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Scaling of the linear response in simple aging systems without disorder
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The time-dependent scaling of the thermoremanent and zero-field-cooled susceptibilities in ferromagnetic
spin systems undergoing aging after a quench to a temperature at or below criticality is studied. A recent debate
on their interpretation is resolved by showing that for systems with a short-ranged equilibrium spin-spin
correlator and above their roughening temperature, the field-cooled suscepfiiility- xo~ t™, whereyq is
related to the equilibrium magnetization and the exporferg related to the time-dependent scaling of the
interface width between ordered domains. The same effect also dominates the scaling of the zero-field-cooled
susceptibility yzec(t,s), but does not enter into the thermoremanent susceptibifigy(t,s). However, there
may be large finite-time corrections to the scalinggfy(t,s) which are explicitly derived and may be needed
in order to extract reliable aging exponents. Consistency with the predictions of local scale invariance is
confirmed in the Glauber-Ising and spherical models.
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I INTRODUCTION Clt,s) ~ sfc(t/s), R(t,9) ~ s ?fg(t/s), 2

The comprehension of the physics of aging phenomena is . ] ]
a topic of much current interest. While aging was originally Where the scaling functiondcr(x) have the following
studied in glassy systems, there are many conceptual proBsymptotic behavior fox— e,
lems which are conveniently first studied in simple ferro-
m_agneti(_: systems. In this paper, we shall study a_ferromagnet fo(x) ~ X2 fo(x) ~ xMRZ, (3)
with a critical temperaturg&.> 0, initially prepared in a fully
disordered(infinite-temperaturestate which is quenched at
timet=0 to a temperaturé<T.. We shall consider through-
out a dynamics with a nonconserved order parameter. Phy
cally, the aging process proceeds via the growth of correlate
domains of sizé.(t) ~t¥2 and the slow motion of the domain
boundaries drives in turn the slow temporal evolution of .
macroscopic observables, see R§fs:3) for recent reviews. | Tge dvalueds of t?ﬁ expoq%n_asandb.ar_e cpllectedl in Table
It has turned out that aging phenomena are more fully re; and depend on the equilibrium spin-spin correlay, as

— / . . .
vealed through the study of two-time quantities such as théoll(:ws [.7]' If1;ICeq(r)~re1.:r‘ ffwgh a lete_g(a_ozr:; star:ys tha;c the
two-time correlatorC(t,s) and the two-time linear response system IS olclass Swhile | eq(r.) Il , the system
function R(t,s), defined by is said to be oftlass L, where 7 is a standard equilibrium
” critical exponent. We point out that for systems of cl&s
the resulta=1/z follows from the well-accepted intuitive
(1) (1) picture that aging effects come from the slow motion of the
() |p=o domains walls which separate the well-ordered domains in

systems undergoing coarsenifiy3,7,9. A different value

where¢(t) is the time-dependent order paramelgs) is the ~ for @ would invalidate this physical picture.
magnetic field conjugate te, t is referred to as observation
time, ands will be called the waiting time. Causality implies ~ TABLE I. Nonequilibrium exponenta andb for quenches from
thatR(t,s)=0 fort<s. a fully disordered state onto and below the critical pdipt-0 of

Aging systems may display dynamical scaling in the |ong_simple ferromagnets of the class8sand L defined in the text,
time limit [1-3]. Specifically, consider the two-time func- according to Ref[7].
tions in the aging regimé>t ico S tmicror @and 7=t-s

and\¢ and\g are the autocorrelatigrt,5] and autoresponse
5&5] exponents, respectively. In general, the exponaats
andz will take different values folT<T. and forT=T.. In
particular,z=2 for T<T_; and a nonconserved order param-
eter.

C(t,s) = (&) (), R(t,s)=

> tmicror Wheretyicro IS SOMe microscopic time. Then one has a b Class
the scaling behavior T=T, (d-2+7)/z (d-2+7)/z L
T<T. (d-2+7)/z 0 L
1/z 0 S
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Recently, it has been proposed that aging systems migtiere, we straightforwardly used the scaling for(@s with-
possess a larger dynamically generated space-time symmeitoyt paying attention to the conditions of validiythese and
than mere dynamical scalif§]. Indeed, for any given value in particulardid not pay any attention as to whethetrd
of z, infinitesimal local scale transformations with a space->t,,. holds true or notAs we shall show, however, careful
time-dependent rescaling factor &¢t,r) can be constructed. consideration of these conditions is crucial in order to obtain
In particular, the following explicit expression for the re- valid scaling forms for the integrated responsggc(t,s)
sponse function is obtained from the condition tiRit,s)  and prgru(t,s).
transforms covariantly under the action of local scale trans- On a discrete lattice\ C 79, the integrated responsés)
formations[9,10] and(7) are obtained by measuring the time-dependent mag-

t>l+a—>\R/z netization[16]

R(t,s) = ’(— t-97, 4
“9=rly) 079 @ M=ﬁ > goh), ®
ieA

and where is a normalization constant. This prediction has
been confirmed in several models, notably the kinetic Isingvhere|A| is the number of sites of the lattice. Depending
model with Glauber dynamid4.0,11 and several variants of on whether one works in the zero-field-cooled or the ther-
the exactly solvable spherical modgl0,12,13, as is re- moremanent protocol, one obtaingrc=Mzrc/h or prry
viewed in Refs[9,14]. Furthermore, predictions exist for the =Mgru/h, respectively.
spatio-temporal response. A particular simple result is found In recent years, Corberi, Lippiello and Zanne@LZ)
for the casez=2[9,15] [17,18 have studied in great detail aging in simple ferro-
magnets such as the Glauber-Ising model. Most notably, and
X)) | _ Rt 9exp - M 2 5) based on MC data ogzc in between one and four dimen-
5ho(s) hzo_ S)eX 2t-s sions, they have argued that for the phase-ordering kinetics
(i.e., T<T.) in the Glauber-Ising model, the exponeat
(M is a nonuniversal constanand has been confirmed in takes a value different from the generally accepted value
the two-dimensional(2D) and 3D Glauber-Ising model =1/z=1/2. Their studies consider the two-time autocorrela-
quenched td <T, [14] (and also in the spherical model for tion C(t,s) and the dynamic susceptibilitiggt,s),p(t,s) of
d>2). Since the derivation of Eq5) depends on the Galilei the Q(n) vector model. They separate the autocorrelator into
invariance of the coarsening process, its verification is strong,  “stationary’and an “aging” partC(t,s)=C(t-s)
evidence in favor of Galilei invariance as a dynamically gen-+c(s(t,s), and similarly x(t,s)=x's"(t-s)+x@%(t,s),
erated space-time symmetry of phase ordering. where x®U(t,s) is definedsuch as to satisfy the fluctuation-
One would obviously like .to be able to _test statements Ofdissipation theorem witle®(t,s) [and similarly forp(t,s)].
such a general nature as widely as possible, but since thegg ihermore, CLZ admit dynamical scaling for the aging part

are so few exactly solvable and nontrivial model of aging.,ny and further introduce two distinct exponenisanda
guantities such aR(t,s) must in general be obtained numeri- according to P

cally. This paper addresses an important conceptual point on

the interpretation of the scaling behavior of several com- x?9%(t,s) ~ s, (t/s), p@%(t,s) ~ s (t/s). (9)
monly used observables relatedR@,s) and we shall try to
clear up a debate which has arisen in recent years.

R(t,s;r) =

If &, is the value ofa, in the O(n) model, CLZ propose

Numerical information orR(t,s) can be obtained using a A (d-1)/4; d<3 (d-2)/2; d<4
by-now standard method devised by Barfa6]. One per- = ) < 3 =) . -
turbs the system by sandommagnetic fieldh; with zero 12; d=>3; L d=4 10

meanh;=0. We shall use a binary field=+h below in our
Glauber-Ising model simulation, but a Gaussian random fieldor the Glauber-Isingn=1) and spherical modgh=c<), re-

is also possible. Instead of measuriR{,s) directly, two  spectively (additional logarithmic factors may occur dt
common procedures run as follows. Either one quenches the3 n=1 andd=4,n=c<, respectively. In order to account
system and turns on the magnetic field after the waiting timdor these results, CLZ invoke a dangerous irrelevant variable
s has elapsed and then works with the zero-field-cooled susind claim thatd=3 were a critical dimension of coarsening
ceptibility xzec(t,s), or one may also keep the random field in the Glauber-Ising model. On the other hand, from a log-
till the waiting time's when it is turned off and then has the log plot of p@%(t,s) againsts in the Glauber-Ising model

thermoremanent susceptibilipyrpm(t,s). These are related “...no statement on acan be made..” [18], but roughly
to R(t,s) as follows: a,~0.55-0.60 in 2D ana,~0.65-0.70 in 3D, se€ig. 6
. , in Ref. [18]. These conclusions are supplemented by a
- - _oa discussion of the necessary conditie® t,.,o Nneeded for
Xzec(t,9) = X(49) = L duRLLU)=s1,(Us), ©® the validity of the scaling2) and about the microscopic
timestico Which may enter thergl8]. However, the cru-
s 2 cial role of the additional conditiot-s> t,i;,o Which must
PTRM(tuS):P(taS):f duRt,u)=s73f(t/s). (7) also be satisfied for Eq(2) to hold is not addressed by
0 CLZ.
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Already from a pure phenomenological point of view and 0.0
given the scaling relation&) and the definitions of(t,s) 0.50 — s=0
andp(t,s), the assertion of CLZ of havindistinctexponents 0.40 } — 2188 T
a,#a, cannot be maintained. Rather, it is necessary to go , o 3;400
beyond a pure scaling analysis in order to understand how 0.30 ke 5800 |

the aging behavior can be correctly extracted from integrated

\ = s=1600
response functions. C o020k i
Our argument runs along the following lines. x
(1) We consider the field-cooled susceptibility =
t
XFC(t):XZFC(t,S)+pTRM(taS):f duRtu). (11 0.10 | .
O - -
_ _tA 0.07 MR T B S S W R TTT B S A W R TTT] B S A T TT] B
For ferromagnets of clas§ one hasygq(t) - xo~t™, as we 107 0 107 0 0

shall show in Sec. Il Herél')(ozl—mﬁq is given by the
mean equilibrium magnetization. The exponéris a new
exponent without a direct relationship to aging, ratheritis FiG. 1. Field-cooled susceptibility xec(t)=prau(t,)
related to the roughness of the interface between ordered,._t,s) in the 2D Glauber-Ising model at temperatufe
domains. We stress that since the power-law behavior 0f1 5<T, and for several waiting times. An alternating fiefgl
Xrc(t) is independentf the waiting times it has no relation  =+h with h=0.05 was used. The power laygc(t) ~t925is also
with a possible aging behavior. In particular, we fidd shown for comparison. The simulated systems contained 300
=1/4 for the 2DGlauber-Ising model witil <T,. Further- X300 spins, and the data have been obtained after averaging over at
more, for a fixed scaling variable=t/s one has, with the least 5000 different runs.
scaling functiong(x) ~x™A
- _ deed, this situation occurs in the 2D and 3D Glauber-Ising
Xzre(t:9) = Xec(D) = pram(t;S) ~ xo+ S™G0) + O(s™). model. However, subtracting the leading correction accord-
(12 ing to Eq.(13) allows to reliably determina and the scaling

Here we anticipate an important result of Sec. IV, namel function fiy(x) [7,11). We shall describe this in Sec. IV.
P P PR Y In the Appendix possible implications for the scaling of

prru(t,s) ~s?, see also Eq(13) below. Since for rough ~ ;
interfaces one had-a=A-1/z<0, it follows that Eq.(6) R(t,t=e) for &0 are discussed.
cannot be used. Furthermore, the splittingy¢f,s) into a

stationary and an aging part advocated by CLZ is in con- Il. SCALING OF yec FOR SHORT-RANGED

tradiction with Eq.(12). Rather, the leading scaling gfc EQUILIBRIUM CORRELATORS
with the waiting times is unrelated to the aging behavior

of the model as described by E(R). Indeed, the terms We begin by discussing the time-dependent scaling for the
describing aging only occur as subleading terms infield-cooled susceptibility yec(t) for the Glauber-Ising
xzec(t,s) and are therefore difficult to extract. In particu- model. We consider the Ising model on a hypercubic lattice
lar, the exponentA cannot be identified with the aging with periodic boundary conditions and the equilibrium
exponenta. An example is provided by the 2D Glauber- Hamiltonian’ H=-X ; a0y, where the sum is over nearest
Ising model, wherea=1/z=1/2 butA=1/4. neighbors only. We use heat-bath dynamics defined through
(2) For ferromagnets of clasls, we shall show tha’n  the stochastic rule
=0. We shall explicitly test this in Sec. Il for the nonequi-

librium critical dynamics(i.e., T=T,) in the 2D Glauber- oi(t+1)= +1 with probability 3[1+tant(H;(t)/T)]
Ising model and in the kinetic mean spherical model for any (14)
T<T.

(3) Equation(12) shows that aging effects merely provide With the local fieldH;(t) =2y a,(t) and wherey(i) runs over
a finite-time correction to the scaling qfrc. On the other the nearest neighbors of the sitednitially, the system is
hand, aging terms are leading in the thermoremanent magngrepared in an infinite-temperature state. Thermoremanent
tization which scales more precisely @g and zero-field-cooled susceptibilitiesprry(t,s) and
xzec(t,S) can now be measured by perturbing the model
by a binary random fielch;=+h with zero mean(h;=0)
where the scaling functionf,(x) and gy (x) are related to and using Eq(8). From these two independent measure-
the response functioR(t,s) and can be found explicitly, see ments, we obtain the field-cooled susceptibility
Sec. IV. For example, for a system in cl&with an uncor- _
related initial state, one hag=\g=d/2 [19] and sincea Xecl) = praw(ts) + xzec(t,s) (15)
=1/z, these two terms may be of almost the same order anth Fig. 1, we showygc(t) so obtained for several values of
a simple log-log plot may not be sufficient to yield a precisethe waiting times in the case of the two-dimensional Ising
value of a for times accessible in present simulations. In-model, at the fixed temperatuile=1.5<T,.. Clearly, xgc is

pram(t,s) = Sy (t/9) + sTMgy (Us), (13
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independent o§, which means that we are well inside the [21]. Inserting this into Eq(17), we find the following
linear-response regime. Furthermore, within the timedeading dynamical scaling fogec in the Glauber-Ising
considered, our data are consistent with the scaling behavnodel ast— cc:

101, _ .
t1/4 if d=2

Xec(t) ~ A, A=0.25. (16) Xeell) ~ X0~ {t'l’z(ln HY2 if d=3, (19

Since this dynamical scaling is completely independent ofrovided thatT > Tg. For dimensionsi=4, and generically
the waiting times, it is unrelated to any aging behavior jf T<Tg, one expects a flat interface with(t) ~ const, and
which might occur in this model. _ consequentlyye(t) — xo~t"2 Reconsidering Fig. 1, it is

We now give a heuristic argument in order to understanqeasy to check that the final approach pf. towards xo
where the scaling fornil6) and the value oA come from. 5y occurs at times much beyond those accessed by our
Consider a simple ferromagnet @ 1 dimensions which is  gjmulation.

guenched at timeé=0 from an infinite-temperature initial Combining Eqs(12) and (19), we have therefore repro-
state to a final temperatufie<T.. The dynamics is assumed qyced the findings of CLZ in the Glauber-Ising model and
to be purely relaxational, i.e., without any conservation law.,5ve also made clear the physical origin of these results.
Microscopically, it is well known that the configurations of gegiqes, a definite prediction for the logarithmic factordin
the system consist of fully ordered domains of spins, of & 3 \yas obtained. In summary, we have for the Glauber-Ising
typical sizeL(t) ~ ' with z=2. We now perturb with a ran- ,oq4e|A=1/4 in 2D andA=1/2 for alld=3, up to a known
dom field of zero mearth,=0) and wish to obtain the sus- logarithmic correction in 3D.

ceptibility xrc=Mgc/h from Eq. (8). First consider the case
whenT=0. Then, because the spins deep inside the cluster
are ordered, the only nonvanishing contributiorytg comes
from the spins from near the interfaces between the ordered

Ill. SCALING OF xgc FOR LONG-RANGED
EQUILIBRIUM CORRELATORS

clusters. We denote the interface density dft) and have We now ask whether the heuristic discussion of the scal-
pi() ~L() 7!, see Refs[1,3,8. If w(t) is the interface width, ing of ygc presented in the preceding section can be taken
we have over for systems of clads. Indeed, the main physical differ-
ence with respect to systems of cl&# that although cor-
- 1 S ai(bh related clusters of size(t) ~ t form, fluctuations do persist
XFC(t) 2 0'|(t) i . . .
|AIh2\ /'S4 in the interior of these clusters on all length scales up(t.

1 This means that one should consider an “interface width”
=— > ah )~ L) w(t). (17  scaling asw(t)~L(t). This in turn leads toygc(t) ~const,
|AIN®\ | cinterfaces and A=0 (on the other hand, since the clusters should have
no “inside,” we do not expect a terp, to occuy.
We now test this heuristic idea in the exactly solvable
ean spherical model and shall also present evidence from
the 2D Glauber-Ising model quenched onto criticality.
- - —1_ (1) First, we consider the mean kinetic spherical model,

Xecl) = xo+ LOTW(D), Txo=1 mgq, (18) see e.g[6,12,13,24,2F To each sitex of a hypercubic lattice
where mg, is the equilibrium magnetizatiofifor the 2D ACZ% one attaches a continuous spin varialSigt) € R,
Ising model, meq=(1-sini2/T)™%)Y8 see e.g. Ref[20]].  subject to the mean spherical constraint
The dynamics of a(d-1)-dimensional interface in a

For a finite temperatur&> 0, the order deep inside the clus-
ters is not perfect and there remains a residual contribution (R
the susceptibility. We then have, for large times

d-dimensional systenid=2) can be described by the dy- > (SH=1. (20)
namics of a height modgR1] of continuous height vari- xeA
ables v;e R and the equilibrium Hamiltonian®[v]= By analogy with the Glauber-Ising model, we also add a

—(7/2)E(j,j,)(vj—vj,)2 with nearest-neighbor interactions random magnetic fieldth, and the equations of motion read
and wherer is the effective interfacial tensiof21]. In d

adopting this description, we tacitly assume that the sys- =S ()=, S)(t) = [2d = «()]S (1) + he + (1), (21)

tem is above its “roughening” temperatuilg, see e.g. dt y(x)

Ref. [22], such that the fluctuations of the interface are h th . d th d field h
unboundedrough interfacg for T>Tg and with bounded w eie__e noise an € random field have zero average,
fluctuations forT<Tg (smooth interface This condition {mJ=h.=0, and the correlators

is always satisfied fod=2, since thenTg=0 and indeed "y = " hh =

the description adopted here can be derived rigorously (mOmUN=2T 5, -1), hihy =206, (22
[23]. On the other hand, foi=3 one hasTg=0.5T, and  Where the temperatur€ and the widthl" are constants and
finally, Tx=o for d=4. If the dynamics of the model is «() is a Lagrange multiplier to be determined below. In ad-
described by a Langevin equation, the squared interfacgition, the noise and the field are assumed independent, i.e.,
width was shown by Abraham and Upton to scale for Iarge(nx(t)hy):O, and in addition the initial state is uncorrelated
times asw(t)?=(vo(H)?~t¥2 in 2D andw(t)>~Intin 3D  in the sense thaiS,(0)h,)=0. Here and in the following the

Al
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average(X) is always taken over the initial conditions and

the noise, while the averag€is over the random field. The

solution of this model follows standard lin¢&5]. Taking

Fourier transforms, the solution of E@Q1) is

exp - w(q)t]
Vot

x\g(t)[h(g) +7(q,t)]], (23)

with the dispersion relationw(q)=2=¢,(1-cosq;) and
gty =exd 2/} dt’ «(t")]. The  spin-spin  correlator
E(q,q’ ;t,s)=<§(q,tf§(q’,s)> is readily found and we have
in direct space the autocorrelator

C(t,s) = Cy«(t,9)

S(q,1) = [S(q,0) + J dt’ ev@

1 =
:WJZ dqdq’€'*97*C(q,q’;t,9)
B
1

t+s s +s
\g(t)g(s)[A< >+2Tfo du f(T_“) w

t+s-t'-s'\ ———
+2rf dt’f ds’f(—>\’g(t')g(3’) :
0 0 2

(24)

whereB is the Brillouin zone and with the definitions

Alt)=(2m™ JB dge 2¢@iC(q,0), (25)

f(t) =(2m)" f dge™2@" = [e™I(41)]", (26)
and wherel, is a modified Bessel function. For infinite-
temperature initial condition&(t)=f(t). The mean spherical
constraint(20) givesC(t,t)=1, and this leads to the follow-
ing generalized Volterra integral equation:

t . .
g(t) = A(t) + ZTJO du f(t—=u)g(u) + Zl"fo du/fo du’

"+
xf(t—u =
2

which determinesg(t). Finally, the response function is
given by the usual equatioR(t,s)=f((t—s)/2)\a(s)/g(t).
At zero temperaturd=0, Eqgs.(24) and(27) are identical
to those found for the spherical spin-gldst,26|.

The field-cooled susceptibility is given by

yect) = f duRLU) = j du f( )x/g((f) (29

At this point, it is instructive to rederive the equivalence
between the definitiori28) and Eq.(8), originally proposed

"

)x”g(u')g(u"» (27)

PHYSICAL REVIEW E 69, 056109(2004)

1.0

X pc®

0.1

107

FIG. 2. Field-cooled susceptibilityrc(t) for the 3D kinetic
mean spherical model in a Gaussian random magnetic field of width
'=0.01 and atT=2<T, (full curve) and T=T.=3.96 (dashed
curve.

2 Sdbhy
|A| xeA
(277)_2d 1 A (@+G") X/ S !
= |A| > dqdq @ 9X(S(q,H)h(q")).
xeA
2 P
_( ™) E dqdq’e/@+a’)x
|A| xeA J B?
t R
X fo dt’ e(@(t' -0 g((t)) ‘h(@)h(q")
t ’
. (@)t . [ 9()
=2 dzrf dt’f dgere@ ) |92
@m o S g(t)

=20 xec(b), (29

as asserted, and where we used in the second liné28p.
and in the third line the field correlat@?2).

After these preparations we can test our heuristic picture.
Using the techniques described in REE5], we obtaing(t)
by solving Eq.(27) numerically. In Fig. 2 we showygc(t) for
the three-dimensional case, starting from an infinite-
temperature initial state. We clearly see tlyat(t) saturates
rapidly. ConsequentlyA=0 for all temperaturesT<T..
Similar tests can be performed for other valuesl afs well.

We pause a moment in order to discuss the functional
form of the response function. If=0, solution of the spheri-
cal constraint gives foll <T, the well-known exact result,
valid for all values ofd and in the aging regimes>1 and
t—-s>1 is (see Refs[6,10,12,17,18,2

t d/4
R(t,s)=r(’)<;) (t-s)92, (30)

with r{=(47)"92. From Eq.(2), we read offa=(d-2)/2 and

[16] for the Glauber-Ising model, in the context of the meankg/z=d/4. We point out that this exact result feris in

kinetic spherical model. Indeed, we ha(é| denotes the
number of sites of the lattica)

contradiction with the clain(10) raised by CLZ. Further-
more, we see that the exact redilt). (30)] has precisely the
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1.0 equilibrium systenR(t,s) = Ry(7) while scaling sets in and
0.9 - (2) holds ift=t,. For example, in the spherical model one
08 | has¢=4/(d+2) [27]. We then have
S

= 07 T PTRM(LS):J duRt,u)

D 0

= 0.6 -

|_

= fOSdTR(t,S— 7)

to ty/s
:f drRyy(27) +sJ dvR(t,s(1 -v)]
d 0 o

S
+ f d7R(t,s-7)

FIG. 3. Field-cooled susceptibilityec(t) in the 2D Glauber- te
Ising model at the critical temperatufe-T,~ 2.269. An alternating * a 1 1-a t/s
field h;=+h with h=0.05 was used. Systems with 30300 spins =] dRy27) +s dv(1-v)""fr 1-0
have been simulated. 0 0

+C tTRZ, (32

Here, following Refs[3,27], we have introduced a third time
scalet, such thats—t,=0O(1). In the third line, the limits
—oo js taken and the last term is estimated from the mean-
value theorem, where, is a constant. Since we are perturb-
ing with a random magnetic field, the system is not driven to

form (4) predicted by local scale invarianf@,10]. A similar
test can be performed far=T,. [6,10], or even in a spherical
model with spatially long-ranged interactiofs3]. It is im-
portant to note that the local scale invariance predictn
applies to the full response functi®it,s) and not to the part

remaining after subtraction of a stationary term, as suggesteg o,y equilibrium state and consequently, the first tgem
in Ref. [18]. =Jod7Ry,(27) vanishes if the initial mean magnetization

(2) As a second example, we give numerical ewdeanNas taken to be zero. As a result, we have the scaling
that A=0 in the 2D Glauber-Ising model quenched to itsform already announced in Ref] '

critical point T=T,. We used a standard heat-bath algorithm
and measured the integrated linear response throug(BEg. prru(t,S) =S8 y(t/s) + S_)‘R/ZgM(tls), (33)

Data for ygc(t) thus obtained are displayed in Fig. 3 and we ) )
see that saturation occurs. where f\,(x) and gy(x) are scaling functions. These results

In summary, extending a heuristic argument of Sec. I, wePNly depend on the assumption of dynamical scaling. If, in
have argued that for ferromagnetic systems in clasene addition, Iocgl scale invariance applies, the form of the re-
should find saturation for the field-cooled susceptibility, viz.,SPonse functioi(t,s) is given by Eq(4) and therefor¢7,9]
xec(t) ~O(1). We have confirmed this expectation in some N N 1

— R R
models. fim(X) =rox ”R’ZZF1<1 +a,—-a,— -a+ 1;—),

The heuristic arguments in this and the preceding section z z X
can only be applied id=2 dimensions. Indeed, the aging
behavior of the 1D Glauber-Ising model at its critical point gm(X) = xR, (34)

T.=0 is peculiar and will be discussed in the Appendix. and wherer ; are nonuniversal constants asfh is a hyper-

geometric functiorf28].
IV. SCALING OF THE THERMOREMANENT The importance of taking this finite-time correction into
RESPONSE account is illustrated in Fig. 4. For a fixed valuexsft/s and
) . . T<T,, we plot data for the Glauber-Ising model in 2D and
Since we have seen that the terms which describe thgp respectively, and the exact solution of the Langevin
physically interesting aging effects are only subleading in thesquation of the spherical model, with=0. A fully disor-
zero-field-cooled susceptibilityzec(t,s), we discuss in this  gered initial state was used. We compare the data with the
section the scaling of the thermoremanent susceptibilityeading scaling formp(t,s) ~s2 which for the times acces-
prrv(t,S). As we shall see, the case where the waiting time sjple does not fully describe the data, but inclusion of the
is small needs particular consideration. It is well knoj28] second term in Eq(33) gives a very good fit. From this fit
that the response with respect to a fluctuation in the initiab\/e find the nonuniversal values Dd:,l listed in Table Il. In
state scales as order to achieve this, however,must take the values given
R(t,0) ~ R (31) in Table I. Specifically, for the Glauber-lsing model with
' ' =2 (which is in classS), we must takea=1/2, while if we
On the other hand, it can be sho\&v] that there is a time had chosera=1/4 asadvocated by CLZ, only a fit of very
scalet,~sf, with 0< <1, such that if the time difference low quality is obtained, see Refg7,30. This provides fur-
T=t-s=t,, then the response function is still the one of thether evidence against the proposed EL). We point out

056109-6



SCALING OF THE LINEAR RESPONSE IN SIMPLE.

0.10 pr—ryrrmr——rrm

T M, /h

0.01

0.06

1 0.01

0.10 prm

0.01

FIG. 4. Scaling of the thermoremanent susceptibiliy,s)
=M+rum(t,8)/h as a function of the waiting time for a fixed value
of x=t/s for three models(a) The 2D Glauber-Ising model &t
=1.5 and withx=7 (point9 is compared with the scaling prediction,
Eq. (33) (full gray curve, and with the simple scaling form
p(t,s)~s12 (dashed curve (b) Same comparison for the 3D
Glauber-Ising model at=3 and withx=5. (c) The 3D spherical
model atT=2 andx=5. The full curve is the exact solution of the
Langevin equation, the dash-dotted line the scaling predigtton
(33)], and the dashed line the simple foptt,s) ~s /2

that having fixedry ; for a given value of, the scaling of

prru(t,S) is completely fixed and does not contain any fur-
ther tunable parameter. Repeating the comparison betwe
the data and Eq33) for other values ok therefore allows to

test the predictions of local scale invariance and this has be
carried out in detail for the 2D and 3D Glauber-Ising mode
[7,11. While in the 2D Glauber-Ising model the curvature of
the data, see Fig.(d), already suggests the presence of

PHYSICAL REVIEW E 69, 056109(2004)

TABLE II. Values of the autoresponse exponantand of the
parametersy andrq in the Glauber-Ising model in two dimensions
atT=1.5 and in three dimensions B3 and of the mean spherical
model atT=2 in several dimensions. An infinite-temperature initial
state was used. The dynamic exponeng.

Model d AR ro r

Glauber-Ising 2 1.26 1.76+0.03 -1.84+0.03
3 1.60 0.10+0.01 0.20£0.01

Spherical 3 1.50 0.180+0.01  -0.081+0.002
35 1.75 0.20+0.01 -0.126+0.003
45 225 -0.056+0.003 0.095+0.002

[7], is required in order to avoid a systematic error in the
determination ofa. In this way the expected value=1/z
=1/2 isreconfirmed. Carrying out the analysis of the scaling
functions as described in Rgf], we can conclude that local
scale invariance holds in the 2D and 3D Glauber-Ising model
with T<T..

A closer inspection of Table Il shows that in the spherical
model withd>4 andT<T,, the signs ofry andr; change
and that the term which was treated as a correction in Eq.
(33) becomes dominant. Indeed, the exactly known expo-
nentsa=(d-2)/2 and\r/z=d/4 cross at the upper critical
dimensiond =4. We conclude that the scaling argument
used in Ref.[7] to derive the relatiora=(d—2+)/z for
classL systems should rather be viewed as a hyperscaling
argument.

V. CONCLUSIONS

In this paper, we have analyzed the long-time behavior of
integrated response functions in aging spin systems without
disorder. While from the scaling forr(2), one might have
expected a simple scaling(t,s)~s™? of the integrated re-
sponse, we have shown that matters are more complicated.
Conceptually, the issue can be clarified by studying the scal-
ing of thefield-cooledsusceptibilityxec(t) and we have seen
that two broad classes of systems must be distinguished,
called classes$ and L, according to whether their equilib-
rium spin-spin correlator shows short-ranged or long-ranged
spatial decay, respectively]. Specifically, we have found
the following.

(1) For systems of clasS, we have

xrc(t) = xo ~ t™, (35

%ereTX():l—mgq anq Mg is the equilibrium mag.netiza—
tion. The exponenA is related to the interface width ex-
ﬁyonentx. If w(t) ~t%, we have seen that

A= % -k (classS), (36)

strong finite-time corrections to scaling, in 3D it might ap-

pear at first sight that a reliable value of the exporsecduld

but provided that the temperatufe> Ty is above the rough-

be derived, see Fig.(8). However, the inclusion of the lead- ening temperatur@g.

ing correction term from Eq.33) together with the study of

(2) For systems of clask, Eq. (35) still holds with xq

the x dependence of the coefficients, as carried out in Ref=0, but with
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3D. It would be interesting to see if a recent method to
calculate yzec(t,s) directly in the Glauber-lsing model
[31] [which in turn is based on a method to estimRgte,s)

in an Ising model with a different dynamics modified from
Glauber dynamics[32]] could be generalized to find
pint(t,s) as well.
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(3) The scaling of the thermoremanent susceptibility In the main text, we studied the time-dependent scaling of

prrv(t,S) may be affected by a relatively large finite-time the integrated respongg(t). We shall now attempt tg ex-
correction term, see Eq33) where the associated scaling tract further |nfor_mat|on on the scaling &t,s) whent~s.
functions can be found explicitly from local scale invariance.NOt€ that thescalingform Eq.(2) cannot be used close to the

(4) Consequently, the leading time dependence of th&!PPer integration I_imit, since there the conditient—s>1
field-cooled  susceptiblity xzrc(t, S) = xo~ xrc(t) = xo~t ™, needed for the validity of Eq2) does not hold. Rather, one

whereas the aging terms expected from integrating (2. Might argue that there should be some time staseich that

merely arise as finite-time corrections. Eq. (2)“ holds” for waiting times=t . If in addition t-tis
Our results reproduce the entirety of known results in agSCMe “small” constanAt: for large times, we may write

ing ferromagnetic spin systems witt=2 but do not require t t

to postulate an upper critical dimensids 3 in the Glauber- xec(t) =f dsRt,s) + f dsRt,s)

Ising model. For systems of cla& the exponent relation 0 t

a=1/zis reconfirmed while the proposed E{J.0) is invali- o

dated. zt‘af doo* Hg(v) + (t-)R(tL)
If questions of simulational efficiency play no role, it

might be technically easier to avoid both the zero-field t_af”’

t/t

cooled (ZFC) and the thermoremaneitRM) protocol, as dv v* (V) + ACR(L,L), (A1)
already suggested in RgfL8]. For example, we propose the
“intermediate” protocol, which runs as follows: quench thewhere we used the mean-value theorem @rd[t", t]. If the
system at=0 without a magnetic field and fix a waiting time second term in Eq(A1) is the leading one, then comparison

s. At time s/2, turn on a random magnetic field and keep itwith the scaling ofysc gives R(t,t)=1+0O(t™), provided

on until the waiting times. Then turn the field off again and the conditions stated above are satisfied. Here the value of
measure the magnetization at the observation time. The  the constant is fixed from the physical consideration that

1

intermediate integrated respongse for 7=t—s<1 the system should still be in quasiequilib-
s rium.
Ppin(6,5) = M (t, 9)/h: :J duRt,u) We can now try and see to what extent this argument
2 applies in specific models and to what extent it might be
= 573, (US)[1 +0(s ™| (39) justified. The only model of clasSwe studied here is the 2D

Glauber-Ising model af <T.. Thena=1/2 andA=1/4, and
and should be free of the leading term coming from the inthe contributions close to the upper integration limit are in-
terface roughness as well as the finite-time correction of ordeed dominant. One should therefore expect, ligR(t,t
derO(s™R?), We illustrate this for the mean spherical model —&) =cste. O(t"*/4) for larget.
in Fig. 5, where it can be seen that already for times much On the other hand, we have considered in Sec. Il several
shorter than those in Fig.®), the linear responsd€28) ob-  examples of systems of claks where we have founéd=0
tained from the exact solution of the Langevin equatieith ~ throughout. First, for the spherical model, the exact expres-
I'=0) converges to the expected power law, wéth0.5 in  sion for R(t,s) gives R(t,t—2¢)=f(e)\g(t—2¢)/g(t)=1
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+g[f'(0)—g'(t)/g(t)]+O(e?). Since for larget one hasy(t) 0.75
~t¥ with a known exponents [6,12], we obtain fore —0
R(t,t—2¢)=cste. +O(t™), and have indeed=0, since the
constant is different from unity. Second, a similar conclusion

X o 0.65
should also hold true for the 2D Glauber-Ising model at criti-

cality. Third, an analogous result can also be obtained in the Z—iu

2D linear voter model at criticalityf33], where the exact =

response function lim oR(t+¢&,t)~ (In t)™L. 0.55
Additional studies to test these conclusions further would
be welcome.
The heuristic arguments presented in this paper assume
d=2 space dimensions throughout. As an illustration what 0.45
can happen in one dimension, we now consider the 1D
Glauber-Ising model at its critical temperatufg=0. This
model has been investigated countless times and we shall not FIG. 6. Field-cooled susceptibilitysc(t) for the 1D Glauber-
repeat the details of its definitiasee, e.g., Ref$34,33 and  Ising model afT=0.
references therejrhere. The exact autoresponse function is

1
imR(t,t-e) = —t™12, (A4)
R(t,9) = gt - 9[1-Cy(9)], (A2) o0 T
Comparison of Eq4A1) and(A4), if admissible, would then
where C,(s) is the equal-time correlator of two spins on give A=1/2.Such a result would appear to be natural in the
neighboring sites. For an infinite-temperature initial statesetting of Sec. Il if we recall that af=0 there are fully

one hag35] ordered domains where the width of the domain walls is one
lattice constant, thus/(t)=cste.
x - On the other har)d_,. integrating Eq#\2) and (A3), th.e_.
Cy(9) = e—ZS[ 1,(29) + 23 |n+1(23)] Z?aléi:ooled susceptibility becomes for an uncorrelated initial
n=1
_ t
=1-e"y(29) +11(29)], (A3) Xrc(D) = f ds €5t -9)[1o(29) +11(29)],  (AS)
0

where in the second step the Bessel-function iderdfty ,,q \ye show this in Fig. 6. Clearly, there is saturation for

=10(2)+ 22, 1n(2) was used. It has recently been shown thaliarge times and in the spirit of Sec. Ill one would conclude

for any initial correlators of the power-law forin(r)  A=0. Therefore, a naive application of the arguments valid

~r~"with »=0, the leading scaling behavior @f(s) for ~ for d=2 would lead to two different values @ in this 1D

s large is unchange@35]. Therefore, for any power-law model. We leave open the question how this apparent incon-

correlated initial state we have for large sistency might be resolved.
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