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Electromagnetic form factors of bound nucleons revisited
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Abstract. We investigate the possible modifications of the nucleons’ electromagnetic form factors in the
framework of a modified Skyrme model allowing for nucleon deformation and using realistic nuclear mass
distributions. We show that such effects are small in light nuclei.
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1 Introduction

It is firmly believed that hadron properties must undergo
changes in a baryon–rich or hot environment. Many data
from quasi–elastic or deep inelastic electron scattering off
nucleons or nuclei, deeply bound pionic atoms and from
heavy–ion reactions point towards such effects, but de-
spite a tremendous amount of effort no clear theoretical
picture concerning such scale changes has emerged1. It is
therefore mandatory to study realistic models of the nu-
cleon (or other hadrons) and to investigate how certain
properties will change at finite baryon density. A popular
class of such models are based on the Skyrme Lagrangian
and variations thereof, for essentially three reasons: First,
such models have proven to lead to a fairly good descrip-
tion of a wide variety of nucleon properties in free space
and secondly, being based on non–linearly interacting pion
fields, they are built from the degrees of freedom directly
related to the spontaneous chiral symmetry breaking that
QCD is supposed to undergo. Third, in contrast to (most)
quark models, the pion cloud contribution of the nucleon
is naturally taken into account. In earlier studies rather
large medium modifications were found, based on the as-
sumption of a constant background density (homogeneous
nuclear matter), see e.g. Refs. [1,2,3,4,5,6,7]. In Ref. [8]
we had formulated a more realistic version of such an ap-
proach, taking into account not only realistic distributions
of baryon density within light, medium and heavy nuclei,
but also allowing the nucleons to deform under the influ-
ence of the ensuing baryon density gradients. In particu-
lar, it was shown that the popular concept of a uniform

a Address after January 1st, 2003: Helmholtz Institut für
Strahlen- und Kernphysik (Theorie), Universität Bonn,
Nußallee 14-16, D-53115 Bonn, Germany.

1 For example, the important question of disentangling gen-
uine scale changes from “standard” many–body effects remains
to be solved in a concise manner.

size modification (nucleon swelling or shrinking) cannot
be maintained in such a picture, i.e. that the influence of
the nuclear medium and the response of the nucleon to it
is very probe dependent. In particular, the scale changes
of the isoscalar and isovector electromagnetic charge dis-
tributions depend on the direction considered (there is an
axial symmetry around the direction from the center of
the nucleus to the center of the nucleon at some distance
R) giving rise to a small intrinsic quadrupole moment.
While the proton’s shape changes from oblate to a prolate
shape as it is moved toward the surface of the nucleus, the
behaviour of the neutron is just the opposite. It is there-
fore of interest to reconsider the possible modifications of
the nucleons’ electromagnetic form factors, triggered also
by the experimental fact that in the absence of neutron
targets one has to use light nuclei like deuterium or 3He
to determine the neutron form factors. This will be the
topic of the present paper, where we study these form fac-
tors inside 4He, which is the lightest nucleus that can be
approximated by a continuous matter distribution (for a
similar calculation including nuclear shell effects, see [5]).
Finally, we note that a more systematic approach to tackle
these questions based on effective field theory is not yet
available for nucleons and only in its infancy for pions; for
an attempt see e.g. [9] (and references therein).

Our work is organized as follows. In Section 2 we briefly
review the underlying modified Skyrme model and give
formulae for the electromagnetic form factors for the case
of finite baryon density. In Section 3, we show and discuss
the results for the specific case of 4He. We refrain from
discussing other nuclei as done e.g. in Refs.[5,8] since these
results are genuine and can be scaled easily. We conclude
with a short summary in Section 4.
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2 Brief description of the model

2.1 Lagrangian

Our starting point is a modified Skyrme Lagrangian in the
nuclear medium [7]

L =
F 2

π

16
Tr

(

∂U

∂t

) (

∂U †

∂t

)

− F 2
π

16
αp(r)Tr(∇U)(∇U †)

+
1

32e2
Tr[Lµ, Lν]2 +

F 2
πm2

π

16
αs(r)Tr[U + U † − 2]

(1)
with Fπ the weak pion decay constant, mπ the pion mass,
U(r ) parametrizes the pion fields and Lµ = U †∂µU is the
left-handed current. The Skyrme parameter e (together
with the pion decay constant) will be determined from
fitting the masses of the nucleon and the ∆(1232). Its
value can be understood in terms of rho meson exchange.
We use a deformed ansatz for the pion fields when the
Skyrmion is located at some distance R from the center
of the nucleus2

U(r) = exp [iτ · N(Θ(θ), ϕ)F (r, θ)] , (2)

N = {sinΘ(θ) cos ϕ, sin Θ(θ) sin ϕ, cosΘ(θ)} , (3)

F (r, θ) = 2 arctan

{(

r2
S

r2

)

[1 + γ1 cos θ

+ γ2 cos2 θ + γ3 cos3 θ + . . .]

}

, (4)

Θ(θ) = θ + δ1 sin 2θ + δ2 sin 4θ + δ3 sin 6θ + . . . . (5)

Here, F (r, θ) is the profile function of the deformed Skyr-
mion and rS , γ1, γ2, γ3, . . . and δ1, δ2, δ3, . . . are vari-
ational (or, respectively, deformation) parameters which
are determined from minimizing the Skyrmion energy for
a given background baryon density. The density depen-
dence is contained in the medium functionals αs(r) and
αp(r),

αp(r) = 1 − 4πc0ρ(r)/η

1 + g′04πc0ρ(r)/η
, (6)

αs(r) = 1 − 4πηb0ρ(r)/m2
π . (7)

Here η = 1+mπ/mN ∼ 1.14 is a kinematical factor, mN =
938 MeV the mass of the nucleon, g′0 = 1/3 the Migdal
parameter which takes into account the short-range cor-
relations, and b0 = −0.024 m−1

π and c0 = 0.21 m−3
π are

empirical parameters which can be taken from the anal-
yses of low-energy pion-nucleus scattering data [10]. For
more details see Ref. [8]. Since Lorentz invariance is broken
at finite density, the time and space derivatives acting on
the pion fields have different prefactors. To obtain states
with definite spin and isospin, one has to perform adia-
batic rotations and quantization of these. In Ref. [8], we
have calculated the nucleon mass and other static prop-
erties for nucleons inside light, medium and heavy nuclei,

2 For the details on the geometry and the justification of
this ansatz, see [8].

based on realistic nuclear density distributions within the
nuclei considered. For example, the decrease of the nu-
cleon mass came out considerably smaller than in earlier
studies where uniform baryon matter densities where as-
sumed. It was also shown that the concept of a uniform
swelling of nuclear sizes in the medium is too simple to be
a realistic picture, in fact the modifications for the baryon
matter distribution within a nucleon or the scale changes
of the various electromagnetic radii all turned out to be
different. In this paper, we extend these considerations to
the nucleons form factors at small and intermediate mo-
mentum transfer.

2.2 Electromagnetic form factors

The electric and magnetic form factors of the nucleon are
defined through the expressions

GE(q2) =

∫

d3r eiq·rj0(r) ,

GM (q2) = mN

∫

d3r eiq·r[r × j(r)] , (8)

where q2 is the momentum transfer squared, j0 and j

correspond to the time and the space components of the
properly normalized sum of the baryonic current Bµ and
the third component of the isovector current V µ, i.e.

Bµ =
1

24π2
εµναβ TrLνLαLβ , (9)

V (3)
µ = − iF 2

π

16
CµTr τ3(Lµ + Rµ)

+
i

16e2
Tr τ3

{

[

Lν , [Lµ, Lν ]
]

+
[

Rν , [Rµ, Rν ]
]

}

,(10)

Rµ = U∂µU+; Cµ =

{

1 , µ = 0 ,
αp , µ = 1, 2, 3 ,

(11)

with εµναβ the totally antisymmetric tensor in four di-
mensions and Tr denotes the trace in SU(2) flavor space.
Evaluating these current operators between appropriate
nucleon states as described in [8], one obtains the electro-
magnetic form factors of the nucleon. For the problem at
hand, it is advantageous to expand the plane wave factor
in the expressions Eqs.(8),

eiq·r = 4π

∞
∑

l=0

l
∑

m=−l

ilY m
l (θq, ϕq)Y

m∗
l (θr, ϕr)jl(qr) ,

(12)
in terms of spherical harmonics Y m

l and spherical Bessel
functions jl. In this way we get the final expression for the
electromagnetic form factors

Gb
a(q2) =

∑

l

il
√

2l + 1Pl(cos θq)G
b,l
a (q2) , (13)

where the label a stands either for electric (E) or mag-
netic (M) form factors, b stands either for isoscalar (S) or
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isovector (V ) form factors, and the Pl are Legendre poly-
nomials. After angular integration in momentum space3,
the moduli of the form factors satisfy the simple rule

∫

dΩq |Gb
a(q2)|2 = 4π

∞
∑

l=0

(Gb,l
a (q2))2 . (14)

The corresponding partial form factors have the form

GS,l
E (q2) = −

√
2l + 1

π

∞
∫

0

r2dr

π
∫

0

sin θdθ

×
{

jl(qr)Pl(cos θ)FrΘθ
sin2 F

r2

sin Θ

sin θ

}

,

GV,l
E (q2) =

√
2l + 1 π

4I
(33)
Ωω

∞
∫

0

r2dr

π
∫

0

sin θdθ

×
{

jl(qr)Pl(cos θ) sin2 Θ
sin2 F

r2

[

F 2
πr2

+
4

e2

(

r2F 2
r + F 2

θ + Θ2
θ sin2 F

)

]

}

,

GS,l
M (q2) = −

√
2l + 1 mN

4πI
(33)
Ωω

∞
∫

0

r2dr

π
∫

0

sin θdθ

×
{

jl(qr)Pl(cos θ)FrΘθ sin2 F sinΘ sin θ

}

,

GV,l
M (q2) =

1

3

√
2l + 1 πmN

∞
∫

0

r2dr

π
∫

0

sin θdθ

×
{

jl(qr)Pl(cos θ) sin2 Θ
sin2 F

r2

[

F 2
πr2αp

+
4

e2

(

r2F 2
r + F 2

θ + Θ2
θ sin2 F

)

]

}

, (15)

where Fr = ∂F/∂r, Fθ = ∂F/∂θ, Θθ = ∂Θ/∂θ are partial
derivatives and

I
(33)
Ωω =

π

4

∞
∫

0

dr

π
∫

0

sin θdθ

{

sin2 Θ sin2 F

×
[

F 2
πr2 +

4

e2

(

r2F 2
r + F 2

θ + Θ2
θ sin2 F

)

]

}

,(16)

is a moment of inertia. The details of the quantization pro-
cedure to obtain states with good spin and isospin quan-
tum numbers from the deformed topological soliton are
spelled out in [8].

The nucleon form factors are defined as

G
( p

n
)

E,M (q2) =
1

2

(

GS
E,M (q2) ± GV

E,M (q2)
)

. (17)

3 We note that in the present case the incoming beam direc-
tion is in general not the z–direction of the coordinate system,
since the latter is fixed by the direction of R.

We note that the isovector magnetic form factor explicitly
depends on the medium functional αp(r, θ, R). We now
want to consider the possible modifications of these form
factors within 4He. As in the previous work [8] the density
is parametrized as4

ρ(r) =

(

3

4

)

2

π3/2r3
0

[

1 +
A − 2

3

(

r2

r2
0

)]

exp

{

−r2

r2
0

}

,

(18)
where the prefactor 3/4 accounts for the fact that we single
out one nucleon from the background of the others. The
parameter r0 = 1.31 fm corresponds to 4He [11]. We are
now in the position to study the nucleons’ electromagnetic
form factors within this light nucleus.

3 Results and discussion

Our input parameters are the same as in the Ref. [8], i.e.
we use Fπ=108 MeV and e=5.265 (to fit the nucleon and
the delta mass). Before discussing any possible medium
modifications, we have to consider the electromagnetic
form factors in free space. In Fig. 1 we show the charge
form factors of the proton and the neutron in comparison
to the dispersion-theoretical results of Ref. [12] and also
to the recent Galster–like parameterization of Gn

E(q2) [13]

Gn
E(q2) = − µn τ

1 + 3.4 τ

(

1 +
q2

0.71 GeV2

)−2

, (19)

with τ = q2/4m2
N . The model predictions are in fair agree-

ment with the data, more precisely with the phenomeno-
logical fits. A similar statement holds for the momentum
dependence of the proton and neutron magnetic form fac-
tors, not shown here. Note that we display the form fac-
tors only for momentum transfer squared q2 ≤ 0.6 GeV2

for two reasons. First, the model does not contain vec-
tor mesons which start to be relevant at a typical scale
m2

ρ = (0.77 GeV)2 ≃ 0.6 GeV2 (for a review see [14]) and
second, boost effects can not be completely ignored any
more for these momentum transfers (see e.g. [15] for a dis-
cussion on this point). The magnetic moments come out
too small, as it is well–known in such type of models. We
have µp = 1.93 and µn = −1.20 in units of nuclear magne-
tons. Note, however, that the ratio |µp/µn| = 1.61 is close
to the empirical value of 1.46. Other static properties are
given in [8].

We now consider the medium modifications due to the fi-
nite baryon density within the 4He nucleus. In Table 1 we
give the modifications of the nucleon mass, of the proton
and neutron magnetic moments and of the variational pa-
rameter rS characterizing the Skyrmion size 5, cf. Eq. (4),
for various distances from the center of the nucleus. We
note that the magnetic moments are changed by less than

4 Note that we correct for an typographical error that ap-
peared in Eq. (18) of Ref.[8].

5 This variational parameter should not be mixed up with
the (isoscalar) r.m.s. radius of the nucleon, see Ref.[8].
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Fig. 1. Electric proton (a) and electric neutron (b) form factor. Solid (dashed) lines: our model (dispersion-theoretical analysis
of [12]). The dotted line in Gn

E(q2) represents the parametrization Eq.(19).

5.5%. In particular, while we find a mild suppression in the
center of the nucleus, at distances above 1 fm the moments
are in fact slightly enhanced in magnitude, very different
from the behavior of the nucleon mass. The changes in rS

are of a similar size. Note, however, that the magnitude of
rS decreases monotonically from the center of the nucleus
to its surface. These results further demonstrate that the
notion of a uniform swelling (or shrinking) of the various
nucleon sizes or properties is ruled out by such type of
realistic model.

Table 1. Properties of nucleons in 4He and in free space (last
row). R is the distance between the centers of the nucleon and
the 4He nucleus; rS is a variational parameter as explained in
the text.

R [fm ] rS [fm] µp [n.m.] µn [n.m.] mN/mfree

N

0 0.627 1.883 -1.137 0.817

0.25 0.626 1.885 -1.140 0.823

0.50 0.624 1.892 -1.150 0.837

0.75 0.621 1.907 -1.168 0.860

1.00 0.619 1.930 -1.195 0.887

1.25 0.618 1.956 -1.224 0.915

1.50 0.617 1.975 -1.245 0.941

1.75 0.615 1.982 -1.251 0.961

2.00 0.611 1.975 -1.243 0.978

2.25 0.607 1.962 -1.230 0.988

2.50 0.604 1.950 -1.217 0.994

- 0.600 1.932 -1.197 1

In Fig. 2 we show the l = 0 projections of the four nu-
cleon form factors in the medium normalized to their free
space values for two different densities, that is various dis-
tances from the center of the nucleus. These are R = 0 (1)
fm corresponding to a residual density, cf. Eq. (18), of
0.7 (0.55) ρ0, with ρ0 = 0.17 fm−3 the nuclear matter den-
sity. We note that the medium modifications are small

for q2 ≤ 0.6 GeV2, i.e. for momentum transfers where the
model can be considered realistic. These changes stay be-
low 20% for all form factors. They are in particular small
for Gn

E(q2), which is often considered to be the most sensi-
tive quantity with respect to such medium modifications.
It is interesting to consider the isospin basis. While for the
electric case, the isovector piece shows a stronger medium
dependence than the isoscalar one, the magnetic isovec-
tor and isoscalar form factors exhibit approximately the
same suppression for the range of momentum transfers
considered here. This latter trend was also found in ear-
lier calculations [2]. The partial form factors for l ≥ 1,
which we do not show, are very small. The results for the
proton charge and magnetic form factor are comparable
to the ones obtained in [5] in the framework of a quark-
meson model and employing shell like nuclear density dis-
tributions, but differ in finer details like the magnitude of
the modifications. Note, however, that these authors apply
their model to a considerably larger range of momentum
transfer. Clearly, our results are also consistent with the
limits obtained from electron scattering data based on the
y–scaling hypothesis [16].

4 Summary and outlook

In this paper, we have considered the possible medium
modifications of the nucleons electromagnetic form factors
in light nuclei, specifically within 4He. We have used an ex-
tended Skyrme model allowing for deformations of the nu-
cleons immersed in the nuclear medium and applying real-
istic nuclear matter distributions. We find small medium
renormalizations, quite different from the ones obtained
using a homogeneous nuclear matter background. In par-
ticular, these form factors are not uniformly changed. This
indicates that the concept of a uniform swelling or shrink-
ing of the nucleon sizes cannot be maintained. These re-
sults are also consistent with the ones found in similar
type of models when proper care is taken about the dis-
tribution of the nuclear density distributions. Beside the
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Fig. 2. Form factors normalized to their free space values for two densities within the 4He nucleus. The distance of the center
of the nucleon from the center of the nucleus is 0 fm (solid lines) and 1 fm (dashed lines). Panels a), b) c) and d) give the
proton electric, neutron electric, proton magnetic and neutron magnetic form factor, in order.

small effects considered here, there are also many–body ef-
fects that lead to in–medium nucleon changes. These are
expected to be significant only in heavier nuclei. From the
results presented here, we must conclude that the extrac-
tion of the neutron charge form factor from light nuclei at
low and intermediate momentum transfer is not sensitive
to such effects, given the presently achieved experimental
accuracy.
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