use other special constructs defined by BLL. In the example
above, we could get the desired behavior by calling the BLL function constant()

on the literal string, to delay evaluation.

22

5.3 Designing for the issues

Here are the design decisions we have made to try to minimize the issues de-
scribed in the previous subsection.

– Accidental/early evaluation. Since the problem itself is intrinsic to the
domain, the only way to “attack” this issue is prevention. That is, we cannot
prevent users from making mistakes, but we can try to design our lambda
to make these mistakes less common and/or more immediately apparent. To
this end, we have designed the lambda syntax to be minimalist and visually
distinct:
• Minimalism. Rather than overload a large number of operators and

include a large number of primitives, we have chosen a minimalist ap-
proach. Thus we have only overloaded four operators for lambda lan-
guage (array brackets for postfix function application, modulus for infix
function application, comma for function argument lists, and equality for
“let” assignments). Similarly, apart from lambda, the only primitives we
provide are those for let, letrec, and if-then-else expressions. These
provide a minimal core of expressive power for lambda, without over-
burdening the user with a wide interface. A narrow interface seems more
likely to be remembered and thus less error-prone.
• Visual distinctiveness. Rather than trying to make lambda expres-

sions “blend in” with normal C++ code, we have done the opposite.
We have chosen operators which look big and boxy to make lambda ex-
pressions “stand out” from normal C++ code. By convention, we name
lambda variables with capital letters. By making lambda expressions
visually distinct from normal C++ code, we hope to remind the user
which code is “lambda” and which code is “normal C++”, so that the
user won’t accidentally mix the two in ways which create accidents of
early evaluation.

– Capture semantics (lambda-specific). The FC++ library passes argu-
ments by const& throughout the library. Effectively this is just another (per-
haps efficient) way of saying “by value”. As a result, FC++ lambdas capture
free variables by value. As with the rest of the FC++ library, the user can
explicitly choose reference semantics by capturing pointers to objects, rather
than the capturing objects themselves.

– Compiler error messages. Meta-programming can be used to detect some
user errors and diagnose them “within the library” by injecting custom er-
ror messages [9, 10] into the compiler output. Though many kinds of errors
cannot be caught early by the library (lambdas and functoids can often be
passed around in potentially legal contexts, but then finally used deep within
some template in the wrong context), there are a number of common types
of errors that can be nipped in the bud. The FC++ lambda library catches
a number of these types of errors and generates custom error messages for
them.

– Performance. There seems to be little that we (as library authors) can do
here. As expression template libraries continue to become more popular, we

23

can only hope that compilers will become more adept at compiling them
quickly. In the meantime, clients of expression template libraries must put
up with longer compile times and larger executables.

Thus, given the intrinsic problems/limitations of expression template libraries,
we have designed our library to try to minimize those issues whenever possible.

5.4 Lambda in FC++

We now describe what it looks like to do lambda in FC++. Figure 2 shows some
examples of lambda. There are a few points which deserve further attention.

// declaring lambda variables

LambdaVar<1> X;

LambdaVar<2> Y;

LambdaVar<3> F;

// basic examples

lambda(X,Y)[minus[Y,X]] // flip(minus)

lambda(X)[minus[X,3]] // minus(_,3)

// infix syntax

lambda(X,Y)[negate[3 %multiplies% X] %plus% Y]

// let

lambda(X)[let[Y == X %plus% 3,

F == minus[2]

].in[F[Y]]]

// if-then-else

lambda(X)[if0[X %less% 10, X, 10]] // also if1, if2

// letrec

lambda(X)[letrec[F == lambda(Y)[if1[Y %equal% 0,

1,

Y %multiplies% F[Y%minus%1]]

].in[F[X]]] // factorial

Fig. 2. Lambda in FC++

Inside lambda, one uses square brackets instead of round ones for postfix
functional call. (This works thanks to the lambda-awareness of full functoids,
mentioned in Section 4.) Similarly, the percent sign is used instead of the carat
for infix function call. These symbols make lambda code visually distinct so that
the appearance of normal-looking (and thus potentially erroneous) code inside
a lambda will stand out. Since operator[] takes only one argument in C++,

24

we overload the comma operator to simulate multiple arguments. Occassionally
this can cause an early evaluation problem, as seen in the code here:

// assume f takes 3 integer arguments

lambda(X)[f[1,2,X]] // oops! comma expression "1,2,X" means "2,X"

lambda(X)[f[1][2][X]] // ok; use currying to avoid the issue

Unfortunately, C++ sees the expression “1,2” and evaluates it eagerly as a
comma expression on integers.2 Fortunately, there is a simple solution: since all
full functoids are curryable, we can use currying to avoid comma. The issues
with comma suggest another problem, though: how do we call a zero-argument
function inside lambda? We found no pretty solution, and ended up inventing
this syntax:

// assume g takes no arguments and returns an int

// lambda(X)[X %plus% g[]] // illegal: g[] doesn’t parse

lambda(X)[X %plus% g[_*_]] // _*_ means "no argument here"

It’s better to have an ugly solution than none at all.
The if-then-else construct deserves discussion, as we provide three versions:

if0, if1, and if2. if0 is the typical version, and can be used in most instances. It
checks to make sure that its second and third arguments (the “then” branch and
the “else” branch) will have the same type when evaluated (and issues a helpful
custom error message if they won’t). The other two ifs are used for difficult type-
inferencing issues that come from letrec. In the factorial example at the end
of Figure 2, for example, the “else” branch is too difficult for FC++ to predict
the type of, owing to the recursive call to F. This results in if0 generating an
error. Thus we have if1 and if2 to deal with situations like these: if1 works
like if0, but just assumes the expression’s type will be the same as the type of
the “then” part, whereas if2 assumes the type is that of the “else” part. In the
factorial example, if1 is used, and thus the “then” branch (the int value 1) is
used to predict that the type of the whole if1 expression will be int.

Having three different ifs makes the lambda interface a little more compli-
cated, but the alternatives seemed to be either (1) to dispose of custom error
messages diagnosing if-then-elses whose branches had different types, or (2) to
write meta-programs to solve the recursive type equations created by letrec

to figure out its type within the library. Option (1) is unattractive because the
compiler-generated errors from non-parallel if-then-elses are hideous, and option
(2) would greatly complicate the metaprogramming in the library and slow down
compile-times even more. Thus we think our design choice is justified. Of course,
in the vast majority of cases, if0 is sufficient and this whole issue is moot; only
code which uses letrec may need if1 or if2.

5.5 Naming the C++ types of lambda expressions

Expression templates often yield objects with complex type names, and FC++
lambdas are no different. For example, the C++ type of

2 Some C++ compilers, like g++, will provide a useful warning diagnostic (“left-hand-
side of comma expression has no effect”), alerting the user to the problem.

25

// assume: LambdaVar<1> X; LambdaVar<2> Y;

lambda(X,Y)[(3 %multiplies% X) %plus% Y]

is

fcpp::Full2<fcpp::fcpp_lambda::Lambda2<fcpp::fcpp_lambda::exp::

Call<fcpp::fcpp_lambda::exp::Call<fcpp::fcpp_lambda::exp::Value<

fcpp::Full2<fcpp::impl::XPlus> >,fcpp::fcpp_lambda::exp::CONS<

fcpp::fcpp_lambda::exp::Call<fcpp::fcpp_lambda::exp::Call<fcpp::

fcpp_lambda::exp::Value<fcpp::Full2<fcpp::impl::XMultiplies> >,

fcpp::fcpp_lambda::exp::CONS<fcpp::fcpp_lambda::exp::Value<int>,

fcpp::fcpp_lambda::exp::NIL> >,fcpp::fcpp_lambda::exp::CONS<fcpp

::fcpp_lambda::exp::LambdaVar<1>,fcpp::fcpp_lambda::exp::NIL> >,

fcpp::fcpp_lambda::exp::NIL> >,fcpp::fcpp_lambda::exp::CONS<fcpp

::fcpp_lambda::exp::LambdaVar<2>,fcpp::fcpp_lambda::exp::NIL> >,1,2> >

In the vast majority of cases, the user never needs to name the type of a
lambda, since usually the lambda is just being passed off to another template
function. Occasionally, however, you want to store a lambda in a temporary
variable or return it from a function, and in these cases, you’ll need to name
its type. For those cases, we have designed the LEType type computer, which
provides a way to name the type of a lambda expression (LE). In the example
above, the type of

lambda(X,Y)[(3 %multiplies% X) %plus% Y]

// desugared: lambda(X,Y)[plus[multiplies[3][X]][Y]]

is

LEType< LAM< LV<1>, LV<2>,

CALL<CALL<Plus,CALL<CALL<Multiplies,int>,LV<1> > >,LV<2> > > >::Type

The general idea is that

LEType< Translated_LambdaExp >::Type

names the type of LambdaExp. Each of our primitive constructs in lambda has a
corresponding translated version understood by LEType:

CALL [] (function call)

LV LambdaVar

IF0,IF1,IF2 if0[],if1[],if2[]

LAM lambda()[]

LET let[].in[]

LETREC letrec[].in[]

BIND LambdaVar == value

With LEType, the task of naming the type of a lambda expression is still oner-
ous, but LEType at least makes it possible. Without the LEType type computer,
the type of lambda expressions could only be named by examining the library
implementation, which may change from version to version. LEType guarantees
a consistent interface for naming the types of lambda expressions.

Finally, it should be noted that if the lambda only needs to be used monomor-
phically, it is far simpler (though potentially less efficient) to just use an indirect
functoid:

26

// Can name the monomorphic "(int,int)->int" functoid type easily:

Fun2<int,int,int> f = lambda(X,Y)[(3 %multiplies% X) %plus% Y];

5.6 Comparison to other lambda libraries

Here we briefly compare our approach to implementing lambda to that of the
other major lambda libraries for C++: the Boost Lambda Library (BLL)[6] and
FACT![9].3

Boost Lambda Library Whereas FC++ takes the minimalist approach, BLL
takes the maximal approach. Practically every overloadable operator is sup-
ported within lambda expressions, and the library has special lambda-expression
constructs which mimic the control constructs of C++ (like while loops, switches,
exception handling, etc). The library also supports making references to vari-
ables, and side-effecting operators like increment and assignment. Lambda is
implicit rather than explicit; a reference to a placeholder variables (like _1)
turns an expression into a lambda on-the-fly.

BLL’s approach makes sense given the “target audience”; the Boost libraries
are designed for everyday C++ programmers. These are people who are familiar
with C++ constructs, and who are hopefully C++-savvy enough to avoid most
of the pitfalls of an expression-template lambda library. In contrast, FC++ is de-
signed to support functional programming in the style of languages like Haskell.
A number of our users come from other-language backgrounds, and aren’t too fa-
miliar with the intricacies of C++. Thus FC++’s lambda is designed to present a
simple interface with syntax and constructs familiar to functional programmers,
and to shield users from C++-complexities as much as possible.

FACT! FACT!, like FC++, is designed to support pure functional programming
constructs. Lambda expressions always perform capture “by value” and the re-
sulting functions are typically effect-free. Like FC++, FACT! has an explicit
lambda construct; the user can define his own names for placeholder variables,
but conventionally names like x and y are used. FACT! defines few primitive con-
trol constructs in its lambda sublanguage (just where for if-then-else). Like BLL,
however, FACT! overloads many C++ operators (like +) for use in lambda ex-
pressions. Thus FACT!’s interface is relatively simple and minimal, but lambda
expressions are not as visually distinctive as they are in FC++.

6 Monads

Monads provide a useful way to structure programs in a pure functional language.
Using monads, it is relatively straightforward to implement things like global

3 The FACT! library, like FC++, includes features other than lambda, e.g. functions
like map() and foldl() as well as data structures for lazy evaluation. BLL, on the
other hand, is concerned only with lambda.

27

state, exceptions, I/O, and other concepts common to impure languages that
are otherwise difficult to implement in pure functional languages[6, 14].

Supporting monads in FC++ is an interesting task for a number of reasons:

– Many interesting functional programs and libraries use monads; monad sup-
port in FC++ makes it easier to port these libraries to C++.

– Monads in Haskell take advantage of some of that language’s most expres-
sively powerful syntax and constructs, including type classes, do-notation,
and comprehensions. Modelling these in C++ helps us better understand
the relationship between the expressive power of these languages.

– Monads provide a way to factor out some cross-cutting concerns, so that
local program changes can have global effects. (We discuss a few example
applications that illustrate this.)

In the next subsection, we give a short introduction to monadic programming
in Haskell. Next we discuss the relationship between type classes in Haskell and
concepts in C++; understanding this relationship facilitates the discussion in
the rest of this section. Then we discuss how we have implemented monads in
FC++. We end with some example applications of monads.

6.1 Introduction to monads in Haskell

We briefly introduce a small portion of the Haskell programming language,4

as its type system provides perhaps the most succinct and transparent way to
understand the details of what a monad is. For the moment, know that a monad
is a particular kind of data type, which supports two operations (named unit

and bind) with certain signatures that obey certain properties. We shall return
to the details after a short digression with Haskell.

In Haskell, the declaration o :: T says that object o has type T. Basic type
names (like Int) start with capital letters. Lowercase letters are used for free
type variables (parametric polymorphism – e.g. templates). The symbol [T]
represents a list of T objects. The symbol -> separates function arguments and
results. The symbol -- starts a comment. Here are a few examples.

x :: Int -- x is an integer

add1 :: Int -> Int -- add1 is a function from Int to Int

plus :: Int -> Int -> Int -- plus takes two Ints and returns an Int

-- (Or, equivalently, plus takes one Int, and returns a function

-- which takes an Int and returns an Int. Currying is built in.)

id :: a -> a -- id takes any type of object and returns

-- an object of the same type

map :: (a -> b) -> [a] -> [b] -- map is a polymorphic function of two

4 Haskell programmers will note that we are fudging some of the details of Haskell to
simplify the discussion.

28

-- arguments; it takes a function from type a to type b, and a

-- list of objects of type a, and returns a list of b objects

Free type variables can be bounded by “type classes” (described shortly). For
example, a function to sort a list requires that the type of elements in the list
are comparable with the less-than operator. In Haskell we would say:

sort :: (Ord a) => [a] -> [a]

That is, sort is a function which takes a list of a objects and returns a list of a
objects, subject to the constraint that the type a is a member of the Ord type
class. Type class Ord in Haskell represents those types which support ordering
operators like

class Ord a where

== :: a -> a -> Bool

< :: a -> a -> Bool

<= :: a -> a -> Bool

-- etc.

We say that a type T is an instance of type class C when the type supports the
methods in the type class. For example, it is true that

instance Ord Int -- Int is an instance of Ord

Given this overview of Haskell’s types and type classes, we can now describe
monads. A monad is a type class with two operations:

class Monad m where

bind :: m a -> (a -> m b) -> m b

unit :: a -> m a

In this case, instances of monads are not types, but rather they are “type con-
structors”. These are like template classes in C++; an example is a list. In C++
std::list is not a type, but std::list<int> is. The same holds for Haskell; []
is not a type, but [Int] is. In the code describing the monad type class above,
m is a type constructor.

It turns out that lists are instances of monads:

instance Monad [] where

bind m k = concat (map k m) -- don’t worry about these

unit x = [x] -- definitions yet

-- in the list monad

-- bind :: [a] -> (a -> [b]) -> [b]

-- unit :: a -> [a]

As another example, consider the Maybe type constructor. The type “Maybe a”
represents a value which is either just an a object, or else nothing. In Haskell:

data Maybe a = Nothing | Just a

-- Examples of variables

x :: Maybe Int

29

x = Just 3

y :: Maybe Int

y = Nothing

Maybe also forms a monad with this definition:

instance Monad Maybe where

bind (Just x) k = k x -- don’t worry about

bind Nothing k = Nothing -- these definitions

unit x = Just x -- yet

-- in the Maybe monad

-- bind :: Maybe a -> (a -> Maybe b) -> Maybe b

-- unit :: a -> Maybe a

A refinement of the Monad type class is MonadWithZero:

class (Monad m) => MonadWithZero m where

zero :: m a

The zero element of a monad is a value which is in the monad regardless of
what type was passed to the monad type constructor. For lists, the empty list
([]) is the zero. For Maybe, the zero is Nothing. Not all monads have zeroes,
which is why MonadWithZero is a separate type class.

Monads with zeroes can be used in comprehensions with guards. Compre-
hensions are a special notation for expressing computations in a monad. Haskell
supports comprehensions for the list monad; an example is

[x+y | x <- [1,2,3], y <- [2,3], x<y]

-- results in [3,4,5]

This list comprehension could be interpreted as “the list of values x plus y, for
all x and y where x is selected from the list [1,2,3] and y is selected from the list
[2,3], and where x is less than y”. The desugared version of the Haskell code is:

-- (\z -> z+1) is Haskell lambda syntax: (lambda(Z)[Z %plus% 1])

-- backquotes are Haskell’s infix syntax: (x ‘f‘ y == f x y)

[1,2,3] ‘bind‘ (\x ->

[2,3] ‘bind‘ (\y ->

if not (x<y) then zero

else unit (x+y)))

The translation from the comprehension notation to the desugared code is
straightforward. Starting from the vertical bar and going to the right, the ex-
pressions of the form “var <- exp” turn into calls to bind and lambdas, and
guards (boolean conditions) are transformed into if-then-else expressions which
return the monad zero if the condition fails to hold. After all expressions to the
right of the vertical bar have been processed, the expression to the left of the
vertical bar gets unit called on it to lift the final computed value back into the
monad.

30

6.2 Haskell’s type classes and C++ template concepts

In the C++ literature, we sometimes speak of template concepts. A concept in
C++ is a set of constraints which a type is required to meet in order to be used
to instantiate a template. For example, in the implementation of the template
function std::find(), there will undoubtedly be some code along the lines of

if(cur_element == target) // ...

which compares two elements for equality using the equality operator. Thus, in
order to call std::find() to find a value in a container, the element type must
be EqualityComparable—that is, it must support the equality operator with
the right semantics. We call EqualityComparable a concept, and we say that
types (such as int) which meet the constraints model the concept. Concepts
exist only implicitly in the C++ code (e.g. owing to the call to operator==() in
the implementation), and often exist explicitly in documentation of the library.
Some C++ libraries[9, 10] are devoted to “concept checking”, these libraries
check to see that the types used to instantiate a template do indeed model the
required concepts (and issue a useful error message if not).

Haskell type classes are analogous to C++ concepts. However in Haskell they
are reified; there are language constructs to define type classes and to declare
which types are instances of those type classes. In C++, when a certain type
models a certain concept (by meeting all of the appropriate constaints), it is
merely happenstance (structural conformance); in Haskell, however, in addition
to meeting the constraints of a type class interface, a type must be declared
to be an instance of the concept (named conformance). “Concept checking” in
Haskell is built into the language: type classes define concepts, instance declara-
tions say which types model which concepts, and type bounds make explicit the
constraints on any particular polymorphic function.

Understanding this analogy will make the FC++ implementation of monads
more transparent. As we shall see, in the FC++ library, we spell out the con-
cept requirements on monads, in order to make it easier for clients who write
monads to ensure that they have provided all of the necessary functionality in
the templates.

6.3 Comparing monads in FC++ to those in Haskell

Let us now illustrate monad definitions in FC++. As a first example, we shall
look at Maybe. The Maybe template class and its associated entities are defined
in Figure 3. NOTHING is the constant which represents an “empty” Maybe, and
just() is a functoid which turns a value of type T into a “full” Maybe<T>. (Maybe
is implemented using a List which holds either one or zero elements.)

Next we consider how to make Maybe a monad. Figure 4 describes the general
monad concepts as specified in the FC++ documentation. A monad class must
define the methods unit and bind (with the appropriate signatures); a class
representing a monad with a zero must meet the above requirements as well as
defining a zero element.

31

struct AUniqueTypeForNothing {};

AUniqueTypeForNothing NOTHING;

template <class T>

class Maybe {

List<T> rep;

public:

typedef T ElementType;

Maybe(AUniqueTypeForNothing) {}

Maybe() {} // Nothing constructor

Maybe(const T& x) : rep(cons(x,NIL)) {} // Just constructor

bool is_nothing() const { return null(rep); }

T value() const { return head(rep); }

};

struct XJust {

template <class T> struct Sig : public FunType<T,Maybe<T> > {};

template <class T>

typename Sig<T>::ResultType

operator()(const T& x) const {

return Maybe<T>(x);

}

};

typedef Full1<XJust> Just;

Just just;

Fig. 3. The Maybe datatype in FC++

/*

concept Monad {

// full functoid with Sig unit :: a -> m a

typedef Unit;

static Unit unit;

// full functoid with Sig bind :: m a -> (a -> m b) -> m b

typedef Bind;

static Bind bind;

}

concept MonadWithZero models Monad {

// zero :: m a

typedef Zero; // a value type

static Zero zero;

}

*/

Fig. 4. Documentation of the monad concept requirements in FC++

32

struct MaybeM {

typedef Just Unit;

static Unit unit;

struct XBind {

template <class M, class K> struct Sig : public FunType<M,K,

typename RT<K,typename M::ElementType>::ResultType> {};

template <class M, class K>

typename Sig<M,K>::ResultType

operator()(const M& m, const K& k) const {

if(m.is_nothing())

return NOTHING;

else

return k(m.value());

}

};

typedef Full2<XBind> Bind;

static Bind bind;

typedef AUniqueTypeForNothing Zero;

static Zero zero;

};

Fig. 5. Definition of the Maybe monad (MaybeM)

Figure 5 shows how we define the Maybe monad in FC++. Nested in struct
MaybeM we define unit, bind, and zero, as well as typedefs for their types. This
FC++ definition effectively corresponds to the definitions

instance Monad Maybe -- ...

instance MonadWithZero Maybe -- ...

in Haskell.
It should be noted here that the one major difference between monads in

FC++ and monads in Haskell is that, in FC++, there is a distinction between
the monad type constructor (e.g. Maybe) and the monad itself (e.g. MaybeM). We
chose to make this distinction for reasons discussed next.

One advantage to separating the type constructor (Maybe) from the monad
definition (MaybeM) is that, since the monad definition is itself a data type, it
can be used as a type parameter to template functions. As a result, rather than
supporting just list comprehensions (like Haskell does), in FC++ we support
comprehensions in an arbitrary monad, by passing the monad as a template
parameter to the comprehension. For example, the Haskell list comprehension

[x+y | x <- [1,2,3], y <- [2,3], x<y]

is written in FC++ as

compM<ListM>()[X %plus% Y |

X <= list_with(1,2,3), Y <= list_with(2,3), guard[X %less% Y]]

33

Note how ListM is passed as an explicit template parameter to the compM func-
tion, which returns a comprehension for that monad. As a result, we can write

compM<MaybeM>()[X %plus% Y | X <= just(2), Y <= just(3)]

and perform a comprehension in the Maybe monad. Having a name apart from
the data type constructor to serve as a handle for the monad definition (e.g.
ListM, MaybeM) gives us a convenient way to parameterize monad operations.
(The idea of generalizing comprehensions to arbitrary monads was originally
discussed by Wadler[15].)

There is another advantage to separating the type constructor from the
monad definition. Haskell type classes require algebraic data type constructors
(not type aliases) to work. As a result, we cannot express the identity monad (a
monad where m a = a) directly in Haskell. Instead we have to fake it by defining
a new data type (which we have chosen to call Identity):

data Identity a = Ident a

instance Monad Identity where -- m a = Identity a

unit x = x

bind m k = k m

where values of type a are wrapped/unwrapped with the value constructor Ident
to make them members of the type Identity a. In FC++, however, we can
define the monad without also having to define a new data type to represent
identities, as seen in Figure 6. The reason for the distinction is perhaps obvious.
Haskell uses type inference, which means it must unambiguously be able to figure
out which monad a particular data type is in. This type inference is not possible
unless there is a one-to-one mapping between algebraic datatype constructors
and monads. In FC++, on the other hand, the user passes the monad explicitly
as a template parameter to constructs like compM. By requiring the user to be
a little more explicit about the types, we gain a bit of expressive freedom (e.g.
being able to do comprehensions in arbitrary monads).

6.4 Monads in FC++

The previous subsection introduced FC++ monads. Here we flesh out exactly
what monad support FC++ provides.

FC++ provides functoids for the main monad operations. Specifically:

unitM<SomeMonad>() // SomeMonad’s "unit" functoid

bindM<SomeMonad>() // SomeMonad’s "bind" functoid

zeroM<SomeMonad>() // SomeMonad’s "zero" value

plusM<SomeMonad>() // SomeMonad’s "plus" functoid

bindM_<SomeMonad>() // SomeMonad’s "bind_" functoid

mapM<SomeMonad>() // SomeMonad’s "map" functoid

joinM<SomeMonad>() // SomeMonad’s "join" functoid

liftM<SomeMonad>() // lifts a one-arg function into SomeMonad

liftM2<SomeMonad>() // lifts a two-arg function into SomeMonad

34

// Nothing corresponding to Identity data type needed by Haskell

struct IdentityM { // M a = a

typedef Id Unit;

static Unit unit;

struct XBind {

template <class M, class K> struct Sig : public FunType<M,K,

typename RT<K,M>::ResultType> {};

template <class M, class K>

typename Sig<M,K>::ResultType

operator()(const M& m, const K& k) const {

return k(m);

}

};

typedef Full2<XBind> Bind;

static Bind bind;

};

Fig. 6. Definition of the IdentityM monad

liftM3<SomeMonad>() // lifts a three-arg function into SomeMonad

bind // "bind" (monad is inferred)

bind_ // "bind_" (monad is inferred)

Many of these have not been previously mentioned; plusM is another function
supported by some monads; bindM_, mapM, joinM, and the liftM functions are
common monad operations which are defined in terms of unitM and bindM; bind
and bind_ are described more below.

FC++ supports comprehensions in arbitrary monads, using the general syn-
tax:

compM<SomeMonad>()[lambdaExp | thing, thing, ... thing]

where thing is one of

– a gets expression of the form “LV <= lambdaExp” (Translates into a call to
bind)

– a lambda expression (Translates into a call to bind_)
– a guard expression of the form “guard[boolLambdaExp]” (Translates into

an if-then-else with zero if the test fails)

This is similar to the syntax used by Haskell’s list comprehensions. FC++ also
supports a construct similar to Haskell’s do-notation:

doM[thing, thing, ... thing]

where each thing is as before, only guards are no longer allowed. (The lack of
a monad parameter to doM is discussed shortly.)

Clients can define monads by creating monad classes which model the monad
concepts described in the previous subsection (Monad and MonadWithZero).

35

There is also a MonadWithPlus concept for monads which support plus. Ad-
ditionally there is another concept called InferrableMonad, which may be
modelled when there is a one-to-one correspondence between a datatype and
a monad. In the case of InferrableMonads, FC++ (like Haskell) can automat-
ically infer the monad based on the datatype in some cases; constructs like doM

and the functoids bind and bind_ do not need to have a monad passed an an
explicit parameter—they infer it automatically.

The monad syntax is part of FC++’s lambda sublanguage. As with lambda,
we strived for minimalism when implementing monads. The only new operator
overloads are operator| and operator<=, and the only new syntax primitives
are compM, guard, and doM. As with the rest of lambda, we provide LEType
translations so that clients can name the result type of lambda expressions which
use monads:

DOM doM[]

GETS LambdaVar <= value

GUARD guard[]

COMP compM<SomeMonad>()[]

As with the other portions of lambda, FC++ provides some custom error mes-
sages for common abuses of the monad constructs. We followed the same design
principles discussed in Section 5 when implementing monads in FC++.

6.5 Monad examples

There are many example applications which use monads; here we discuss a small
sample to give a feel for what monads are useful for.

Using MaybeM for exceptions One classic example of the utility of monads
comes from the domain of exception handling. Suppose we have written some
code which computes some values using some functions:

x = f(3);

y = g(x);

z = h(x,y);

return z;

(For the sake of argument, let’s say that the functions f, g, and h take posi-
tive integers as arguments and return positive integers as results.) Now suppose
that each of the functions above may fail for some reason. In a language with
exceptions, we could throw exceptions in the case of failure. However in a lan-
guage without an exception mechanism (like C or Haskell), we would typically be
forced to represent failure using some sentinel value (-1, say), and then change
the client code to

x = f(3);

if(x == -1) {

return -1;

} else {

36

y = g(x);

if(y == -1) {

return -1;

} else {

z = h(x,y);

return z;

}

}

This is painful because the “exception handling” part of the code clutters up the
main line code. However, we can solve the problem much more simply by using
the Maybe monad. Let the functions return values of type Maybe<int>, and let
NOTHING represent failure. Now the client code can be written as just

compM<MaybeM>()[Z | X <= f[3],

Y <= g[X],

Z <= h[X,Y]]

The definitions of unit and bind in the MaybeM monad make the problem trivial;
NOTHING values immediately propogate up through the end of the comprehension,
whereas integers continue on through the computation as desired.

Using ListM for non-determinism Now imagine changing the problem above
slightly; instead of the functions f, g, and h having the possibility of failure,
suppose instead that they are non-deterministic. That is, suppose each func-
tion returns not a single integer, but rather a list of all possible integer results.
Changing the original client code to deal with this change would likely be even
uglier than the original change (which required all the tests for -1). However the
change to the monadic version is trivial:

compM<ListM>()[Z | X <= f[3], -- Note ListM instead of MaybeM

Y <= g[X],

Z <= h[X,Y]]

The result is a list of all the possible integer values for Z which satistfy the
formulae.

A monadic evaluator Wadler [15] demonstrates the utility of monads in the
context of writing an expression evaluator. Wadler gives an example of an in-
terpreter for a tiny expression language, and shows how adding various kinds
of functionality, such as error handling, counting the number of reduction op-
erations performed, keeping an execution trace, etc. takes a bit of work. The
evaluator is then rewritten using monads, and the various additions are revis-
ited. In the monadic version, the changes necessary to effect each of the additions
are much smaller and more local than the changes to the original (non-monadic)
program. This example demonstrates the value of using monads to structure
programs in order to localize the changes necessary to make a wide variety of
additions throughout a program.

37

Monadic parser combinators Parsing is a domain which is especially well-
suited to monads. In the Haskell community, “monadic parser combinators” are
becoming the standard way to structure parsing libraries. As it turns out, parsers
can be expressed as a monad: a typical representation type for parser monads is

Parser a = String -> Maybe (a, String) -- the monad "Parser"

That is, a parser is a function which takes a String and returns

– (if the parse succeeds) a pair containing the result of the parse and the
remaining (yet unparsed) String, or

– (if the parse fails) Nothing.

Monadic parser combinators are functions which combine parsers to yield new
parsers, typically in ways commonly found in the domain of parsing and gram-
mars. For example, the parser combinator many:

many :: Parser a -> Parser [a]

implements Kleene star—for example, given a parser which parses a single digit
called “digit”, the parser “many digit” parses any number of digits. Monadic
parser combinator libraries typically provide a number of basic parsers (e.g.
charP, which parses any character and returns that character) and combinators
(e.g. plusP, which takes two parsers and returns a new parser which tries to
parse a string with the first parser, but if that fails, uses the second) to clients.
The beauty of the monadic parser combinator approach is that it is easy for
clients to define their own parsers and combinators for their specific needs. A
good introductory paper on the topic of monadic parser combinators in Haskell
is [3]; we implement the examples in that paper in one of the example files that
comes with the FC++ library.

As we have seen in the previous examples, using monads often makes it easy
to change some fundamental aspect of the behavior of the program. For example,
if we have an ambiguous grammar (one for which some strings admit multiple
parses), we can simply change the representation type for the parser like so:

Parser a = String -> [(a, String)] -- uses List instead of Maybe

and redefine the monad operations (unit, bind, zero, and plus), and then
parsers will return a list of every possible parse of the string. This is all possible
without making any changes to existing client code.

One alternative approach to writing parsing libraries in C++ is that taken
by the Boost Spirit Library[1]. Spirit uses expression templates to turn C++
into a yacc-like tool, where parsers can be expressed using syntax similar to the
language grammar. For example, given the expression language

factor ::= integer | group // BNF

term ::= factor (mulOp factor)*

expression ::= term (addOp term)*

group ::= ’(’ expression ’)’

one can write a parser using Spirit as

38

factor = integer | group; // Spirit (C++)

term = factor >> *(mulOp >> factor);

expression = term >> *(addOp >> term);

group = ’(’ >> expression >> ’)’;

which is almost just as readable as the grammar. Like yacc, Spirit has a way to
associate semantic actions with each rule.

The results are similar with monadic parser combinators. Using an FC++
monadic parser combinator library, we can write

factor = lambda(S)[(integer %plusP% dereference[&group])[S]];

term = factor ^chainl1^ mulOp;

expression = term ^chainl1^ addOp;

group = bracket(charP(’(’), expression, charP(’)’));

to express the same parser. The above FC++ code creates parser functoids by
using more primitive parsers and combining them with appropriate parser com-
binators like chainl1. (Note that, whereas Spirit’s parser rules are effectively “by
reference”, FC++ functoids are “by value”, which means we need to explicitly
create indirection to break the recursion among these functoids. Hence the use
of lambda, dereference, and the address-of operator.) This FC++ parser not
only parses the string, but it also evaluates the arithmetic expression parsed. The
semantics are built into the user-defined combinators like addOp and chainl1.
For example,

addOp :: Parser (Int -> Int -> Int)

parses a symbol like ’-’ and returns the corresponding functoid (minus). Then,

chainl1 :: Parser a -> Parser (a -> a -> a) -> Parser a

-- e.g. p ‘chainl1‘ op

parses repeated applications of parser p , separated by applications of parser op
(whose result is a left-assocative function, which is used to combine the results
from the p parsers). Thus monadic parser combinator libraries allow one to
express parsers at a level of abstraction comparable to tools like yacc or the
Spirit library, but in a way in which users can define their own abstractions (like
chainl1) for parsing and semantics, rather than just using the builtin ones (like
Kleene star) supplied by the tool/library.

Lazy evaluation Previous versions of FC++ supported lazy evaluation in two
main ways: first, via the lazy List class and the functions (like map) that use
Lists, and second, via “thunks” (zero argument functoids, like Fun0<T>). Mon-
ads provide a new, more general mechanism to lazify computations. The datatype
ByNeed<T> and its associated monad ByNeedM can be used to make a computa-
tion lazy. Additionally, the functoid bLift lazifies a functoid by lifting its result
into the ByNeedM monad. For example, we can lazify

x = f(3);

y = g(x);

z = h(x,y);

39

by writing

compM<ByNeedM>()[Z | X <= bLift[f] [3],

Y <= bLift[g] [X],

Z <= bLift[h] [X,Y]]

The result is a ByNeed<int> value, which is a computation that will result in an
int when “forced” by calling bForce. (Conversely, a constant can be turned into
a by-need computation by calling bDelay.) Using values of type ByNeed<T> in
lieu of type T ensures that lazy evaluation occurs: a computation is not performed
until the value is demanded, and once a computation has been run to produce a
value, the value is cached so that further applications of bForce get the cached
value rather than re-running the computation.

In short, the datatype ByNeed<T> combines “thunks” with caching, and the
ByNeedM monad makes syntax sugar like comprehensions available so that client
code working with ByNeed<T> objects need not be concerned with all the “forc-
ing” and “delaying” in the midst of the computation (the monad plumbing
handles this).

Summary The examples given in this section give a sense of the kinds of
applications for which monads are useful. Monads have a wide variety of utilities,
which span varied domains (such as parsing and lists) and a number of cross-
cutting concerns (like lazy evaluation and exception handling). Prior versions of
FC++ implemented a few small monads, but they were extremely burdensome
to express. The expressiveness afforded by the new FC++ syntactic sugar (like
lambda and comprehensions) makes using monads in C++ a practicality for the
first time.

7 Conclusions

We have given an overview of FC++ and described its new features in de-
tail. Full functoids provide a general and reusable mechanism for adding fea-
tures such as curryability, infix syntax, and lambda-awareness to every func-
toid. The lambda sublanguage is designed to minimize the problems common
to all expression-template lambda libraries in C++. We have discussed the re-
lationship between Haskell type classes and C++ template concepts in order to
help describe how monads can be expressed in FC++. We have demonstrated a
novel syntax for comprehensions which generalizes this construct to an arbitrary
monad. Throughout FC++ and the lambda sublanguage, we have overloaded a
select few operators to provide syntactic sugar for the library and we have used
named functoids like plus to express the actual operations of C++ operators.

References

[1] de Guzman, Joel, et al. The Boost Spirit Library. Available at
http://www.boost.org/libs/spirit/index.html

40

[2] Haskell 98 Language Report. Available online at
http://www.haskell.org/onlinereport/

[3] Hutton Graham and Meijer Erik. “Monadic parsing in Haskell” Journal of Func-
tional Programming, 8(4):437-444, Cambridge University Press, July 1998.

[4] ISO/IEC 14882: Programming Languages – C++. ANSI, 1998.
[5] Järvi, Jaakko and Powell, Gary. The Boost Lambda Library. Available at

http://boost.org/libs/lambda/doc/index.html

[6] Jones, Simon Peyton and Wadler, Philip. “Imperative functional programming,”
20th Symposium on Principles of Programming Languages, ACM Press, Charlotte,
North Carolina, January 1993.

[7] McNamara, Brian and Smaragdakis, Yannis. “FC++: Functional Programming
in C++”, Proc. International Conference on Functional Programming (ICFP),
Montreal, Canada, September 2000.

[8] McNamara, Brian and Smaragdakis, Yannis. “Functional Programming with the
FC++ library” Journal of Functional Programming, to appear.

[9] McNamara, Brian and Smaragdakis, Yannis. “Static Interfaces in C++” Work-
shop on C++ Template Programming October 2000, Erfurt, Germany. Available
at
http://www.oonumerics.org/tmpw00/

[10] Siek, Jeremy and Lumsdaine, Andrew. “Concept Checking: Binding Paramet-
ric Polymorphism in C++” Workshop on C++ Template Programming October
2000, Erfurt, Germany. Available at http://www.oonumerics.org/tmpw00/

[11] Y. Smaragdakis and B. McNamara, “FC++: Functional Tools for Object-Oriented
Tasks” Software Practice and Experience, August 2002.

[12] A. Stepanov and M. Lee, “The Standard Template Library”, 1995. Incorporated
in ANSI/ISO Committee C++ Standard.

[13] Striegnitz, Jörg. “FACT! The Functional Side of C++,” Available at
http://www.fz-juelich.de/zam/FACT

[14] Wadler, Philip. “Comprehending monads,” Mathematical Structures in Computer
Science, Special issue of selected papers from 6th Conference on Lisp and Func-
tional Programming, 2:461-493, 1992.

[15] Wadler, Philip. “Monads for functional programming.” J. Jeuring and E. Meijer,
editors, Advanced Functional Programming, Springer Verlag, LNCS 925, 1995.

41

Importing alternative paradigms into modern

object-oriented languages.

Andrey V. Stolyarov

Moscow State Lomonosov University,
dept. of Computational Math. and Cybernetics,
MGU, II uch. korp., komn.747, Leninskie Gory,

Moscow, 119899, Russia

Abstract. The paper is devoted to the problem of importing alterna-
tive paradigms into an imperative object-orented environment. Several
known solutions of the problem are discussed with explanation of their
drawbacks. Then a new solution is introduced.
The solution is based on the fact that programming paradigms devel-
oped within alternative languages such as Lisp, Prolog, Refal etc. are in
fact independent from their respective languages (e.g., from their syn-
tax). Each of these languages implements a certain algebra, which in
fact creates the paradigms. It is possible to represent such an algebra
with object-oriented technique and get the respective set of paradigms
within the primary language. Together with syntactic capabilities of the
primary language (such as overloading of standard arythmetic operation
symbols) this results in possibility for a programmer to use alternative
paradigms (such as Lisp programming) right within the primary lan-
guage (C++ or Ada95). No changes to the primary language is needed,
nor is it required to apply any additional preprocessing to the code; only
the standard translator of the primary language is used. The only thing
needed to use the explained approach is an appropriate library.
As an illustration, the paper describes a C++ class library named In-
teLib which currently has a practically usable implementation for Lisp
programming, and experimental umplementations of Refal and a subset
of Prolog.

1 Introduction

Different programming languages encourage a programmer to use different ways
to imagine the program being developed, the environment (hardware, operat-
ing system, user etc) and their interaction. The simplest way is to imagine a
computer either as such (processor, memory, i/o ports etc) or a some kind of
virtual machine capable to perform certain set of operations, and a program
as a sequence of instructions those explicitly specify what operations are to be
performed. This way of thinking is known as ”imperative programming”.

Another technique, proposed in early 1960s [10], is to represent the program
as a set of functions. Each function gets zero or more arguments and computes
a result. A function may use other functions in computations, including using

43

itself, directly or indirectly (so called recursive function calls). No side effects
are allowed, that is, if all the arguments are known, one can replace a function
call with it’s result and get the same program. This is known as ”pure functional
programming” [7].

Several years later, ”logic programming” [12] was proposed. In logic pro-
gramming, the program is thought as a set of logic facts (axioms) used to test
statements and find objects that satisfy the given conditions. Pure logic pro-
gramming also disallows side effects.

Obviously, both pure functional and pure logic programming are not suitable
for interactive programs because interactive program changes its environment
at least reading from the input and writing to the output so it’s required to
have functions with side effects to create an interactive program. In contrast
with these two styles, the technique of object-oriented programming appeared
in the middle 1970s looks like being created specially for interactive software
development. The program and its environment are represented with so-called
”objects” – abstract ”black boxes” capable to exchange messages and perform
various actions in response to a message [2].

The notion of a programming paradigm is often used to refer to a particular
system of programming abstractions. It is important to notice that the notion of
a programming paradigm is significantly unformal. There is no well-established
classification of programming paradigms though there were many attempts to
give one (e.g., [13]). For example, the languages Lisp[15], Refal[17], Miranda[18]
and Hope[7] are all usually taken as functional languages. However, they in fact
have less in common than in differences. E.g., a Refal function is based on text
matching against patterns and transforming in accordance to the rule for the
pattern first matched. There’s no such capability in Lisp. This makes it more
convenient to perform lexical and syntactic analyses with Refal than with Lisp.
Hope and Miranda are pure functional languages while Lisp has global variables
and local lexical bindings changeable as a side effect of a function, etc.

Nowadays the union of imperative and object-oriented paradigms is the most
popular in the software industry. The union is implemented by such languages
as C++ [16], Ada95, Java, Delphi, Object Pascal etc.

Using different languages together within a single project leads to different
serious problems so it is rare practice; most projects are single-language, and
the langage is one of these imperative object-oriented languages listed above.
In most cases it is inconvenient to implement a whole project in Lisp, Refal or
Prolog. This in fact results in that these languages are rarely used at all despite
that they are extremely suitable for some subtasks in almost any project.

2 Example of a project suitable for multiparadigm
technique

As noted in [6], ”We may encounter application domains which can be modeled
best with only one paradigm. But there may be other domains which can be
represented more adequately using multiple paradigms”. Furthermore, in almost

44

any large software project there are subtasks for which alternative paradigms are
suitable.

Consider we have a database with complicated relationship within its com-
ponents, and a user who needs a good interface to the database, preferably close
to a natural language. First of all, we have to analyse the queries user types
at his console (lexical analysis). Then we need to determine what do they mean
(syntax analysis). Finally, we need to create and perform a query to the database
and return its results to the user.

It takes significant time to write a lexical analyser in an imperative language
such as C++. If we do it in Refal, however, the work’s complexity reduces by
tens of times.

Next, we need to do some more processing to prepare the query. We should
determine what formulae do mean and probably perform some transformations,
optimizations etc. It is hard to operate with symbolic formulae in C++, but in
Lisp all the symbolic transformations are programmed simply.

Now we are ready to request and retrieve a result from the database. It’s not
a problem when the query is simple; for instance, if we’ve got a database storing
personal data of some people, a request like ”Give me a home phone number of
Bob Johnson” after lexical analysis and syntax transformations is not a problem
to perform. However, the user might ask for a thing much harder to calculate.
For example: ”Find me a female who has graduated in 1997 in the Moscow State
University as a computer science person, then got married in 1998 with a male
who speaks fluent English and is older than his wife by 3 years”. It is possible to
create a database that stores all the necessary data, but a request like this might
force us to write a whole program to complete it. Please note that we know the
conditions and the only problem is to find the solution which satisfies them all.
Logic languages such as Prolog, Datalog etc. are suitable for this purpose [5].

It looks like a good idea to make data flow such as shown at fig. 1

User � Refal � Lisp � Prolog � Database
�

Fig. 1. Simple idea of data flow between parts implemented in different languages

However, the diagram at fig. 1 does not represent all the functionality of the
hypotetical system. First, it must interact with a user, possibly via a network.
Second, it should control the database, which is probably to be used by many
users simultaneously. That leads to many technological problems (e.g., locking)
to be solved by the system. In addition, we should not forget that the data is
stored on physical (that is, real) disks, so we need to monitor the file system,

45

check whether there’s sufficient amount of free space, do some caching to increase
performance etc.

Languages such as Refal, Prolog and Lisp are not good to do all these things.
Their features are far from the real equipment capabilities. They are not so
efficient as C++ and other ”universal” imperative languages. For an artificial
intelligence tasks such as the one described below, it is possible to trade efficiency
of the software for development speed increase, but in a system task envolved to
maintain the data storage it is inacceptable to loose in efficiency.

Besides that, interaction with a user in modern systems requires graphical
interface (GUI), which is usually created as an event-driven system. It is incon-
venient to create an event-driven system with an artificial intelligence language.
Object-oriented languages such as SmallTalk[8], C++ or Java are much more
suitable for this purpose.

The diagram at fig. 2 is closer to practice. We assume that ”User Interface”
and ”Database Management System” are created with languages suitable for
these purposes, probably C and C++. So we have C++ as a primary language
and Lisp, Prolog and Refal as secondary languages.

User
�

� User Interface(C + +)

�

Refal � Lisp � Prolog

�

�

�

Data
�

� Database management system (C)

Fig. 2. Data flow closer to reality

However, when someone tries to use such an idea in a real project, she finds
out it is much harder to implement such a system than to create a diagram. If
we try to use an alternative language for a particular (small) subtask in a large
project, we get into a trouble with integration of language tools that have so
totally different nature (for instance, strictly typed imperative language as the
primary language and a typeless functional language as the secondary language).
There are problems in calling conventions, in sharing global data, in using heaps
etc.

Furthermore, even the fact of using two or more different programming sys-
tems within one project makes the project harder to manage. If one of the
programmers does not know one of the used programming systems, she could

46

get into a trouble trying to build the project, to fix someone else’s code etc. The
difficulty of managing a project which uses two or more programming systems is
so serious that this reason alone is able to prevent senior developers from making
decisions of using different languages.

3 Different ways towards multiparadigm environment
creation

It is obvious that an ability of using different paradigms together is attractive.
There are certain difficulties though that prevent programmers from trying mul-
tiparadigm programming.

Before we introduce the new idea which hopefully allows to avoid most of
the troubles, let us discuss some possible (and well-known) ways of creation of
a multiparadigm environment.

We’ll try to understand why each of them didn’t become as widely-used as it
is necessary to satisfy the need in multiparadigm programming. This will allow
us to specify what do we actually want from the new technique.

3.1 Creation of another programming language

There were many attempts to create a new programming language for the pur-
pose of multiparadigm programming (e.g., Leda[3], Oz[11] etc.). There is an
unexpected trouble however. It is expensive to develop a new language. It is yet
more expensive to bring the newly-developed language to the level of an indus-
trial product so that it can be used in real software engineering practice, because
this requires to support the language with useful software tools (compilers, de-
buggers etc.), as well as to create sufficient amount of documentation, tutorials
and write and publish lots of books. But the real trouble is then to wait and
see that the software engineering community doesn’t tend to use the language
in spite of all its advantages.

It is somewhat magic1 when the community turns towards a new language,
and this is a very rare kind of event, probably because the community is too
conservative2. In fact it has to be. Really, starting to use a new technology
requires to reeducate the personnel and change habitual methods of working.
Both are very expensive, while outcome of changing languages is not so clear,
specially to managers who make decisions.

This is why we decide not to try to create another language, even by ex-
tending an existing one. Enough of them are created already but that doesn’t
help.

1 E.g., community preferred to use C++ with all its drawbacks while a similar but
better-looking and carefully developed language Ada is in fact forgotten

2 There’s nothing bad though in this conservatism. Everything happens too fast in
Computer Science so if the industry wasn’t so conservative, we’d have nothing ac-
tually done.

47

3.2 A package of differently implemented programs

There are as well a few approaches to solve the problems of different program-
ming languages integration within a single project. The simplest idea is just to
write several programs, each in its own language, and make them interoperate
using operating system’s capabilities.

This kind of solution avoids problems with calling and data conventions, link-
ing incompatibilities etc. It doesn’t help tough with problems of using different
programming systems within a single project.

Besides that, interoperation organization produces its own problems depend-
ing on a particular technology.

Using Unix style3, when every program of the package has standard streams
of input and output and the interoperation is done with command languages,
we have to convert all the data somehow into a text representation, and then
analyse the representation in another program of the package. Another drawback
is that it is not always convenient to use the standard input/output streams for
interoperation with another part of the package.

There are some attempts to make another, more convenient for a programmer
standard way to organize interoperation of different programs, such as CORBA
and COM. However, such technologies theyselves are complicated enough so
that making a program to support them could be comparable in difficulty with
solving the task the program is actually written for, and they are best handled
with object-orientred languages, producing troubles with functional or logic lan-
guages.

3.3 Embedded interpreters

Another solution is to build an interpreter of a secondary language into the pri-
mary language. In the simplest case the interpreter is implemented as a module,
which has an appropriate interface. The main program (e.g., written in C++)
feeds the interpreter with the text of a module created in the secondary lan-
guage (e.g., Lisp), then passes the initial data, runs the interpreter and reads
the results back.

One of more advanced techniques is known as ’embeddance’ of one language
into another. In this case the primary language is enlarged with some certain
constructs which allow to insert constructs of a secondary language into a code
in the primary language. In this case we need a preprocessor which handles
embeddance constructs and produces a plain code in the primary language which
is then compiled in a regular way. In fact such a preprocessor replaces a foreign
construct with some code which converts all necessary variables into a text,
creates an appropriate query and then passes it to an interpreter, and then
converts the received result as necessary. This technique is successfully applied
to the case of writing database operation software using SQL-based database
management system.

Such a solution, though, has many disadvantages:

3 Unix style is mentioned as a multiparadigm environment in, e.g., [14]

48

– The solution does not allow us to call primary language functions from within
the interpreted code. Only primary language functions can call the secondary
language code, but not vice versa.

– The secondary language code is fully interpreted. That is, when the program
runs, every call to the interpreted language is given in its text representation.
The embedded interpreter has to perform lexical and syntactic analyses ”on-
the-fly” which may lead to efficiency losses.

– ”The last but not least” – the results of the interpreted code calling are also
presented in text form, so we need to analyse it in the main program. Just
remember that analysing of strings is one of the tasks we want to avoid in
C++ code and perform with an artificial intelligence language, preferably
Refal, and you’ll realize that something is wrong.

Besides that, mixing up interpreted and compiled execution within one pro-
gram doesn’t look like a fair solution anyway. It is clear that we can’t avoid
interpretation completely for such languages as Lisp or Prolog, but at least we
could expect there will be no lexical and syntactic analyses at runtime.

3.4 Extendable interpreters

The opposite solution is to choose an interpreted language as the primary one
and provide mechanisms to extend the interpreter with functions implemented
in another language (usually the language in which the interpreter is initially
implemented). One of the well-known examples is Tcl. Its interpreter allows
to call C code which is compiled into a shared library following certain simple
calling conventions.

The main drawback of this method is that the primary language must be
interpreted which may be inappropriate in some cases.

3.5 Cross-language linkage

Having certain amount of patience, it is possible to compile and link modules
written in different languages together. As it was mentioned before, this pro-
duces numerous problems with differences in calling conventions, data represen-
tation conventions etc. Furthermore, it almost always requires to make changes
to the existing programming systems (for example, to reimplement compilers so
that they could produce compatible object modules). As of practice, all these
hardships are sufficient to prevent programmers from trying multiparadigm pro-
gramming. And, anyway, we don’t reach real integration of languages this way
because the languages theyselves are not designed for multilanguage environ-
ment (e.g., there’s a problem how to call a C function from Lisp code – how to
specify such a call using Lisp syntax).

3.6 Compilation from one language into another

The difficulties of linking together modules implemented in two defferent lan-
guages can be reduced if one of the languages is first compiled into the other.

49

Many of Scheme translators actually produce C code which can then be
compiled in usual manner. Thus there’s no problem to link such a code with
some modules implemented in C and/or C++.

We still don’t know how to specify a C function call in Scheme syntax, that
is, only Scheme functions can be called from C, but not vice-versa. Also, the
programmer needs to understand the internal data structures of the particular
implementation of Scheme in order to compose a call to a Scheme function and/or
analyse the results. This is inappropriate because internal data structures are
usually not well-documented.

3.7 Paradigms without a language

There’s also a chance to brainstorm why do we actually want to use another
language for a particular subtask, that is, what features does it have the primary
language doesn’t provide, and then just implement them (e.g., as a library).

Consider we use C++ as the primary language and we for some reason we feel
it useful to have heterogenous lists4 as we do in Lisp. It is possible to implement
them with C++ template classes. First, we create a base class which implements
the common behaviour of all items of such a list (e.g., a pointer to the next item,
a pure virtual function which returns the size of this object etc.) Having this
class, we define a template child of it. The template gets the type of the stored
value as its parameter. Each item of such a list would be an instance of the
template. Using C++ runtime type identification (RTTI) we can tell one type
of an item from another when the list is handled.

Practice shows however this doesn’t completely satisfy the programmers’
needs. Each language grows a special environment where new techniques and
methods appear, and these methods usually base on more than one paradigm
(such as heterogenous lists). If we remember Lisp working on a C++ project,
we probably won’t stop with Lisp lists alone. Once we implemented the lists,
the next thing we might need is Lisp mapping functions, or Lisp destructive list
changing and garbage collection, and so on.

3.8 Summary

Now let’s summarize what conditions do we want to meet with a new solution.
We need a framework for multiparadigm programming which

1. allows to use one of the languages widely accepted by the industry as it is,
i.e. with no changes to the existing compilers and other tools;

2. delivers additional paradigms as they exist in the choosen alternative lan-
guage, all (or almost all) together;

3. doesn’t place any limitations over interparadigm function calls and sharing
data between different code;

4. doesn’t require lexical and syntactic analyses of any parts of the code at
runtime.

4 Each element of the list may have its own type

50

In the next chapter we introduce a technique which complies the above re-
quirements. It is discussed assuming C++ is the primary language and Lisp is
the language we need to import the set of paradigms from.

4 The key idea

In order to explain the idea of a new technique, let’s discuss what do we ac-
tually need from the secondary language (e.g., Lisp). Do we, for example, need
its syntax? Perhaps we don’t. Generally speaking, we need the paradigms
developed around the language, not the language itself.

Lisp language implements a kind of algebra on so called S-expressions.
Both program and data are built of S-expressions. The basic operations on S-
expressions are:

– composition (allows to make a list or an arbitrary binary tree of S-expres-
sions)

– decomposition (retriving elements of a list or a tree)
– evaluation (allows to treat an S-expression as a code and perform the ac-

cording operations)
– lambda (allows to build an S-expression of a functional type, so-called clo-

sure, with a given list of formal parameters and a list representing the func-
tion’s body)

Special type of S-expression called symbol (in the terminology tradition to
Common Lisp [15]) or identifier (in the Scheme’s terminology [9]) has additional
operations - assigning a value, binding a value and assigning a function. In real
dialects of Lisp this set is wider, but we’ll limit to these 3 operations.

Besides that, there are additional basic operations (that is, operations which
require one to know the internal representation of S-expressions in order to
implement such an operation). Some of them are necessary to make the algebra
useful (e.g. arythmetic operations on numberic S-expressions), while others are
intended for the user’s convenience.

The mentioned operations create an algebra on the space of S-expressions.
We will denote the introduced algebra as S-algebra.

It is clear that S-algebra being implemented in any particular way will give
us the full set of Lisp paradigms. S-algebra may be implemented without an
actual Lisp interpreter. All we need is to keep it useful, that is, provide a con-
venient instrumental basis to operate S-expressions and apply all the necessary
operations.

In some languages (including C++ and Ada) it is possible to overload stan-
dard operations such as +, -, / etc. This allows to implement an arbitrary alge-
bra using very natural and convenient syntax. For example, one can implement
a mathematical notion of a vector using + for vector addition, - for vector dif-
ference operation, * for the scalar multiplication and (for instance) ^ for vector
multiplication.

51

In the same manner we can implement the notion of S-expression with a class
(or, more precisely, with a polymorphic hierarchy of classes) and invent a certain
set of operations so as to implement the whole S-algebra presented in Lisp.

5 Representation of S-algebra with C++

In this section the architecture and design of a C++ class library named InteLib
[1] is explained as an illustration of the proposed idea.

5.1 S-expressions of various types

The notion of S-expression is represented with an abstract class which for his-
torical reasons is called LTerm. In Lisp, there are S-expressions of different types
(numberic constants, string constants, symbols, dotted pairs, functional object-
s/closures etc.) A polymorphic inheritance technique is used to represent differ-
end types of S-expressions. The LTerm hierarchy is shown at fig. 3.

In the discussed version of the library the LTerm class’ children serve to
represent various types of S-expressions:

– LTermInteger and LTermFloat represent numberic constants;
– LTermString represents string constants;
– LTermLabel is introduced to represent S-expressions whose role in the system

is determined by the particular instance of the object (such as Common Lisp
symbols, as well as #t and #f in Scheme);

– LTermSymbol represents Lisp symbols;
– LDotPair represents dotted pairs which Lisp lists are built of;
– LForm represents generic functional S-expression such as library function,

user-defined function or lexical closure, Lisp macro etc.
– several additional classes to represent miscellaneous features such as hash

table, i/o stream etc.

InteLib supports two types of numberic constants, namely integers and floats.
Compile-time options of the library allows to choose what numberic types we
actually need. It is possible to cause LTermInteger to use short, int, long or
long long type to store the actual value, as well as LTermFloat can be tuned
to use float, double or long double form of a floating point number.

Strings are implemented assuming a string constant itself is never changed.
In contrast with Common Lisp, there is no vector type of S-expression in the
discussed model so a string is considered as just an atomic value.

There is no special type of S-expression for single characters. They are rep-
resented with an LTermString object as a string which has length of 1.

Lisp symbols are implemented with class LTermSymbol. The class is capable
to hold a reference to an object which represents the current dynamic value of
the symbol and to another object which represents the function associated with
the symbol. Stuff related to lexical bindings of a symbol is implemented outside

52

LTerm
�

LTermInteger
�

LTermFloat
�

LTermString
�

LClassicAtom
�

LTermLabel
�

LTermSymbol
�

LDotPair
�

LForm
�

LCFunction
�

... Lisp functions written in C++

�

�

LLispForm
�

LLambda
�

LNLambda
�

LMacro
�

... Special forms
�

�

LTermStream
�

LHashTable
�

LPackage
...

Fig. 3. LTerm classes hierarchy intended to represent S-expressions of various types

the class but is supported with its methods (those related to setting and getting
the value).

The notion of an empty list may be implemented by any object of S-
expression; the only condition is that the address of the object is known at
the compile time because the end-of-list check is performed just by comparing
pointers. Usually an object of the class LTermSymbol (for dialects close to Com-
mon Lisp) or LTermLabel (for Scheme-like dialects) are used for this purpose.

To represent functionals as data, LForm subhierarchy has been developed
within the LTerm hierarchy. The subhierarchy has LCFunction and LLispForm

classes derived directly from LForm. Lisp special forms are also represented with
classes descended directly from LForm.

53

The LCFunction class represents functions implemented in C++, including
all ”built-in” functions such as CAR, CDR, CONS etc. To add a new Lisp function to
the library, a programmer needs to declare a child of LCFunction with only one
method (DoCall) overriden in order to implement the necessary functionality.

The LLispForm class is intended to represent forms defined with Lisp con-
structions (lambda functions, nlambda functions and macros). It has references
to the lambda-list (the list of formal parameters), the function body and the
lexical context5 of the form. LLispForm class has child classes corresponding to
different kinds of forms:

– LLambda (ordinary Lisp function which evaluates all its arguments and then
evaluates the body in its own context);

– LMacro (Lisp macro evaluated as in Common Lisp);
– LNLambda (Lisp function which does not evaluate its arguments).

5.2 Garbage collection

Some of LTerm’s children are large so that it is inefficient to pass them by value.
However, sometimes these objects are constructed within a function which may
be called for the value as well as for its side effect so that it is no good to return
the created object by pointer (if the function is called for the side effect then the
constructed object goes to garbage).

In order to provide garbage collection, another class (called LReference) is
provided. It has precisely the same size as a pointer do so that it is not so bad
to pass it by value. An object of LReference class acts just like a pointer to
an LTerm object having necessary operations including * and ->. LReference is
intended to be the primary interface to the library. It has a lot of constructors
which allow to construct an S-expression from a value of any base C++ data
type (integers, floats, strings etc).

In most cases, the objects of LTerm class hierarchy reside in dynamic memory
and are not operated directly (altough it is possible). LReference objects are
used to handle LTerms.

Besides other features, LReference notifies the pointed object when another
pointer to it is created or an existing pointer is no longer pointing to it (e.g.,
it is assigned with another value or destructed). LTerm class performs simple
reference counting and deletes the object once it has zero references.

Reference counting is choosen for its simplicity. It has well-known problems
(including the problem of cyclic constructions). If it is inappropriate for a par-
ticular application to use reference counting, then any of existing C++ garbage
collection libraries can be used instead. The library has a compile-time option
to switch off the reference counting code.

5.3 Lexical bindings

There are also additional classes that represent (in traditional Lisp terminology)
a notion of lexical context. Objects of these classes are not operated by user in

5 The notion of lexical context is implemented with a separate class LLexicalContext

54

Table 1. Examples of Lisp expressions representation with C++ constructs

C++ constructs Lisp equivalent

(L| 25, 36, 49) (25 36 49)

(L| "I am the walrus", 1965) ("I am the walrus" 1965)

(L| 1, 2, (L| 3, 4), 5, 6) (1 2 (3 4) 5 6)

(L| (L| 1, 2), 3, 4) ((1 2) 3 4)

(L| MEMBER, 1, ~(L| 1, 3, 5)) (member 1 ’(1 3 5))

(L| APPEND, ~(L| 10, 20), ~(L| 30, 40)) (append ’(10 20) ’(30 40))

(L| 1 || 2) (1 . 2)

((L| 1, 2, 3)|| 4) (1 2 3 . 4)

most cases. The library does not, however, hide them from the user because in
some cases it might be useful to create a context manually. There’s always one
active lexical context (possibly special null context). In order to use a context
it must be activated. Then it is affected by operation of binding a value to a
symbol. The context itself affects operations of assignment and retrieving a value
of a symbol.

5.4 List composition operations

In Lisp there’s an operation of constructing a list of an arbitrary length denoted
by parentheses. The operation has variable ’arity’. For example, a construct
(1 2 3) has 3 arguments and builds a list of 3 items - 1, 2 and 3. Besides
that, there’s a binary operation which builds a dotted pair, such as (1 . 2).
The construct (1 2 3) has the same effect as a superposition of 3 dotted pair
constructors, like this:

(1 2 3) == (1 . (2 . (3 . NIL)))

We can implement an operation similar to the Lisp’s (.) and it will allow
us to build any list of S-expressions. It is though a bit inconvenient to create
lists using this operation only (imagine you couldn’t use plain lists in Lisp, only
dotted pairs).

Another problem is that one might want to use just a C++ constant or
expression without explicit cast of it to an S-expression, e.g. ‘3’, not a construct
like LReference(3), so in case of an overloaded standard operation we need at
least one of operands already of LReference type, which allow a C++ compiler
to understand we mean the overloaded operation, not a standard one. This
requirement also prevents us from using C++ functions with unspecified number
of arguments because there’s no way to determine at run time what types of
actual parameters do we have.

The problem is solved replacing the Lisp ‘()’ operation of an arbitrary list
composition with two operations. First of them creates a list of one element,
while second adds an element to a given list. It is clear the two operations allow
to create an arbitrary list, that is, their combination has the same functionality
as the Lisp ‘()’ operation.

55

The first operation always has exactly one argument, but we can’t use a
symbol of any standard unary operation for it because we want it to be applicable
to an expression of any standard type. We also don’t want to use a plain function
for this purpose because parentheses would make our constructs less clear. The
problem is solved with a class LListConstructor, which is created to be a label
for a binary operation to show the compiler to apply an overloaded one instead of
the built-in operation. Usually there’s only one instance of LListConstructor
named L. For example, an operator L|3 returns an LReference object that
represents Lisp construct (3).

For appending a new item to a list we can overload any overloadable binary
operator. For a better clarity we decide to use C++ comma (,) for this pur-
pose. Left-hand operand of a comma is always an LReference representing a list.
Comma destructively changes the list replacing the final NIL with a dotted pair
of (X . NIL) where X is its right-hand operand casted to an LReference. This
makes it possible to represent Lisp lists in C++ as shown in table 1.

There’s a supplementary unary operation in most of Lisp dialects which
allows to construct a list of two elements, first of which is a symbol QUOTE

while the second is the operation’s operand. The operation is usually denoted
by a single quote symbol (’). InteLib overloads the operator ~ (tilde) for this
purpose. See table 1 for an example6.

For composing dotted pairs and dotted lists InteLib offers an operation ||.
The left-side operand must be a list (possibly of one element). The operand
appearing at the right side of the operator is converted to LReference and then
the operation replaces the last NIL of the given list with whatever it constructed
from the right-side operand. See table 1 for an example.

Note the parentheses in the last example. They appear because the comma
operator has lower precedence than ||.

5.5 Operations implemented as regular methods

The most important operation on S-expressions is the evaluation of an S-ex-
pression. Evaluation is an unary function which maps from Sx\Sux to Sx where
Sx is a space of all possible S-expressions and Sux is a set of ’unevaluable’ S-
expressions (such as closures). Performing evaluation of an S-expression one can
also get a side effect.

All constants evaluate to themselves with no side effects. Variables evaluate
to their values, if any. Evaluation of an unbound variable generates an error.

Evaluation of a list interpretes the first element as an instruction what func-
tional object to apply to the rest of the list as a list of parameters. In most
cases, the resting elements of the list are evaluated and the appropriate function
is applied to a list built of the results. The first element of the list must be either
a symbol which has an associated functional object or a Lambda-list.

6 The operator is oveloaded for LReference class so it is possible to apply it to a
list or a Lisp symbol, but one can’t use it with strings or numberic constants. It is
unnecessary anyway to quote them since they always evaluate to themselves

56

It looks like we need to implement two operations in order to support the
evaluation: the evaluation itself (as a polymorphic method of the LTerm class)
and an operation of application of a functional S-expression (a one that belongs to
LForm subhierarchy) to a list of parameters. The two operations are implemented
as methods called ‘Evaluate’ and ‘Call’, respectively. The ‘Call’ method gen-
erates an error when called for an object of a non-functional type. ‘Evaluate’
generates an error when it is impossible to evaluate the given S-expression. The
IsSelfEvaluated method allows to determine whether the object represents a
constant that always evaluates to itself.

Besides that, there are methods ‘Car’ and ‘Cdr’ in LTerm class. They return
the respective cells of a dotted pair when called for an LDotPair object. For an
object that represents empty list both methods return empty list. Calling these
methods for a non-list object will cause an error.

Another important method named TextRepresentation allows to create a
human-readable representation of any given S-expression.

It is well known that there are 3 different predicates of equality in Lisp,
called EQ, EQL and EQUAL. EQ predicate is the simplest one, it just compares two
addresses. EQL is a bit more flexible. Two objects may be not the same while
representing the same value (e.g. two instances of an integer constant 2). In order
to make it possible to implement EQL predicate for any LTerm object there’s a
virtual method SpecificEql which returns false by default. Implementation
of EQL checks for equality of addresses first, and only if the objects are not
EQ, it calls SpecificEql for one of them passing the other as an argument, so
that it doesn’t cause a misbehaviour when SpecificEql returns false when the
compating objects are the same, that is, equal in the sence of EQ.

Another important operation, Lambda, is implemented by a constructor of
LLambda class. For example, expression

LReference(new LLambda(NULL, (L| A),

(L| (L| PLUS, A, 1))))

creates a closure with NULL lexical context. The closure takes a numberic S-
expression and returns a number which is greater by one. In Lisp such a closure
would be represented as (lambda (a) (plus a 1)). In order to create a real
closure that has lexically bound variables, the appropriate lexical context must
be passes as the first argument of the LLambda constructor.

There are other methods in classes of the library which a provided mostly for
user’s convenience. They include typecasting operations, which allow to convert
a constant S-expression into a base C++ value. For example,

LReference(3)->GetInteger();

will return 3, while

LReference("Hello world")->GetString();

will return a pointer to a constant string "Hello world". Calling such a method
for a wrong type of S-expression causes an error.

57

5.6 Operations performed by standard Lisp functions

Standard, or built-in, functions play a key role in Lisp functionality providing
a basis for building programs. They can also be thought as operations on S-
expressions, that is, as elements of S-algebra.

In Lisp there are symbols that initially have associated built-in functions.
InteLib doesn’t provide such symbols in order to allow a user to use whatever
names she wants for these symbols. The functional objects representing well-
known Lisp functions are direct children of LCFunction class (for functions that
evaluate all arguments) or of LForm class (for special forms). They usually have
names such as LFunctionCar, LFunctionCons, LFunctionLet, LFunctionDefun
and so on.

For convenience there is a generic class

template<class F> class LFunctionalSymbol

whose argument must be a class that represents a particular function. An in-
stance of LFunctionalSymbol differs from LSymbol in that its constructor cre-
ates an object of the given finctional class and lets it be the associated function
of the symbol. For example, one might want to add the following declaration to
the program:

LFunctionalSymbol<LFunctionCar> CAR("CAR");

LFunctionalSymbol<LFunctionCdr> CDR("CDR");

LFunctionalSymbol<LFunctionCons> CONS("CONS");

LFunctionalSymbol<LFunctionCond> COND("COND");

LFunctionalSymbol<LFunctionDefun> DEFUN("DEFUN");

etc. As usual, the constructor’s argument sets the textual name of the symbol
which is used by TextRepresentation method.

Consider, for example, the following Lisp code:

(defun isomorphic (tree1 tree2)

(cond ((atom tree1) (atom tree2))

((atom tree2) NIL)

(t (and (isomorphic (car tree1)

(car tree2))

(isomorphic (cdr tree1)

(cdr tree2))))))

One can write the module shown at fig. 4 to do the same thing in C++.
The module compiles with an ordinary C++ compiler without any additional
preprocessing. The symbol ISOMORPHIC is public and can therefore be used in
other modules.

Please note there are no definitions of symbols T and NIL. They are provided
by the library as well as symbols QUOTE and LAMBDA. The library needs symbols
T, NIL and QUOTE because it is possible to obtain them from certain operations
without mentioning them in a program. Consider the following example:

58

// File isomorph.cpp

#include "intelib.h"

LSymbol ISOMORPHIC("ISOMORPHIC");

void LispInit_isomorphic() {

static LSymbol TREE1("TREE1");

static LSymbol TREE2("TREE2");

static LFunctionalSymbol<LFunctionDefun> DEFUN("DEFUN");

static LFunctionalSymbol<LFunctionCond> COND("COND");

static LFunctionalSymbol<LFunctionAtom> ATOM("ATOM");

static LFunctionalSymbol<LFunctionAnd> AND("AND");

static LFunctionalSymbol<LFunctionCar> CAR("CAR");

static LFunctionalSymbol<LFunctionCdr> CDR("CDR");

(L|DEFUN, ISOMORPHIC, (L|TREE1, TREE2),

(L|COND,

(L|(L|ATOM, TREE1), (L|ATOM, TREE2)),

(L|(L|ATOM, TREE2), NIL),

(L|T, (L|AND,

(L|ISOMORPHIC, (L|CAR, TREE1), (L|CAR, TREE2)),

(L|ISOMORPHIC, (L|CDR, TREE1), (L|CDR, TREE2)))))).Evaluate();

}

// end of file

Fig. 4. Example of a C++ module that defines a function in a manner of Lisp

(eql 1 2) -> nil

(eql 1 1) -> t

(car ’’a) -> quote

The symbol LAMBDA can’t be obtained in such a way, but it has special meaning
regardless of it’s possible value and/or associated function, so we have to rely on
the symbol itself (that is, for example, on the object’s address). That’s why these
4 symbols are provided by the library in contrast with all the other well-known
symbols.

It is important to understand that there’s no Lisp as such in the C++ module
shown at the fig. 4. The module is written in C++ language. The compiler
knows nothing about special meaning of all these commas and vertical bars;
they are handled as functions just like in any program which overloads standard
operators. Thus we can say we made no changes to the primary language, at the
same time allowing a programmer to use paradigms from another (secondary)
language. Only paradigms are imported from Lisp, not the language itself. In
other words, we import S-algebra which brings us the paradigms of Lisp
without Lisp language as such.

6 Translation from Lisp to C++

The primary goal of the InteLib library is to bring Lisp paradigms to C++.
However, as a side effect it opens a clear way to translation of Lisp code into

59

C++. The translator is made which uses simple rules of transformation of the
code. Besides that, the translator generates the necessary definitions of symbols
and performs some other tasks as to allow using several Lisp modules within a
single project. Since the translator is not the main goal of the project, we don’t
explain it in details in this paper; we only give a short description.

The translator takes one or more Lisp files and proudces a C++ module (that
is, a ”source” file and a header file). The translator understands a certain set
of so-called translation directives (top level forms beginning with a token %%%),
which allow to control how names are translated etc.

The character set for C++ identifiers differs from the traditional one for Lisp
symbols. C++ identifiers are case-sensitive and can consist of letters, digits and
the underline symbol. The first character of identifier must be a letter or the
underline, not a digit. Lisp symbols are case insensitive and may be built of
letters, digits and various symols such as +, -, *, _, % etc. so we need a certain
translation algorythm.

The fact that Lisp symbols are case sensitive and C++ identifiers are not is
very helpful in translation of names from Lisp to C++. This allows us to bring
all letters in a Lisp symbol to the upper case and leave the lower-case letters
to represent all these pluses, dashes and other symbols that are not allowed in
C++ identifiers. For instance, the Lisp symbol read-char might be represented
as READdashCHAR. If a symbol’s name begins from a digit (which is illegal in
C++), we prepend it with a lowercase letter, for instance - ”d”. The symbol
7seas having been translated this way becomes the identifier d7SEAS.

There are some exceptions from the general rules. For example, the Lisp
symbol null would be translated to NULL producing a name conflict with some
of the standard header files. That’s why it is translated as lNULL (as specified
by an appropriate translation directive). User can add her own exceptions, rules
etc.

As to experience, using of the translator is good when a whole module is
inplemented in Lisp because the traditional Lisp syntax is more convenient than
the introduced C++ implementation of S-algebra. It is still possible, however,
to avoid using the translator.

The dialect of Lisp recognized by the translator was named InteLib Lisp. It is
a very short and simple dialect designed keeping in mind that it is to be used as
a secondary language. It ommits many features of modern Lisp dialects because
they are considered not to be essential.

7 Logic programming

The explained technique can be applied to secondary languages other than Lisp.
One of the obvious ways of further development is to apply it to one of the logic
programming languages.

As of now, an attempt is done to apply the technique to a very restrictive
subset of Prolog[4]. The Prolog part of the library, unlike the Lisp part, has

60

primarily a demonstration value; creating a library useful in real programming
practice is the subject of further work.

The implemented subset of Prolog has no dynamic data structures (lists and
functors), just like in Datalog[5]. Unlike Datalog, the implemented dialect has
the cut operation.

Prolog machines operate on data which is similar to S-expressions (in fact,
the only difference is functors). Creating a model of a Prolog machine, a decision
was made to reuse the classes already implemented to represent Lisp data7.

To represent the notion of predicate, DlAbstractPredicate class is invented.
It has a pure abstract method named DlCreateAbstractIterator which is in-
tended to create an iterator to fetch, one by one, solutions of a given predicate
provided with the appropriate number of arguments.

To create atoms of given predicate (e.g., having predicate father, create
the atom father(john, X)), the class provides operator() for 0, 1, 2, ..., 10
arguments of the type LReference8.

Another class, derived from DlAbstractPredicate and named DlPredicate,
represents the predicate which is the part of Prolog program (that is, a predicate
formed of clauses of goals).

Prolog atoms (constructs such as father(john, mary), vertex(X), etc.) are
represented with the DlAtom class which is in fact just a pair of a predicate and
an argument list. Atoms are usually created within functions, locally, so another
smart pointer is necessary. It is named DlAtomRef. This smart pointer is used as
the primary interface to the DlAtom class. One of the most important operations
of DlAtomRef is operator<<=() which is used instead of the well-known Prolog
symbol :-. The operator adds another clause to the appropriate predicate and
returns a reference to the object of the class DlPredicate::DlClause. That
object, in turn, has operator,() to add goals (atoms) to it.

Prolog variables are represented using class DlVariable.
Using all these classes and operations, we can represent the Prolog clause

grandfather(X, Y) :- father(X, Z), father(Z, Y).

with C++ expression

grandfather(X, Y) <<= father(X, Z), father(Z, Y);

where X, Y and Z are objects of the class DlVariable. Facts such as

father(john, george).

are represented using another form of the operator <<=:

father(john, george) <<= true;

7 So the dialect in fact can handle lists, but it still treats them as atomic data values,
e.g., when doing unification

8 There is no operator with variable parameters list, because LReference objects, being
objects of a class, can’t be passed through ... in C++.

61

Prolog code example:

father(john, george).

father(george, alex).

father(alex, alan).

father(alan, poul).

grandfather(X, Y) :- father(X, Z), father(Z, Y).

Equal C++ code:

#include "il_dlog.h"

LSymbol john("john"), george("george"),

alex("alex"), alan("alan"), poul("poul");

DlVariable X("X"), Y("Y"), Z("Z");

DlPredicate father, grandfather;

void PrologInit_father_grandfather() {

father(john, george) <<= true;

father(george, alex) <<= true;

father(alex, alan) <<= true;

father(alan, poul) <<= true;

grandfather(X, Y) <<= father(X, Z), father(Z, Y);

}

Fig. 5. Prolog-like C++ code example

Fig. 5 shows an example of a Prolog-like C++ code which uses the predicates
father and grandfather. Now, the code

iter = grandfather(X, Y).CreateIterator();

bool rc;

do {

PDlSubstitution solution;

rc = iter->NextSolution(solution);

if (rc) {

printf("%s\n", solution->TextRepresentation().c_str());

}

} while (rc);

will print the following solutions list:

{X/john Y/alex}

{X/george Y/alan}

{X/alex Y/poul}

As we already noted before, the implemented model doesn’t do unification
of dynamic data structures though Lisp lists can be operated with, considering
them atomic datums. To produce a more interesting demo, let’s add a built-in
predicate named DLCONS(car, cdr, cons). The predicate is implemented by
another class derived from DlAbstractPredicate, named DlPredicateCons.

62

The predicate is able to work having any of its arguments specified or unspecified
(that is, a variable is given instead of a value).

Another useful predicate is DlPredicateLispcall (to call the Lisp machine
explained before).

The object DlCut is a special value of DlAtomRef which represents the cut
operator.

Note also that a DlPredicate without any clauses always fails, so to imple-
ment an always failing goal we can just create an empty DlPredicate.

Having all these objects, we are ready to write a simple program which finds
a path in a given graph (fig. 6).

Now, if we create the appropriate iterator with

iter = Shortpath(2, 4, X, 2).CreateIterator();

the solution finding code like the one shown above will print the solution

{X/(2 1 4)}

Unlike the Lisp part of InteLib which is already useful in some practical cases,
the explained Prolog part is only a simple demo. It is planned to implement a
more practically useful library in the close future.

8 Conclusions

The most important advantage of the proposed technique is that there’s no need
for two programming systems within a project. The existing C++ compiler is
always used, and the only thing required to use the technique is a C++ class
library which has a relatively simple imterface.

It is also possible to use another primary language. The only requirement to
it is the possibility of overloading of standard operations. In particular, Ada95
may be used as the primary language as well (at least for modelling Lisp as
the secondary language). Implementation of the appropriate library for Ada95
might be one of the further work goals.

References

[1] E. Bolshakova and A. Stolyarov. Building functional techniques into an object-
oriented system. In Knowledge-Based Software Engineering. Proceedings of the
4th JCKBSE, volume 62 of Frontiers in Artificial Intelligence and Applications,
pages 101–106, Brno, Czech Republic, September 2000. IOS Press, Amsterdam.

[2] G. Booch. Object-oriented Analyses and Design. Addison-Wesley, Reading, Mas-
sachusets, second edition, 1994.

[3] T. A. Budd. Multy-Paradigm Programming in LEDA. Addison-Wesley, Reading,
Massachusets, 1995.

[4] A. Calmerauer, H. Kanoui, and M. van Caneghem. Prolog, bases théoriques et
développements actuels. Technique et Science Informatiques, 2(4):271–311, 1983.

63

LListConstructor L;

DlPredicateCons DLCONS;

DlPredicateLispcall DLLISPCALL;

DlAbstractPredicateIterator *iter;

DlVariable X("X");

DlVariable Y("Y");

DlVariable Z("Z");

DlVariable P("P");

DlVariable N("N");

DlVariable V1("V1");

DlVariable V2("V2");

DlVariable V3("V3");

DlPredicate Edge("Edge");

DlPredicate Edge2("Edge2");

DlPredicate Member("Member");

DlPredicate Shortpath("Shortpath");

DlPredicate Fail("Fail");

Member(X, Y) <<= DLCONS(X, V2, Y);

Member(X, Y) <<= DLCONS(V1, V2, Y), Member(X, V2);

Edge(1, 2) <<= true;

Edge(1, 3) <<= true;

Edge(1, 4) <<= true;

Edge(1, 5) <<= true;

Edge(5, 3) <<= true;

Edge2(X, Y) <<= Edge(X, Y);

Edge2(X, Y) <<= Edge(Y, X);

Shortpath(X, Y, P, 1) <<=

DlCut,

Edge2(X, Y),

DLCONS(Y, L, V1),

DLCONS(X, V1, P);

Shortpath(X, Y, P, N) <<=

DLLISPCALL((L|lt, N, 1), T),

DlCut,

Fail();

Shortpath(X, Y, P, N) <<=

DLLISPCALL((L|minus, N, 1), V1),

Shortpath(Z, Y, V2, V1),

Edge2(X, Z),

DLCONS(X, V2, P);

Fig. 6. Graph path finding program

64

[5] S. Ceri, G. Gottlob, and L. Tanka. Logic Programming and Databases. Springer-
Verlag, Berlin, 1990.

[6] U. W. Eisenecker. Future trends in multi-paradigm programming. Position Paper
for the ECOOP’98 Panel on Multi-Paradigm Programming, 1998.

[7] A. J. Field and P. G. Harrison. Functional Programming. Addison-Wesley, Read-
ing, Massachusets, 1998.

[8] A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, Reading, Massachusets, 1983.

[9] R. Kelsey, W. Clinger, and J. Rees. Revised5 report on Algorithmic Language
Scheme, 1998.

[10] J. McCarthy. Recursive functions of symbolic expressions and their computation
by machine. Communications of the ACM, 3:184–195, 1960.

[11] M. Müller, T. Müller, and P. Van Roy. Multiparadigm programming in Oz. In
D. Smith, O. Ridoux, and P. Van Roy, editors, Workshop on the Future of Logic
Programming. International Logic Programming Symposium, 1995.

[12] J. Robinson. Logic programming - past, present and future. New Generation
Computing, 1:107–121, 1983.

[13] D. Spinellis, S. Drossoupoulou, and S. Eisenbach. Language and architecture
paradigms as object classes: A unified approach towards multiparadigm program-
ming. In J. Gutknecht, editor, Programming Languages and System Architectures
International Conference, volume 782 of Lecture Notes in Computer Science, pages
191–207, Zurich, Switzerland, March 1994. Springer-Verlag.

[14] D. D. Spinellis. Programming paradigms as object classes: a structuring mecha-
nism for multiparadigm programming. PhD thesis, University of London, London
SW7 2BZ, United Kingdom, February 1994.

[15] G. L. Steele. Common Lisp the Language. Digital Press, second edition, 1990.
[16] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading,

Massachusets, third edition, 1997.
[17] V. Turchin. REFAL-5, Programming Guide and Reference Manual. New England

Publishing Co., Holyoke, 1989.
[18] D. A. Turner. Miranda – a non-strict functional language with polymorphic types.

In J. P. Jouannaud, editor, Proceedings of the Conference of Functional Program-
ming Languages and Computer Architecture, volume 201 of Lecture Notes in Com-
puter Science, pages 1–16, Nancy, France, 1985. Springer-Verlag.

65

Program Templates:

Expression Templates Applied to Program Evaluation

Francis Maes

EPITA Research and Development Laboratory,
14-16 rue Voltaire, F-94276 Le Kremlin-Bicêtre cedex, France,

francis.maes@lrde.epita.fr,
WWW home page: http://lrde.epita.fr/

Abstract. The C++ language provides a two-layer execution model:
static execution of meta-programs and dynamic execution of resulting
programs. The Expression Templates technique takes advantage of this
dual execution model through the construction of C++ types expressing
simple arithmetic formulas. Our intent is to extend this technique to a
whole programming language. The Tiger language is a small, imperative
language with types, variables, arrays, records, flow control structures
and nested functions. The first step is to show how to express a Tiger
program as a C++ type. The second step concerns operational analysis
which is done through the use of meta-programs. Finally an implemen-
tation of our Tiger evaluator is proposed.
Our technique goes much deeper than the Expression Templates one. It
shows how the generative power of C++ meta-programming can be used
in order to compile abstract syntax trees of a fully featured programming
language.

1 Introduction

During the compilation process, an input program expressed in textual form
is transformed by successive steps into executable code. As in any language, a
C++ program will basically be evaluated during its execution. The interesting
particularity of C++ is its ability to do some computations at compile-time
using template constructions (the so-called meta-programs, see [12], [3], [7] and
appendix A for an example). This two-layer execution model corresponds to the
usual concept of static (compile-time) and dynamic (execution-time) processing.

In C++, there is a technique called Expression Templates described by [11],
which allows the exploitation of this two-layer execution model. This technique
relies on transformations of simple arithmetic expressions at compile-time to
increase the performances of the executable code. Moreover some evaluation
can be done entirely statically with mechanisms such as constant propagation.
This way, some computations usually done at execution-time are processed at
compile-time.

The Expression Templates technique is based on the use of template classes.
In order to work on expressions, we need a structural description of them. This

67

is done by building a type that reflects the abstract syntax tree (AST) of the
expression. Each node of this tree will be translated into a template class whose
arguments are the node subtrees.

Usually, a program written in any language can also be expressed as an ab-
stract syntax tree. The next natural step is to wonder whether it is possible to
extend the Expression Templates technique to a whole programming language.
Expressing a full program with a C++ type reflecting its AST could thus be
made possible. In the remainder of this paper, this type will be called the TAT
(Tree As Type). A TAT is a representation of an AST using a C++ type for-
malism.

Expressing a program in the TAT formalism would allow us to adapt the
Expression Templates evaluation method to a whole program and therefore to
take advantage of the two-layer execution model of C++ (see [5]). The entire
process of compiling and executing a program expressed as a TAT corresponds
to its evaluation.

To experiment this idea, we have to choose a programming language that
does not have this two-layer execution model. We want this language to be
simple and to have few constructions. Nevertheless, this language must at least
include types, functions, records, arrays and flow control constructions. Tiger,
a language defined by [1], corresponds to our needs: with only 40 rules in its
EBNF grammar, it respects all our conditions.

This work is a proof of concept. No-one had previously mapped an entire lan-
guage to a C++ meta-program. Those that consider C++ expression templates
for prototype implementations should be interested in this project. Moreover, the
C++ metalanguage is here introduced as an intermediate language. This point
of view is different from the current trend of supporting meta-programming by
designing metalanguages as extensions of existing programming languages. Our
work initially inspired by Expression Templates goes very deeply into the possi-
bilities of C++ meta-programs using several techniques discovered recently.

This paper begins with an overview of related work. Next, section 3 intro-
duces the Tiger language, followed by a description of our architecture. Our first
objective is to translate Tiger programs into TATs. When trying to do this, sev-
eral problems arise (e.g. expressing lists). These are developed in section 4. Our
second objective is to do some static processing on this TAT. This will require
a structure called environment, and a form of static pointers detailed in section
5. Finally we want to evaluate a Tiger program expressed as a TAT using the
C++ two-layer execution model. The implementation which allows this is de-
scribed in section 6. This is followed by some interesting results related to this
new technique. This paper will finish with a discussion about the possibilities of
such mechanisms.

2 Related work

Our work is based on Expression Template. The Expression Template is at the
basis of our work. This technique described by [11] has many known interests.

68

In particular it allows to build the static AST of a C++ expression. This allows
C++ meta-programs to work on C++ expressions seen as types. This can be
useful for:

– Rewriting statements into equivalent (but more efficient) ones.
This was the original intent of Expression Templates. This technique was
first used to evaluate vector and matrix expressions in a single pass, without
temporaries.

– Building lambda terms. Several libraries for doing functionnal program-
ming in C++ are based on Expression Templates. Thanks to C++ meta-
programs, several functionnal operations are possible on these lambda terms.
The Fact library ([9]) provides typical functional features such as currying,
lambda expressions and lazy evaluation in C++. The Boost package also
includes a library specialized in lambda expressions: the Boost Lambda Li-
brary ([6]). FC++ ([8]) is a similar library inspired by the Haskell language.
Our work has something to do with lambda term manipulations: we also
manipulate TATs. But our intent is not to do functionnal operations on
a TAT but to compile a whole program including functions and variables
declarations.

– Building any other structured expressions, such as the [4] library
which uses Expression Template in order to build EBNF rules. C++ meta-
programs are then used to transform a grammar into a usable parser. In this
library, C++ meta-programs deal with complex operations such as in our
work.

The Expression Template is very useful but a bit complex to implement.
PETE ([2]) is a tool that aims at generating the needed code. Fact is built on
top of PETE. This tool could help us to build a C++ front-end to our compiler.
The idea of using template constructions in compilers has already been used for
building a java compiler, see [10].

3 Tiger evaluation and compilation

3.1 Tiger constructions

Tiger is an Algol-style language with a functional flavor. Two kinds of construc-
tion exist: declarations and typed expressions. Declarations are of three kinds:
type, variable and function declarations. Four basic types exist: integers, strings,
nil and void. New types can be built with records and arrays. Existing types can
be renamed by a typedef mechanism. Tiger is not a first-order functionnal lan-
guage: functions cannot be passed as parameters, neither as results.

Tiger has a nested let-in-end construction which makes it possible to declare
nested scopes. A particular case of this is the ability to declare nested functions.

Except declarations, everything in Tiger is an expression: literals (strings
and integers), unary and binary operations, left-values, function calls, array and
record instantiations and flow control constructions: if-then-else, while-do,
for-to-do, break.

69

3.2 Architecture

We use a front-end program which parses Tiger and does the semantic analysis:
type checking, scopes and bindings. The output of this front-end is a C++
program which declares a TAT. Our front-end is based on techniques explained
by [1].

The interesting thing is the remaining work: the program evaluation. This
task is done in C++ through the static and the dynamic processing.

Our front-end associated with the C++ static processor is a compilation
chain. Indeed the input of this chain is a textual Tiger program, and its output
is an executable program.

3.3 Comparison with a standard compiler

A usual object oriented compiler first parses the program. It provides AST classes
that are dynamically instantiated in order to build the programs abstract tree.
At this point until the end of the compilation, successive transformations are
applied until getting the executable code.

In our case, we provide a set of template classes corresponding to each node
of the AST. During the compilation of a Tiger program, these templates are
filled by our front-end giving us the TAT. At this point, the C++ compiler does
successive transformations until getting the executable code.

An analogy can easily be done between our Tiger compiler and a standard
compiler. Where a standard compiler provides AST classes, we provide AST
meta-classes. Where a standard compiler builds an AST expressed as objects,
we build an AST expressed as a type (the TAT). A standard compiler provides
classes for operational analysis, we provide meta-classes to do this work.

It has been shown that a Turing machine could be constructed with tem-
plate constructs ([12]). Any work traditionally done by a standard compiler can
theoretically be done with C++ meta-programs. The method that we present
should thus be adaptable to any other language. The only restrictions are the
C++ compilation times and memory use.

4 Translation into TAT

Let us return to the Expression Templates technique with the following Tiger
program:

(5 ∗ 10 + 1)

Since the Expression Templates technique was originally used to describe and
evaluate simple expressions (literals, variables, unary, binary and potentially n-
ary operations), such examples can easily be constructed with it. Here is an
example of TAT corresponding to the previous example:

70

Listing 4.1. A simple TAT

typedef BinOp< BinOp< ConstInt <5>, ConstInt <10> , Times > ,
ConstInt <1>, Plus >

program t ;

However this covers a very small part of the whole programming language.
Important features such as type declarations, function declarations and calls,
or flow control cannot be expressed. Moreover, Tiger expressions are typed: we
want our compiler to be able to evaluate and work on typed-expressions. When
trying to translate more complex examples into TATs, different problems arise
such as the list problem, or the reference problem.

4.1 The list problem

Let us consider this Tiger example:

Listing 4.2. Two functions

l e t

function double (x : int) : int = 2 ∗ x
function sum(a : int , b : int , c : int) : int = a + b + c

in

double (30) − sum (6 , 1 , 2)
end

When building this program’s TAT, we need to express lists: declaration lists,
function formals lists, and function call arguments lists. The usual way to do this
is to use recursive lists. A recursive list is defined as empty or as a head element
followed by a tail list.

This can be transposed into C++ with the static list technique described
by [12]. We use a template class List, which parameters are the first element (a
type), and the remaining list. A class EmptyList is used to mark the end of the
list. With this notation, we can express lists as types. For example, in sum (6,

1, 2), the argument list can be expressed with the following TAT:

List < ConstInt <6>,
L ist < ConstInt <1>,

L ist < ConstInt <2>,
EmptyList

>

>

>

The full TAT conversion of a similar sample is given in the next section.
Static lists, which are a particular case of trees, will be used extensively in the
remaining of this paper: this is our first addition to the Expression Templates
technique.

71

4.2 The reference problem

The following simple example illustrate the reference problem:

Listing 4.3. Two variables addition

l e t

var i : int := 80
var j : int := 6

in

i + j
end

The expression i refers to the variable declaration var i : int := 80. The
same way, the declaration var i : int := 80 refers to the builtin type int.
This example demonstrates that we cannot consider programs as simple trees.
The main structure acts as a tree, but the implicit relations by reference trans-
forms this tree into a DAG (direct acyclic graph).

The TAT has to describe a tree plus some graph relations between a dec-
laration and its uses. This is the main difficulty compared to the Expression
Templates technique. Without a reference mechanism, we cannot express con-
cepts such as types or functions.

Each time a declaration is referred, we need a pointer to it. The following part
shows how to solve this: each declaration will have a location in an evaluation
environment.

5 Evaluation Environment

At every point in the program, there is a set of active declarations which can
be used. An expression such as i + j (listing 4.3), or double(30) - sum(6, 1,

2) (listing 4.2) cannot be evaluated without the declaration context: we need to
maintain an environment at evaluation time.

Tiger defines some builtin types and functions. These declarations, visible
at every point in every Tiger program, will be the initial state of our environ-
ment. Declarations that have the same visibility are grouped into scopes. In the
remainder of this paper, the list of declarations of the same scope is called a
chunk.

The main operations we need on this environment are pushing and popping
chunks. Moreover, we need a way to extract a declaration, given its chunk and
its location in the chunk.

New declarations are introduced with the let-in-end structure, which is
composed of two parts. A first declarative part, located between let and in,
allows declaring a chunk. The second part, is an expression, in which we can
use previous declarations. Evaluating the whole structure is done by pushing
the chunk into environment, evaluating the expression and finally popping the
chunk.

72

The environment can also be modified by a function call: when this occurs
the evaluation point is changed. This implies that the set of active declarations
changes.

Listing 4.4. A function call

l e t

function double (x : int) : int = 2 ∗ x
in

let

var i : int := 17
in

double (i) + i
end

end

In the above example, the function call is evaluated the following way:

1. Evaluate function parameters: here i = 17.
2. Initialize formal values: x ← i
3. Pop declarations introduced between the function declaration and the func-

tion call: this restores the environment of the function implementation. In
our case: pop the chunk containing var i : int := 17, as the function
double does not know this declaration.

4. Push formals declarations. Here: push a chunk containing x : int.
5. Evaluate the function body: (2 * x)

6. Restore callers environment: x does not exist any more, i is reintroduced.

At this point, a stack seems to be appropriate for our needs. This stack will
be filled with declaration chunks. A declaration chunk simply contains the corre-
sponding part of the TAT. At a given evaluation point, each visible declaration
is located with a pair of indexes: the index of the chunk, and the index of the
declaration in the chunk. So a simple pair of indexes is enough to refer to a
declaration.

The example 4.3 can now be translated into the following TAT:

LetInEnd<

List < Var< ConstInt < 80 > , b u i l t i n t yp e s , i n t t yp e > ,
L ist < Var< ConstInt < 6 > , b u i l t i n t yp e s , i n t t yp e > ,

EmptyList > > ,
BinOp< SimpleVar < 0 , 0 > , SimpleVar < 0 , 1 > , Plus >

>

The pair < 0, 0 > refers to the first declaration of the first chunk, which cor-
responds to var i:= 80. The pair < 0, 1 > refers to var j:= 6. builtin types

and int type are predefined integer values, which identify the builtin int Tiger
type. This mechanism of environment and location pair is a form of static point-
ers.

We are also able to translate example 4.4:

73

LetInEnd< l e t

List < Function < List < function double (
TypeLnk< bu i l t i n t yp e s , 1 > > , x : int) =

BinOp< ConstInt < 2 > , 2
SimpleVar <1 , 0 > , Times > , ∗ x

0 > > ,
LetInEnd< in

List < Variable < ConstInt < 17 > , l e t

bu i l t i n t yp e s , 1 > > , var i : int := 17
in

BinOp< FuncCall < 0 , 0 , double (
List < SimpleVar < 1 , 0 > > > , i)

SimpleVar < 1 , 0 > , Plus > + i
> end

> end

Let’s remember the goal: translating an AST into a C++ type (the TAT), so
that the compiler can work on this type. In the proposed implementation, the
environment related computations are done at compile-time. Meta-programming
techniques will allow us to reduce the execution-time work considerably.

6 Implementation

The basis of the Expression Templates technique is to write a template class per
kind of node available in the AST. The parameters of this template are the node
subtrees. Each of these template classes correspond to a node of the AST.

These template classes fulfill two roles: first they express the AST informa-
tion. This is implicitly done with class organization into the TAT. Second, our
classes must provide evaluation code.

In the case of expressions, this consists on two tasks: the type calculation,
and the value calculation. The declaration classes provide some other services
such as common operations for types.

Apart from AST meta-classes, we also need to provide meta-code to perform
some static processing. This corresponds to the set of operations related to the
evaluation environment.

6.1 Global organization

Two kinds of classes have to be written: expression classes and declaration
classes. Declarations will be further distinguished via classes specialized for type,
variable and function declarations. Moreover, the implementation also includes
the environment mechanism, and tools for its manipulation.

Note that the base classes AstNode, Expression, Declaration, TypeDec...
are only used for some static checking. These classes are not very interesting,
and will not be detailed in this paper.

74

6.2 Expression classes

As in the Expression Templates technique, each Expression class will implement
an evaluation method. These methods are inlined, so that the C++ compiler
can build efficient evaluation code.

The main difference with Expression Templates is due to the evaluation envi-
ronment: The evaluation method depends on the current environment. Another
striking difference is that expressions are typed. Evaluating an expression con-
sists in computing both its type and value. We want expression types to be
evaluated statically: this work will be done through typedefs. All the typed val-
ues that we manipulate are represented with four bytes. In order to simplify,
we decided to represent all variables with the void* type. This lead us to the
following model adopted by all expression classes:

// v a r t represen t a non−typed va lue .
typedef void ∗ va r t ;

// Here comes the temp la te parameters : the TAT sub t r e e s .
template< . . . >

struct AnExpression : public Express ion
{

// Evaluat ion i s dependent o f curren t environment .
template<class T env>

struct eva l
{

// s t a t i c a l l y compute the express i on type
typedef . . . T;

// i n l i n e method tha t e va l ua t e s the express i on va lue
inl ine va r t do i t () { . . . }

} ;
} ;

template<signed Value>

struct ConstInt : public Express ion
{

template<class T env>

struct eva l
{

typedef IntType T;
inl ine va r t do i t () {return (v a r t) Value ;}

} ;
} ;

ConstInt < 123 > is a TAT: its value and type can be evaluated:

typedef ConstInt <123> program t ;

v a r t value = program t : : eval < i n i t i a l e n v t > : : do i t () ;
typedef program t : : eval < i n i t i a l e n v t > : :T type ;

75

Notice that ”::” is C++ for Java ”.”
Two types are predefined:

– var t represents all Tiger variables. For example, an int can directly be
casted into a var t (these two types have the same size: four bytes). Most
of time a var t corresponds to a record pointer or an array pointer.

– initial env t corresponds to the Tiger builtin environment: builtin types
such as IntType or StringType, and builtin functions (print, ord,
concat...).

The TAT given in listing 4.1 can now be evaluated. Here is the template
expansion chain that leaded to the result: 51.

1 . program t : : eval < i n i t i a l e n v t > : : do i t ()
2 . BinOP< ConstInt <5>, ConstInt <10> , Times >

: : eval < i n i t i a l e n v t > : : do i t () +
ConstInt <1>:: eval < i n i t i a l e n v t > : : do i t () ;

3 . ConstInt <5>:: eval < i n i t i a l e n v t > : : do i t () ∗
ConstInt <10>:: eval < i n i t i a l e n v t > : : do i t () + 1 ;

4 . 5 ∗ 10 + 1
5 . 51

6.3 Declaration classes

The first role of declaration classes is to store information relative to the decla-
ration. For example a variable declaration must store its type and initial value.
This is done with template parameters exactly as above. The second role of dec-
laration classes depends on the kind of declaration. For variables and functions,
only some utility functions are implemented. The type classes do more things:
their second role is to implement all operations related to the type: assignment,
comparison, creation and destruction. These operations can depend on the en-
vironment. This is for example the case for an array, which refers to the type of
its elements.

Here is the model of type declaration classes:

struct AType : public TypeDec
{

// Type eva l depends on environment
template<class T env>

struct eva l
{

// Common opera t i ons are implemented here
void c r e a t e (v a r t & v) ;
void des t roy (v a r t v) ;
void a s s i gn (v a r t & l e f t , v a r t r i gh t) ;
int compare (v a r t l e f t , v a r t r i gh t) ;

} ;
} ;

76

Such classes are implemented for VoidType, IntType, StringType,
ArrayType and RecordType.

Each new type definition in a Tiger program, will result in new type opera-
tions. Our Tiger compiler generates evaluation code, but also operations code.
In order to emphasis on this contribution, we chose to implement assignment
and comparison as structural. At the contrary to the Tiger specifications, when
two records are compared, this is done member by member. When an array is
assigned, the all content is copied.

6.4 Program Environment

We have seen that type and expression evaluations depend on an environment,
through the type identified by T env in the previous code samples. We want
the environment to be computed statically: we need an implementation which
allows to push, pop, and retrieve declarations at compile-time. Therefore we use
again static lists: an environment is implemented as a static list of declaration
chunks. A declaration chunk is a part the TAT which is also a static list. This
construction allows us to manipulate the environment:

Pushing and popping declaration chunks is done with typedefs:

// Push T new chunk on T env , y i e l d i n g T new env .
typedef List < T new chunk , T env > T new env ;

// Pop an element o f T env , y i e l d i n g T new env .
typedef T env : : t a i l T new env ;

Environment access is done with a template class and a specialization:

template<class T env , unsigned N>

struct ListGet
{

typedef ListGet<T env : : t a i l , N − 1 > : :T T;
} ;

template<class T env>

struct ListGet<T env , 0 >

{
typedef T env : : head T;

} ;

// Access to the chunk number 3 .
typedef typename ListGet<T env , 3 > : :T T chunk 3 ;
// Access to the de c l a ra t i on number 1 o f t h i s chunk .
typedef typename ListGet<T chunk 3 , 1 > : :T T dec l 3 1 ;

We are now able to write a simplified version of the LetInEnd template class.

template<class T decl , class T exp>

struct LetInEnd

77

{
template<class T env>

struct eva l
{

typedef List<T decl , T env> T new env ;
typedef T exp : : eval<T new env > : :T T;
v a r t do i t ()
{

// Create new va r i a b l e s dec l ared in T dec l
// (not d e t a i l e d here) .

// Evaluate the express i on in the new environment .
va r t r e s = T exp : : eval<T new env > : : do i t () ;

// Destroy the v a r i a b l e s dec l ared in T dec l
// (not d e t a i l e d here) .

return r e s ;
}

} ;
} ;

All the needed operations on the environment can be done with type oper-
ations: we are able to fully compute the environment at compile-time for each
evaluation point. Function calls are not detailed here, but they use the same
operations. Note that all functions are evaluated each time they are called (as
inline functions). This implies that if we want a recursive function to be trans-
lated as a C++ recursive function, we need the environment to be exactly the
same at each recursive call.

6.5 The dynamic part

Not everything can be done at compile-time. The Tiger language allows some
constructions which cannot be resolved statically.

The main dynamic stuff is the variable declaration and use. When a variable
is declared, we need to store its value somewhere. At each evaluation point of
the program, there is a set of variables which are accessible.

A variable can be of any supported Tiger type: it can be an array, a string
or a record. There is no static representation of such values: we need to store
this into memory at the program execution. Therefore we use the C++ stack:
variables declared in a let-in-end construction are declared as local variables
in the LetInEnd evaluation method.

The Tiger has a nested let declaration. At a given evaluation point, there can
be several visible scopes. This obliges us to maintain a stack of scope pointers
during the whole execution process. Accessing a variable is performed with two
indirections: a first one to get the right scope and another one to reach the
variable into this scope. We could have chose to implement variables access

78

with a static link mechanism. This would corresponded to the adaptable closure
present in the phoenix library, part of the spirit project ([4]).

These indirections are our main limitation to really perform a static res-
olution of programs. Conversely, here is a program that is entirely statically
evaluated:

Listing 4.5. A program solved statically

l e t

function foo () = 20 ∗ 20
function bar () = 30 / 2
function smousse () = i f (80 > 6) then 1 else 0

in

(foo () + bar () + smousse ()) ∗ 4
end

There is no variable used so, after our transform towards C++, we can expect
that a C++ compiler can statically solve this program. In this particular case,
using a C++ compiler which has good optimization capacities, we directly obtain
one assembler instruction which gives the integer result.

6.6 The C++ program

The C++ program always have the same structure:

// Inc lude a l l t emp la te c l a s s e s needed to express and eva l ua t e
the AST.

#include "all.h"

// Generate the TAT.
typedef . . . program t ;

int main ()
{

// i n s t a n t i a t e program eva l ua t i on
return (int) program t : : eval < i n i t i a l e n v t > : : do i t () ;

}

The line of the main() launch the doit() instantiation, which results in the
generation of the program evaluation code. This work is done by the C++ com-
piler.

7 Results

Our compiler covers all of the Tiger language. Lot of Tiger programs have been
tested, and work successfully. Our process has been tested with como, g++ 3.2
and icc which gives slightly faster programs.

To experiment the performance of generated code, some Tiger programs com-
piled with our process have been compared to their C hard-coded equivalent. In

79

average, the C program goes two to three times faster than the (C++) Tiger
one. This performance lack is mostly explained by the variable access cost: each
access needs two indirections. But viewed as an evaluation process, this can be
considered as good results.

This performance highly depends on the aptitude of the C++ compiler
to optimize code. These optimizations are essentially obtained by the inlin-
ing mechanism. This optimization has been tested using the g++ option called
-finline-limit. This option influences the quantity of functions inlined. This
experience showed us the importance of good inlining at compile-time. Opti-
mizations are done until approximatively -finline-limit-1000, which is much
more than for usual C++ programs. This can be explained by the amount of
functions that are instantiated. Indeed for each node of the AST, there is at
least one function which will be used.

8 Conclusion

We have seen that a program can be expressed as an Abstract Syntax Tree (AST)
given the language grammar. Using a technique based on Expression Templates,
we are able to build a C++ type which describes this AST. This representation
is called the TAT (Tree As Type).

Building and evaluating the TAT poses various problems. We need to express
lists (for declarations, arguments, etc.). This problem is solved using the Static
list technique. In the TAT, some elements refer to others. The reference problem
implies the use of an environment which is implemented using a stack. We have
seen that this container allows the required operations: pushing, popping and
accessing. This stack is directly filled with parts of the TAT: this is a form of
static pointers, which solves the reference problem.

An implementation based on the Tiger language has been proposed. This
implementation intensively uses meta-programming techniques, therefore, the
C++ compiler is able to do lot of work at compile-time: expression types and
element references are solved statically. The limits of static resolution is the use
of variables which can only be manipulated dynamically.

Our Tiger compiler is originally inspired by the Expression Templates tech-
nique. However, the evaluated constructions are not restricted to basic ones,
such as unary or binary operators, but includes the common flow control con-
structions, structured types, variables, and nested functions. Moreover, thanks
to the use of a static environment, such advanced operations can be evaluated
by jumping from one point of the program to another. This happens for example
each time a function is called. That characteristic is a noticeable difference with
the Expression Templates which are evaluated in a simple bottom-up fashion.

This original technique shows how we used C++ meta-programming in order
to work on abstract syntax trees of a mostly functional programming language.
Indeed the C++ generative power allowed us to implement compiler parts and
translation into C++ equivalent code.

80

References

[1] A.W. Appel. Modern Compiler Implementation in C / Java / ML. Cambridge
University Press, 1997.

[2] J.A. Crotinger, J. Cummings, S. Haney, W. Humphrey, S. Karmesin, J. Reyn-
ders, S. Smith, and T.J. Williams. Generic programming in POOMA and PETE.
In Generic Programming, Proceedings of the International Seminar on Generic
Programming, volume 1766 of Lecture Notes in Computer Science, pages 218–.
Springer-Verlag, 2000.

[3] K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Techniques
and Applications. Addison-Wesley, 2000.

[4] Spirit group. Spirit parser framework, 2002.
[5] S. Haney and J. Crotinger. How templates enable high-performance scientific

computing in C++. Computing in Science and Engineering, 1(4), 1999.
[6] G. Powell J. Jarvi. The boost lambda library, 2002.
[7] J. Järvi. Compile time recursive objects in C++. In Technology of Object-Oriented

Languages and Systems, pages 66–77. IEEE Computer Society Press, 1998.
[8] Brian McNamara and Yannis Smaragdakis. Functional programming in C++

using the FC++ library. SIGPLAN Notices, April 2001.
[9] Jörg Striegnitz and Stephen A. Smith. An expression template aware lambda

function. In First Workshop on C++ Template Programming, Erfurt, Germany,
October 10 2000.

[10] C. van Reeuwijk. Rapid and robust compiler construction using template-based
metacompilation. In 12th International Conference on Compiler Construction,
Lecture Notes in Computer Science, pages 247–, Warsaw, Poland, April 2003.
Springer-Verlag.

[11] T. Veldhuizen. Expression templates. C++ Report, 7(5):26–31, June 1995.
[12] T. Veldhuizen. Techniques for scientific C++. Technical report, Computer Science

Department, Indiana University, Bloomington, USA, 2002.

A A simple C++ meta-program and its evaluation

template<unsigned i>
struct f a c t o r i a l
{

enum { r e s = i ∗ f a c t o r i a l < i − 1 > : : r e s } ;
} ;

template<>

struct f a c t o r i a l <0>
{

enum { r e s = 1} ;
} ;

enum { f a c t 4 = f a c t o r i a l <4>:: r e s } ;

Thanks to the template expansion mechanism, this C++ meta-function allows
to compute a factorial at compile-time:

81

f a c t o r i a l <4>:: r e s
4 ∗ f a c t o r i a l <3>:: r e s
4 ∗ 3 ∗ f a c t o r i a l <2>:: r e s

4 ∗ 3 ∗ 2 ∗ f a c t o r i a l <1>:: r e s
4 ∗ 3 ∗ 2 ∗ 1 ∗ f a c t o r i a l <0>:: r e s
4 ∗ 3 ∗ 2 ∗ 1 ∗ 1
24

B A full tiger program

l e t

type any = {any : int}
var bu f f e r := getchar ()

function p r i n t i n t (i : int) =
l e t function f (i : int) = i f i >0

then (f (i /10) ; p r i n t (chr (i−i /10∗10+ ord (”0”))))
in i f i <0 then (p r i n t (”−”) ; f (− i))

else i f i >0 then f (i)
else p r in t (”0”)

end

function r ead in t (any : any) : int =
l e t var i := 0

function i s d i g i t (s : string) : int =
ord (bu f f e r)>=ord (”0”) & ord (bu f f e r)<=ord

(”9”)
function sk ip to () =

while bu f f e r =” ” | bu f f e r =”\n”
do bu f f e r := getchar ()

in sk ip to () ;
any . any := i s d i g i t (bu f f e r) ;
while i s d i g i t (bu f f e r)

do (i := i ∗10+ord (bu f f e r)−ord (”0”) ; bu f f e r := getchar ()
) ;

i
end

type l i s t = { f i r s t : int , r e s t : l i s t }

function r e a d l i s t () : l i s t =
l e t var any := any{any=0}

var i := read in t (any)
in i f any . any

then l i s t { f i r s t=i , r e s t=r e a d l i s t () }
else ni l

82

end

function merge (a : l i s t , b : l i s t) : l i s t =
i f a=ni l then b
else i f b=ni l then a
else i f a . f i r s t < b . f i r s t

then l i s t { f i r s t=a . f i r s t , r e s t=merge (a . r e s t , b) }
else l i s t { f i r s t=b . f i r s t , r e s t=merge (a , b . r e s t) }

function p r i n t l i s t (l : l i s t) =
i f l=ni l then p r in t (”\n”)
else (p r i n t i n t (l . f i r s t) ; p r i n t (” ”) ; p r i n t l i s t (l . r e s t))

var l i s t 1 := r e a d l i s t ()
var l i s t 2 := (bu f f e r := getchar () ; r e a d l i s t ())

in

p r in t (” l i s t 1 : \ n”) ;
p r i n t l i s t (l i s t 1) ;
p r i n t (” l i s t 2 : \ n”) ;
p r i n t l i s t (l i s t 2) ;
p r i n t (” merged l i s t : \ n”) ;
p r i n t l i s t (merge (l i s t 1 , l i s t 2))

end

C TAT of the previous program

The following program compiles in less than two minutes with g++ 3.2 on a
350Mhz processor.

#include " all .h"

typedef LetInEnd< List < RecordType< List < TypeLnk< bu i l t i n type s
, 1 > > > > ,

LetInEnd< List < Variable < FuncCall < bu i l t i n f un c s , 9 , L i st < > > ,
bu i l t i n t ype s , 2 > > ,

LetInEnd< List<
Function< List < TypeLnk< bu i l t i n t yp e s , 1 > > , LetInEnd< List<
Function< List < TypeLnk< bu i l t i n t yp e s , 1 > > , I f < BinOp< SimpleVar

< 5 , 0 > , ConstInt < 0 > , GreatThan > , ExpList< FuncCall < 4 , 0 , L i st <
BinOp< SimpleVar < 5 , 0 > , ConstInt < 10 > , Divide > > > , ExpList<
FuncCall < bu i l t i n f u nc s , 0 , L i st < FuncCall < bu i l t i n f u n c s , 4 , L i st <
BinOp< BinOp< SimpleVar < 5 , 0 > , BinOp< BinOp< SimpleVar < 5 , 0 > ,
ConstInt < 10 > , Divide > , ConstInt < 10 > , Times > , Minus > , FuncCall <
bu i l t i n f u nc s , 3 , L i st < ConstStr ing < 0 > > > , Plus
> > > > > > > > , 4 >

>,
ExpList< I f < BinOp< SimpleVar < 3 , 0 > , ConstInt < 0 > , LessThan > ,

ExpList< FuncCall < bu i l t i n f u n c s , 0 , L i st < ConstStr ing < 1 > > > ,
ExpList< FuncCall < 4 , 0 , L i st < BinOp< ConstInt < 0 > , SimpleVar
< 3 , 0 > , Minus > > > > > , I f < BinOp< SimpleVar < 3 , 0 > , ConstInt
< 0 > , GreatThan > , FuncCall < 4 , 0 , L i st < SimpleVar < 3 , 0 > > > ,
FuncCall < bu i l t i n f u nc s , 0 , L i st < ConstStr ing < 2 > > > > > > >

, 2 >
, L i s t<

83

Function< List < TypeLnk< 0 , 0 > > , LetInEnd< List < Variable < ConstInt
< 0 > , bu i l t i n t ype s , 1 > > ,

LetInEnd< List<
Function< List < TypeLnk< bu i l t i n t yp e s , 2 > > , I f < BinOp< FuncCall <

bu i l t i n f u nc s , 3 , L i st < SimpleVar < 1 , 0 > > > , FuncCall < bu i l t i n f un c s
, 3 , L i st < ConstStr ing < 3 > > > , GreatEq > , BinOp< FuncCall <
bu i l t i n f u nc s , 3 , L i st < SimpleVar < 1 , 0 > > > , FuncCall < bu i l t i n f un c s
, 3 , L i st < ConstStr ing < 4 > > > , LessEq > , ConstInt < 0 > > , 5 >

, L i s t<
Function< List < > , While< I f < BinOp< SimpleVar < 1 , 0 > , ConstStr ing

< 5 > , Equal > , ConstInt < 1 > , BinOp< SimpleVar < 1 , 0 > , ConstStr ing
< 6 > , Equal > > , Assign < SimpleVar < 1 , 0 > , FuncCall < bu i l t i n f u n c s
, 9 , L i st < > > > > , 5 >

> >,
ExpList< FuncCall < 5 , 1 , L i st < > > , ExpList< Assign < FieldVar <

SimpleVar < 3 , 0 > , 0 > , FuncCall < 5 , 0 , L i st < SimpleVar
< 1 , 0 > > > > , ExpList< While< FuncCall < 5 , 0 , L i st < SimpleVar
< 1 , 0 > > > , ExpList< Assign < SimpleVar < 4 , 0 > , BinOp< BinOp< BinOp
< SimpleVar < 4 , 0 > , ConstInt < 10 > , Times > , FuncCall < bu i l t i n f u nc s
, 3 , L i st < SimpleVar < 1 , 0 > > > , Plus > , FuncCall < bu i l t i n f u nc s , 3 ,
L i st < ConstStr ing < 7 > > > , Minus > > , ExpList< Assign < SimpleVar
< 1 , 0 > , FuncCall < bu i l t i n f u n c s , 9 , L i st < > > > > > >, ExpList<
SimpleVar < 4, 0 > > > > > > >

, 2 >
> >,

LetInEnd< List < RecordType< List < TypeLnk< bu i l t i n t yp e s , 1 > , L i s t <
TypeLnk< 3 , 0 > > > > > ,

LetInEnd< List<
Function< List < > , LetInEnd< List < Variable < Record < 0 , 0 , L i st <

ConstInt < 0 > > > , 0 , 0 > , L i s t < Variable < FuncCall < 2 , 1 , L i st <
SimpleVar < 6 , 0 > > > , b u i l t i n typ e s , 1 > > > ,

ExpList< I f < FieldVar < SimpleVar < 6 , 0 > , 0 > , Record < 3 , 0 , L i st <
SimpleVar < 6 , 1 > , L i s t < FuncCall < 4 , 0 , L i st < > > > > >, N i l > > >

, 4 >
, L i s t<
Function< List < TypeLnk< 3 , 0 > , L i s t < TypeLnk< 3 , 0 > > > , I f < BinOp<

SimpleVar < 5 , 0 > , Ni l , Equal > , SimpleVar < 5 , 1 > , I f < BinOp<
SimpleVar < 5 , 1 > , Ni l , Equal > , SimpleVar < 5 , 0 > , I f < BinOp<
FieldVar < SimpleVar < 5 , 0 > , 0 > , FieldVar < SimpleVar < 5 , 1 > , 0 > ,
LessThan > , Record < 3 , 0 , L i st < FieldVar < SimpleVar < 5 , 0 > , 0 > , L i s t
< FuncCall < 4 , 1 , L i st < FieldVar < SimpleVar < 5 , 0 > , 1 > , L i s t <
SimpleVar < 5 , 1 > > > > > > > , Record < 3 , 0 , L i st < FieldVar < SimpleVar
< 5 , 1 > , 0 > , L i s t < FuncCall < 4 , 1 , L i st < SimpleVar < 5 , 0 > , L i s t <
FieldVar < SimpleVar < 5 , 1 > , 1 > > > > > > > > > > , 4 >

, L i s t<
Function< List < TypeLnk< 3 , 0 > > , I f < BinOp< SimpleVar < 5 , 0 > , Ni l ,

Equal > , FuncCall < bu i l t i n f un c s , 0 , L i st < ConstStr ing < 8 > > > ,
ExpList< FuncCall < 2 , 0 , L i st < FieldVar < SimpleVar < 5 , 0 > , 0 > > > ,
ExpList< FuncCall < bu i l t i n f un c s , 0 , L i st < ConstStr ing < 9 > > > ,
ExpList< FuncCall < 4 , 2 , L i st < FieldVar < SimpleVar
< 5 , 0 > , 1 > > > > > > > , 4 >

> > >,
LetInEnd< List < Variable < FuncCall < 4 , 0 , L i st < > > , b u i l t i n typ e s

, 0 > , L i s t < Variable < ExpList< Assign < SimpleVar < 1 , 0 > , FuncCall <
bu i l t i n f u nc s , 9 , L i st < > > > , ExpList< FuncCall < 4 , 0 , L i st <
> > > > , bu i l t i n t ype s , 0 > > > ,

ExpList< FuncCall < bu i l t i n f un c s , 0 , L i st < ConstStr ing < 10 > > > ,
ExpList< FuncCall < 4 , 2 , L i st < SimpleVar < 5 , 0 > > > , ExpList<
FuncCall < bu i l t i n f u n c s , 0 , L i st < ConstStr ing < 11 > > > , ExpList<
FuncCall < 4 , 2 , L i st < SimpleVar < 5 , 1 > > > , ExpList< FuncCall <
bu i l t i n f u nc s , 0 , L i st < ConstStr ing < 12 > > > , ExpList< FuncCall
< 4 , 2 , L i st < FuncCall < 4 , 1 , L i st < SimpleVar < 5 , 0 > , L i s t < SimpleVar
< 5, 1 > > > > > > > > > > > > > > > > > >

program t ;

84

const char∗ metasmousse : : c o n s t s t r i n g [] = { "0" , " -" , "0" , "0" , "9" ,
" " , " \012 " , "0" , " \012 " , " " , " list 1 : \012 " , " list 2 : \012 " , "
merged list : \012" , NULL} ;

int main ()
{

return (int) program t : : eval < i n i t i a l e n v t > : : d o i t () ;
}

85

Parsing
Semantical
analysis

Operational
analysis

type checking,
scopes,
bindings

lexical analysis,
grammatical analysis

Tiger
source
program

Executable
code

template instantiation,
transformations

...

Front-end program C++ compiler

C++
code
with
TAT Static

evaluation
Dynamic

evaluation

Two layer
evaluation

function inlining,
types resolution

instanciated
templates

Fig. 1. Placement in the compilation chain

Const : 80

Plus

VarDec

LetInEnd

int

SimpleVar SimpleVar

List

List

VarDec EmptyList

Const : 6

Fig. 2. AST of example 4.3

AstNode

FuncDec

Declaration

TypeDec VarDec

Expression

Fig. 3. Main kind of classes

86

JSetL: Declarative Programming in Java with

Sets

Elisabetta Poleo and Gianfranco Rossi

Dip. di Matematica, Università di Parma, Dip. di Matematica, Via M. D’Azeglio
85/A, 43100 Parma (Italy). gianfr@prmat.math.unipr.it

Abstract. In this paper we present a Java library—called JSetL—that
offers a number of facilities to support declarative programming like those
usually found in CLP languages: logical variables, list and set data struc-
tures (possibly partially specified), unification and constraint solving over
sets, nondeterminism. The paper describes the main features of JSetL
and it shows how these features can be exploited to write in Java declar-
ative solutions to a number of simple problems in a CLP style.

1 Introduction

Many different constraint solvers have been designed in the last twenty years,
devoted to different constraint domains with different features, and using differ-
ent implementation techniques. Most of them have been proposed in the context
of Constraint Logic Programming (CLP). Among them we can mention Prolog
III and IV [5, 16], CHIP [10, 19], CLP(R) [14], GNU Prolog (formerly clp(FD))
[7, 3], CLP(SET) [8] and ECLIPSE [11].

On the other hand, from the beginning of ’90ties, researchers have realized
that it can be convenient to have constraint solvers embedded in a more con-
ventional programming setting (in particular an object-oriented one), in which
one can accommodate the fundamental capabilities of CLP as well as those
constructs for programming and software structuring that are typical of con-
ventional programming languages. As a matter of fact, most real-world software
development is done using conventional programming languages, in particular,
object-oriented languages such as C++ and Java.

Among the proposals that move along these lines one of the best known is
that of the ILOG Solver [15, 13]. In this system, constraints and logical variables
are handled as objects and are defined within a C++ class library. Thanks to
the encapsulation and operator overloading mechanisms, programmers can view
constraints almost as if they really were part of the language. Similar proposals
are those of INC++ [12], NeMo+ [18], and JSolver [4], the last one based on the
Java language instead of on C++.

In all these proposals the constraint solvers are viewed as libraries of the
host language, more or less integrated with the language itself. A different ap-
proach for allowing constraints in a conventional programming language consists
in defining a new programming language, or extending an existing one, in such

87

a way constraints are viewed as ”first-class citizens” of the language itself. This
is the solution adopted for instance in the languages Alma-0 [2], Singleton [17],
and DJ (Declarative Java) [20, 21].

A potential advantage of this approach with respect to that based on a library
is that it allows a tighter integration between constructs of the host language and
the facilities offered by the constraint solver, making programs simpler and more
“natural” to write. On the other hand, however, the design and development of a
new language is surely a more difficult task, and the resulting systems are likely
to be less easy to integrate with other existing systems.

The work presented in this paper is another proposal following the OO library
approach: we endow an OO language, namely Java, with facilities for defining and
manipulating constraints, by providing them as a library—called JSetL. What is
peculiar in our proposal, however, is the kind of data abstractions and constraints
that the library provides, and the programming style that these facilities support.
Specifically, some notable features of JSetL are:

– logical variables;
– list and set data structures, possibly partially specified (i.e., containing unini-

tialized logical variables)
– unification (in particular, unification over lists and sets)
– a powerful set constraint solver which allows to compute with partially spec-

ified data
– nondeterminism (though confined to constraint solving).

These facilities provide a valuable support to declarative programming. In
particular the constraint solver allows complex (set) expressions to be checked
for satisfiability on a specific domain, disregarding the order in which they are
encountered and the instantiation of variables occurring in them. Moreover, the
use of partially specified set data structures, along with the nondeterminism
“naturally” supported by operations over sets, are fundamental features to allow
the language to be used as a highly declarative modelling tool, in particular for
combinatorial problems.

All the features listed above for JSetL are present also in the CLP(SET)
language [8], but embedded in a CLP framework. An attempt to “export” these
features outside CLP is represented by the definition of the Singleton lan-
guage [17], a declarative language that combines most of the features considered
in this paper with “traditional” features of imperative programming languages,
such as the iterative control structures and the block structure of programs.
Singleton, however, is a completely new language, with its own syntax and
its own semantics. One of the aims of this work is to allow us to compare the
approach followed in Singleton with the library based approach followed in
JSetL, in order to evaluate the gain in the expressive power related to the effort
needed to develop the new facilities and the easiness to use them. Actually, the
debate about pros and cons of the two approaches is still largely open.

The paper is organized as follows. In Section 2 we give an informal presen-
tation of JSetL by showing a simple Java program using JSetL. In Section 3 we

88

introduce the fundamental data structures of JSetL, namely logical variables,
sets and lists. In Section 4, we describe the (set) constraint handling facilities
supported by our library and we show how constraint solving can be accom-
plished, and how it interacts with the usual notion of program computation.
The fundamental notion of nondeterminism and its relationship with sets is also
addressed in this section. In Section 5 we show how user defined constraints can
be introduced in a program and how they can be used. Finally, in Section 6 we
briefly discuss future work.

2 An informal introduction to programming with JSetL

First of all we show a simple example of a Java program using JSetL which
allows us to give the flavor of the programming style supported by the library.

Problem: Compute and print the maximum of a set of integers.

For the sake of simplicity we assume that the set of integers is directly supplied
by the program (instead of being read for instance from a file). Hence we will
focus on the definition of the method max that computes the maximum of a set
s of integers. Observe that the proposed implementation does not take care of
execution efficiency. Indeed, JSetL is mainly conceived as a tool for rapid software
prototyping, where easiness of program development and program understanding
prevail over efficiency.

class Max

{
public static Lvar max(Set s) throws Failure

{
Lvar x = new Lvar();

Lvar y = new Lvar();

Solver.add(x.in(s));

Solver.forall(y,s,y.leq(x));

Solver.solve();

return x;

}

public static void main (String[] args) throws IOException, Failure

{
int[] sample set elems = {1,6,4,8,10,5};
Set sample set = new Set(sample set elems);

System.out.print(" Max = "); max(sample set).print();

}
}

x and y are two logical variables and both are uninitialized. Invocation of the
add method adds the constraint x.in(s) (i.e., x ∈ s) to the current constraint
store. This constraint is evaluated to true if s is a set and x belongs to s. If x
is uninitialized when the expression is evaluated this amounts to nondetermin-
istically assign an element of s to x. Invocation of the forall method allows to

89

add to the constraint store a new constraint y.leq(x) (i.e., y ≤ x) for each y

belonging to s. As soon as the solve method is invoked the constraint solver
checks whether the current collection of constraints in the constraint store is
satisfiable or not. If it is, the invocation of the solve method terminates with
success. The value of x represents the integer we are looking for and it is returned
as the result of max. If, on the contrary, one of the constraints in the constraint
store is evaluated to false, backtracking takes place and the computation goes
back till the nearest choice point. In this case, the nearest and only choice point
is the one created by the x.in(s) constraint. Its execution will bind nondeter-
ministically x to each element of s, one after the other. If all values of s have been
attempted, there is no further alternative to explore and the computation of max
terminates raising an exception Failure. If no catch clause for this exception
is provided, the whole computation terminates reporting a failure (actually this
is not the case of the max method, since a value of x for which all the constraints
hold surely exists—exactly the maximum of s).

Executing the program with the sample set of integers declared in the main
method causes the message Max = 10 to be printed to the standard output.

3 Logical variables and composite data objects

JSetL provides logical variables and two new kinds of data structures: sets and
lists. These new features are implemented by three classes, Lvar, Lst, and Set,
for creation and manipulation of logical variables, lists and sets, respectively.

A logical variable is an instance of the class Lvar, created by the statement

Lvar VarName = new Lvar(VarNameExt,VarValue);

where VarName is the variable name, VarNameExt is an optional external name of
the variable, and VarValue is an optional Lvar value associated with the variable.

The external name is a string value which can be useful when printing the
variable and the possible constraints involving it (if omitted, a default name
of the form "Lvar n", where n is a unique integer, is assigned to the variable
automatically). An Lvar value can be either a primitive type value, or any library
or user defined class object (provided it supplies a method equals for testing
equality between two instances of the class itself). In particular, an Lvar value
can be an instance of Lvar, Lst, or Set

A logical variable which has no Lvar value associated with it or whose Lvar

value is an uninitialized logical variable (or list or set), is said to be uninitial-
ized (or an unknown). Otherwise, the logical variable is initialized. Lvar values
other than uninitialized logical variables (or lists or sets) are said known val-
ues. Uninitialized logical variables will possibly assume a known value (i.e., they
become initialized) during the computation, in consequence of some constraints
involving them.

A list is a finite (possibly empty) sequence of arbitrary Lvar values (i.e., the
elements of the list). In JSetL a list is an instance of the class Lst, created by
the statement

90

Lst LstName = new Lst(LstNameExt,LstElemValues);

where LstName is the list name, LstNameExt is an optional external name of the
list, and VarElemValues is an optional array of Lvar values c1, . . . , cn of type
t , which constitute the elements of the list. The constant Lst.empty is used to
denote the empty list.

A list can be either initialized or uninitialized. An uninitialized list is like a
logical variable, but constrained to be (possibly) initialized by list objects only.

Hereafter, we will often make use of an abstract notation—which closely
resembles that of Prolog—to write lists in a more convenient way. Specifically,
[e1, e2, . . . , en] is used to denote the list containing n elements e1, e2, . . . , en ,
while [] is used to denote the empty list. Moreover, [e1, e2, . . . , en | R], where R
is a list, is used to denote a list containing the n elements e1, e2, . . . , en , plus
elements in R. In particular, if R is uninitialized, [e1, e2, . . . , en | R] represents
an “unbound” list, with elements e1, . . . , en and an unknown part R. Similar
abstract notation will be introduced also to represent sets (with square brackets
replaced by curly brackets).

A set is a finite (possibly empty) collection of arbitrary Lvar values (i.e.,
the elements of the list). While in lists the order and repetitions of elements are
important, in sets order and repetitions of elements do not matter. In JSetL a
set is an instance of the class Set, created by the statement

Set SetName = new Set(SetNameExt,SetElemValues);

where SetName, SetNameExt, and SetElemValues have the same meaning than in
lists. The constant Set.empty is used to denote the empty set. Also, a set can
be either initialized or uninitialized.

Example 1 . Lvar, Lst, and Set definitions

Lvar x = new Lvar(); // uninitialized l. var.
Lvar y = new Lvar("y",’a’); // initialized l. var. (value ’a’),

// with ext’l name "y"

Lvar t = new Lvar(x); // uninitialized l. var.;
// same as variable x

Lst l = new Lst("l"); // uninitialized list,
// with ext’l name "l"

int[] s elems = {2,4,8,3};
Set s = new Set("s",s elems); // initialized set (value {2,4,8,3}),

// with ext’l name "s"

Elements of a list or of a set can be also logical variables (or lists or sets),
possibly uninitialized. For example, the following declarations

Lvar x = new Lvar();

Object[] pl elems = {new Integer(1),x};
Lst pl = new Lst(pl elems);

create the list pl with value [1,x], where x is an uninitialized logical variable.
A list (resp., set) that contains some elements which are uninitialized logical
variables (or lists, or sets) is said a partially specified list (set). Note that in a

91

partially specified set the cardinality is not completely determined. For example,
the partially specified set {1,x} has cardinality 1 or 2 depending whether x will
get value 1 or different from 1, respectively (actually, each partially specified
set/list denotes a possibly infinite collection of different sets/lists, that is all set-
s/lists which can be obtained by assigning admissible values to the uninitialized
variables).

A list (resp., set) can be also obtained as the result of evaluating a list (resp.,
set) constructor expression. Let e be an Lvar expression (i.e. an expression
returning a Lvar value), l and m be list expressions (i.e., expressions returning
a list object or a logical variable whose value is a list object), and x be an
uninstantiated logical variable. A list constructor is an expression of one of the
forms:

(i) l.ins1(e) (head element insertion) (iii) l.ext1(x) (head element removal)
(ii) l.insn(e) (tail element insertion) (iv) l.extn(x) (tail element removal)

Expressions (i) and (ii) denote the list obtained by adding val(e) as the first
and the last element of the list l, respectively, whereas expressions (iii) and
(iv) denote the list obtained by removing from l the first and the last element,
respectively. Evaluation of expressions (iii) and (iv) also causes the value of the
removed element to become the value of x. 1

It is important to notice that these methods do not modify the list on which
they are invoked: rather they build and return a new list obtained by adding/re-
moving the elements to/from the input list (the same will hold for sets, too).

Constructor expressions for sets are simpler than those for lists. In fact,
in lists we can distinguish between the first (the head) and the last (the tail)
element of a list, while in sets the order of elements is immaterial. Moreover, only
the element insertion method is provided since element extraction may involve a
non-deterministic selection of the element to be extracted that is better handled
using set constraints (see Section 4).

Let e be an Lvar expression and s be a set expression (i.e., an expression
returning a set object or a logical variable whose value is a set object). A set
constructor is an expression of the form:

s.ins(e) (element insertion)

which denotes the set obtained by adding val (e) to s (i.e., s ∪ {val(e)}).
Set/List insertion and extraction methods can be concatenated (left associa-

tive). In fact these methods always return a Set/Lst object, and the returned
object can be used as the invocation object as well.

Using the insertion methods it is also possible to build unbounded partially
specified sets/lists, that is data structures with a certain number of (either known
or unknown) elements e1, ..., en , and an unknown “rest” part, represented by

1 Extraction methods for lists require that the invocation list l is initialized and that
x is not initialized. If one of these conditions is not respected an exception is raised
(namely, NotInitVarException and InitLvarException, respectively). Moreover, if
l is the empty list, a EmptyLstException exception is raised.

92

an uninitialized set/list r (i.e., using the abstract notation, {e1, . . . , en | r} or
[e1, . . . , en | r] for sets and lists, respectively).

Example 2 . Set/List element insertion and removal

Lvar nil = new Lvar(Lst.empty); // the empty list
Lst l1 = new Lst(nil.ins1(3+2).ins1(x)); // the p.s. list [x,5]

// (x uninitialized var.)
Lst l2 = new Lst(l1.ext1(y).insn(y)); // the p.s. list [5,x]
Set s1 = new Set(Set.empty.ins(1).ins(’a’)); // the set {’a’,1}
Set r = new Set(); // an uninitialized set
Set s2 = new Set(r.ins(1)); // the unbounded set {1 | r}

Note that s2 in the above example is a partially specified set containing one
element, 1, and an unknown part r; in this case, the cardinality of the denoted
set has no upper bound (the lower being 1).

Special forms of the insertion and extraction methods are provided to simplify
their usage. In particular, the method ins1All(a), applied to a list l, where a

is an array of elements of a type t, returns a list obtained from l by adding all
elements of a as the head elements of l, respecting the order they have in a.
Similarly, insAll(a), applied to a set s, is used to insert more than one element
at a time into s. In addition, an alternative form is provided for specifying the
value for a set or list object. When creating the object it is possible to specify
the limits l and u of an interval [l , u] of integers: the elements of the interval will
be the elements of the set/list (if u < l the set/list is empty).

A number of utility methods are also provided by classes Lvar, Lst, and Set.
These methods are used, for example, to print a set/list object, to know whether
a logical variable is initialized or not, to get the external name associated with
a Lvar, Lst, or Set object, and so on.

Logical variables, sets, and lists are used mainly in conjunction with con-
straints. Constraints are addressed in more details in the next section.

4 (Set) Constraints

Basic set-theoretical operations, as well as equalities and disequalities, are dealt
with as constraints in JSetL. The evaluation of expressions containing such op-
erations is carried on in the context of the current collection of active constraints
C (the global constraint store) using domain specific constraint solvers. Those
parts of these expressions, usually involving one or more uninitialized variables,
which cannot be completely solved are added to the constraint store and will be
used to narrow the set of possible values that can be assigned to the uninitialized
variables.

The approach adopted for constraint solving in JSetL is the one developed for
CLP(SET)[8]. Logically, the constraint store is a conjunction of atomic formulae
built using basic set-theoretic operators, along with equality and disequality.
Satisfiability is checked in a set-theoretic domain, using a suitable constraint

93

solver which tries to reduce any conjunction of constraints to a simplified form—
the solved form—which can be easily tested for satisfiability. The success of
this reduction process allows one to conclude the satisfiability of the original
collection of constraints. Conversely, the detection of a failure (logically, the
reduction to false) implies the unsatisfiability of the original constraints. Solved
form constraints are left in the current constraint store and passed ahead to the
new state. A successful computation, therefore, may terminate with a not empty
collection of solved form constraints in the final constraint store.

An atomic constraint in JSetL is an expression of one of the forms:

– e1.op (e2)
– e1.op (e2, e3)

where e1 is either a Lvar, a Lst or a Set expression, e2 and e3 can be Lvar,
Lst or Set expressions, a primitive type value or any class object provided of an
equal method. op is one of a collection of predefined operators that implement
basic operations on sets, such as: equality, membership, (strict) inclusion, union,
disjunction, intersection, set difference, and, for most of them, also their negative
counterparts. In particular, set equality turns out to be dealt with as a set
unification problem [9].

A constraint is the conjunction of two or more atomic constraints v1,
v2,. . . ,vn :

– v1.and(v2)and(vn)

Example 3 . Set constraints

Let x, y, z be logical variables and r, s, and t be sets.

r.eq(s)); // equality between sets
t.union(r,s)); // t = r ∪ s

x.eq(y).and(x.eq(3)).and(y.neq(z))) // x = y ∧ x = 3 ∧ x 6= z

A constraint C can be added to the constraint store by calling the addmethod
of the Solver class

Solver.add(C)

The order in which constraints are added to the constraint store is completely
immaterial. After constraints have been added to the store, one can invoke their
resolution by calling the solve method:

Solver.solve()

The solve method nondeterministically searches for a solution that satisfies
all constraints introduced in the constraint store. If there is no solution a Failure
exception is generated. We say that the invocation of a method, calling (directly
or indirectly) the solve method, terminates with failure if its execution causes
the Failure exception to be raised; otherwise we say that it terminates with
success. The default action for this exception is the immediate termination of
the current thread. The exception, however, can be caught by the program and
dealt with as preferred.

94

To find a solution, the constraint solver tries to reduce the atomic constraints
in the constraint store to a simplified form - called the solved form (see [8]). This
reduction is nondeterministic. Nondeterminism is handled through choice points
and backtracking. Once the constraint reduction process detects a failure, the
computation backtracks to the most recently created choice point (chronological
backtracking). If no choice point is left open the whole reduction process fails
(i.e., the Failure exception is generated).

Example 4 . Constraint solving

Let s be the set {x,y,z}, where x, y, and z are uninitialized logical variables,
and r be the set {1,2,3}.

Solver.add(r.eq(s)); // set unification r = s

Solver.add(x.neq(1)); // x 6= 1

Solver.solve(); // calling the constraint solver
x.output();

x.output() prints the (external) name of the variable x followed by its value
(if any; otherwise, followed by ’ ’). Therefore the output generated by this code
fragment is:

x = 2

The value for x is computed through backtracking; as a matter of fact, the
first value for x computed by solving r.eq(s) is (likely to be) 1, which however
does not satisfy the other constraint x.neq(1). Thus, backtracking forces the
solver to find another solution for x, namely x = 2. In this case, the conjunction
of the two given constraints is satisfied, and the invocation of the solve methods
terminates successfully.

If later on a new constraint, e.g., [x] 6= [2], is added to the constraint
store, and the constraint solver is called again, the choice points left open by
the previous call to the solver are still open and they are explored by the new
invocation.

Solver.add(Lst.empty.ins1(x).neq(Lst.empty.ins1(2))); // [x] 6= [2]

Solver.solve();

x.output();

The output generated at the end of the computation of this new fragment of
code is therefore:

x = 3

Note that every time the solve method is invoked it does not restart solving
the constraint from the beginning but it restart from the point reached by the
last invocation to solve.

At the end of the computation the constraint store may contain solved form
constraints. To print these constraints, other than equality constraints, one can
use the static method showStore() of class Solver (actually this method allows

95

to visualize the content of the constraint store at any moment during the com-
putation). Let us see how the solver works on a simple example involving also
negative constraints in the computed result.

Example 5 Programming with constraints.

Check whether an element x belongs to the difference between two sets, s1 and
s2 (i.e., x ∈ s1\s2) .

public static void in difference(Lvar x, Set s1, Set s2) throws Failure

{
Solver.add(x.in(s1));

Solver.add(x.nin(s2));

}

If the following code fragment is executed (for instance, in the main method)

in difference(v,s,r);

x.output();

Solver.showStore();

and s and r are the sets {1,2} and {1,3}, respectively, and x is an uninitialized
variable, the output generated is:

x = 2

Store: empty

Conversely, if s is an uninitialized set, then executing the same program
fragment as above, will produce the following output

x =

s = {x | Set 1}
Store: x.neq(1) x.neq(3)

which is read as: s can be any set containing the element x and x must be different
from 1 and 3.

The ability to solve constraints disregarding the fact logical variables occur-
ring in them are initialized or not allows methods involving constraints to be
used in a quite flexible way, e.g., using the same method both for testing and
computing solutions This flexibility strongly contributes to support a declarative
programming style.

A convenient way to introduce more than one constraint at a time is by
using the forall method. Let x be an uninitialized variable, S a set expression
which is evaluated to an initialized set, C a constraint containing x, and Cs the
constraint obtained from C by replacing all occurrences of x with element s of
S . The statement

Solver.forall(x,S,C)

adds the constraint Cs to the constraint store, for each element s of S . Logically,
forall(x,S,C) is the so-called Restricted Universal Quantifier: ∀x ((x ∈ S)→
C) (see the sample program in Section 2 for a simple use of forall).

96

It is common also to allow local variables y1, . . . , yn in C , which are created
as new for each element of the set (logically, ∀x ((x ∈ S) → ∃y1, . . . , yn(C))
that is y1, . . . , yn are existentially quantified variables). For this purpose, JSetL
provides also the method

Solver.forall(x,S,Y,C)

where x, S , and C are the same as in the simpler forall method, while Y is a
list of uninitialized logical variables.

Example 6 Using the forall method.

Check whether all elements of a set s are pairs, i.e., they have the form {x1,x2},
for any x1 and x2.

public static void all pairs(Set s) throws Failure

{
Lvar x1 = new Lvar();

Lvar x2 = new Lvar();

Lst Y = new Lst(Lst.empty.ins1(x2).ins1(x1));

Lvar x = new Lvar();

Solver.forall(x,s,Y,x.eq(Lst.empty.ins1(x2).ins1(x1)));

Solver.solve();

return;

}

Let sample set be the set {[1,3],[1,2],[2,3]}. The following fragment of
code tests whether sample set is composed only of pairs and prints a message
‘‘All pairs’’ or ‘‘Not all pairs’’ depending on the result of the test.

boolean res = true;

try {
all pairs(sample set);

}
catch(Failure e)

{res = false;}
if (res) System.out.print("All pairs");

else System.out.print("Not all pairs");

Example 6 shows also how a statement, namely the call
all pairs(sample set), can be used, in a sense, as a condition. In fact,
if execution of the statement fails (i.e., not all elements in the given set are
pairs), then an exception Failure is raised and the associated exception handler
executed. The latter can easily set a boolean variable to be used in the next if
statement. Thus, if the statement terminates with success then a true value is
returned (in res); otherwise, the statement terminates with failure and a false

value is returned. This is analogous to the use of statements as expressions
found in some languages, such as Alma-0 [1]) and Singleton [17].

A computation in JSetL can be nondeterministic, though nondeterminism
in JSetL is confined to constraint solving. Precisely, like in Singleton, non-
determinism is mainly supported by set operations. As a matter of fact, the

97

notion of nondeterminism fits into that of set very naturally. Set unification and
many other set operations are inherently and naturally nondeterministic. For
example, the evaluation of x ∈ {1, 2, 3} with x an uninitialized variable, non-
deterministically returns one among x = 1, x = 2, x = 3. Since the semantics
of set operations is usually well understood and quite “intuitive”, making non-
deterministic programming the same as programming with sets can contribute
to make the (not trivial) notion of nondeterminism easier to understand and to
use.

Nondeterminism is another key feature of a programming language to support
declarative programming.

A simple way to exploit nondeterminism in JSetL is through the use of the
Setof method. This method allows one to explore the whole search space of a
nondeterministic computation and to collect into a set all the computed solutions
for a specified logical variable x. Then the collected set can be processed, e.g.,
by iterating over all its elements using the forall method.

Example 7 All solutions.

Compute the set of all subsets (i.e., the powerset) of a given set s.

public static Set powerset(Set s) throws Failure

{
Set r = new Set();

Solver.add(r.subset(s));

Solver.setof(r);

return r;

}

If s is the set {’a’,’b’}, the set returned by powerset is
{{},{’a’},{’b’},{’a’,’b’}}.

Constraints and other JSetL facilities can be used in conjunction with the
usual control structures of Java. This situation is illustrated by the following
example.

Example 8 Symmetrical list.

Check whether a list l is symmetrical or not.

public static boolean symmetrical(Lst l) throws Failure

{
try {

while(l.size()>1)

{
Lvar z1 = new Lvar();

Lvar z2 = new Lvar();

Lst r = l.ext1(z1).extn(z2); // extract the first and last element of l
Solver.add(z1.eq(z2)); // the first and the last must be equal
Solver.solve();

98

l = r; // continue with the rest of l
}

return true;

}
catch(Failure e)

{
return false;

}
}

If, for example, l is [’r’,’a’,’d’,’a’,’r’] the value returned by symmetrical
is true. List l can contain also some unknown values. For example, with l =
[x,1,3,y,2], x and y uninitialized variables, invocation of the symmetrical

method returns true and as a side-effect it initializes variables x and y to 2 and
1, respectively. Note that within the while loop we use an assignment between
two logical variables, l = r: this forces l at the next iteration to be replaced by
the new (shorter) list r.

Finally we show the application of JSetL to a more complex problem, the
well-known combinatorial problem of the coloring of a map.

Example 9 Coloring of a map.

Given a map of n regions r1,...,rn and a set of m colors c1,...cm find an assign-
ment of colors to regions such that neighboring regions have different colors.

The regions are represented by a set of n uninitialized logical variables and
the colors by a set of m constant values (e.g., {"red","blue"}). The map is
modeled by an undirected graph and it is represented as a set whose elements
are sets containing two neighboring regions. At the end of the computation each
Lvar representing a region will be initialized with one of the given color.

public static void coloring(Set regions, Set map, Set colors)

throws Failure

{
Lvar x = new Lvar();

Solver.add(regions.eq(colors));

Solver.forall(x,colors,(Set.empty.ins(x)).nin(map));

Solver.solve();

return;

}

The solution uses a pure “generate & test” approach. The regions = colors

constraint allows to find a valuable assignment of colors to regions. Invocation
of the forall method allows to test whether the constraint {x} 6∈ map holds for
all x belonging to colors. If it holds, it means that for no pair {ri , rj} in map,
ri and rj have got the same color.

If coloring is called with regions = {r1,r2,r3}, r1, r2, r3 uninitialized
logical variables, map = {{r1,r2},{r2,r3}}, and colors = {"red","blue"},
the invocation terminates with success, and r1, r2, r3 are initialized to "red",

99

"blue", and "red", respectively (actually, also the other solution which initial-
izes r1, r2, r3 to "blue", "red", and "blue", respectively, can be computed
through backtracking, if the first computed solution turns out to cause a failure).

Note that the set of colors can be also partially specified. For example, if
colors = {c1,"blue"}, with c1 an uninitialized variable, executing coloring

will generate the constraint: r1 = Lvar 1, r2 = "blue", r3 = Lvar 1, Lvar 1

6= "blue".

5 Defining new constraints

Nondeterminism in JSetL is confined to constraint solving. One consequence of
this is that the value of a logical variable computed in a nondeterministic way
(hence, within the constraint solver), is no longer “sensible” to backtracking once
it is used outside constraint solving. For example, let us consider the following
program fragment, where we assume that s is the set {0,1}, and c1, c2 are two
constraints:

Solver.add(x.in(s));

Solver.solve();

if (x == 0) Solver.add(c1);

else Solver.add(c2);

If, when evaluating the if condition, the value of the logical variable x is 0 then
the constraint c1 is added to the constraint store. If, subsequently, a failure is
detected, backtracking will allow to consider a different value for x, namely 1,
but the if condition is no longer evaluated. The constraint solver will examine
the constraint store again, with the new value for x but still with constraint c1

added to it.
The problem is caused by the fact we cannot guarantee a tight integration

between the constraint solver (which is defined in a library) and the primitive
constructs of the language. This is probably the main difference between what we
called the ”library” approach and the approach based on the definition of a new
language (or the extension of an existing one). As a matter of fact the problem
illustrated by the above program fragment is easily programmed in a language
such as Singleton where nondeterminism and logic variables are embedded in
the language.

However, JSetL provides a solution to overcome this difficulty. The solution
is based on the possibility to introduce user-defined new constraints. Whenever
a method which the user wants to define requires some nondeterministic action
embedded in a non-trivial control structure, one can define the method as a
new constraint, so that its execution is completely performed in the context
of constraint solving. JSetL provides a class, called NewConstraints, which is
devoted to contain all definitions of the new constraints possibly introduced by
the user (actually this task would be strongly simplified by the use of a suitable
preprocessor that allows most of the details involved in the definition of a new
constraint to be hidden to the user).

100

Let us see how the user can define a new constraint using a simple example:
a fully nondeterministic recursive definition of the classical list concatenation
operation (concat). The solution can be easily generalized to other cases. First
of all, the user has to add the following method to the class NewConstraints:

public static StoreElem concat(Lst l1, Lst l2, Lst l3)

{
StoreElem s = new StoreElem(n,l1,l2,l3);
return s;

}

where n is an integer selected by the user and greater than 100, that will be used
by the solver to identify the new constraint. This method returns an instance of
StoreElem, that is a constraint: hence, it associates the method concat with a
new constraint, internally identified by the number n. Then the user has to add
a new case block to the user code method of class NewConstraints as follows:

protected static void user code(int c, StoreElem s)

{ ...

switch(c)

{ ...

case n: concat(s); break;

...}
...}

Finally it is necessary to define a method concat that takes as its input the
store element s and implements the actual constraint handling procedure for
the new constraint. To exploit nondeterminism within this method, one has to
adhere to some programming conventions. Let the definition of the new method
to be based in general on k different nondeterministic alternatives. Then the
user must provide a switch statement with k case blocks (numbered from 0 to
k − 1), one for each nondeterministic alternative as follows:

public static void concat(StoreElem s) throws Failure

{
Lst l1 = (Lst)s.arg1;

Lst l2 = (Lst)s.arg2;

Lst l3 =(Lst)s.arg3;

switch(s.caseControl)

{
case 0:

add ChoicePoint(s);

add(l1.eq(Lst.empty));

add(l2.eq(l3));

return;

case 1:

Lvar x = new Lvar();

Lst l1new = new Lst();

Lst l3new = new Lst();

101

add(l1.eq(l1new.ins1(x))); // l1 = [x | l1new]
add(l3.eq(l3new.ins1(x))); // l3 = [x | l3new]
add(concat(l1new,l2,l3new)); // concat(l1new,l2,l3new)
return;

}
}

The control expression of the switch statement is the caseControl attribute of
the constraint s associated with concat (default value: 0). Each case block, but
the last one, creates a choice point and adds it to the stack of the alternatives
by executing the statement add ChoicePoint(s); then the remaining code of
the case block adds the constraints necessary to compute one of the possible
solutions.

Execution of the statement

Solver.add(NewConstraint.concat(l1,l2,l3)

causes the user-defined constraint concat to be added to the current constraint
store. If l1 is [1,2,3], l2 is [4,5], l3 is an uninitialized list, a subsequent call
to Solver.solve() will set l3 equal to [1,2,3,4,5].

Note that concat can be used both to check if a given concatenation of lists
holds and to build any of the three lists, starting from any of the other two (like
in the usual well-known definition of the append predicate in Prolog).

6 Conclusions and future work

We have presented the main features of the JSetL library and we have shown
how they can be used to write programs that exhibit a quite good declarative
reading, while maintaining all the features of conventional Java programs. In
particular we have described the (set) constraint handling facilities supported
by our library and we have shown how constraint solving can be accomplished,
and how it interacts with the usual notion of program computation. Furthermore
we have shown how to exploit nondeterminism, possibly by introducing new
used-defined constraints.

JSetL is fully implemented in Java and can be obtained—as a .jar file
(67KB)—from the authors.

As a future work the constraint solving capabilities of JSetL could be strongly
enhanced by enlarging the constraint domain from that of sets to that of finite
domains. Following [6], this enhancement could be obtained by integrating an
existing constraint solver for finite domains, possibly written in Java, with the
JSetL constraint solver over sets. As shown in [6] this would allow us to have,
in many cases, the efficiency of the finite domain solvers, while maintaining the
expressive power and flexibility of the set constraint solvers (which in turn is
inherited from CLP(SET)).

On a different side, another concrete improvement could be obtained by using
flexible preprocessing tools for the Java language that would allow us to develop
suitable syntax extensions that would make it simpler and more natural using
the JSetL facilities.

102

Acknowledgments

The work is partially supported by MIUR project: Automatic Aggregate—and
number—Reasoning for Computing.

References

[1] K.R. Apt, J. Brunekreef, V. Partington, and A. Schaerf. Alma-0: An imperative
language that supports declarative programming. ACM TOPLAS, 20(5), 1014–
1066, 1998.

[2] K.R. Apt and A. Schaerf. Programming in Alma-0, or Imperative and Declarative
Programming Reconciled. In Frontiers of Combining Systems 2, D. M. Gabbay
and M. de Rijke (editors), Research Studies Press Ltd, 1-16, 2000.

[3] P.Codognet and D.Diaz. Compiling constraints in CLP(FD). Journal of Logic
Programming, 27(3), 185-226, 1996.

[4] A.Chun. Constraint programming in Java with JSolver. In Proc. Practical Appli-
cations of Constraint Logic Programming, PACLP99, 1999.

[5] A.Colmerauer. An introduction to Prolog III. C-ACM, 33(7), 69-90, 1990.
[6] A. Dal Palù, A. Dovier, E. Pontelli, and G. Rossi. Integrating Finite Domain

Constraints and CLP with Sets. In 12th Int’l Workshop on Functional and (con-
straint) Logic Programming, Valencia, June 2003.

[7] D.Diaz and P.Codognet. A minimal extension of the Wam for CLP(FD). In Proc.
of the 10th Int’l Conference on Logic Programming, 1993.

[8] A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets and constraint logic pro-
gramming. ACM TOPLAS, 22(5), 861–931, 2000.

[9] A. Dovier, E. Pontelli, and G. Rossi. Set unification. TR-CS-001/2001, Dept. of
Computer Science, New Mexico State University, USA, January 2001 (available
at http://www.cs.nmsu.edu/TechReports).

[10] M.Dincbas, P.Van Hentenryck, H.Simonis, et al. The constraint logic program-
ming CHIP. In Proc. of the 2nd Int’l Conf. On Fifth Generation Computer Sys-
tems, 683-702, 1988.

[11] ECLiPSe, User Manual. Tech. Rept., Imperial College, London. August 1999.
Available at http://www.icparc.ic.ac.uk/eclipse.

[12] E.Hyyonen, S.DePascale, and A.Lehtola. Interval constraint satisfaction tool
INC++. In Proc. of the 5th ICTAI, IEEE Press, 1993.

[13] ILOG Optimisation Suite - White Paper. Available at
http://www.ilog.com/products/optimisation/tech/optimisation/whitepaper.pdf.

[14] J.Jaffar, S.Michaylov, P.J.Stuckey, and R.H.C.Yap. The CLP(R) language and
system. ACM TOPLAS 14(3), 339-395, 1992.

[15] Jean-Francois Puget, and Michel Leconte. Beyond the Glass Box: Constraints as
Objects. In Proc. of the 1995 Int’l Symposium on Logic Programming, MIT press,
pp. 513-527.

[16] F.Benhamou et al. Le manuel de Prolog IV, PrologIA, June 1996.
[17] G.Rossi. Set-based Nondeterministic Declarative Programming in SINGLETON.

In 11th Int.l Workshop on Functional and (constraint) Logic Programming, Elec-
tronic Notes in Theoretical Computer Science, Vol. 76, Elsevier Science B. V., 17
pages, 2002.

[18] I.Shvetsov, V.Telerman, and D.Ushakov. NeMo+: Object-oriented constraint pro-
gramming environment based on subdefinite models. In Artificial Intelligence
and Symbolic Mathematical Computations (G.Smolka, ed.), LNCS 1330, Springer-
Verlag, 534-548.

103

[19] P.Van Hentenryck, H.Simonis, and M.Dincbas. Constraint satisfaction using con-
straint logic programming. Artificial Intelligence 58, 113-159, 1992.

[20] Neng-Fa Zhou. DJ: Declarative Java, Version 0.5, User’s
manual. Kyushu Institute of Tecnology, 1999. Available at
http://www.cad.mse.kyutech.ac.jp/people/zhou/dj.htlm.

[21] Neng-Fa Zhou. Building Java Applets by using DJ - a Java Based Constraint
Language. Available at http://www.sci.brooklyn.cuny.edu/ zhou.

104

SML2Java: A Source to Source Translator

Justin Koser, Haakon Larsen, and Jeffrey A. Vaughan

Cornell University

Abstract. Java code is unsafe in several respects. Explicit null ref-
erences and object downcasting can cause unexpected runtime errors.
Java also lacks powerful language features such as pattern matching and
first-class functions. However, due to its widespread use, cross-platform
compatibility, and comprehensive library support, Java remains a popu-
lar language.
This paper discusses SML2Java, a source to source translator. SML2Java
operates on type checked SML code and, to the greatest extent possible,
produces functionally equivalent Java source. SML2Java allows program-
mers to combine existing SML code and Java applications.
While direct translation of SML primitive types to Java primitive types
is not possible, the Java class system provides a powerful framework for
emulating SML value semantics. Function translations are based on a
substantial similarity between Java’s first-class objects and SML’s first-
class functions.

1 Introduction

SML2Java is a source-to-source translator from Standard ML (SML), a statically
typed functional language [8], to Java, an object-oriented imperative language.
A successful translator must emulate distinctive features of one language in the
other. For instance, SML’s first-class functions are mapped to Java’s first-class
objects, and an SML let expression could conceivably be translated to a Java
interface containing an ’in’ function, where every let expression in SML would
produce an anonymous instantiation of the let interface in Java. Similarly, many
other functional features of SML are translated to take advantage of Java’s
object-oriented style. Because functional features such as higher-order functions
must ultimately be implemented using first-class constructs, we believe one can
only achieve a clean design by taking advantage of the strengths of the target
language.

SML2Java was inspired by problems encountered teaching functional pro-
gramming to students familiar with the imperative, object-oriented paradigm.
It was developed for possible use as a teaching tool for Cornell’s CS 312, a course
in functional programming and data structures. For the translator to be a suc-
cessful educational tool, the translated code must be intuitive for a student with
Java experience.

On a broader level, we wish to show how functional concepts can be mapped
to object-oriented imperative concepts through a thorough understanding of each

105

model. In this regard, it becomes important not to force functional concepts upon
an imperative language, but rather to translate these functional concepts to their
imperative equivalents.

2 Translation

This section discusses the choices we made in our translation of SML to Java.
Where pertinent, we will also discuss the benefits and drawbacks of our design
decisions.

2.1 Primitives

SML primitive types, such as int and string, are translated to Java classes. The
foregoing become Integer2 and String2, respectively. Ideally, SML primitives
would translate to their built-in Java equivalents (e.g. int → java.lang.Integer),
but these classes (e.g. java.lang.Integer) do not support operations such as
integer addition or string concatenation [10]. We do not map directly to int
and string because Java primitives are not derivatives of Object, cannot be
used with standard Java collections, and are not compatible with our function
and record translations. The latter will be shown in sections 2.2 and 2.4. Our
classes, which are based on Java.util.*, include necessary basic operators and fit
well with function and record translation. While Hicks [6] addresses differences
between the SML and Java type systems, he does not discuss interoperability.
Blume [4] treats the related problem of translating C types to SML.

Figure 1 demonstrates a simple translation. The astute reader will notice sev-
eral superfluous typecasts. Some translated expressions formally return Object.
However, because SML code is typesafe, we can safely downcast the results of
these expressions. The current version of SML2Java is overly conservative, and
inserts some unnecessary casts. Additionaly, the add function looks quite com-
plicated. This is consistent with other function translations which are discussed
in section 2.4.

2.2 Tuples and Records

We follow the SML/NJ compiler (section 3) which compiles tuples down to
records. Thus, every tuple of the form (exp1, exp2, ...) becomes a record of
the form {1=exp1, 2=exp2, ...}. This should not surprise the avid SML fan as
SML/NJ will, at the top level, represent the record {1=“hi”, 2=“bye”} and the
tuple (“hi”,“bye”): string*string identically.

The Record class represents SML records. Every SML record value maps
to an instance of this class in the Java code. The Record class contains a
private data member, myMapping, of type java.util.HashMap. SML records are
translated to a mapping from fields (which are of type String) to the data that
they carry (of type Object). The Record class also contains a function add, which

106

Fig. 1. Simple variable binding
SML Code:

1 val x=40

2 val y=2

3 val z=x+y

Java Equivalent:

1 public class TopLevel {

2 public static final Integer2 x = (Integer2)

3 (new Integer2 (40));

4
5 public static final Integer2 y = (Integer2)

6 (new Integer2 (2));

7
8 public static final Integer2 z = (Integer2)

9 (Integer2 .add()).apply (((

10 (new Record ())

11 .add("1" , (x)))

12 .add("2" , (y))));

13
14 }

107

takes a String and an Object as its parameters and adds these to the mapping.
A record of length n will therefore require n calls to add. Record projection is
little more than a lookup in the record’s HashMap.

Fig. 2. Two records instantiated
SML Code:

1 val a = { name ="John Doe" , age =20}

2 val b = ("John Doe" , 20)

Java Equivalent:

1 public static final Record a = (Record)

2 ((new Record ())

3 .add("name " , new String2 ("John Doe")))

4 .add("age" , (new Integer2 (20)));

5
6 public static final Record b = (Record)

7 ((new Record ())

8 .add("1" , new String2 ("John Doe")))

9 .add("2" , (new Integer2 (20)));

2.3 Datatypes

An SML datatype declaration creates a new type with one or more construc-
tors. Each constructor may be treated as a function of zero or one arguments.
SML2Java treats this model literally. An SML datatype, dt, with constructors c1,
c2, c3 . . . is translated to a class. This class, also named dt, has static methods
c1, c2, c3 Each such method returns a new instance of dt.

Thus, SML code invoking a constructor becomes a static method call in the
translated code. It is important to note that this process is different from the
translation of normal SML functions. The special handling of type constructors
greatly enhances translated code readability.

A datatype translation is given in figure 3. As the SML langauge enforces
type safety, constructor arguments can simply be type Object. Although more
restrictive types could be specified, there is little benefit in the common case
where the type is Record.

108

Fig. 3. A dataype declaration and instantiation
SML Code:

1 datatype qux = FOO | BAR of int

2
3 val myVariable = FOO

4 val myOtherVar = BAR (42)

Java Equivalent:

1 public class TopLevel {

2 public static class qux extends Datatype {

3
4 protected qux(String constructor){

5 super(constructor);

6 }

7
8 protected qux(String constructor ,Object data){

9 super(constructor , data);

10 }

11
12 public static qux BAR(Object o){

13 return new qux("BAR" , o);

14 }

15
16 public static qux FOO (){

17 return new qux("FOO");

18 }

19
20 }

21 public static final qux myVariable = (qux)

22 qux.FOO ();

23
24 public static final qux myOtherVar = (qux)

25 qux.BAR ((new Integer2 (42)));

26
27 }

109

2.4 Functions

In our translation model, the Function class encapsulates the concept of an
SML function. Every SML function becomes an instance of this class. The Java
Function class has a single method, apply, which takes an Object as its only pa-
rameter and returns an Object. The Function class encapsulation is necessitated
by the fact that functions are treated as values in SML. As a byproduct of this
scheme, function applications become intuitive; any application is translated to
Function Name.apply(argument).

At an early design stage, the authors considered translating each function to
a named class and a single instantiation of that class. While this model provides
named functions that can be passed to other functions and otherwise treated as
data, it does not easily accommodate anonymous functions. A strong argument
for the current model is that instantiating anonymous subclasses of Function
provides a natural way to deal with anonymous functions.

We believe this is a sufficiently general approach, and can handle all issues
with respect to SML functions (including higher-order functions). In fact, every
SML function declaration (i.e. named function) is translatead, by the SML/NJ
compiler, to a recursive variable binding with an anonymous function. Therefore
our treatment of anonymous functions and named functions mirror each other
and this similarity lends itself to code readability.

Other authors have used different techinques for creating functions at run-
time. For example, Kirby [7] uses the Java compiler to generate bytecode dynam-
ically. While powerful and well suited for imperative programming, this approach
is not compatible with the functional philosophy of SML.

In figure 4, the lines that contain the word “Pattern” form the foundation
of what will, in future revisions of SML2Java, be fully generalized pattern
matching. Pattern matching is done entirely at runtime, and consists of recur-
sively comparing components of an expression’s value with a pattern. SML/NJ
performs some optimizations of patterns at compile time [1]. However these
optimizations are, in general, NP-hard [3] and SML2Java does not support
them. Currently patterns are limited to records (including tuples), wildcards
and integer constants.

2.5 Let Expressions

A Let interface in Java encapsulates the SML concept of a let expression. The
Let interface has no member functions. Every SML let expression becomes an
anonymous instantiation of the Let interface with one member function, in. This
function has no parameters and returns whatever type is appropriate given the
original SML expression. The in function is called immediately following object
instantiation.

A different approach would be to have the Let interface contain the function
in. Here, in would have no formal parameters, and would return an Object.
The advantage to this would be its consistency with respect to our function

110

Fig. 4. Named function declaration and application
SML Code:

1 val getFirst = fn(x:int , y:int) => x

2 val one = getFirst (1,2)

Java Equivalent:

1 public static final Function getFirst = (Function)

2 (new Function () {

3 Object apply(final Object arg) {

4 final Record rec = (Record) arg;

5 RecordPattern pat = new RecordPattern ();

6 pat.add("1" , new VariablePattern (new Integer2 ()));

7 pat.add("2" , new VariablePattern (new Integer2 ()));

8 pat.match(rec);

9 final Integer2 x = (Integer2) pat.get("1");

10 final Integer2 y = (Integer2) pat.get("2");

11 return (Integer2) (x);

12 }

13 });

14
15 public static final Integer2 one = (Integer2)

16 (getFirst).apply (((

17 (new Record ())

18 .add("1" , (new Integer2 (1))))

19 .add("2" , (new Integer2 (2)))));

111

translations (i.e. the apply function), but a possible disadvantage is excessive
typecasting, which can greatly reduce readability.

One might also attempt to separate the Let declaration from the call to its
in function. If implemented in the most direct manner, such a model would,
like the previous one, require that the Let interface contain an in function. This
scheme would improve code readability. However, as one often has several Let
expressions in the same name-space in SML, this model would likely suffer from
shadowing issues.

Fig. 5. Let expressions are translated like functions
SML Code:

1 val x =

2 let

3 val y = 1

4 val z = 2

5 in

6 y+z

7 end

Java Equivalent:

1 public static final Integer2 x = (Integer2)

2 (new Let () {

3 Integer2 in() {

4 final Integer2 y = (Integer2) (new Integer2 (1));

5 final Integer2 z = (Integer2) (new Integer2 (2));

6 return (Integer2) (Integer2 .add ()).apply(((

7 (new Record ())

8 .add("1" , (y)))

9 .add("2" , (z))));

10 }

11 }).in();

2.6 Module System

Our translation of SML’s module system is straightforward. SML signatures
are translated to abstract classes. SML structures are translated to classes that
extend these abstract signature classes. A structure class only extends a given
signature class if the original SML structure implements the SML signature.
Structure declarations that are not externally visible in SML (i.e. not included

112

in the implemented signature) are made private data-members in the generated
Java structure class. This is demonstrated in figure 6.

3 Implementation

Our primary task was to translate high-level SML source code to high-level Java
source code. As there are several available implementations of SML, we chose to
use the front end of one, Standard ML of New Jersey (SML/NJ) [9]. We use the
development flavor of the compiler (sml-full-cm) to parse and type-check input
SML code. We then translate the abstract syntax tree generated by SML/NJ to
our own internal Java syntax tree and output the Java code in source form.

Taking advantage of the SML/NJ type checker gives us a strong guarantee
regarding the safety of the code we are translating. To cite Dr. Andrew Appel,
a program produced from this code ”cannot corrupt the runtime system so that
further execution of the program is not faithful to the language semantics” [2].
In other words, such a program cannot dump core, access private fields, or mis-
take types for one another. It would be interesting to investigate whether these
facts, combined with the translation semantics of SML2Java, imply that similar
guarantees hold in the generated Java code.

Other properties of the Core subset of SML are discussed by VanIngwe-
gen [12]. Using HOL [5], she is able to prove, among other things, determinism
of evaluation.

4 Conclusion and Future Goals

The current version of SML2Java translates many core constructs of SML, in-
cluding primitive values, datatypes, anonymous and recursive functions, signa-
tures and structures. SML2Java succeeds in translating SML to Java code, while
respecting the functional paradigm.

Parametric polymorphism is a key construct that the authors would like to
implement in SML2Java. Java 1.5 (due out late 2003) will directly support gener-
ics [11], and we believe waiting for Sun’s implementation will facilate generating
clean Java code. In addition, Java’s generics will resemble C++ templates, and
our treatment of parametric polymorphism should highlight the relative merits
of each approach.

We would like to add support for several less critical SML constructs. Among
these are exceptions, vectors, open declarations, mutual recursion, functors, and
projects containing multiple files. The majority of these should be implementable
without excessive difficulty, and each is expected to be a valuable addition to
SML2Java.

113

Fig. 6. Translation of a signature and a structure
SML Code:

1 signature INDEX_CARD = sig

2 val name : string

3 val age : int

4 end

5
6 structure IndexCard :> INDEX_CARD = struct

7 val name = "Professor Michael Jordan"

8 val age = 31

9 val super_secret = "This secret cannot be visible to the

outside "

10 end

Java Equivalent:

1 public class TopLevel {

2 private static abstract class INDEX_CARD {

3 public static final String2 name = null ;

4 public static final Integer2 age = null ;

5 }

6
7 public static class IndexCard extends INDEX_CARD {

8 public static final String2 name = (String2)

9 (new String2 (" Professor Michael Jordan"));

10
11 public static final Integer2 age = (Integer2)

12 (new Integer2 (31));

13
14 private static final String2 super_secret = (String2)

15 (new String2 ("This secret cannot be visible to the

outside "));

16
17 }

18
19 }

114

5 Acknowledgements

This project was performed as independant research under the guidance of Dex-
ter Kozen, Cornell University. We would like to thank Professor Kozen for many
insightful discussions and much valuable advice. We would also like to thank the
following for helpful advice: Andrew Myers, Cornell University, and Tore Larsen,
Tromsø University.

References

[1] Aitken, William. SML/NJ Match Compiler Notes
http://www.smlnj.org/compiler-notes/matchcomp.ps (1992)

[2] Appel, Andrew W. A critique of Standard ML http://ncstrl.cs.princeton.edu/
expand.php?id=TR-364-92 (1992)

[3] Baudinet, Marianne and MacQueen, David. Tree Pattern Matching for ML
(extended abstract) http://www.smlnj.org/compiler-notes/85-note-baudinet.ps
(1985)

[4] Blume, Matthias. No-Longer-Foreign: Teaching an ML compiler to speak C ”na-
tively” Electronic Notes in Theoretical Computer Science 59 No. 1 (2001)

[5] Gordon, Melham Introduction to HOL. A theroem proving environment for higher
order logic Cambridge University Press, 1993

[6] Hicks, Michael. Types and Intermdiate Representations University of Pennsylvania
(1998).

[7] Kirby, Graham, et al. Linguistic Reflection in Java Software - Practice & Expe-
rience 28, 10 (1998).

[8] Milner, Robin, et al. The Definition of Standard ML - Revised. Cumberland, RI:
MIT Press, 1997.

[9] SML/NJ Fellowship, The. Standard ML of New Jersey http://www.smlnj.org
(July 29, 2003).

[10] Sun Microsystems. Java 2 Platform, Standard Edition, v 1.4.2 API Specification
http://java.sun.com/j2se/1.4.2/docs/api/ (July 18, 2003).

[11] Sun Microsystems. JSR 14 Add Generic Types To The Java Programming Lan-
guage http://www.jcp.org/en/jsr/detail?id=14 (July 24, 2003).

[12] VanIngwegen, Myra. Towards Type Preservation for Core SML http://www.myra-
simon.com/myra/papers/JAR.ps.gz

115

Constraint Imperative Programming with C++

Olaf Krzikalla

Reico GmbH krzikalla@gmx.de

Abstract. Constraint-based programming is of declarative nature.
Problem solutions are obtained by specifying their desired properties,
whereas in imperative programs the steps that lead to a solution must be
defined explicitly. This paper introduces the Turtle Library, which com-
bines constraint-based and imperative paradigms. The Turtle Library is
based on the language Turtle[1] and enables constraint imperative pro-
gramming with C++.

1 Constraint Imperative Programming at a Glance

In an imperative programming language the programmer describes how a solu-
tion for a given problem has to be computed. In contrast to that, in a declarative
language the programmer specifies what has to be evaluated. Constraint-based
programming is a rather new member of the declarative paradigm that was first
developed from logic programming languages. In constraint-based programming
the programmer describes the solution only by specifying the variables, their
properties and the constraints over the set of variables. Actually, no algorithms
have to be written. The compiler and run-time environment are responsible for
providing appropriate algorithms and eventually obtaining a solution.

Meanwhile, constraint-based programming has been extended by concepts of
other - mostly declarative - programming languages. However, the combination
of imperative and constraint-based languages is far less explored. Borning and
Freeman-Benson[2] introduced the term ’constraint-imperative programming’
and developed the language Kaleidoscope[3], combining constraint and object-
oriented programming. But object-orientation is no precondition for constraint-
imperative programming. This paper deals with more fundamental problems of
the integration of constraints and constraint solvers in imperative language con-
cepts. This integration promises some advantages. Imperative programming is a
well known paradigm, which is intuitively understood by most programmers. A
lot of efficient and industrial-strength imperative languages exist. However, an
imperative program for a difficult algorithm is sometimes very cumbersome. Es-
pecially for this sort of problems declarative languages have proven their power.
Constraint programming enables the programmer to specify required relations
between objects directly rather than to ensure these relations by algorithms only.
So constraint programs not only often become more compact and readable, but
also less erroneous than their imperative counterparts.

Constraint imperative programming tries to combine the advantages of con-
straint-based and traditional imperative programming. A recent development in

117

this field is the language Turtle, a constraint imperative programming language
developed by Martin Grabmüller at the Technische Universität Berlin. Based on
the ideas presented in [1] I developed the Turtle Library, a constraint imperative
programming approach in C++.

2 The Basic Concept of Turtle

The fundamental difference between imperative and declarative languages is the
model of time. In pure declarative languages a timing model simply does not
exist - computations are specified independent of time. On the other hand, an
imperative language always describes transformations of a given state at one
point in time to another state at the next point in time. Computations are
specified by sequences of statements.

Whenever declarative and imperative languages are combined, one of the
main issues is the interaction of the integrated declarative concepts with the
imperative timing model. In Turtle this is solved by introducing a lifetime for
constraints and the statement require, which defines a constraint:

require constraint;

When a require is reached during the execution of the program, the given
constraint is added to a global constraint store and taken into account during
further computations - its lifetime starts. A constraint doesn’t exist (and the sys-
tem doesn’t know anything about it) until the corresponding require-statement
is executed. Eventually a sequence of require-statements form a conjunction of
the appropriate constraints in the constraint store. Constraints in the constraint
store are considered active.

Of course, if a constraint starts to exist at a certain time, it also can be
removed at a certain time:

require constraint in
statement;
...

end;

The given constraint exists only between the in and end. When the program
reaches the end statement (or otherwise leaves the block), the constraint is
removed from the constraint store - its lifetime ends. After this the constraint
isn’t active any longer.

In order to deal with over- and underconstrained problems constraints need
to be labelled with strenghts to form a constraint hierarchy. Altough a constraint
imperative system without constraint hierarchies could be designed, its useful-
ness would be drastically reduced, because it would be difficult to constrain
variables while the program dynamically adds or removes constraints. In Turtle
each constraint can have a strength annotation in its definition:

118

require constraint1 : strong;
require constraint2 : mandatory;

When a constraint is annotated with a strength, it is added to the store
with the given strength, otherwise with the strongest strength mandatory. This
strength was specified in the previous example for clarity only.

Constraints are defined on constrainable variables. Most of the time a con-
strainable variable acts like a normal variable: it can be used in expressions
and as a function argument. Only in a constraint statement they differ from
their normal counterparts. A normal variable is treated like a constant, but a
constrainable variable acts like a variable in the mathematical sense, and the
constraint solver may change its value in order to satisfy all constraints existing
at this point in time.

var x : int; // a normal variable
var y : ! int; // the exclamation defines a constrained variable
x := 0;
require y <= x in
... // during the execution of this block Turtle ensures y <= 0

end;

Constraints in Turtle are boolean expressions. During the execution of a
require statement the constraint solver computes a certain value for each con-
strained variable, such that all active constraints evaluate to true. Constraints
are handled strictly eager. Changing a non-constrained variable after it was used
in a constraint doesn’t affect the constraint store. Whenever the program reads
a constrained variable, the value last computed by the solver for this variable
is supplied. An exception is raised, if it isn’t possible to satisfy all mandatory
constraints during the execution of a require statement.

In Turtle constraints can be used for computing solutions to a certain problem
like other constraint programming approaches. But they are not limited to this
usage. require statements introduce conditions a priori, which are maintained
automatically by the constraint solver. Hence backtracking like in approaches
with a posteriori tests (e.g. Alma-0[6]) is not neccessary. Due to the a priori
nature of constraints in Turtle they can be used to describe and preserve program
invariants or - more general - to express in declarative manner the meaning of
an otherwise imperative program without disrupting the familiar execution flow.

3 A Turtle in C++

The concepts of Turtle were first implemented in a language developed from
scratch. This approach was chosen because some other features like higher-order
functions should also be integrated. And a new language seemed to be the best
choice for the seamless combination of imperative, functional and constraint
programming. However, a new language is always in a difficult position. The

119

knowledge base is small, tools don’t exist, and further development is sometimes
driven by academic interests only.

All concepts of Turtle related to constraint programming are also imple-
mentable in C++. Thats why I think a Turtle Library written in pure C++
serves both the widespreading and further development of Turtle better. In the
recent years a lot of developments - especially on the field of generic program-
ming in C++ - made it possible to move almost all concepts from the Turtle
language to the C++ Turtle Library without any losses. Furthermore, the generic
approach of the Turtle Library enables every user to add, change or optimize
constraint solvers at will. This is especially important for user-defined domains
and offers a wide application field for the Turtle Library. The Turtle Library
might be used to solve operational research problems or to program a graphical
user interface. Both problems are typical constraint problems. In the first prob-
lem constraint programming is used only to obtain a solution, which often can
be done in a constraint logic language too (given an appropriate language and -
more important - an appropriate programmer) or by using a rather imperative
approach[5]. But for the second problem constraint imperative programming re-
ally shines. The ’canonical’ example is a graphical element, which can be dragged
by the mouse inside certain borders[4]. The imperative approach looks like this:

void drag ()

{

while (mouse.pressed) { //message processing is left out

int y = mouse.y;

if (y > border.max)

y = border.max;

if (y < border.min)

y = border.min;

draw_element (fix_x, y, graphic);

}

}

Using the Turtle Library the example would look as follows:

void drag ()

{

constrained<int> y;

require (y >= border.min && y <= border.max);

while (mouse.pressed) {

y = mouse.y;

draw_element (fix_x, y(), graphic);

}

}

The above is not only shorter, but expresses the relation between the border-
object and the y-coordinate in exactly the way a programmer would think about
it.

120

3.1 Constrained Variables

A constrained variable is of the generic type constrained. A constrained variable
has identity semantics, the copy constructor and standard assignment operator
aren’t implemented. If they are needed, an appropriate wrapper (e.g. a reference
counted pointer) has to be defined. The public interface given here is described
in detail in the following sections.

template<class T>

class constrained

{

public:

constrained (const T& prefer = T());

constrained<T>& operator= (const T& prefer);

~constrained ();

T operator ()() const throw (overconstrained_error, ...);

const T& preferred() const;

void unfix() const;

};

The template parameter specifies the value type of the variable. It might be
a fundamental type like int or double or an user-defined class. Domains are
formed by non-intersecting sets of value types and for each domain an appropri-
ate constraint solver has to be provided. Thus each value type is unambiguously
bound to a constraint solver. However Turtle can be used for hybrid domains, be-
cause the interface enables the implementation of a constraint solver responsible
for more than one value type.

3.2 Declaring Constraints

Constraints can be declared as straightforward as presented in the section 2:

constrained<double> a, b;

double c = 2.0;

require (a >= 0.0);

require (a <= b && a + b <= c);

The composition of the boolean expression inside a require is done using
operator overloading and expression template techniques. Which operators are
supported for a certain value type is defined by the domain and the available
constraint solver. E.g. it is rather pointless to support >, < or != for floating
point values1. In domains other than the algebraic ones it’s often better to avoid
otherwise meaningless operator overloading. For this purpose named predicates
can be defined and used instead:

1 Due to the same reasons even the support of == could be argued.

121

edge e = /*...*/; //compute an edge

constrained<vertex> p;

require (point_on_edge (e, p));

The operator && forms a conjunction of two expressions just like two subse-
quent requires, hence

constrained<double> a;

require (a >= 0 && a <= 2);

is equivalent to

constrained<double> a;

require (a >= 0);

require (a <= 2);

The operator || defines a disjunction. A disjunction can be seen as a branch
in a tree of solutions. Subseqent requires add their constraints to all leafs of the
tree.

constrained<double> a, b;

require (a == 0 || a == 1);

require (b == a + 1);

// the store now contains :

// (b == a + 1 && a == 0) || (b == a + 1 && a == 1)

The Turtle Library provides a simple generic algorithm for handling disjunc-
tions. A certain constraint solver may implement a more sophisticated approach
to compute and maintain solution trees efficiently.

Constraint strengths can be given as a second argument to require like in the
Turtle language:

require (a == b, weak);

Of course these values are only of interest if the underlying constraint solver
supports hierarchic constraints.

The Turtle Library internally stores the constraints in several constraint sub-
stores. A constraint sub-store is defined as the set of all constraints over a set
of constrained variables, where each variable of the set is linked to each other
variable of the set. Two variables x and y are linked, if they either both appear
in one constraint or if x appears in a constraint containing a variable linked to
y.

constrained<double> a, b;

require (a >= 0.0); // generate constraint sub-store 1

require (b >= 0.0); // generate constraint sub-store 2

require (a <= b); // sub-store 1 and 2 are merged together

122

The function template require returns a handle to manage the lifetime of
the constraint. If the return value is ignored, the imposed constraint exists as
long as all constrained variables in this constraint:

constrained<int> a;

{

constrained<int> b;

require (a == b);

//...

//leaving the scope of b, hence a == b

//is removed from the constraint store:

}

Otherwise, the lifetime of the constraint is also bound to the lifetime of the
returned constraint handle:

constrained<int> a, b;

{

constraint_handle<int> z = require (a == b);

//...

//leaving the scope of z, hence a == b

//is removed from the constraint store:

}

Still, the constraint exists no longer than all constrained variables in it. When
the handle ceases to exist after the constraint did, it is ignored.

3.3 Obtaining Values from Constrained Variables

In a first version of the Turtle Lib, the constrained<T> class has an operator

T() const member function to obtain the actual value of the constrained vari-
able. However, it turns out that this operator sometimes conflicts with the gen-
eration of expression templates in a require. Thus the function call operator
operator()() const was overloaded to read a value from a constrained vari-
able:

std::cout << a(); //prints a value matching all constraints to a

Whenever this operator is invoked, the constraint solver is started to de-
termine the value of the appropriate variable. How the value is determined de-
pends mainly on the solver. When the store is overconstrained and no value can
be determined, an exception of type overconstrained_error (derived from
std::logic_error) is raised.

But more often underconstrained situations occur. For this purpose the Tur-
tle Library supports a preferred value. A value of type T can be assigned to
a constrained<T> or used to construct such a variable. This value then be-
comes the preferred value of the constrained variable. Now, if it turns out that
more than one solution exists for a certain variable, the solution closest to the
preferred value is taken:

123

constrained<double> a (3);

require (a <= 2.5);

std::cout << a(); // prints 2.5

To a certain degree the preferred value acts like a weak constraint. This is
especially useful, if the constraint solver itself doesn’t support constraint hier-
archies. Thus a hierarchic constraint solver isn’t as necessary as in the original
Turtle language.

The evaluation of the preferred value is done by the solver implementation.
It can be used to define a threshhold or destination value enabling the solver to
terminate the search through the solution tree as soon as possible.

Some domains consist of incompareable values making it impossible to define
a closest solution. In this case no general behaviour can be defined. Instead the
solver implementation has to define the use of the preferred value.

3.4 Implicit Fixing

Once a value is determined for a constrained variable, this value has to be taken
into account for further calculations. The constrained variable itself gets implic-
itly fixed to the determined value:

constrained<int> a (2), b (0);

require (a == b);

std::cout << a(); // prints 2

std::cout << b(); // also prints 2

Without implicit fixing the value of b would be evaluated to 0 and hence
violate the required constraint a == b. Implicit fixing is done by generating a
new constraint of the form variable == value. Due to this important side effect
the evaluation order of constrained variables must be carefully considered. If the
output lines of the above example were exchanged, both lines would print 0. And
the following leads to unspecified behavior:

std::cout << a() << b(); // which variable is evaluated first?

The implicit fix is not immediatly added to the constraint sub-store but kept
in a delay store inside the sub-store. If only one implicit fix exists in a constraint
sub-store, and the same variable shall be evaluated again, the fix is erased before
the evaluation (later in the process a new fix will be added). If more implicit
fixes exist, always all are taken into account.

constrained<int> a (2), b (0);

require (a == b);

for (int i = 0; i < 3; ++i) {

int j;

std::cin >> j;

a = j;

124

// prints j, because the only implicit fixed variable is a:

std::cout << a();

}

constrained<int> a (2), b (0);

require (a == b);

std::cout << b(); // prints 0, fixes b

for (int i = 0; i < 3; ++i) {

int j;

std::cin >> j;

a = j;

// always prints 0, because b is fixed, but a is evaluated:

std::cout << a();

}

As shown in the last example, sometimes implicit fixes are harmful, especially
if more than one variable is evaluated inside a loop. That’s why a constrained
variable can be unfixed explicitly via the member function unfix():

constrained<int> a (2), b (0);

require (a == b);

for (int i = 0; i < 3; ++i) {

int j;

std::cin >> j;

a = j;

std::cout << a(); // prints j and get fixed

std::cout << b(); // prints also j and get fixed

//now more than one fix exist, so all fixes would be considered

//during further evaluations unless we explicitly

//unfix the variables:

a.unfix();

b.unfix();

}

The computation of a value for a constrained variable differs a lot from the
original Turtle language. While in the Turtle language the values of constrained
variables are already determined during a require statement, the Turtle Library
delays the computation until a read-action to a constrained variable occurs. The
disadvantage of this approach seems the need of implicit fixing, which isn’t part
of the Turtle language2.

On the other hand the delay of the computation offers some advantages.
First, only when the computation is delayed until a read-action, the preferred
value can be evaluated correctly. Otherwise a change of the preferred value af-
ter some requires could be ignored. Second, a solver knows which constrained
variable actually is being read, can consider this fact during the computation

2 Altough there is an ongoing argument about this topic.

125

and hence doesn’t have to evaluate all variables in every case. And third, lazy
evaluation becomes possible. Altough also the Turtle Library handle constraints
eager mostly, it is not limited to this.

3.5 Lazy Evaluation

Lazy evaluation is an often arising issue when declarative and imperative con-
cepts are combined. Shall a subexpression in a require-statement be evaluated
immediately or shall the evaluation be delayed until the constraint is actually
needed for the evaluation of a constrained variable? Consider the example:

int foo();

int example()

{

int_c a, b

int i = 1;

require (a == i);

require (b >= foo());

require (a < b);

i = 2;

std::cout << a(); // 1 or 2 ?, is foo() called here ?

std::cout << b(); // or is foo() called only here ?

}

As stated earlier the Turtle Library doesn’t perform lazy evaluation by de-
fault. This decision was made mainly due to lifetime issues. In C++ it’s impos-
sible to ensure that an arbitrary object exists until all constraints referring to
it are erased. Hence the above example prints 1 for a and calls foo() during
the evaluation of the argument for the second require. This has the additional
benefit, that possible side effects of functions inside constraints are more pre-
dictable. If foo() would be lazy evaluated in the example above, it could be
called once or twice, depending on the actual implementation of the underlying
constraint solver.

Lazy evaluation can be simulated through the lifetime management of con-
straints. But sometimes it is just better to have some lazy evaluated values.
Therefore a simple lazy evaluated value type is provided by the Turtle Library:

template<class T>

class lazy_evaluated

{

public:

explicit lazy_evaluated (const T& init = T());

operator T() const;

operator T&();

};

126

This class mostly acts like a value of type T, but its actual value is garbage
collected (the copy constructor and assignment operator of lazy_evaluated<T>
has identity semantics). Each constraint using a lazy evaluated variable stores
a copy of the corresponding lazy_evaluated<T> variable. The actual value is
preserved unless all references to it are removed. It is only read by the constraint
solver when needed during the evaluation of a constrained variable. Side effects
may only happen due to the copying of T.

int_c a;

lazy_evaluated<int> i = 1;

require (a == i);

i = 2;

std::cout << a(); //reads i at this point and thus prints 2

4 Programming with the Turtle Library

The Turtle Library can be downloaded from
http://home.t-online.de/home/krize6/turtle.htm.
At this page also some technical issues are discussed in more detail. Especially
the steps needed to integrate a new constraint solver in the Turtle Library are
described. Furthermore some more sophisticated examples of constraint imper-
ative programming are already provided. They demonstrate the use of some
techniques and little patterns to make constraint imperative programming more
convenient and flexible.

4.1 User-defined Constraints and Dynamic Expressions

Often the declarative power of expression templates is sufficient to express the
constraints in a compact and readable manner. But some constraints are so
common that they deserve an own name. Such user-defined constraints can be
generated using the function template build_constraint, which takes an con-
straint just like require, but only builds the internal representation of the given
expression without adding it to the constraint store.

typedef constrained<int> int_c;

constraint_solver<int>::expr domain (const int_c& x, int min, int max)

{

return build_constraint (x >= min && x <= max);

}

int_c a, b, c;

require (domain (a, 0, 9));

require (domain (b, 0, 99));

require (domain (c, -1, 1));

127

The naming of complex static expressions further enhances the readability
of a program. But besides this constraint imperative programming also needs
a way to create constraints dynamically. For this the Turtle Library provides
a generic class dynamic_expr, which holds an (sub)expression and can be used
like that, but has value semantics. A rather complex example is the function
example_dynamic_puzzle, which is part of the sample file provided on the in-
ternet page of the Turtle Library.

4.2 Optimization

Constraint programming supplies a lot of tools to optimize a given function for
a given set of constraints. Optimization is one the main usages of constraint
programming. Hence, optimization should be possible with the Turtle Library,
too. By using a preferred value for a given expression, optimization can be done
without the needs of special library functions. Consider the following example:

double_c x, y;

require (y >= 0);

require (y >= 3 - 2 * x);

Given these constraints the sum of x and y shall be minimized. These can be
done by a little pattern of the following three lines:

double_c min (- 1000.0);

require (min == x + y);

std::cout << min(); // prints 1.5

First a constrained variable has to be declared and the preferred value have
to be set to an absolute minimal or maximal border 3. Second, this variable has
to be set equal to the expression to be optimized. And third, by reading the
variable the value closest to the given preferred value gets calculated and stored
in the variable. Furthermore the implicit fixing also immediately limits other
constrained variables to values at the searched optimum.

5 Conclusion and Future Works

The Turtle Library defines an interface for the integration of constraint program-
ming concepts in an imperative language and provides an implementation of this
interface for a popular language. Hopes are, that this opens a wider application
field for constraint imperative programming. Only the practical use will show
further needs. E.g. if an implicit fix of a constrained variable has to be considered
is defined by a rather complex rule. It’s unclear if this rule is of any practical

3 This example is rather abstract and hence knows no ’absolute’ minimum. In prac-
tical applications it should be always possible to find a reasonable value (see also
example knapsack).

128

value. Also, for the moment there is no way to unfix a bunch of variables at once
(e.g. all variables of a sub-store).

The class lazy_evaluated<T> should be treated as a simple example for lazy
evaluation. It is possible to further parametrize this class to allow more complex
actions during constraint evaluation including the call of functions. If this is
done, side effects of a lazy evaluated function has to be considered carefully as
stated in section 3.5. At the moment it’s quite unclear if the gain of flexibility
outweighs the possiblity of near unpredictable side effects.

The modelling of algebraic problems using the Turtle Library is already very
convenient. But the generic approach offers a lot more. A lot of publications
in the recent decade has shown, that constraint programming is well-suited for
several problem domains. But unfortunately a lot of these publications either
introduced a whole new language or at least extended an existing language by
adding new language constructs (and thus became incompatible to the parent
language). But an application programmer can’t just move from one language
to the next at will. Due to business, management and also educational issues
he has to stick to one - often for years. With the Turtle Library now even the
application programmer gets a tool to use constraints in C++ in the convenient
declarative manner as it is already used for years in other languages.

References

[1] Grabmüller, M.: Constraint Imperative Programming. Diploma Thesis, Technische
Universität Berlin 2003,

[2] Freeman-Benson, B.N.: Constraint Imperative Programming. PhD Thesis, Uni-
versity of Washington, 1991. Published as Department of Computer Science and
Engenieering Technical Report 91-07-02

[3] Borning, A. and Freeman-Benson, B.N.: The design and implementation of Kalei-
doscope’90, a constraint imperative programming language. In Proceedings of the
IEEE Computer Society 1992 International Conference on Computer Languages,
pages 174-180, 1992

[4] Lopez, G.: The design and implementation of Kaleidoscope, a constraint impera-
tive programming language. PhD Thesis, University of Washington, 1997.

[5] ILOG. ILog Web Site.
http://www.ilog.com, last visited 2003-06-23

[6] Apt, K.R., Brunekreef, J., Partington, V. and Schaerf, A.: Alma-0: An imperative
language that supports declarative programming. ACM Toplas, 20(5):1014-1066,
1998.

129

Patterns in Datatype-Generic Programming

Jeremy Gibbons

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

jeremy.gibbons@comlab.ox.ac.uk

Abstract. Generic programming consists of increasing the expressive-
ness of programs by allowing a wider variety of kinds of parameter than
is usual. The most popular instance of this scheme is the C++ Standard
Template Library. Datatype-generic programming is another instance,
in which the parameters take the form of datatypes. We argue that
datatype-generic programming is sufficient to express essentially all the
genericity found in the Standard Template Library, and to capture the ab-
stractions motivating many design patterns. Moreover, datatype-generic
programming is a precisely-defined notion with a rigorous mathemati-
cal foundation, in contrast to generic programming in general and the
C++ template mechanism in particular, and thereby offers the prospect
of better static checking and a greater ability to reason about generic
programs. This paper describes work in progress.

1 Introduction

Generic programming [28, 19] is a matter of making programs more adaptable
by making them more general. In particular, it consists of allowing a wider vari-
ety of entities as parameters than is available in more traditional programming
languages.

The most popular instantiation of generic programming today is through
the C++ Standard Template Library (stl). The stl is basically a collection of
container classes and generic algorithms operating over those classes. The stl

is, as the name suggests, implemented in terms of C++’s template mechanism,
and thereby lies both its flexibility and its intractability.

Datatype-generic programming (dgp) is another instantiation of the idea of
generic programming. dgp allows programs to be parameterized by a datatype
or type functor. dgp stands and builds on the formal foundations of category
theory and the Algebra of Programming movement [8, 7, 10], and the language
technology of Generic Haskell [22, 12].

In this paper, we argue that dgp is sufficient to express essentially all the
genericity found in the stl. In particular, we claim that various programming
idioms that can at present only be expressed informally as design patterns [17]
could be captured formally as datatype-generic programs. Moreover, because
dgp is a precisely-defined notion with a rigorous mathematical foundation, in
contrast to generic programming in general and the C++ template mechanism

131

in particular, this observation offers the prospect of better static checking of and
a greater ability to reason about generic programs than is possible with other
approaches.

This paper describes work in progress — in fact, it describes work largely in
the future. The United Kingdom’s Engineering and Physical Sciences Research
Council is funding a project called Datatype Generic Programming, starting
around September 2003. The work described in this paper will constitute about a
third of that project; a second strand, coordinated by Roland Backhouse at Not-
tingham, is looking at more of the underlying theory, including logical relations
for modular specifications, higher-order naturality properties, and termination
through well-foundedness; the remainder of the project consists of an integrative
case study.

The rest of this paper is structured as follows. Section 2 describes the prin-
ciples underlying the C++ Standard Template Library. Section 3 motivates and
defines Datatype-Generic Programming, and explains how it differs from a num-
ber of similar approaches to genericity. Section 4 discusses the Design Patterns
movement, and presents our case for the superiority of datatype genericity over
informal prose for capturing patterns. Section 5 concludes by outlining our future
plans for the dgp project.

2 Principles Underlying the STL

The stl [6] is structured around four underlying notions: container types, itera-
tors, algorithms, and function objects. These notions are grouped into a hierarchy
(in fact, a directed acyclic graph) of concepts, representing different abstractions
and their relationships. The library is implemented using the C++ template
mechanism, which is the only means of writing generic programs in C++. This
section briefly analyzes these six principles, from a functional programmer’s point
of view.

2.1 The C++ Template Mechanism

The C++ template mechanism provides a means for classes and functions to be
parametrized by types and (integral, enumerated or pointer) values. This allows
the programmer to express certain kinds of abstraction that otherwise would
not be available. A typical example of a function parametrized by a type is the
function swap below:

template〈class T 〉
void swap(T& a,T& b) {T c = a; a = b; b = c; }

main() {
int i1 = 3, i2 = 4; swap〈int〉(i1, i2);
double d1 = 3.5, d2 = 4.5; swap〈double〉(d1, d2);
}

132

The same function template is instantiated at two different types to yield two
different functions. Container classes form typical examples of parametrization
of a class by a type; the example below shows the outline of a Vector class
parametrized by size and by element type.

template〈class T , int size〉
class Vector {private : T values [size]; . . .};

main() {
Vector〈int, 3〉 v ;
Vector〈Vector〈double, 100〉, 100〉 matrix ;
}

The same class template is instantiated three times, to yield a one-dimensional
vector of three integers and a two-dimensional 100-by-100 matrix of doubles.

A template is to all intents and purposes a macro; little is or can be done with
it until the parameters are instantiated, but the instantiations that this yields
are normal code and can be checked, compiled and optimized in the usual way. In
fact, the decision about which template instantiations are necessary can only be
made when the complete program is available, namely at link time, and typically
the linker has to call the compiler to generate the necessary instantiations.

The C++ template mechanism is really a special-purpose, meta-programming
technique, rather than a general-purpose generic-programming technique. Meta-
programming consists of writing programs in one language that generate or oth-
erwise manipulate programs written in another language. The C++ template
mechanism is a matter of meta-programming rather than programming because
templated code is not actually ‘real code’ at all: it cannot be type-checked, com-
piled, or otherwise manipulated until the template parameter is instantiated.
Some errors in templated code, such as syntax errors, can be caught before
instantiation, but they are in the minority; static checking of templates is essen-
tially impossible. Thus, a class template is not a formal construct with its own
semantics — it is one of the ingredients from which such a formal entity can be
constructed, but until the remaining ingredients are provided it is merely a tex-
tual macro. In a programming language that offers such a template mechanism
as its only support for generic programming, there is no hope for a calculus of
generic programs: at best there can be a calculus of their specific instances.

The template mechanism is a special-purpose, as opposed to general-purpose,
meta-programming technique, because only limited kinds of compile-time com-
putation can be performed. Actually, the mechanism provides surprising expres-
sive power: Unruh [38] demonstrated the disquieting possibility of a program
whose compilation yields the prime numbers as error messages, Czarnecki and
Eisenecker [13] show the Turing-completeness of the template mechanism by
implementing a rudimentary lisp interpreter as a template meta-program, and
Alexandrescu [4] presents a tour-de-force of unexpected applications of tem-
plates. But even if technically template meta-programming has great expres-
siveness, it is pragmatically not a convenient tool for generating programs; ap-
plications of the technique feel like tricks rather than general principles. Ev-

133

erything computable is expressible, albeit sometimes in unnatural ways. A true
general-purpose meta-programming language would support ‘programs as data’
as first-class citizens, and simple and obvious (as opposed to ‘surprising’) tech-
niques for manipulating such programs [35].

There are several consequences of the fact that templated code is a meta-
program rather than (a fragment of) a pure program. They all boil down to the
fact that separate compilation of the templated code is essentially impossible; it
isn’t real code until it is instantiated. Therefore:

– templated code must be distributed in source rather than binary form, which
might be undesirable (for example, for intellectual property reasons);

– static error checking is in general precluded, and any errors are revealed
only at instantiation time; moreover, error reports are typically verbose and
unhelpful, because they relate to the consequences of a misuse rather than
the misuse itself;

– there is a problem of ‘code bloat’, because different instantiations of the same
templated code yield different units of binary code.

There is work being done to circumvent these problems by resorting to partial
evaluation [39], but there is no immediate sign of a full resolution.

2.2 Container Types

A container type is a type of data structures whose purpose is to contain elements
of another type, and to provide access to those elements. Examples include
arrays, sequences, sets, associative mappings, and so on.

To a functional programmer, this looks like a polymorphic datatype; for ex-
ample,

data List α = Nil | Cons α (List α)

A data structure of type List α for some α will indeed contain elements of type
α, and will (through pattern-matching, for example) provide access to them.
Such polymorphic datatypes can be given a formal semantics via the categorical
notion of a functor [10], an operation simultaneously on types (taking a type α

to the type List α) and functions (taking a function of type α→ β to the map
function of type List α→ List β).

However, that response is a little too simple. Certainly, some polymorphic
datatypes and some functors correspond to container types, but not all do. For
example, consider the polymorphic type

data Transformer α = Trans (α→ α)

(The natural way to define this type in Haskell [34] is with a type synonym
rather than a datatype declaration, but we’ve chosen the latter to make the
point clearer.) There is no obvious sense in which a data structure of type
Transformer α ‘contains’ elements of type α. Hoogendijk and de Moor [24] have
shown that one wants to restrict attention to the functors with a membership

134

operation. Technically, in their relational setting, the membership of a functor
F is the largest lax natural transformation from F to Id , the identity functor;
informally, membership is a non-deterministic mapping selecting an arbitrary
element from a container data structure. Some functors, such as Transformer ,
have no membership operation, and so do not correspond to container types
according to this definition.

2.3 Iterators

The essence of the stl is the notion of an iterator, which is essentially an abstrac-
tion of a pointer. The elements of a container data structure are made accessible
by providing iterators over them; the container typically provides operations
begin() and end() to yield pointers to the first element and to ‘one step beyond’
the last element.

Basic iterators may be compared for equality, dereferenced and incremented.
But there are many different varieties of iterator: input iterators may be deref-
erenced only as r-values (for reading), and output iterators only as l-values (for
writing); forward iterators may be deferenced in both ways, and may also be
copied (so that multiple elements of a data structure may be accessed at once);
bidirectional iterators may also be decremented; and random-access iterators
allow amortized constant-time access to arbitrary elements.

Despite the name, iterators in the stl do not express exactly the same idea as
the Iterator design pattern, although they have the same intent of ‘providing a
way to access the elements of an aggregate object sequentially without exposing
its underlying representation’ [17]. In fact, the proposed design in [17] is fairly
close to an stl input iterator: an existing collection may be traversed from
beginning to end, but the identities of the elements in the collection cannot be
changed (although their state may be).

What all these varieties of iterator have in common, though, is that they
point to individual elements of the data structure. This is inevitable given an
imperative paradigm: as Austern [6] puts it, ‘The moving finger writes, and
having writ, moves on’, and although under more refined iterator abstractions
the moving finger may rewrite, and may move backwards as well as forwards, it
is still a finger pointing at a single element of the data structure.

One functional analogue of iterators for traversing a data structure is the
map operator that arises as the functorial action on element functions, acting on
each element independently. More generally, one could point to monadic maps
[15], which act on the elements one by one, using the monad to thread some
‘state’ through the computation.

However, lazy functional programmers are liberated by the availability of
‘new kinds of glue’ [26] for composing units of code, and have other options too.
For example, they may use lists to achieve a similar separation of concerns: the
interface between a collection data structure and its elements is via a list of these
elements. The analogue to the distinction between input and output iterators
(r-values and l-values) is the provision of one function to yield the contents of a

135

data structure as a list of elements, and another to generate a new data structure
from a given list of elements.

This functional insight reveals a rather serious omission in the stl approach,
namely that it only allows the programmer to manipulate a data structure in
terms of its elements. This is a very small window through which to view the
data structure itself. A map ignores the shape of a data structure, manipu-
lating the elements but leaving the shape unchanged; iterator-style access also
(deliberately) ignores the shape, flattening it to a list. Neither is adequate for
capturing problems that exploit the shape of the data, such as pretty-printers,
structure editors, transformation engines and so on. A more general framework
is obtained by providing folds to consume data structures and unfolds to gener-
ate them [18] — indeed, the contents and generate functions mentioned above
are instances of folds and unfolds respectively, and a map is both a fold and an
unfold.

2.4 Concepts

We noted in the previous section that the essence of the stl is a hierarchy
of varieties of iterator. In the stl, the members of this hierarchy are called
concepts. Roughly speaking, a concept is a set of requirements on a type (in terms
of the operations that are available, the laws they satisfy, and the asymptotic
complexities in time and space); equivalently, a concept can be thought of as the
set of all types satisfying those requirements.

Concepts are not part of C++; they are merely an artifact of the stl. An
stl reference manual [6] can do no more than to describe a concept in prose.
Consequently, it is a matter of informal argument rather than formal reasoning
whether a given type is or is not a model of a particular concept. This is a
problem for users of the stl, because it is easy to make mistakes by using an
inappropriate type in a particular context: the compiler cannot in general check
the validity of a particular use, and tracking down errors can be tricky. There
have been some valiant attempts to address this problem by programming idioms
[36, 31] or static analysis [21], but ultimately the language seems to be a part of
the problem here rather than a part of the solution.

The solution seems obvious to the Haskell programmer: use type classes [29].
A type class captures a set of requirements on a type, or equivalently it de-
scribes the set of types that satisfy those requirements. (Type classes are more
than just interfaces: they can provide default implementations of operations
too, and type class inference amounts to automatic selection of an implementa-
tion.) Type classes are only an approximation to the notion of a concept in the
stl sense, because they can capture only the signatures of operations and not
their extensional (laws) or intensional (complexity) semantics. However, they are
statically checkable within the language, which is at least a step forwards: C++
concepts cannot even capture signatures formally. The Haskell collection class
library Edison [11, 33] uses type classes formally in the same way that stl uses
concepts informally.

136

2.5 Algorithms and Function Objects

The bulk of the stl, and indeed its whole raison d’être, is the family of generic
algorithms over container types made possible by the notion of an iterator. These
algorithms are general-purpose operations such as searching, sorting, comparing,
copying, permuting, and so on. Iterators decouple the algorithms from the con-
tainer types on which they operate: the algorithm is described in terms of an
abstract iterator interface, and is then applicable to any container type on which
an appropriate iterator is available.

There is no new insight provided by the algorithms per se; they arise as a
natural consequence of the abstractions provided (whether informally as concepts
or formally as type classes) to access the elements of container types. In the stl,
algorithms are represented as function templates, parametrized by models of the
appropriate iterator concept. To a Haskell programmer, algorithms in this sense
correspond to functions with types qualified by a type class.

The remaining principle on which the stl is built is that of a function object
(sometimes called a ‘functor’, but in a different sense that the functors of cat-
egory theory). Function objects are used to encapsulate function parameters to
algorithms; typical uses are for parametrizing a search function by a predicate
indicating what to search for, or a sorting procedure by an ordering.

Function objects also yield no new insight to the functional programmer.
In the stl, a function object is represented as an object with a single method
which performs the function. This is essentially an instance of the Strategy

design pattern [17]. To a functional programmer, of course, function objects are
unnecessary: functions are first-class citizens of the language, and a function can
be passed as a parameter directly.

3 Datatype Genericity

We propose a new paradigm for generic programming, which we have called
datatype-generic programming (dgp). The essence of dgp is the parametrization
of values (for example, of functions) by a datatype. We use the term ‘datatype’
here in the sense discussed in Section 2.2: a container type, or more formally a
functor with a membership operation. For example, ‘List ’ is a datatype, whereas
‘int ’ is merely a type.

(Since a datatype is one type parametrized by another — ‘lists of αs, for some
type α’ — and a datatype-generic program is a program parametrized in turn by
such a type-parametrized type, we toyed briefly with the idea of describing our
proposal as for a ‘type-parametrized–type’—parametrized theory of programming,
or tptptp for short. But we decided that was a bit of a mouthful.)

3.1 An Example of DGP

Consider for example the parametrically polymorphic programs maplist ,

137

maplist :: (α→ β)→ List α→ List β

maplist f Nil = Nil
maplist f (Cons a x) = Cons (f a) (maplist f x)

and (for the appropriate definition of the Tree datatype) maptree,

maptree :: (α→ β)→ Tree α→ Tree β

maptree f (Tip a) = Tip (f a)
maptree f (Bin x y) = Bin (maptree f x) (maptree f y)

Both of these programs are already quite generic, in the sense that a single piece
of code captures many different specific instances. However, the two programs
are themselves clearly related, and a dgp language would allow their common
features to be captured in a single definition map:

map〈Unit〉 () = ()
map〈Const a〉 x = x
map〈+〉 f g (Inl u) = Inl (f u)
map〈+〉 f g (Inr v) = Inr (g v)
map〈×〉 f g (u, v) = (f u, g v)

This single definition is parametrized by a datatype; in this case it is defined by
structural induction over a grammar of datatypes. The two parametrically poly-
morphic programs are of course instances of this one datatype-generic program:
maplist = map〈List〉 and maptree = map〈Tree〉.

At first glance, this looks rather like a generic algorithm that could have come
from the stl, and indeed in this case that is a valid analogy to make: map-like
operations can be expressed in the stl. However, the crucial difference is that
dgp allows a program to exploit the shape of the data on which it operates. For
example, one could write datatype-generic functions to encode a data structure
as a bit string and to decode the bit string to regenerate the data structure
[27]: the shape of the data structure is related to the value of the bitstring.
A more sophisticated example involves Huet’s ‘Zipper’ [25] for efficiently but
purely functionally representing a tree with a cursor position; different types of
tree require different types of zipper, and it is possible [1, 23] to write datatype-
generic operations on the zipper: here, the shape of one data structure determines
the shape of an auxilliary data structure in a rather complicated fashion. Neither
of these examples are possible with the stl.

3.2 Isn’t This Just. . . ?

As argued above, the parametrization of programs by datatypes is not the same
as generic programming in the stl sense. The latter allows abstraction from the
shape of data, but not exploitation of the shape of data. Indeed, this is why we
chose a new term ‘dgp’ instead of simply using ‘gp’: we would prefer the latter
term, but feel that it has already been appropriated for a more specific use than
we would like. (For example, one often sees definitions such as ‘Generic program-
ming is a methodology for program design and implementation that separates

138

data structures and algorithms through the use of abstract requirement specifi-
cations’ [37, p19]. We feel that such definitions reduce generic programming to
good old-fashioned abstraction.)

dgp is not the same thing as meta-programming in general, and template
meta-programming in particular. Meta-programming is a matter of writing pro-
grams that generate or otherwise manipulate other programs. For example, C++
template meta-programs yield ordinary C++ code when instantiated (at least
notionally, although the code so generated is typically never seen); they are not
ordinary C++ programs in their own right. A meta-program for a given pro-
gramming language is typically not a program written in that language, but one
written in a meta-language that generates the object program when instanti-
ated or executed. In contrast, a datatype-generic program is a program in its
own right, written in (perhaps an enrichment of) the language of the object
program.

Neither is dgp the same thing as polymorphism, in any technical sense we
know. It is clearly not the same thing as ordinary parametric polymorphism,
which allows one to write a single program that can manipulate both lists of
integers and lists of characters, but does not allow one to write a single program
that manipulates both lists of integers and trees of integers. We also believe
(but have yet to study this in depth) that dgp is not the same thing as higher-
order parametric polymorphism either, because in general the programs are not
parametric in the functor parameter: if they were, they might manipulate the
shape of data but could not compute with it, as with the encoding and decoding
example cited above.

Nor is it the same thing as dependently typed programming [5], which is a
matter of parametrizing types by values rather than values by types. Dependent
types are very general and powerful, because they allow the types of values
in the program to depend on other values computed by that program; but by
the same token they rule out the possibility of most static checking. (A class
template parametrized by a value rather than a type bears some resemblance to
type dependent on a value, but in C++ the actual template parameters must
be statically determined for instantiation at compile time, whereas dependent
type theory requires no such separation of stages.) It would be interesting to try
to develop a calculus of dependently typed programming, but that is a different
project altogether, and a much harder one too.

Finally, dgp is not simply Generic Haskell [12], although the datatype-generic
program for map we showed above is essentially a Generic Haskell program. The
Generic Haskell project is concentrating on the design and implementation of a
language that supports dgp, but is not directly addressing the problem of devel-
oping a calculus of such programs. Our project has strong connections with the
Generic Haskell project, and we are looking forward to making contributions to
the design based on our theory-driven insights, as the language is making con-
tributions to the theory by posing the question of how it may be used. However,
Generic Haskell is just one possible implementation technique for dgp.

139

4 Patterns of Software

A design pattern ‘systematically names, motivates, and explains a general design
that addresses a recurring design problem in object-oriented systems’ [17]. The
intention is to capture best practice and experience in software design in order
to facilitate the education of novices in what constitutes good designs, and the
communication between experts about those good designs. The software patterns
movement is based on the work of Christopher Alexander, who for over thirty
years has been leading a similar movement in architecture [3, 2].

It could be argued that many of the patterns in [17] are idioms for mimicking
dgp in languages that do not properly support such a feature. Because of the
lack of proper language support, a pattern can generally do no better than to
motivate, describe and exemplify an idiom: it can refer indirectly to the idiom,
but not present the idiom directly as a formal construction. For example, the
Iterator pattern shows how an algorithm that traverses the elements of a col-
lection type can be decoupled from the collection itself, and so can work with
new and unforeseen collection types; but for each such collection type an appro-
priate new Iterator class must be written. (The programmer may be assisted
by the library, as in Java [20], or the language, as in C] [14], but still has to write
something for each new collection type.) A language that supported dgp would
allow the expression of a single datatype-generic program directly applicable to
an arbitrary collection type: perhaps a function to yield the elements as a lazy
list, or a map operation to transform each element of a collection.

The situation is no better with the stl than with design patterns. We argued
above that iterators in the stl sense are more general than the Iterator pat-
tern. Nevertheless, C++ provides no support for defining the iterator concept,
so it too can only be referred to indirectly; and again, for every new collection
type an appropriate implementation of the concept must be provided.

As another example, the Visitor pattern [17] allows one to decouple a mul-
tivariant datatype (such as abstract syntax trees for a programming language)
from the specific traversals to be performed over that datatype (such as type
checking, pretty printing, and so on), allowing new traversals to be added with-
out modifying and recompiling each of the datatype variants. However, each new
datatype entails a new class of Visitor, implemented according to the pattern.
A dgp language would allow one to write a single datatype-generic traversal
operator (such as a fold) once and for all multivariant datatypes.

(Alexandrescu [4] does present a ‘nearly generic’ definition of the Visitor

pattern using clever template meta-programming, but it relies on C++ macros,
and still requires the foresight in designing the class hierarchy to insert a call to
this macro in every class in the hierarchy that might be visited.)

It is sometimes said that patterns cannot be automated; anything that can be
captured completely formally is too restricted to be a proper pattern. Alexander
describes a pattern as giving ‘the core of the solution to [a] problem, in such a
way that you can use this solution a million times over, without ever doing it
the same way twice’ [3]; Gamma et al. state that ‘design patterns are not about
designs such as linked lists and hash tables that can be encoded in classes and

140

reused as is’ [17]. We are sympathetic to the desire to ensure that patternity
does not become a synonym for ‘a good idea’, but do not feel that that means
we should give up on attempts to formalize patterns.

Alexander, in his foreword to Gabriel’s book [16], hopes that the software
patterns movement will yield ‘programs which make you gasp because of their
beauty’. We think that’s a goal worth aiming for, however optimistically. We have
yet to see a meta-programming framework that supports beautiful programming
(although we confess to being impressed by the intricate possibilities of template
meta-programming demonstrated by [4]), but we have high hopes that datatype-
generic programs could be breathtakingly beautiful.

5 Future Plans

The dgp project is due to start around September 2003; the work outlined in this
paper constitutes about a third of the total. One of the initial aims of this strand
will be an investigation into the relationships between generic programming (as
exhibited in libraries like the stl), structural and behavioural design patterns
(as described by [17]), and the mathematics of program construction (epitomized
by Hoogendijk and de Moor’s categorical characterization of datatypes [24]).

In the short term, we intend to use the insights gained from this investiga-
tion to prototype a datatype-generic collection library in Generic Haskell [12]
(perhaps as a refinement of Okasaki’s Edison library [33]). This will allow us to
replace type-unsafe meta-programming with type-safe and statically checkable
datatype-generic programming. Ultimately, however, we hope to be able to ap-
ply these insights to programming in more traditional object-oriented languages,
perhaps by compilation from a dedicated dgp language.

But the real purpose of the project will be to generalize theories of program
calculation such as Bird and de Moor’s relational ‘algebra of programming’ [10],
to make it more applicable to deriving the kinds of programs that users of the
stl write. This will link with Backhouse’s strand of the dgp project, which is
looking at more theoretical aspects of datatype genericity: higher-order natural-
ity properties, logical relations, and so on. We intend to build on this work to
develop a calculus for generic programming.

More tangentially, we have been intrigued by similarities between some of
the more esoteric techniques for template meta-programming [13, 4] and some
surprising possibilities for computing with type classes in Haskell [32, 30, 9]. It
isn’t clear yet whether those similarities are a coincidence or evidence of some
deeper correspondence; in the light of our arguments in this paper that type
classes are the Haskell analogue of stl concepts, we suspect there may be some
deep connection here.

6 Acknowledgements

The help of the following people and organizations is gratefully acknowledged:

141

– Roland Backhouse, Graham Hutton, Ralf Hinze and Johan Jeuring, for their
contributions to the dgp grant proposal;

– Richard Bird, for inspiring and encouraging this line of enquiry;
– Tim Sheard, for his elegant definition of generic programming;
– EPSRC grant GR/S27078/01, for financial support.

References

[1] Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride. Deriva-
tives of containers. In Martin Hofmann, editor, LNCS 2701: Typed Lambda Calculi
and Applications, pages 16–30. Springer-Verlag, 2003.

[2] Christopher Alexander. The Nature of Order. Oxford University Press, To appear
in 2003.

[3] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid
Fiksdahl-King, and Shlomo Angel. A Pattern Language. Oxford University Press,
1977.

[4] Andrei Alexandrescu. Modern C++ Design. Addison-Wesley, 2001.
[5] Lennart Augustsson. Cayenne: A language with dependent types. SIGPLAN

Notices, 34(1):239–250, 1999.
[6] Matthew H. Austern. Generic Programming and the STL. Addison-Wesley, 1999.
[7] R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S. Voermans, and

J. van der Woude. Polynomial relators. In M. Nivat, C.S. Rattray, T. Rus, and
G. Scollo, editors, Proceedings of the 2nd Conference on Algebraic Methodology
and Software Technology, AMAST’91, pages 303–326. Springer-Verlag, Workshops
in Computing, 1992.

[8] R.C. Backhouse, P. de Bruin, G. Malcolm, T.S. Voermans, and J. van der Woude.
Relational catamorphisms. In Bernhard Möller, editor, Proceedings of the IFIP
TC2/WG2.1 Working Conference on Constructing Programs from Specifications,
pages 287–318. Elsevier Science Publishers B.V., 1991.

[9] Roland Backhouse and Jeremy Gibbons. Programming with type classes. Pre-
sentation at WG2.1#55, Bolivia, January 2001.

[10] Richard S. Bird and Oege de Moor. Algebra of Programming. Prentice Hall, 1997.
[11] Andrew Bromage. Haskell Foundation Library.

www.sourceforge.net/projects/hfl/, 2002.
[12] Dave Clarke, Ralf Hinze, Johan Jeuring, Andres Löh, and Jan de Wit. The Generic

Haskell user’s guide. Technical Report UU-CS-2001-26, Universiteit Utrecht, 2001.
[13] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Methods,

Tools and Applications. Addison-Wesley, 2000.
[14] Peter Drayton, Ben Albahari, and Ted Neward. C] in a Nutshell. O’Reilly, 2002.
[15] Maarten Fokkinga. Monadic maps and folds for arbitrary datatypes. Dept INF,

Univ Twente, June 1994.
[16] Richard P. Gabriel. Patterns of Software: Tales from the Software Community.

Oxford University Press, 1996.
[17] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-

terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.
[18] Jeremy Gibbons. Origami programming. In Jeremy Gibbons and Oege de Moor,

editors, The Fun of Programming. Palgrave, 2003.
[19] Jeremy Gibbons and Johan Jeuring, editors. Generic Programming. Kluwer Aca-

demic Publishers, 2003.

142

[20] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Spec-
ification Second Edition. Addison-Wesley, Boston, Mass., 2000.

[21] Douglas Gregor and Sybille Schupp. Making the usage of STL safe. In Gibbons
and Jeuring [19].

[22] Ralf Hinze. Polytypic values possess polykinded types. Science of Computer Pro-
gramming, 43:129–159, 2002. Earlier version appears in LNCS 1837: Mathematics
of Program Construction, 2000.

[23] Ralf Hinze and Johan Jeuring. Weaving a web. Journal of Functional Program-
ming, 11(6):681–689, 2001.

[24] Paul Hoogendijk and Oege de Moor. Container types categorically. Journal of
Functional Programming, 10(2):191–225, 2000.

[25] Gérard Huet. The zipper. Journal of Functional Programming, 7(5):549–554,
September 1997.

[26] John Hughes. Why functional programming matters. Computer Journal, 1989.
[27] Patrik Jansson and Johan Jeuring. Polytypic data conversion programs. Science

of Computer Programming, 43(1):35–72, 2002.
[28] Mehdi Jazayeri, Rüdiger G. K. Loos, and David R. Musser, editors. Generic

Programming. Springer-Verlag, 2000.
[29] Mark P. Jones. Qualified Types: Theory and Practice. DPhil thesis, University of

Oxford, 1992.
[30] Conor McBride. Faking it: Simulating dependent types in Haskell. Journal of

Functional Programming, 12(4&5):375–392, 2002.
[31] Brian McNamara and Yannis Smaragdakis. Static interfaces in C++. In First

Workshop on C++ Template Programming, October 2000.
[32] Matthias Neubauer, Peter Thiemann, Martin Gasbichler, and Michael Sperber.

Functional logic overloading. In Symposium on Principles of Programming Lan-
guages, pages 233–244, 2002.

[33] Chris Okasaki. An overview of Edison. Haskell Workshop, 2000.
[34] Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised

Report. Cambridge University Press, 2003.
[35] Tim Sheard and Simon Peyton Jones. Template meta-programming for Haskell.

In Haskell Workshop, 2002.
[36] Jeremy Siek and Andrew Lumsdaine. Concept checking: Binding parametric poly-

morphism in C++. In First Workshop on C++ Template Programming, October
2000.

[37] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library.
Addison-Wesley, 2002.

[38] Erwin Unruh. Prime number computation. ANSI X3J16-94-0075/ISO WG21-462,
1994.

[39] Todd Veldhuizen. Five compilation models for C++ templates. In First Workshop
on C++ Template Programming, October 2000.

143

Unifying Tables, Objects and Documents

Erik Meijer and Wolfram Schulte

Microsoft Corporation

Abstract. This paper proposes a number of type-system and language
extensions to natively support relational and hierarchical data within a
statically typed object-oriented setting. In our approach SQL tables and
XML documents become first class citizens that benefit from the full
range of features available in a modern programming language like C]

or Java. This allows objects, tables and documents to be constructed,
loaded, passed, transformed, updated, and queried in a unified and type-
safe manner.

1 Introduction

The most important current open problem in programming language research is
to increase programmers productivity, that is to make it easier and faster to write
correct programs [38]. The integration of data access in mainstream program-
ming languages is of particular importance — millions of programmers struggle
with this every day. Data sources and sinks are typically XML documents and
SQL tables, but they don’t merge nicely into a statically typed object-oriented
setting in which most production software is written.

This paper addresses how to integrate tables and documents into modern
object-oriented languages by providing a novel type-system and corresponding
language extensions.

1.1 The Need for a Unification

Distributed web-based applications are predominantly structured using a three-
tier model that most commonly consists of a middle tier containing the business
logic that extracts relational data from a data services tier and munches it into
hierarchical data that is displayed in the user interface tier. The middle tier is
often programmed in an object-oriented language such as Java or C].

As a consequence, middle tier programs have to deal with relational data
(SQL tables), object graphs, and hierarchical data (HTML, XML). Unfortu-
nately these three different worlds are not very well integrated. As the following
ADO.Net based example shows, access to a database in this style involves send-
ing a string representation of a SQL query over an explicit connection via a
stateful API and then iterating over a weakly typed representation of the result
set:

145

SqlConnection Conn = new SqlConnection(...);

SqlCommand Cmd = new SqlCommand("SELECT Name,HP FROM Pokedex",Conn);

Conn.Open();

SqlDataReader Rdr = Cmd.ExecuteReader();

Creating HTML or XML documents is then done by emitting document
fragments in string form, without separating the model and presentation:

while (Rdr.Read()) {

Response.Write("<tr><td>");

Response.Write(Rdr.GetInt32(0));

Response.Write("</td><td>");

Response.Write(Rdr.GetString(1));

Response.Write("</td></tr>");

}

Communication between the different tiers using untyped strings is obviously
very brittle with lots of opportunities for errors and zero probability for static
checking. The cynical thing is that due to the poor integration, performance
suffers badly as well.

The next code fragment rewrites the same functionality using a hypothetical
language that unifies objects, tables and documents.

tr* pokemon =

select <tr>

<td>{Name}</td><td>{HP}</td>

</tr>

from Pokedex;

Table t =

<table>

<tr><th>Name</th><th>HP</th></tr>

{pokemon}

</table>;

Response.Write(t);

In this case, strongly typed XML values are first-class citizens (i.e. the XML lit-
eral <table>...</table> has type static Table) and SQL-style select queries
are build-in. There is ample opportunity for static checking, and because the
SQL and XML type-systems are integrated into the language, the compiler can
do a better job in generating efficient code.

1.2 Growing a Language

It is easy to criticize the current lack of integration between tables, objects and
documents, but it is much harder to come up with a design that gracefully unifies

146

these separate worlds. No main-stream programming language has yet emerged
that realizes this vision [7].

Often language integration only deals with SQL or with XML, but usu-
ally not with both [12, 26, 15, 19, 2, 11, 29]. Alternatively they start from a
completely new language such as XQuery, or XDuce or CDuce [6, 24, 44, 10].
Approaches based on language binding using some kind of pre-compiler such as
XSD.exe, Castor, or JAXB [31, 1] do not achieve a real semantic integration. The
impedance mismatch between the different type-systems then leads to strange
anomalies or unnatural mappings. Another popular route to integrate XML and
SQL is by means of domain specific embedded languages [25] using functional
language such as Scheme or Haskell [35, 36, 33, 34, 30, 27, 20, 42, 46, 12] as the
host. In our experience however, the embedded DSL approach does not scale very
well, and it is particularly difficult to encode the domain specific type-systems
[40] and syntax into the host language.

In his invited talk at OOPSLA98 [22], Guy Steele remarked that

... from now on, a main goal in designing a language should be to plan for
growth. The language should start small, and the language must grow
as the set of users grows.

This paper shows how to grow a modern object-oriented language (we take C]

as the host language, but the same approach will work with Java, Visual Basic,
C++, etc.) to encompass the worlds of tables and documents by adding new
types and expressions. In the remainder of this paper we will discuss:

Streams (Section 2) Streams are homogenous sequences of values of variable
length. A database table consists of zero or more tuples; in the document
world nodes can have zero or more sub-documents of the same kind, and in
the object world we often work with (lazy) streams of values.

Tuples (Section 3) Tuples are heterogeneous sequences of values of fixed length.
As we have just noticed, a database table is a stream of tuples; in the
document world the sequence construct is used to model groups of sub-
documents that must be present in a particular order, and finally several
proposals have been made to extend Java and other object-oriented lan-
guages with tuples [43, 28].

Unions (Section 4) Unions represent a choice between values of different type.
They play a very important role in semi-structured documents [8] and many
schemas use the choice construct to model alternatives. Union types also
occur naturally in the result-types of queries.

Content Classes (Section 5) Content classes are ordinary classes whose mem-
bers can be anonymous (unnamed). We use content classes to model top-level
elements and complex types in document schemas.

Queries (Section 6) Finally we will extend our repertoire of accessors of our
new types to match the expressive power of XPath and SQL queries. These
accessors include implicit (homomorphic extension) and explicit (apply-to-
all) mapping over streams, filtering, transitive member access, and relational
select and join.

147

The growth of our experimental language is controlled by applying the fol-
lowing design principles:

Denotables values should be (easily) expressible If programmers can
declare a variable of a certain type, it must be possible to write an expression
of that type in a convenient way.

Expressible values should be denotable If programmmers can write an
expression of a certain type, it must be possible to declare a variable whose
static type precisely matches that of the expression.

No forced identity Programmers should never be forced to introduce either
nominal identity of types, or object identity of values (aliasing).

Orthogonality There should be no special cases that discriminate between
tables, documents and objects. Operations should work uniformly across the
three worlds.

Flexibility The new types should have rich subtyping relationships that ease
in writing type correct and evolvable software [9].

2 Streams

Streams are generically typed refinements of iterators, the pair of twin interfaces
IEnumerable and IEnumerator in C], or the corresponding Iterator interface
in Java. Iterators encapsulate the logic for enumerating elements of collections.

The foreach loop of C] makes it very convenient to consume values of type
IEnumerable (future versions of Java will have a similar construct). For instance,
since type string implements the IEnumerable interface, we can iterate over
all the characters in a string using a simple foreach loop:

foreach(char c in s) Console.WriteLine(c);

The foreach loop in C] is syntactic sugar for the following (simplified) while
loop that calls into the IEnumerable and IEnumerator interfaces:

IEnumerator e = ((IEnumerable)s).GetEnumerator();

while (e.MoveNext()) { char c = (char)e.Current;

Console.WriteLine(c);

}

While consuming an iterator is easy, it is much more difficult to write a
generator that implements the IEnumerable (or the underlying IEnumerator)
interface. In order to implement the IEnumerable interface on type string for
instance, we have to manually create a state-machine that iterates over the indi-
vidual characters in the string via MoveNext and exposes the current character
via the Current property:

class string: IEnumerable {

IEnumerator GetEnumerator() { return new Chars(this); }

148

private class Chars : IEnumerator {

private string s; private int i = 0; private char c;

Chars(string s) { this.s = s; }

public bool MoveNext() {

if (i < s.Length) {

c = s[i++]; return true;

} else {

return false;

}

}

public char Current { get { return c; } }

}

}

Note that this implementation does not correctly handle the extreme cases of
calling Current before the first call to GetNext and calling it after GetNext has
returned false.

In C] and Java iterators are denotable, but not easily expressible. Moreover,
the type IEnumerable is not very accurate since it does not convey the element
type of the iterator. In other words, iterators of a particular type are expressible,
but not precisely denotable.

We remedy both problems by introducing a new type of streams and a new
statement to generate streams:

– The type T* denotes homogenous streams of arbitrary length with elements
of type T . Type T* is a subtype of both IEnumerable and IEnumerator.

– Stream generators are like ordinary methods except that they may yield
multiple values instead of returning a single time. The yield e statement
returns the value of expression e into the Current property of its corre-
sponding stream and suspends execution until MoveNext is called at which
time execution resumes. Upon termination of the iterator MoveNext returns
false.

Using streams and generators it becomes much simpler to enumerate all the
characters in a string. The helper method char* explode(string s) generates
the stream of the individual characters of string s. The GetEnumerator method
of class string then simply explodes itself:

class string: IEnumerable {

public IEnumerator GetEnumerator() { return this.explode(); }

private char* explode() {

149

int e = this.Length; for(int i = 0; i < e; i++) yield s[i];

};

}

In this case maintaining the state is implicit in the control-flow of the explode

function and in particular the borderline cases are handled correctly by defini-
tion.

Streams and generators are not new concepts. They are supported by a wide
range of languages in various forms [21, 5, 39, 28, 32, 37], and in particular future
versions of C] will also support iterators. Our approach is a little different in
that:

– We classify streams into a hierarchy of streams of different length (!, ?, +,
*, see below).

– We automatically flatten streams of streams (see Section 2.2).
– Our streams are covariant (see below).
– We identify the value null with the empty stream (see Section 2.1).

To keep type-checking tractable, we restrict ourselves to the following four
stream types: T* denotes possibly empty and unbounded streams with elements
of type T , T+ denotes non-empty possibly unbounded streams with elements of
type T , T? denotes streams of at most one element of type T , and T! denotes
streams with exactly one element of type T . We will use T? to represent optional
values, where the nonexistence is represented by the value null and analogously
we use T! to represent non-null values.

The different stream types form a natural subtype hierarchy, where subtyping
corresponds to stream inclusion:

T! <: T+

T+ <: T*

T? <: T*

For instance the subtype relation T! <: T+ reflects the fact that a stream of
exactly one element is also a stream of at least one element.

We embed non-stream types T into the hierarchy by placing them between
non-null values T! and possibly null values T?:

T! <: T
T <: T?

This inclusion allows programmers to precisely state their intentions with respect
to null values: T! means null is not allowed, T? means null is expected, and
T means null is exceptional.

The next two rules reflect the facts that null (we use Ø? for the null-type)
is a possible value of any reference type, but that value types are never null:

Ø? <: T , T is a reference type
T <: T!, T is a value type

150

Like arrays, streams are covariant. This means that subtyping on the element
types is lifted to subtyping on streams. The special case for the null type says
that possibly-null values can be null:

S <: T
−−−−−−−−−
S* <: T*

Ø? <: T?

Let Button be a subtype of Control, then the first rule says that Button* is
a subtype of a stream of controls Control*. The second rule says for instance
that null can be assigned to a variable of type int?.

2.1 Nullness

The type T! denotes streams with exactly one element, and since we identify
null with the empty stream, this implies that values of type T! can never be
null. Dually, the type T? denotes streams with either zero (that is null) or
exactly one element.

Values of type T? model the explicit notion of nullability as found in SQL
by providing a standard implementation of the null design pattern [23]; when a
receiver of type T? is null, accessing any of its members returns null instead
of throwing an exception as in C] or Java:

string? t = null;

int? n = t.Length; // n = null

In Objective-C [3] this is the standard behavior for any receiver object that can
be null. In section 6.1 we show how member-access is lifted over streams in
general.

Being able to express that a value cannot be null via the type system allows
static checking for null pointers (see [16, 18] for more examples). This turns
many (potentially unhandled) dynamic errors into compile-time errors.

One of the several methods in the .NET base class library that throws an
ArgumentNullException when its argument is null is the IPAddress.Parse

function. Consequently, the implementation of IPAddress.Parse needs an ex-
plicit null check:

public static IPAddress Parse(string ipString) {

if (ipString == null)

throw new ArgumentNullException("ipString");

...

}

Dually, clients of IPAddress.Parse must be prepared to catch and deal with a
possible ArgumentNullException. Nothing of this is apparent in the type of the

151

Parse method in C]. In Java at least the signature of Parse would show that it
possibly throws an exception.

It would be much cleaner if the type of IPAddress.Parse indicated that it
expects its string argument to be non-null:

public static IPAddress Parse(string! a);

Now, the type-checker statically rejects any attempt to pass a string that might
be null to IPAddress.Parse.

The proof obligation for returning a non-null stream T! or T+ is similar to
proving the definite assignment rule in C] or Java. For statement blocks that
return or yield non-empty streams, each non-exceptional execution path should
return or yield at least one non-null value. The type-checker will therefore accept
the first definition of FromTo but will reject the second:

int+ FromTo(int s, int d, int e) {

yield s; while(s <= e) yield s += d;

}

// Type error

int+ FromTo(int s, int d, int e) {

while(s <= e){ yield s; s += d; }

}

Non-empty streams T+ are implicitly convertible to possibly empty streams
T*; we can forget the fact that a stream has at least one element. It is in general
not safe to downcast from a possibly empty stream T* to a non-empty stream
T+. At first sight we might think that testing if the stream contains at least
one non-null value would suffice. Alas this is not true. By cunningly using side-
effects, the generator function OnlyOnce() only yields 4711 the first time it is
evaluated and every subsequent evaluation produces an empty stream:

bool Done = false;

int* OnlyOnce() {

if(!Done){ Done = true; yield 4711; }

};

int+ xs = (int+)OnlyOnce(); // 1. cast succeeds

int+ xs = (int+)OnlyOnce(); // 2. cast fails

To prevent such loopholes, down casting from T* to T+ will only succeed if the
dynamic type of the underlying stream is T+.

2.2 Flattening

We have to be very careful to ensure that every value in a (nested) stream is
yielded at most once, otherwise we might end up with a quadratic instead of
a linear number of yields when generating certain (recursive) streams [45]. For
instance this happens if a nested stream like [[...[[[],0],1],...],n-1] gets

152

recursively flattened into the non-nested stream [0,1,...,n-1] as in the next
example:

// Iota(n) generates the stream [0,1,..,n-1]

int* Iota(int n){

if(n>0){

foreach(int i in Iota(--n)) yield i;

yield n;

}

}

Note that we are forced to flatten the stream produced by the recursive invoca-
tion of Iota(n) to generate a stream of the required type int*. Apart from these
typing issues, there is absolutely no reason that the actual instance of a nested
stream should be flattened since we can easily iterate over the leaf elements (the
yield) of a nested stream.

So all that is required to type-check generators of nested streams is to flatten
the type of a stream, which again does not imply that the underlying implementa-
tion of streams gets flattened as well. Table 2.2 gives the general flattening rules
for nested streams T ij of all possible combinations of stream constructors: The

T ij j = ! ? + *

i = ! ! ? + *

? ! ? + *

+ + * + *

* + * + *

Fig. 1. Flattening rules for streams

congruence T*+ = T+, for instance, reflects the fact that a non-empty stream
of possibly empty stream flattens into a non-empty stream, while T+* = T* re-
flects that a possibly empty stream of non-empty streams flattens to a possibly
empty stream.

Using the flattening rules, we can now write a linear time version of the Iota
function that returns a nested stream of streams of type int*:

// Iota(n) generates the stream [[...[[[],0],1],...],n-1]

int* Iota(int n){

if(n>0){

yield Iota(--n); yield n;

}

}

153

3 Tuples

Tuples are heterogeneous sequences of optionally labelled values of fixed length.
Another way of viewing tuples is as anonymous structs whose members are
ordered, in particular tuples have no object identity.

The function DivMod returns the quotient and remainder of its arguments as
a tuple that contains two named integer fields sequence{int Div, Mod;}:

sequence{int Div, Mod;} DivMod(int x, int y) {

return new(Div = x/y, Mod = x%y);

}

The members of a tuple do not need to be labelled, for example, we can create
a tuple consisting of a labelled Button and an unlabelled string as follows:

sequence{Button b; string;} x = new(b=new Button(), "OK");

An unlabelled member of a nominal type is a shorthand for the same member
implicitly labelled with its type.

Tuples can be picked apart constant indexers, DivMod(47,11)[0] for instance
selects 47, or by named member access, provided of course that tuple has a
member m, for instance x.b.

3.1 Subtyping

Like streams, tuples are subject to a rich subtype hierarchy. The first subtype
relation for tuples formalizes the fact that labels are optional and that we can
forget them by upcasting:

sequence{ . . . ; T m ; . . . } <: sequence{ . . . ; T ; . . . }

Using this rule we see that we can assign DivMod(47,11) to a an unlabelled pair
of integers of type sequence{int; int;}.

We can forget the ordering, nesting, and labels of a tuple by upcasting a tuple
to a stream. The special cases give tighter types for the empty tuple (which gets
converted to the empty stream null) and singleton tuple (which gets converted
to its underlying value):

sequence{} <: Ø?

sequence{T} <: T
sequence{ . . . ; T ; . . . } <: choice{ . . . ; T ; . . . }*

Using the last conversion, we can enumerate the values of any tuple as a stream,
i.e. the tuple new(4711, true, ’z’, 3.14) can be converted into the stream
[4711, true, ’z’, 3.14] of type choice{int; bool; char; float}*.

154

3.2 Non-Nullness for tuples

Even though tuples have no object identity, the fact that they are convertible to
streams makes them subtly different from nominal value types.

Suppose that we would add the rule that tuples are not null, i.e.,
sequence{ . . . } <: sequence{ . . . }!. Then by applying this rule in combina-
tion with the singleton rule sequence{T} <: T we could assign the value null

to a variable of non-null type Button!:

// Type error

sequence{Button;} a = new(null);

sequence{Button;}! b = a;

Button! c = b; // c = null

To maintain type-soundness soundness we have a weaker rule that states
that a tuple is non-null if it has at least one member that is non-null. This
guarantees that when the tuple is converted to a stream the resulting stream
has the right cardinality. For singleton sequences the conversion also holds in
the reverse direction:

sequence{ . . . ; T! m ; . . . } <: sequence{ . . . ; T m ; . . . }!
sequence{T m ; }! <: sequence{T! m ; }

By applying this rule in combination with the fact that int <: int!, we can
show that the sequence of integers new(1) is convertible into a non-empty
stream of type sequence{int ; } <: sequence{int! ; } <: sequence{int ; }!
<: int*! <: int+.

3.3 Streams+Tuples = Tables

Relational data is stored in tables, which are sets of tuples. Sets can be rep-
resented by streams, thus streams and tuples together can be used to model
relational data.

The table below contains some basic facts about Pokemon characters such
as their name, their strength, their kind, and the Pokemon from which they
evolved (see http://www.pokemon.com/pokedex/ for more details about these
interesting creatures).

Name HP Kind Evolved

Meowth 50 Normal
Rapidash 70 Fire Ponyta

Charmelon 80 Fire Charmander
Zubat 40 Plant

Poliwag 40 Water
Weepinbell 70 Plant Bellsprout

Ponyta 40 Fire

155

Each row in this table is a value of type Pokemon and the table itself is modelled
as a variable Pokedex of type Pokemon*. The keyword type identifies the name
on the left with the type expression on the right. It is just an abbreviation
mechanism.

enum Kind {Water, Fire, Plant, Normal, Rock}

type Pokemon = sequence{

string Name; int HP; Kind Kind; string? Evolved;

}

Pokemon* Pokedex;

The fact that basic Pokemon are not evolutions of other Pokemon shows up in
that the Evolved column has type string?.

Representing tables is necessary for the integration of relational data, but it
is not sufficient: we also have to provide operations that work on tables. We will
introduce such query expressions in Section 6.3.

4 Unions

Union types often appear in content classes (see section 5 below). The type
Address uses a union type choice{ string Street; int POBox; } to allow
either a member Street of type string or a member POBox of type int as part
of an Address:

class Address {

sequence{

choice{ string Street; int POBox; };

string City; string? State; int Zip;

string Country;

};

}

The second situation in which union types are used is in the result types
of generalized member access (see Section 6). For example, when variable p has
type Pokemon, the expression p.* returns a stream containing all the members of
a Pokemon instance which has type choice{string; int; Kind; string?}*.
Using the subtype rules for choice and streams given below, we can show that
this is isomorphic to choice{string; int; Kind;}*.

We can inject any type T into a union containing that type; singleton labelled
tuples are injected into labelled unions:

T <: choice{T ; . . . }
sequence{T m} <: choice{T m ; . . . }

156

Except for boxing, choice{ . . . } <: object, there is no implicit elimination rule
for union types. In other words, choice{T ; S} is an upperbound for S and T ,
but not a least upperbound. The reason is that we do not consider Control and
choice{Button; Control;} to be isomorphic, which would be the case with a
least upperbound interpretation.

Choice types are idempotent (duplicates are removed), and associative and
commutative (nesting and order of members are ignored):

choice{ . . . ; F ; F ; . . . } = choice{ . . . ; F ; . . . }
choice{ . . . ; choice{ . . . } ; . . . } = choice{ . . . ; . . . ; . . . }
choice{ . . . ; F ; G ; . . . } = choice{ . . . ; G ; F ; . . . }

Streams distribute over unions. Non-nullness and possibly nullness distribute
in both ways, and any inner streams gets absorbed by an outer + or *:

choice{ . . . ; T ; . . . }! = choice{ . . . ; T! ; . . . }!
choice{ . . . ; T ; . . . }? = choice{ . . . ; T? ; . . . }?
choice{ . . . ; T i ; . . . }+ = choice{ . . . ; T ; . . . }+
choice{ . . . ; T i ; . . . }* = choice{ . . . ; T ; . . . }*

where i is any stream functor.
The flattening and distribution rules allow us to normalize streams of choices:

inner stream functors can either be eliminated completely or can be moved out
of the choice.

5 Content Classes, XSDs and XML

Now that we have introduced streams, tuples, and unions, our type system is
rich enough to model a large part of the XSD schema language [17]; our aim is
to cover as much of the essence of XSD [41] as possible while avoiding most of
its complexity.

The correspondence between XSD particles such as <sequence> and
<choice> with local element declarations and the type constructors sequence

and choice with (labelled) fields should be intuitively clear. Likewise, the rela-
tionship of XSD particles with occurrence constraints to streams is unmistakable.
For T* the attribute pair (minOccurs, maxOccurs) is (0, unbounded), for T+

it is (1, unbounded), for T? it is (0, 1), and for T! it is (1,1).
The content class Address that we defined in Section 4 corresponds to the

following XSD schema Address:

<element name="Address">

<complexType>

<sequence>

<choice>

<element name="Street" type="string">

157

<element name="POBox" type="integer">

</choice>

<element name="City" type="string">

<element name="State" type="string" minOccurs="0"/>

<element name="Zip" type="integer"/>

<element name="Country" type="string"/>

</sequence>

</complexType>

</element>

The only difference between a content class and a normal C] class is the
fact that the members of content class can be unlabelled (just like the members
of tuples and unions). As a consequence, unlabelled content can only ever be
accessed via its individually named children, which allows the compiler to choose
the most efficient data layout.

The next example schema defines two top level elements Author and Book

where Book elements can have zero or more Author members:

<element name="Author">

<complexType>

<sequence>

<element name="Name" type="string"/>

</sequence>

</complexType>

</element>

<element name="Book">

<complexType>

<sequence>

<element name="Title" type="string"/>

<element ref="Author" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

In this case, the local element reference is modelled by an unlabelled field and
the schema is mapped onto the following two content type declarations:

class Author { string Name; }

class Book { sequence{ string Title; Author*; } }

All groups such as the one used in the following schema for the complex type
Name

<complexType name="Name">

<all>

<element name="First" type="string"/>

<element name="Last" type="string"/>

158

</all>

</complexType>

are mapped to ordinary fields of the containing type, i.e. without a sequence:

class Name { string First; string Last; }

As these examples show, both top-level element declarations and named com-
plex type declarations are mapped to top-level types. This allows us to unify
derivation of complex types and substitution groups of elements using standard
inheritance.

5.1 XML Literals

XML literals are an intuitive way to construct instances of content classes by
making XML serialization into a first class language construct. For example, we
can define an Address instance by directly assigning an XML document that
confirms to the schema for Address as follows:

Address Microsoft =

<Address>

<Street>One Microsoft Way</Street>

<City>Redmond</City><Zip>98052</Zip>

<Country>USA</Country>

</Address>;

XML literals can also have placeholders to describe dynamic content (similar
to anti-quoting as found in Lisp and other languages). We use the XQuery [6]
convention whereby an arbitrary expression or statement block can be embedded
inside an element by escaping it with curly braces:

Author NewAuthor(string name) {

return <Author>{name.ToUpper()}</Author>;

}

Embedded expressions must return or yield values of the required type (in this
case string). Validation of XML literals with placeholders is non-trivial and is
the subject of a forthcoming paper.

XML literals are just object constructors, there is nothing special about
content classes. Hence we can write XML literals to construct values of any type,
for example, the next assignment creates an instance of the standard Button class
and sets its Text field to the string "Click Me":

Button b = <Button>

<Text>Click Me</Text>

</Button>;

159

6 Generalized Member Access

In the previous sections we have concentrated on the type-system extensions to
our hypothetical programming language. This section extends our repertoire of
expressions to transform and query values of these new types.

6.1 Map, Filter, Fold

To make the creation of streams as concise as possible, we allow statement blocks
(anonymous method bodies) as expressions. In the example below we assign
the (lazy) infinite stream of positive integers to the variable nats by using an
anonymous method body as an expression:

// block expression that yields the stream [0,1,2,...]

int* nats = { int i=0; while(true) yield i++; };

Our stream constructors (*, +, ?, !) are functors, and hence we implicitely
lift member access on the element type of a stream over the stream itself. For
instance, to convert each individual string in a stream Ss of strings to uppercase,
we can simple write ss.ToUpper():

string* Ss = { yield "Hello"; yield "World!"; };

string* SS = Ss.ToUpper();

If both the stream and its elements have the same member no lifting takes
place, and member access on the whole stream is the best match. For exam-
ple, since GetType() is defined for both string and string*, the expression
Ss.GetType() will return the dynamic type of the stream Ss.

If we nevertheless want to lift member access over a stream, we can use an
apply-to-all block. For example, to get all the dynamic types of the elements of
a stream we write Ss.{ return it.GetType(); }. The implicit argument it

inside the apply-to-all block plays a similar role as the implicit argument this
for methods and refers successively to each element of the stream nats.

As the next example shows, the apply-to-all block itself can yield a stream,
in which case the resulting nested stream is flattened according to the rules of
table 2.2:

// self-counting numbers: 1, 2,2, 3,3,3, 4,4,4,4, ...

int* rs = nats.{ for(i=1; i<it; i++) yield it; };

If an apply-to-all block returns void, no new stream is constructed and the
block is eagerly applied to all elements of the stream. For example to print all the
elements of a stream we can just map Console.WriteLine over each element:

nats.{ Console.WriteLine(it); };

Apply-to-all blocks can be stateful, so we can use them to do reductions or
folds. For example, we can sum all integers in an integer stream xs by adding
each element of the stream to a local variable s:

160

int sum(int* xs){

int s = 0;

xs.{ s += it; return; };

return s;

}

Note that we need the return statement inside the block to ensure that the
return type of the block is void such that the iteration is performed eagerly.

Often we want to filter a stream according to some predicate on the elements
of the stream. For example, to construct a stream with only odd numbers, we
filter out all even numbers from the stream nats of natural numbers using the
filter expression

int* odds1 = nats[it%2 == 1];

For each element in the stream to be filtered, the predicate is evaluated with
that element as it. Only if the predicate is true the element becomes part of the
new stream.

On closer inspection, we realize that filters are just abbreviations of an apply-
to-all-block:

int* odds2 = nats.{if (it%2 == 1) return it;};

Hence odds1 and odds2 denote streams that both have the same elements in
the same order.

Lifting over non-null types is different from lifting over the other stream
types, since the fact that the receiver object is not null does not imply that
its members are not null either. For example when we create a new non-null
Button instance using the default constructor, it’s Parent field will definitively
be null:

Button! b = <Button/>;

Control p = b.Parent; // Parent is null

Hence the return type of lifting over a non-null type is not guaranteed to return
a non-null type.

The table 6.1 show how lifting of member-access interacts with streams types.
Let T j be a stream type, and m of type S i be a member of the element type T
that we want to lift over the stream . The result type of lifting m is then given
by s i⊕j (here denotes a non stream type):

Member access is not only lifted over streams, but over all structural types.
For example the expression xs.x will return the stream true, 1, 2 of union
type choice{bool; int;}+ when xs is defined as:

sequence{ bool x; sequence{ int x; }*; } xs =

new(x=true, { yield new(x=1); yield new(x=2); });

Lifting over union types introduces a possibility of nullness for members that
are not in all of the alternatives.

161

⊕ j=_ ! ? + *

i=_ ? ? * *

! ! ! ? * *

? ? ? ? * *

+ + + * + *

* * * * * *

Fig. 2. Lifting over streams

Suppose x has type choice{ int; string; }. Since only string has a
Length member, the type of x.Length is int? which reflects the fact that in
case the dynamic type of x is int, the result of x.Length will be null. Since int
and string both have a member GetType(), the return type of x.GetType() is
Type:

choice{ int; string; } x = 4711;

int? n = x.Length; // null

Type t = x.GetType(); // System.Int32

In case the alternatives of a union have a member of different type in common,
we require a downcast before doing the member access.

6.2 Wildcard, Transitive and Type-based Member-access

The only query form available in object-oriented languages is member access.
But that is rather restrictive. To allow for more flexible forms of member access,
we provide wildcard, transitive and type-based access. These forms are similar to
the concepts of nametest, abbreviated relative location paths and name filters
in XPath [14]. However we adapted them to work uniformly on object graphs.

Wildcards allow to access all accessible members of a type without having to
know their names. Suppose that we want to have all fields of an Address, then
we can write:

choice{string; int;}* addressfields = Microsoft.*;

The wild-card expression returns the content of all accessable fields and proper-
ties of the variable Microsoft in their declaration order. In this case the stream
of strings "One Microsoft Way", "Redmond", 98052, "USA".

Transitive member-access, written as e...m, returns all accessible members
m that are transitively reachable from e in depth-first order. The following dec-
laration of authors (lazily) returns a stream containing all Author of all Books
in the source stream books:

Book F = <Book>

<Title>Faust</Title><Author>Goethe</Author>

</Book>;

162

Book K = <Book>

<Title>Max Havelaar</Title><Author>Multatuli</Author>

</Book>;

Book* books = { yield F; yield K; };

string* authors = books...Author;

Transitive member access allows to abstract from the concrete representation of
a document; as long as the mentioned member is reachable and accessible, its
values are returned.

Looking for just a field name is often not sufficient, especially for transitive
queries where there might be several reachable members with the same name but
of different type. In that case we can add an additional type-test to restrict the
matching members. A type-test on T selects only those members whose static
type is a subtype of T . For instance, if we are only interested in Microsoft’s POBox
number, and Zip code, we can write the transitive query Microsoft...int::*.

Note that type based access is also useful for unnamed members, since even
if they have no name, they do have a static type.

6.3 Select and Join

The previous sections presented our solutions to querying documents. However
for accessing relational data, which we have modelled as streams of tuples, sim-
pler SQL queries are sufficient. Here we only show the integration of the SQL
select-from-where clause, and defer the discussion of more advanced features
such as data manipulation and transactions to a future paper.

The fundamental operations of relational algebra are selection, projection,
union, difference and join. Selection is similar to filter and transforms one stream
of tuples into another stream of tuples. Here are two variations of selection:

Pokemon* normalPokemons1 =

select *

from Pokedex

where Kind == Normal;

Pokemon* normalPokemons2 =

select it

from (Pokemon it in Pokedex)

where it.Kind == Normal;

The first example uses the familiar SQL syntax. Its meaning is provided by the
second form, which uses the explicit iterator variable it as we have seen before.

We use similar sugar to introduce names for projection. Projection produces
a stream of tuples by selecting only certain columns in its input stream:

sequence{string Name; Kind Kind;}*

pokemonAbstract1 =

select Name, Kind

163

from Pokedex;

sequence{string Name; Kind Kind;}*

pokemonAbstract2 =

select new(Name= it.Name, Kind=it.Kind)

from (Pokemon it in Pokedex);

Again, the first declaration shows the traditional SQL syntax, where the second
shows the unsugared representation, which explicitly builds the resulting tuple
by projecting the required members.

In practice, the result types of SQL queries can be quite involved and hence it
becomes painful for programmers to explicitly specify types. Since the compiler
already knows the types of sub-expressions, the result types of queries can be
inferred automatically. Providing type declarations for method local variables is
not necessary, and we can simply write:

pokemonAbstract3 = select Name, Kind from Pokedex;

without having to declare the type of pokemonAbstract3.
Union and difference present no difficulty in our framework. They can easily

be handled with existing operations on streams. Union concatenates two streams
into a single stream. Difference takes two streams, and returns a new stream that
contains all values that appear in the first but not in the second stream.

The real power of select-from-where comes from join. Join takes two input
streams and creates a third stream whose values are composed by combining
members from the two input streams. For example, here is an expression that
selects pairs of Pokemeons which have evolved from each other:

select p.Name, q.Name

from p in Pokedex, q in Pokedex

where p.Evolved == q

Again, we would like to stress the fact that everything fits together. The select
expression works on arbitrary streams, whether in memory or on the hard disk;
streams simply virtualize data access. Strong typing makes data access secure.
But there is no burden for the programmer since the result types of queries are
inferred.

7 Conclusion

The language extensions proposed in this paper support both the SQL [4] and
the XML schema type system [41] to a large degree, but we have not dealt
with all of the SQL features such as (unique) keys, and the more esoteric XSD
features such as redefine. Similarly, we already covered much of the expressive
power of XPath [14], XQuery [6] and XSLT[13], but we do not support the full
set of XPath axis. We are able to deal smoothly with namespaces, attributes,
blocking, and facets however. Currently we are investigating whether and which
additional features need to be added to our language.

164

Summarizing, we have shown that it is possible to have both SQL tables
and XML documents as first order citizen in an object-oriented language. Only
a bridge between the type worlds is needed. Building the bridge is mainly an
engineering task. But once it is available, it offers the best of three worlds

8 Acknowledgments

We would like to acknowledge the support, encouragement, and feedback from
Mike Barnett, Nick Benton, Don Box, Luca Cardelli, Bill Gates, Steve Lucco,
Chris Lucas, Todd Proebstring, Dave Reed, Clemens Szyperksi, and Rostislav
Yavorskiy and the hard work of the WebData languages team consisting of
William Adams, Joyce Chen, Kirill Gavrylyuk, David Hicks, Steve Lindeman,
Chris Lovett, Frank Mantek, Wolfgang Manousek, Neetu Rajpal, Herman Ven-
ter, and Matt Warren.

References

[1] The castor project. http://castor.exolab.org/.
[2] The navision x++ programming language.
[3] The Objective-C Programming Language.
[4] G. Bierman and A. Trigoni. Towards a Formal Type System for ODMG OQL.

Technical Report 497, University of Cambridge, Computer Laboratory, 2000.
[5] B.Liskov, R.Atkinson, T. Bloom, E. Moss, J.C.Schaffert, R. Scheifler, and A. Sny-

der. CLU Reference Manual. LNCS 114. Springer=Verlag, 1981.
[6] S. Boag, D. Chamberlin, M. F. Fernandez, D. Florescu, J. Robie, and J. Siméon.

XQuery 1.0: An XML Query Language. Technical report, W3C, November 2002.
[7] T. Bray. XML Is Too Hard For Programmers. http://www.tbray.org/ongoing.
[8] P. Buneman and B. Pierce. Union Types for Semistructured Data. In International

Database Programming Languages Workshop, LNCS 1949, 2000.
[9] L. Cardelli. Types for data-oriented languages. In EDBT, 1988.

[10] L. Cardelli, P. Gardner, and G. Ghelli. Manipulating trees with hidden labels. In
FOSSACS, 2003.

[11] R. G. G. Cattell, D. K. Barry, R. Catell, M. Berler, J. Eastman, D. Jordan,
C. Russell, O. Schadow, T. Stanienda, and F. Velez. The Object Data Standard
ODMG 3.0. Morgan Kaufmann Publishers, 2000.

[12] A. S. Christensen, A. Muller, and M. I. Schwartzbach. Static Analysis for Dynamic
XML. In PlanX, 2002.

[13] J. Clark. XSL Transformations (XSLT). Technical report, W3C, November 1999.
[14] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. Technical

report, W3C, November 1999.
[15] R. Connor, D. Lievens, and F. Simeoni. Projector: a partially typed language for

querying XML. In PlanX, 2002.
[16] M. Fahndrich and R. M. Leino. Declaring and checking Non-Null Types in an

Object-Oriented Language. In OOPSLA, 2003.
[17] D. C. Fallside. XML Schema Part 0: Primer. Technical report, W3C, May 2001.
[18] C. Flanagan, K. Leino, M. Lillibridge, C. Nelson, J. Saxe, and R. Stata. Extended

Static Checking for Java. In PLDI, 2002.

165

[19] V. Gapeyev and B. Pierce. Regular object types. In ECOOP, 2003.
[20] P. Graunke, S. Krishnamurthi, S. V. D. Hoeven, and M. Felleisen. Program-

ming the Web with High-Level Programming Languages. In Automated Software
Engineering, LNCS 2028, 2001.

[21] R. Griswold and M. Griswold. The Icon Programming Language (2nd edition).
Prentice Hall, 1990.

[22] J. Guy L. Steele. Growing a Language. Journal of Higher-Order and Symbolic
Computation, 12(3), 1999.

[23] K. Henney. Null Object, Something for Nothing. In Seventh European Conference
on Pattern Languages of Programs, 2002.

[24] H. Hosoya and B. C. Pierce. XDuce: A Typed XML Processing Language. In
International Workshop on the Web and Databases (WebDB), 2000.

[25] P. Hudak. Building Domain Specific Embedded Languages. ACM Computing
Surveys, 28(4), 1996.

[26] M. Kempa and V. Linnemann. On XML Objects. In PlanX, 2002.
[27] O. Kiselyov and S. Krishnamurthi. SXSLT: Manipulation Language for XML. In

PADL, LNCS 2562, 2003.
[28] A. Krall and J. Vitek. On Extending Java. In JMLC, 1997.
[29] T. Lahiri, S. Abiteboul, and J. Widom. Ozone: Integrating structured and

semistructured data. Lecture Notes in Computer Science, 1949:297+, 2000.
[30] D. Leijen and E. Meijer. Domain Specific Embedded Compilers. In 2nd USENIX

Conference on Domain-Specific Languages, 1999.
[31] T.-W. Lin. Java architecture for xml binding (jaxb): A primer, 2002.
[32] B. Liskov, M. Day, M. Herlihy, P. Johnson, and G. Leavens. ARGUS Reference

Manual. Technical Report MIT/LCS/TR-400, 1987.
[33] E. Meijer. Server Side Web Scripting in Haskell. Journal of Functional Program-

ming, 10(1), January 2000.
[34] E. Meijer, D. Leijen, and J. Hook. Client Side Web Scripting with HaskellScript.

In PADL, 2002.
[35] E. Meijer and M. Shields. XMLambda: a Functional Language for Constructing

and Manipulating XML Documents, 1999. http://www.cse.ogi.edu/ mbs.
[36] E. Meijer and D. van Velzen. Haskell Server Pages. In Haskell Workshop 2000,

2000.
[37] S. Murer, S. Omohundro, D. Stoutamire, and C. Szyperski. Iteration abstraction

in Sather. ACM Transactions on Programming Languages and Systems, 18(1):1–
15, January 1996.

[38] T. Proebstring. Disruptive Language Technologies.
[39] N. Schemenauer, T. Peters, and M. L. Hetland. Simple Generators. PEP-0255.
[40] M. Shields and E. Meijer. Type-indexed Rows. In POPL, 2001.
[41] J. Simeon and P. Wadler. The Essence of XML. In POPL, 2003.
[42] P. Thiemann. WASH/CGI: Server Side Web Scripting with Sessions and Typed,

Compositional Forms. In Practical Aspects of Declarative Languages, 2002.
[43] C. van Reeuwijk and H. Sips. Adding tuples to java: a study in lightweight data

structures. In ACM Java Grande/ISCOPE, 2002.
[44] A. F. Véronique Benzaken, Giuseppe Castagna. CDuce: an XML-centric general-

purpose language. In ICFP, 2003.
[45] P. Wadler. The Concatenate Vanishes, 1989.

http://www.research.avayalabs.com/user/wadler/papers/vanish/vanish.pdf.
[46] N. Welsh, F. Solsona, and I. Glover. SchemeUnit and SchemeQL: Two Little

Languages. In Third Workshop on Scheme and Functional Programming, 2002.

166

