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Infrared regularization with spin-3/2 fields
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Abstract

We present a Lorentz–invariant formulation of baryon chiral perturbation theory including spin-3/2 fields.
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1. The delta resonance plays a special role in low-energy nuclear and particle physics, due to its near mass
degeneracy with the nucleon and its strong couplings to pions, nucleons and photons. It was therefore argued
early that spin-3/2 (decuplet) states should be included in baryon chiral perturbation theory [1], which is the
low-energy effective field theory of the Standard Model. The work of [1] and subsequent authors made use of the
heavy baryon approach, which treats the baryons as static sources like in heavy quark effective field theory and
allows for a systematic power counting in the presence of matter fields, as pioneered in [2] and systematically
explored in [3]. Also, special care has to be taken about the decoupling of resonances in the chiral limit [4]. This
approach was systematized by counting the nucleon-delta mass splitting as an additional small parameter in
Ref.[5], the corresponding power counting was called the “small scale expansion”. The heavy baryon approach
has been successfully applied to a variety of processes, for reviews see [6, 7], and a status report on chiral
effective field theories with deltas is given in [8]. More recently, a Lorentz-invariant formulation of baryon
chiral perturbation theory has become available [9], the so–called “infrared regularization” (IR). A similar
approach had been presented earlier in [10]. Such a formulation allows to include strictures from analyticity
and is thus particularly suited for extensions of chiral perturbation theory based on dispersion relations, see
e.g. [11, 12, 13, 14, 15, 16, 17]. Furthermore, the use of the Dirac propagator as opposed to the static fermion
propagator in the heavy baryon scheme allows for a resummation of important recoil effects, see e.g. the work
on electromagnetic form factors [18] or the nucleon spin structure [19, 20]. The chiral expansion of the baryon
masses also seems to converge faster in this scheme [21] whereas the description of pion–nucleon scattering is
not yet in a satisfactory status [22, 23]. The renormalization of relativistic baryon chiral perturbation theory
has been discussed in detail in [24]. In this Letter, we give a consistent extension of the infrared regularization
method in the presence of spin-3/2 #4. What is new here is that we explicitly project onto the spin-3/2 parts
and that the method easily allows to include any external source in a chiral and gauge invariant fashion (in
contrast to the recent proposal in [25]). As simple applications, we calculate the delta loop contribution to the
nucleon self-energy and the pion–nucleon sigma term.

2. In this section, we briefly review the formalism necessary to describe spin-3/2 fields. More details can e.g.
be found in [26, 27, 28]. We first write down the propagator for a free spin-3/2 field (called the delta propagator
from here on) in d space–time dimensions,

G∆
µν(p) = − 6p+m∆

p2 −m2
∆

{

gµν − 1

d− 1
γµγν − (d− 2) pµpν

(d− 1)m2
∆

+
pµγν − pνγµ

(d− 1)m∆

}

, (1)

with m∆ the delta mass. This may be rewritten by projection onto the spin 3/2 and 1/2 components

G∆
µν(p) = − 6p+m∆

p2 −m2
∆

P 3/2
µν − 1√

d− 1m∆

(

(

P
1/2
12

)

µν
+
(

P
1/2
21

)

µν

)

+
d− 2

(d− 1)m2
∆

(6p+m∆)
(

P
1/2
22

)

µν
, (2)

with

P 3/2
µν = gµν − 1

d− 1
γµγν − 1

(d− 1) p2

(

6pγµpν + pµγν 6p
)

− d− 4

d− 1

pµpν

p2
,

(

P
1/2
12

)

µν
=

1√
d− 1p2

(

pµpν − 6ppνγµ) ,

(

P
1/2

21

)

µν
=

1√
d− 1p2

(

6ppµγν − pµpν) ,

(

P
1/2
22

)

µν
=

pµ pν

p2
. (3)

These spin projection operators fulfill the orthogonality relations

(

P I
ij

)

µν

(

P J
kl

)νρ
= δIJ δjk

(

P I
il

)ρ

µ
, (I, J) = 1, 2 , (i, j, k, l) = 1, 2 . (4)

Note the infrared singular pieces ∼ 1/p2 appearing in the spin-projected parts of the propagator, which will
play an important role later on. Also, we remark that the spin-1/2 pieces do not propagate and thus one should

#4The inclusion of the delta when one separates loop integrals into soft and hard parts was already considered in [23].
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be able to absorb their contribution in purely polynomial terms (which amounts to a redefinition of certain
low-energy constants in the effective field theory). If one considers processes where the center-of-mass energy
reaches the delta mass,

√
s = m∆, the free delta propagator has to be resummed as described in detail e.g. in

[10, 25]. Let us now briefly discuss the leading chiral pion-delta-nucleon Lagrangian. It is given by

Lπ∆N = cA Ψ̄i
µ Θµ

ν (Z)wν
i ψ + h.c. , (5)

where Ψµ describes the Rarita-Schwinger (spin-3/2) field, ψ the nucleon doublet, wµ
i = Tr(τiu

µ)/2 the axial
current and Θµν = gµν + (Z − 1/2)γµγν . The dependence on the so-called off-shell parameter Z is, however,
spurious, since it does not appear in the spin-3/2 contributions and thus physical observables do not depend on
it. The axial-vector coupling constant cA, which is related to the pion-delta-nucleon coupling gπ∆N , is frequently
called hA in the literature. More precisely, what appears in Eq.(5) is the the coupling cA in the chiral limit.
For simplicity, we use in the following the SU(4) coupling constant relation

cA = hA =
3

2
√

2
gA . (6)

The resulting value is somewhat larger than found in typical fits say to pion-nucleon scattering data or from
fitting the ∆ → Nπ width, see e.g. [29, 30]. We remark that like in Eq.(5), we are using standard chiral-invariant
couplings of the π∆N system, because differences to other couplings appearing in the literature can simply be
absorbed in the polynomial contributions to be discussed in the following.

3. Next, we make some short remarks about the effective field theory of massive spin-1/2 fields chirally coupled
to Goldstone bosons and external sources, called baryon chiral perturbation theory. It is complicated by the
fact that the nucleon mass does not vanish in the chiral limit and thus introduces a new mass scale apart from
the ones set by the quark masses. Therefore, any power of the quark masses can be generated by chiral loops
in the nucleon (baryon) case, spoiling the one–to–one correspondence between the loop expansion and the one
in the small parameter q. One method to overcome this is the heavy mass expansion (called heavy baryon
chiral perturbation theory, for short HBCHPT) where the nucleon mass is transformed from the propagator
into a string of vertices with increasing powers of 1/m. Then, a consistent power counting emerges#5. However,
this method has the disadvantage that certain types of diagrams are at odds with strictures from analyticity.
The best example is the so–called triangle graph, which enters e.g. the scalar form factor or the isovector
electromagnetic form factors of the nucleon. In a fully relativistic treatment, such constraints from analyticity
are automatically fulfilled. It was argued in [10] that relativistic one–loop integrals can be separated into “soft”
and “hard” parts. While for the former the power counting as in HBCHPT applies, the contributions from
the latter can be absorbed in certain LECs. In this way, one can combine the advantages of both methods. A
more formal and rigorous implementation of such a program was given in [9]. The underlying method is called
“infrared regularization”. Any dimensionally regularized one–loop integral H is split into an infrared singular
(called I) and a regular part (called R) by a particular choice of Feynman parameterization,

H = I +R . (7)

Consider first the regular part. If one chirally expands the contributions to R, one generates polynomials in
momenta and quark masses. Consequently, to any order, R can be absorbed in the LECs of the effective
Lagrangian. On the other hand, the infrared (IR) singular part has the same analytical properties as the full
integral H in the low–energy region and its chiral expansion leads to the non–trivial momentum and quark–mass
dependences of CHPT, like e.g. the chiral logs or fractional powers of the quark masses. For a typical one–
loop integral (like e.g. the nucleon self–energy Σ) this splitting can be achieved in the following way (omitting
prefactors)

Σ =

∫

ddk

(2π)d

1

AB
=

∫ 1

0

dz

∫

ddk

(2π)d

1

[(1 − z)A+ zB]2

=

{
∫ ∞

0

−
∫ ∞

1

}

dz

∫

ddk

(2π)d

1

[(1 − z)A+ zB]2
= I +R , (8)

#5The extension of this method for including deltas treating the N∆ mass splitting as an additional small parameter has been
given in [5].
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with A = M2
π − k2 − iǫ, B = m2 − (p − k)2 − iǫ, ǫ → 0+, Mπ the pion mass and d the number of space–time

dimensions. Any general one–loop diagram with arbitrary many insertions from external sources can be brought
into this form by combining the propagators to a single pion and a single nucleon propagator. It was also shown
that this procedure leads to a unique, i.e. process–independent result, in accordance with the chiral Ward
identities of QCD [9]. Consequently, the transition from any one–loop graph H to its IR singular piece I defines
a symmetry–preserving regularization. For more details, the reader is referred to [9].

4. Next, we develop a systematic infrared regularization for effective field theories with spin-3/2 fields. This
should be considered the main result of this paper. Due to the presence of the IR singular terms ∼ 1/p2 when
one projects the delta propagator onto its spin-3/2 and spin-1/2 components, cf. Eq.(3), one has to deal with
a type of integrals that do not appear in the pure pion–nucleon approach. To be specific, consider the integral
appearing in the self-energy (details of the self-energy calculation will be given below)

J0
0 (p2) =

1

i

∫

d4k

(2π)4
−1

(k − p)2(M2
π − k2)

=
1

(2π)4

∫ 1

0

dx

∫

d4k
1

[k2 + p2x(x − 1) +M2
π(1 − x)]2

=
πd

(2π)d

Γ(2 − d/2)

Γ(2)

∫ 1

0

dx
1

(1 − x)2−d/2(−p2x+M2
π)2−d/2

. (9)

In the region of low momenta, where the chiral expansion is expected to converge quickly, the first factor in
the denominator is of O(q0), while the second is of O(q2) so that the chiral dimension of the integral should
be O(qd−2). We remark that at x = 1, the integrand develops a pole. Following [9], we perform a change of
variables

x =
M2

π

p2
u ≡ αu , (10)

so that

J0
0 (p2) =

πd/2

(2π)d

Γ(2 − d/2)

Γ(2)

1

p2

∫ 1/α

0

du
1

(1 − αu)2−d/2(1 − u)2−d/2
(M2

π)d/2−1 . (11)

We see that a complication arises due to the infrared singular piece ∼ 1/(k − p)2 in the spin-projected parts
of the propagator. Specifically, due to the term ∼ αu2, the denominator brings some additional α contribution
when performing the integral. J0

0 (p2) turns out to behave as Md−4
π instead of the expected Md−2

π . If one
evaluates this integral straightforwardly, one finds that it contains a logarithmic contribution that indeed has
the correct chiral behavior. The disturbing contribution is due to the factor (1−αu) which stems from the pole
at x = 1 of the infrared singular part of the propagator. In fact, such contributions should be contained in the
regular part, since they have nothing to do with the chiral expansion. To formally achieve this separation, one
rewrites the integral as (d = 4 − 2ε)

∫ 1/α

0

du
1

(1 − αu)2−d/2(1 − u)2−d/2
=

∫ 1/α

0

du (1 − ε ln(1 − αu) − ε ln(1 − u))

=

∫ 1/α

0

du ((1 − ε ln(1 − αu) − 1) +

∫ 1/α

0

du
1

(1 − u)2−d/2
. (12)

From the second integral one then obtains the irregular part by letting 1/α→ ∞. Therefore, the separation of
the integral J0

0 (p2) into the irregular and the regular terms reads, J0
0 (p2) = I0

0 (p2) +R0
0(p

2),

I0
0 (p2) =

πd/2

(2π)d

Γ(2 − d/2)

Γ(2)

1

p2

∫ ∞

0

du
1

(1 − u)2−d/2
(M2

π)d/2−1 , (13)

R0
0(p

2) =
πd/2

(2π)d

Γ(2 − d/2)

Γ(2)

{
∫ 1

0

dx

[

1

(1 − x))2−d/2
− 1

]

−
∫ ∞

1

dx
1

(−p2x+M2
π)2−d/2

}

. (14)

The irregular part can now be worked out using the methodology developed in [9], we find

I0
0 (p2) = −M

2
π

p2

[

2λ̄+
1

16π2
ln
M2

π

m2

]

= −∆π

p2
. (15)
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p p−k

k

Figure 1: Feynman diagram for the nucleon self-energy with an spin-3/2 intermediate state. Solid, double and
dashed lines denote nucleons, deltas and pions, in order.

Here, the piece ∼ λ̄ contains a pole term,

λ̄ =
md−4

16π2

{

1

d− 4
− 1

2
(ln 4π + γE + 1)

}

, (16)

with γE the Euler-Mascheroni constant and we have set the running scale of dimensional regularization, λ, to be
the nucleon mass [9]. Furthermore, the pion tadpole contribution ∆π is given by the well-known loop integral

∆π =
1

i

∫

ddk

(2π)2
1

M2
π − k2

. (17)

Of course, the scale that naturally appears in loop integrals with deltas is m∆, not m, as used in Eqs.(15,16).
However, the differences due to this choice of scale can be absorbed in polynomial (regular) terms, so that
one can work with one scale only in the coupled pion-nucleon-delta system. However, to assess the theoretical
uncertainty at a given order, one can set λ = m∆ in the delta loop diagrams. Eq.(15) also shows that the
non-propagating parts of the projected propagator will be absorbed in tadpole contributions, as it is expected
since such contributions can be understood as a very heavy delta shrunk to a point-like vertex.

Armed with this prescription, we can now set up a consistent expansion in small external momenta, pion masses
and the N∆ mass splitting ∆ = m∆−m, in complete analogy to the small scale expansion formulated for heavy
spin-3/2 fields [5]. We therefore refrain from discussing here in any detail the corresponding power counting
and the construction of the chiral effective Lagrangian (most of this is available in the literature). As discussed
in detail in [31], special care has to be taken to fulfill the decoupling theorem of QCD, which states that leading
chiral singularities can not be modified by resonance fields. From here on, all small parameters (quark masses,
external momenta, nucleon-delta mass splitting) are collectively denoted as ǫ.

5. We first calculate the leading one-loop contribution to the nucleon self-energy with an intermediate delta
without any reference to a special regularization and with the full propagator, Eq.(1), see Fig. 1. This is done
for the following reasons. First, such a calculation allows one to study different regularization procedures.
Second, one can explicitly study the role of the non-propagating spin-1/2 components. Third, one can also
easier compare with existing calculations in the literature. We have

Σ∆(p2) = −9

4

g2
A

F 2
π

i

∫

d4k

(2π)4

[

kµ −
(

Z +
1

2

)

6kγµ

]

G∆
µν(p− k)

1

M2
π − k2

[

kν −
(

Z +
1

2

)

γν 6k
]

, (18)

The general structure of this integral is

Σ∆(p2) = C
1

i

∫

d4k

(2π)4

(

A(k) +B(k)6p+ C(k)6k
)

(19)

with C = 9g2
A/(4F

2
π), and the functions A(k), B(k) and C(k) can be straightforwardly evaluated. After

integration, the self-energy can be written as

Σ∆(p2) = Ã+ 6p B̃ = Ã+ B̃ m+ (6p−m) B̃ , (20)
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where the functions Ã and B̃ follow after integration of Eq.(19). The nucleon mass shift due to the delta
intermediate state is (setting Z = −1/2 for simplicity)

δm = (Ã+ B̃ m)|p2=m2

=
(d− 2)C

(d− 1)m2
∆

(

− 1

2d
m2

∆m∆∆ − 1

2
m∆m

2∆∆ +
∆

4
(m∆ +m)m∆∆ +

∆

2
(m∆ +m)2m2J1(m

2)

+M2
πm

2(m∆ +m)J0(m
2) − M2

π

4
∆∆ −mM2

πJ1(m
2)

[

m2 +
1

2
m∆m+

1

2
m2

∆

]

+
1

4
M4

πmJ1(m
2) +M2

π∆π

[

m∆ +m+
1

2d
m

])

, (21)

in terms of the loop functions

J0(p
2) =

1

i

∫

ddk

(2π)2
1

(M2
π − k2)(m2

∆ − (p− k)2)
,

pµ J1(p
2) =

1

i

∫

ddk

(2π)2
kµ

(M2
π − k2)(m2

∆ − (p− k)2)
,

∆∆ =
1

i

∫

ddk

(2π)2
1

m2
∆ − k2

, (22)

and we have defined
∆ ≡ m∆ −m . (23)

In IR, we have ∆∆ = 0, and J0(m
2) (J1(m

2)) is of order O(ǫ) (O(ǫ2)), so that to lowest (third) order

δm =
(d− 2)C

(d− 1)m2
∆

[

1

2
∆ (m+m∆)2m2 J1(m

2) +M2
π m

2 (m+m∆)J0(m
2)

]

= − 3g2
A

16π2F 2
π

[

∆

(

∆2 − 3

2
M2

π

)

ln
M2

π

m2
+ 2(∆2 −M2

π)3/2 ln

(

∆

Mπ
+

√

∆2

M2
π

− 1

)

− ∆

2

(

4

3
∆2 −M2

π

)]

,

(24)

where the last equation is valid for ∆2 > M2
π (as it is the case in nature). This result agrees with the one in

[30]. Note also that for a more compact notation and easier comparison with the existing literature, we have
retained some higher order terms in the formula expressing the mass shift in terms of the loop functions J0 and
J1.

As noted above, we have not yet separated the spin-3/2 from the spin-1/2 components. Since the spin-1/2
components do not propagate, their contribution should be entirely absorbed in polynomial pieces (contact
terms). Utilizing the projection operators given in Eq.(3), the spin-3/2 contribution to the self-energy takes the
form

Σ
3/2

∆ (p2) = − (d− 2)C

d− 1

∫

d4k

(2π)4
(k2p2 − (k · p)2) −(6p+m∆ − 6k)

(k − p)2(M2
π − k2)(m2

∆ − (k − p)2)
, (25)

which leads to the nucleon mass-shift (we give here only the result employing IR)

δm3/2 =
(d− 2)C

(d− 1)m2
∆

[

M2
πm

2

(

J0(m
2)(m∆ +m) −mJ1(m

2)

)

+
1

2
m2

(

∆(m∆ +m) −M2
π

)

(m∆ +m)J1(m
2)

+
1

4

(

−∆(m∆ +m) +M2
π

)2

mJ1(m
2) −M2

πm
2

(

J0
0 (m2)(m∆ +m) − J0

1 (m2)m

)

+
m2

2
(M2

π +m2)(m∆ +m)J0
1 (m2) − m

4
(M2

π +m2)2J0
1 (m2)

]

, (26)

in terms of the new loop functions J0
0 (p2) defined in Eq.(9) and

pµ J
0
1 (p2) =

1

i

∫

ddk

(2π)2
−kµ

(p− k)2 (M2
π − k2)

. (27)
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We also have the loop function relation J0
1 (p2) = (p2 +M2

π)J0
0 (p2)/(2p2) + ∆π/(2p

2) (in dimensional regular-
ization). Noting now that the loop functions J0

0 (m2) and J0
1 (m2) are of order O(ǫ2) in the chiral expansion,

the lowest (third) order result for the mass shift derived from Eq.(26) agrees with the one given in Eq.(24) but
differs of course in the higher order terms. It is also important to stress that the spin-3/2 contribution to the
mass shift is independent of Z, as it should be.

Next, we consider the spin-1/2 contribution to the self-energy, Σ
1/2

∆ (p2). The corresponding mass shift has the
form (we again give for simplicity the result for Z = −1/2)

δm1/2 =
3g2

A

2F 2
πm

2
∆

1

256
M4

π

[

2 ln
M2

π

m2

(

2(m∆ +m) +
2M2

π

m2
(2m+m∆) − M4

π

m3

)

+
1

3

(

(m+ 4m∆) + 4
M2

π

m2
(2m+m∆) − 2

M4
π

m3

)]

. (28)

We have thus shown explicitly that these contributions can be completely absorbed into polynomial terms
appearing in the chiral expansion of the nucleon mass beyond leading one–loop order [32, 9],

mN = m0 − 4c1M
2
π − 3g2

AM
3
π

32πF 2
π

+ k1M
4
π ln

Mπ

m
+ k2M

4
π + O(M5

π) , (29)

where c1, k1 and k2 are (combinations of) dimension two and four low–energy constants and m0 is the nucleon
mass in the chiral limit. Furthermore, all Z-dependence is of course included in these polynomial terms, too.

From the mass shift, one can directly derive the delta loop contribution to the sigma term using the Feynman-
Hellmann theorem,

σ∆
πN (0) = M2

π

dδm

dM2
π

. (30)

To leading order one has (using the full or the spin 3/2 part of the propagator):

σ∆
πN (0) =

M2
π(m+m∆)

m2
∆

C

(

m2J0(m
2) +

1

6

1

4π2

m2 + 2m2
∆

m2
∆(m+m∆)

)

=
CM2

π

4π2

[

∆ ln
Mπ

m
+
√

∆2 −M2
π ln

(

∆

Mπ
+

√

∆2

M2
π

− 1

)]

. (31)

Eq. (31) naturally agrees with the result of Ref. [23] but differs by a polynomial contribution in ∆ from the
one of [10] due to the use of a d–independent propagator in that paper. Again, for easier comparison we have
retained some higher order terms in the upper expression in Eq. (31). This concludes the formalism and we
now turn to a numerical evaluation of the mass shift and the sigma term.

6. We are now in the position to evaluate the delta loop contribution to the nucleon mass shift and the sigma
term. We use gA = 1.267, Mπ = 139.57 MeV, Fπ = 92.4 MeV and ∆ = 271 MeV. From Eq.(6) it follows
that cA = 1.34. We remark that the resulting numbers scale linearly with the axial-vector coupling constant
cA. The delta contribution to the nucleon mass shift and the sigma term are collected in Table 1. We give
the lowest (third) order result which is the same if one uses the full or the projected spin-3/2 propagator, as
pointed out earlier. However, in IR the integrals also contain higher order pieces which can be retained (see
e.g. the detailed discussion in [18]). In that case, one has to project onto the spin-3/2 pieces to get rid of
the unphysical contribution from the spin-1/2 components. However, as shown in the table, the difference is
numerically irrelevant for the observables considered here. Furthermore, these higher order corrections amount
to a very small correction to the lowest order result. This, however, is not always the case, see e.g. [18]. We
also remark a certain sensitivity to the scale of dimensional regularization. This dependence, however, will be
balanced by counter terms not considered here. The results shown in Table 1 are not very different from earlier
ones obtained in the heavy baryon approach [34, 33], which is expected since to this order neither the delta loop
contribution to the nucleon mass shift nor to the sigma term is very sensitive to recoil corrections or similar
effects. We stress again that a complete analysis of the nucleon mass or the sigma term would require a novel
determination of certain low-energy constants to fulfill the requirements of decoupling. This, however, goes
beyond the scope of this Letter.
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δm [MeV] σ∆
πN (0) [MeV]

lowest order 86.4 (108.1) −45.6 (−60.0)

unexpanded, with full propagator 87.2 (112.7) −46.3 (−63.3)

unexpanded, with spin-3/2 propagator 88.1 (113.7) −44.7 (−61.4)

Table 1: Delta contribution to the nucleon mass shift and the sigma term. Lowest order refers to the third order
IR result based on Eq.(24). Unexpanded means that the higher order terms from the various loop functions are
retained. The propagator used is also given (in the lowest order case, using the full or the spin-3/2 part of the
propagator leads to the same result, as discussed in the text). The numbers in the round brackets are obtained
with λ = m∆.

7. In this Letter, we constructed a systematic infrared regularization for chiral effective field theories including
spin-3/2 fields. To arrive at a consistent formulation, one has to project onto the spin-3/2 components of
these fields. This projection leads to a new type of integrals as compared to the pure pion-nucleon theory.
We have shown that the IR scheme of [9] can be extended systematically and furthermore, this procedure
allows for a chiral invariant inclusion of external sources, like e.g. photons or weak currents. The contributions
from the spin-1/2 components get completely absorbed into the polynomial pieces of the effective Lagrangian.
Furthermore, the frequently used off–shell parameters (X,Y, Z) are also contained in these polynoms and thus
do not lead to observable consequences. It is now important to apply this method to observables, where ∆π
loops are expected to play a significant role, like in all types of Compton scattering. Work along these lines is
underway.

TRH thanks the Université Louis Pasteur for hospitality, where part of this work was done.
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