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The time-dependent scaling of the thermoremanent and zero-field-cooled susceptibilities in ferromagnetic
spin systems undergoing aging after a quench to a temperature at or below criticality is studied. A recent debate
on their interpretation is resolved by showing that for systems with a short-ranged equilibrium spin-spin
correlator and above their roughening temperature, the field-cooled susceptibilityxFCstd−x0, t−A, wherex0 is
related to the equilibrium magnetization and the exponentA is related to the time-dependent scaling of the
interface width between ordered domains. The same effect also dominates the scaling of the zero-field-cooled
susceptibilityxZFCst ,sd, but does not enter into the thermoremanent susceptibilityrTRMst ,sd. However, there
may be large finite-time corrections to the scaling ofrTRMst ,sd which are explicitly derived and may be needed
in order to extract reliable aging exponents. Consistency with the predictions of local scale invariance is
confirmed in the Glauber-Ising and spherical models.
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I. INTRODUCTION

The comprehension of the physics of aging phenomena is
a topic of much current interest. While aging was originally
studied in glassy systems, there are many conceptual prob-
lems which are conveniently first studied in simple ferro-
magnetic systems. In this paper, we shall study a ferromagnet
with a critical temperatureTc.0, initially prepared in a fully
disordered(infinite-temperature) state which is quenched at
time t=0 to a temperatureTøTc. We shall consider through-
out a dynamics with a nonconserved order parameter. Physi-
cally, the aging process proceeds via the growth of correlated
domains of sizeLstd, t1/z and the slow motion of the domain
boundaries drives in turn the slow temporal evolution of
macroscopic observables, see Refs.[1–3] for recent reviews.
It has turned out that aging phenomena are more fully re-
vealed through the study of two-time quantities such as the
two-time correlatorCst ,sd and the two-time linear response
function Rst ,sd, defined by

Cst,sd = kfstdfssdl, Rst,sd = Udkfstdl
dhssd

U
h=0

, s1d

wherefstd is the time-dependent order parameter,hssd is the
magnetic field conjugate tof, t is referred to as observation
time, ands will be called the waiting time. Causality implies
that Rst ,sd=0 for t,s.

Aging systems may display dynamical scaling in the long-
time limit [1–3]. Specifically, consider the two-time func-
tions in the aging regimet@ tmicro, s@ tmicro, and t= t−s
@ tmicro, wheretmicro is some microscopic time. Then one has
the scaling behavior

Cst,sd , s−bfCst/sd, Rst,sd , s−1−afRst/sd, s2d

where the scaling functionsfC,Rsxd have the following
asymptotic behavior forx→`,

fCsxd , x−lC/z, fRsxd , x−lR/z, s3d

andlC andlR are the autocorrelationf4,5g and autoresponse
f6g exponents, respectively. In general, the exponentslC,R
andz will take different values forT,Tc and forT=Tc. In
particular,z=2 for T,Tc and a nonconserved order param-
eter.

The values of the exponentsa andb are collected in Table
I and depend on the equilibrium spin-spin correlatorCeq as
follows [7]. If Ceqsr d,e−ur u/j with a finitej, one says that the
system is ofclass S, while if Ceqsr d,ur u−sd−2+hd, the system
is said to be ofclass L, whereh is a standard equilibrium
critical exponent. We point out that for systems of classS,
the resulta=1/z follows from the well-accepted intuitive
picture that aging effects come from the slow motion of the
domains walls which separate the well-ordered domains in
systems undergoing coarsening[1,3,7,8]. A different value
for a would invalidate this physical picture.

*Laboratoire associé au CNRS(UMR 7556).

TABLE I. Nonequilibrium exponentsa andb for quenches from
a fully disordered state onto and below the critical pointTc.0 of
simple ferromagnets of the classesS and L defined in the text,
according to Ref.[7].

a b Class

T=Tc sd−2+hd /z sd−2+hd /z L

T,Tc sd−2+hd /z 0 L

1/z 0 S
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Recently, it has been proposed that aging systems might
possess a larger dynamically generated space-time symmetry
than mere dynamical scaling[9]. Indeed, for any given value
of z, infinitesimal local scale transformations with a space-
time-dependent rescaling factor 1+«st ,r d can be constructed.
In particular, the following explicit expression for the re-
sponse function is obtained from the condition thatRst ,sd
transforms covariantly under the action of local scale trans-
formations[9,10]

Rst,sd = r08S t

s
D1+a−lR/z

st − sd−1−a, s4d

and wherer08 is a normalization constant. This prediction has
been confirmed in several models, notably the kinetic Ising
model with Glauber dynamicsf10,11g and several variants of
the exactly solvable spherical modelf10,12,13g, as is re-
viewed in Refs.f9,14g. Furthermore, predictions exist for the
spatio-temporal response. A particular simple result is found
for the casez=2 f9,15g

Rst,s;r d = Udkfrstdl
dh0ssd

U
h=0

= Rst,sdexpF−
M
2

r 2

t − s
G s5d

sM is a nonuniversal constantd and has been confirmed in
the two-dimensionals2Dd and 3D Glauber-Ising model
quenched toT,Tc f14g sand also in the spherical model for
d.2d. Since the derivation of Eq.s5d depends on the Galilei
invariance of the coarsening process, its verification is strong
evidence in favor of Galilei invariance as a dynamically gen-
erated space-time symmetry of phase ordering.

One would obviously like to be able to test statements of
such a general nature as widely as possible, but since there
are so few exactly solvable and nontrivial model of aging,
quantities such asRst ,sd must in general be obtained numeri-
cally. This paper addresses an important conceptual point on
the interpretation of the scaling behavior of several com-
monly used observables related toRst ,sd and we shall try to
clear up a debate which has arisen in recent years.

Numerical information onRst ,sd can be obtained using a
by-now standard method devised by Barrat[16]. One per-
turbs the system by arandom magnetic fieldhi with zero

meanhī =0. We shall use a binary fieldhi = ±h below in our
Glauber-Ising model simulation, but a Gaussian random field
is also possible. Instead of measuringRst ,sd directly, two
common procedures run as follows. Either one quenches the
system and turns on the magnetic field after the waiting time
s has elapsed and then works with the zero-field-cooled sus-
ceptibility xZFCst ,sd, or one may also keep the random field
till the waiting times when it is turned off and then has the
thermoremanent susceptibilityrTRMst ,sd. These are related
to Rst ,sd as follows:

xZFCst,sd = xst,sd =E
s

t

duRst,ud=
?

s−afxst/sd, s6d

rTRMst,sd = rst,sd =E
0

s

duRst,ud=
?

s−afMst/sd. s7d

Here, we straightforwardly used the scaling formss2d with-
out paying attention to the conditions of validityof these and
in particular did not pay any attention as to whether t−s
@ tmicro holds true or not. As we shall show, however, careful
consideration of these conditions is crucial in order to obtain
valid scaling forms for the integrated responsesxZFCst ,sd
and rTRMst ,sd.

On a discrete latticeL,Zd, the integrated responses(6)
and (7) are obtained by measuring the time-dependent mag-
netization[16]

M =
1

uLuhKo
iPL

fistdhiL , s8d

whereuLu is the number of sites of the latticeL. Depending
on whether one works in the zero-field-cooled or the ther-
moremanent protocol, one obtainsxZFC=MZFC/h or rTRM
=MTRM/h, respectively.

In recent years, Corberi, Lippiello and Zannetti(CLZ)
[17,18] have studied in great detail aging in simple ferro-
magnets such as the Glauber-Ising model. Most notably, and
based on MC data onxZFC in between one and four dimen-
sions, they have argued that for the phase-ordering kinetics
(i.e., T,Tc) in the Glauber-Ising model, the exponenta
takes a value different from the generally accepted valuea
=1/z=1/2. Their studies consider the two-time autocorrela-
tion Cst ,sd and the dynamic susceptibilitiesxst ,sd ,rst ,sd of
the Osnd vector model. They separate the autocorrelator into
a “stationary”and an “aging” part Cst ,sd=Csstdst−sd
+Csagedst ,sd, and similarly xst ,sd=xsstdst−sd+xsagedst ,sd,
wherexsstdst ,sd is definedsuch as to satisfy the fluctuation-
dissipation theorem withCsstdst ,sd [and similarly forrst ,sd].
Furthermore, CLZ admit dynamical scaling for the aging part
only and further introduce two distinct exponentsax andar

according to

xsagedst,sd , s−axfxst/sd, rsagedst,sd , s−arfrst/sd. s9d

If ân is the value ofax in the Osnd model, CLZ propose

â1 = Hsd − 1d/4; d , 3

1/2; d . 3;
â` = Hsd − 2d/2; d , 4

1; d . 4

s10d

for the Glauber-Isingsn=1d and spherical modelsn=`d, re-
spectively sadditional logarithmic factors may occur atd
=3,n=1 andd=4,n=`, respectivelyd. In order to account
for these results, CLZ invoke a dangerous irrelevant variable
and claim thatd=3 were a critical dimension of coarsening
in the Glauber-Ising model. On the other hand, from a log-
log plot of rsagedst ,sd againsts in the Glauber-Ising model
“. . .no statement on ar can be made. . .” f18g, but roughly
ar<0.55–0.60 in 2D andar<0.65–0.70 in 3D, seeFig. 6
in Ref. f18g. These conclusions are supplemented by a
discussion of the necessary conditions@ tmicro needed for
the validity of the scalings2d and about the microscopic
times tmicro which may enter theref18g. However, the cru-
cial role of the additional conditiont−s@ tmicro which must
also be satisfied for Eq.s2d to hold is not addressed by
CLZ.

HENKEL, PAESSENS, AND PLEIMLING PHYSICAL REVIEW E69, 056109(2004)

056109-2



Already from a pure phenomenological point of view and
given the scaling relations(2) and the definitions ofxst ,sd
andrst ,sd, the assertion of CLZ of havingdistinctexponents
axÞar cannot be maintained. Rather, it is necessary to go
beyond a pure scaling analysis in order to understand how
the aging behavior can be correctly extracted from integrated
response functions.

Our argument runs along the following lines.
(1) We consider the field-cooled susceptibility

xFCstd = xZFCst,sd + rTRMst,sd =E
0

t

duRst,ud. s11d

For ferromagnets of classS, one hasxFCstd−x0, t−A, as we
shall show in Sec. II. HereTx0=1−meq

2 is given by the
mean equilibrium magnetization. The exponentA is a new
exponent without a direct relationship to aging, rather it is
related to the roughness of the interface between ordered
domains. We stress that since the power-law behavior of
xFCstd is independentof the waiting times it has no relation
with a possible aging behavior. In particular, we findA
=1/4 for the 2DGlauber-Ising model withT,Tc. Further-
more, for a fixed scaling variablex= t /s one has, with the
scaling functiongsxd,x−A

xZFCst,sd = xFCstd − rTRMst,sd , x0 + s−Agsxd + Oss−ad.

s12d

Here we anticipate an important result of Sec. IV, namely
rTRMst ,sd,s−a, see also Eq.s13d below. Since for rough
interfaces one hasA−a=A−1/z,0, it follows that Eq.s6d
cannot be used. Furthermore, the splitting ofxst ,sd into a
stationary and an aging part advocated by CLZ is in con-
tradiction with Eq.s12d. Rather, the leading scaling ofxFC
with the waiting times is unrelated to the aging behavior
of the model as described by Eq.s2d. Indeed, the terms
describing aging only occur as subleading terms in
xZFCst ,sd and are therefore difficult to extract. In particu-
lar, the exponentA cannot be identified with the aging
exponenta. An example is provided by the 2D Glauber-
Ising model, wherea=1/z=1/2 butA=1/4.

(2) For ferromagnets of classL, we shall show thatA
=0. We shall explicitly test this in Sec. III for the nonequi-
librium critical dynamics(i.e., T=Tc) in the 2D Glauber-
Ising model and in the kinetic mean spherical model for any
TøTc.

(3) Equation(12) shows that aging effects merely provide
a finite-time correction to the scaling ofxZFC. On the other
hand, aging terms are leading in the thermoremanent magne-
tization which scales more precisely as[7]

rTRMst,sd = s−afMst/sd + s−lR/zgMst/sd, s13d

where the scaling functionsfMsxd and gMsxd are related to
the response functionRst ,sd and can be found explicitly, see
Sec. IV. For example, for a system in classS with an uncor-
related initial state, one haslC=lRùd/2 f19g and sincea
=1/z, these two terms may be of almost the same order and
a simple log-log plot may not be sufficient to yield a precise
value of a for times accessible in present simulations. In-

deed, this situation occurs in the 2D and 3D Glauber-Ising
model. However, subtracting the leading correction accord-
ing to Eq.s13d allows to reliably determinea and the scaling
function fMsxd f7,11g. We shall describe this in Sec. IV.

In the Appendix possible implications for the scaling of
Rst ,t−«d for «→0 are discussed.

II. SCALING OF xFC FOR SHORT-RANGED
EQUILIBRIUM CORRELATORS

We begin by discussing the time-dependent scaling for the
field-cooled susceptibility xFCstd for the Glauber-Ising
model. We consider the Ising model on a hypercubic lattice
with periodic boundary conditions and the equilibrium
HamiltonianH=−osi,j dsisj , where the sum is over nearest
neighbors only. We use heat-bath dynamics defined through
the stochastic rule

sist + 1d = ± 1 with probability 1
2f1 ± tanhsHistd/Tdg

s14d

with the local fieldHistd=oysidsystd and whereysid runs over
the nearest neighbors of the sitesi. Initially, the system is
prepared in an infinite-temperature state. Thermoremanent
and zero-field-cooled susceptibilitiesrTRMst ,sd and
xZFCst ,sd can now be measured by perturbing the model

by a binary random fieldhi = ±h with zero meanshī =0d
and using Eq.s8d. From these two independent measure-
ments, we obtain the field-cooled susceptibility

xFCstd = rTRMst,sd + xZFCst,sd s15d

In Fig. 1, we showxFCstd so obtained for several values of
the waiting times in the case of the two-dimensional Ising
model, at the fixed temperatureT=1.5,Tc. Clearly,xFC is

FIG. 1. Field-cooled susceptibility xFCstd=rTRMst ,sd
+xZFCst ,sd in the 2D Glauber-Ising model at temperatureT
=1.5,Tc and for several waiting times. An alternating fieldhi
= ±h with h=0.05 was used. The power lawxFCstd, t−0.25 is also
shown for comparison. The simulated systems contained 300
3300 spins, and the data have been obtained after averaging over at
least 5000 different runs.
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independent ofs, which means that we are well inside the
linear-response regime. Furthermore, within the times
considered, our data are consistent with the scaling behav-
ior,

xFCstd , t−A, A < 0.25. s16d

Since this dynamical scaling is completely independent of
the waiting times, it is unrelated to any aging behavior
which might occur in this model.

We now give a heuristic argument in order to understand
where the scaling form(16) and the value ofA come from.
Consider a simple ferromagnet ind.1 dimensions which is
quenched at timet=0 from an infinite-temperature initial
state to a final temperatureT,Tc. The dynamics is assumed
to be purely relaxational, i.e., without any conservation law.
Microscopically, it is well known that the configurations of
the system consist of fully ordered domains of spins, of a
typical sizeLstd, t1/z with z=2. We now perturb with a ran-

dom field of zero meanshī =0d and wish to obtain the sus-
ceptibility xFC=MFC/h from Eq. (8). First consider the case
when T=0. Then, because the spins deep inside the cluster
are ordered, the only nonvanishing contribution toxFC comes
from the spins from near the interfaces between the ordered
clusters. We denote the interface density byrIstd and have
rIstd,Lstd−1, see Refs.[1,3,8]. If wstd is the interface width,
we have

xFCstd =
1

uLuh2Ko
iPL

sistdhiL
=

1

uLuh2K o
iPinterfaces

sistdhiL , Lstd−1wstd. s17d

For a finite temperatureT.0, the order deep inside the clus-
ters is not perfect and there remains a residual contribution to
the susceptibility. We then have, for large times

xFCstd . x0 + Lstd−1wstd, Tx0 = 1 −meq
2 , s18d

where meq is the equilibrium magnetizationffor the 2D
Ising model,meq=(1−sinhs2/Td−4)1/8, see e.g. Ref.f20gg.
The dynamics of asd−1d-dimensional interface in a
d-dimensional systemsdù2d can be described by the dy-
namics of a height modelf21g of continuous height vari-
ables vj PR and the equilibrium HamiltonianHfvg=
−st /2dosj ,j8dsvj −vj8d

2 with nearest-neighbor interactions
and wheret is the effective interfacial tensionf21g. In
adopting this description, we tacitly assume that the sys-
tem is above its “roughening” temperatureTR, see e.g.
Ref. f22g, such that the fluctuations of the interface are
unboundedsrough interfaced for T.TR and with bounded
fluctuations forT,TR ssmooth interfaced. This condition
is always satisfied ford=2, since thenTR=0 and indeed
the description adopted here can be derived rigorously
f23g. On the other hand, ford=3 one hasTR<0.5 Tc and
finally, TR=` for dù4. If the dynamics of the model is
described by a Langevin equation, the squared interface
width was shown by Abraham and Upton to scale for large
times aswstd2=kv0std2l, t1/2 in 2D and wstd2, ln t in 3D

f21g. Inserting this into Eq.s17d, we find the following
leading dynamical scaling forxFC in the Glauber-Ising
model ast→`:

xFCstd − x0 , Ht−1/4 if d = 2

t−1/2sln td1/2 if d = 3,
s19d

provided thatT.TR. For dimensionsdù4, and generically
if T,TR, one expects a flat interface withwstd,const, and
consequentlyxFCstd−x0, t−1/2. Reconsidering Fig. 1, it is
easy to check that the final approach ofxFC towardsx0
only occurs at times much beyond those accessed by our
simulation.

Combining Eqs.(12) and (19), we have therefore repro-
duced the findings of CLZ in the Glauber-Ising model and
have also made clear the physical origin of these results.
Besides, a definite prediction for the logarithmic factor ind
=3 was obtained. In summary, we have for the Glauber-Ising
modelA=1/4 in 2D andA=1/2 for all dù3, up to a known
logarithmic correction in 3D.

III. SCALING OF xFC FOR LONG-RANGED
EQUILIBRIUM CORRELATORS

We now ask whether the heuristic discussion of the scal-
ing of xFC presented in the preceding section can be taken
over for systems of classL. Indeed, the main physical differ-
ence with respect to systems of classS is that although cor-
related clusters of sizeLstd, t1/z form, fluctuations do persist
in the interior of these clusters on all length scales up toLstd.
This means that one should consider an “interface width”
scaling aswstd,Lstd. This in turn leads toxFCstd,const,
andA=0 (on the other hand, since the clusters should have
no “inside,” we do not expect a termx0 to occur).

We now test this heuristic idea in the exactly solvable
mean spherical model and shall also present evidence from
the 2D Glauber-Ising model quenched onto criticality.

(1) First, we consider the mean kinetic spherical model,
see e.g.[6,12,13,24,25]. To each sitex of a hypercubic lattice
L,Zd one attaches a continuous spin variableSxstdPR,
subject to the mean spherical constraint

o
xPL

kSx
2l = 1. s20d

By analogy with the Glauber-Ising model, we also add a
random magnetic fieldhx and the equations of motion read

d

dt
Sxstd = o

ysxd
Systd − f2d − zstdgSxstd + hx + hxstd, s21d

where the noise and the random field have zero average,
khxl=hx=0, and the correlators

khxstdhyst8dl = 2T dx,ydst − t8d, hxhy = 2Gdx,y, s22d

where the temperatureT and the widthG are constants and
zstd is a Lagrange multiplier to be determined below. In ad-
dition, the noise and the field are assumed independent, i.e.,
khxstdhyl=0, and in addition the initial state is uncorrelated
in the sense thatkSxs0dhyl=0. Here and in the following the
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averagekXl is always taken over the initial conditions and

the noise, while the averageX̄ is over the random field. The
solution of this model follows standard linesf25g. Taking
Fourier transforms, the solution of Eq.s21d is

S̃sq,td =
expf− vsqdtg

Îgstd
fS̃sq,0d +E

0

t

dt8 evsqdt8

3Îgst8dfh̃sqd + h̃sq,t8dgg, s23d

with the dispersion relationvsqd=2oi=1
d s1−cosqid and

gstd=expf2e0
t dt8 zst8dg. The spin-spin correlator

C̃sq ,q8 ; t ,sd=kS̃sq ,tdS̃sq8 ,sdl is readily found and we have
in direct space the autocorrelator

Cst,sd = Cx,xst,sd

=
1

s2pd2dEB2
dqdq8eisq+q8d·xC̃sq,q8;t,sd

=
1

ÎgstdgssdFAS t + s

2
D + 2TE

0

s

du fS t + s

2
− uDgsud

+ 2GE
0

t

dt8E
0

s

ds8fS t + s− t8 − s8

2
DÎgst8dgss8dG ,

s24d

whereB is the Brillouin zone and with the definitions

Astd = s2pd−dE
B

dqe−2vsqdtC̃sq,0d, s25d

fstd = s2pd−dE
B

dqe−2vsqdt = fe−4tI0s4tdgd, s26d

and whereI0 is a modified Bessel function. For infinite-
temperature initial conditionsAstd= fstd. The mean spherical
constraints20d givesCst ,td=1, and this leads to the follow-
ing generalized Volterra integral equation:

gstd = Astd + 2TE
0

t

du fst − udgsud + 2GE
0

t

du8E
0

t

du9

3fSt −
u8 + u9

2
DÎgsu8dgsu9d, s27d

which determinesgstd. Finally, the response function is
given by the usual equationRst ,sd= f(st−sd /2)Îgssd /gstd.
At zero temperatureT=0, Eqs.s24d and s27d are identical
to those found for the spherical spin-glassf24,26g.

The field-cooled susceptibility is given by

xFCstd =E
0

t

duRst,ud =E
0

t

dufS t − u

2
DÎgsud

gstd
. s28d

At this point, it is instructive to rederive the equivalence
between the definitions28d and Eq.s8d, originally proposed
f16g for the Glauber-Ising model, in the context of the mean
kinetic spherical model. Indeed, we havesuLu denotes the
number of sites of the latticeLd

1

uLu K o
xPL

SxstdhxL
=

s2pd−2d

uLu o
xPL

E
B2

dqdq8eisq+q8d·xkS̃sq,tdh̃sq8dl.

=
s2pd−2d

uLu o
xPL

E
B2

dqdq8eisq+q8d·x

3E
0

t

dt8evsqdst8−tdÎgst8d
gstd

· h̃sqdh̃sq8d

=s2pd−d2GE
0

t

dt8E
B

dqe−vsqdst−t8dÎgst8d
gstd

=2GxFCstd, s29d

as asserted, and where we used in the second line Eq.s23d
and in the third line the field correlators22d.

After these preparations we can test our heuristic picture.
Using the techniques described in Ref.[25], we obtaingstd
by solving Eq.(27) numerically. In Fig. 2 we showxFCstd for
the three-dimensional case, starting from an infinite-
temperature initial state. We clearly see thatxFCstd saturates
rapidly. Consequently,A=0 for all temperaturesTøTc.
Similar tests can be performed for other values ofd as well.

We pause a moment in order to discuss the functional
form of the response function. IfG=0, solution of the spheri-
cal constraint gives forT,Tc the well-known exact result,
valid for all values ofd and in the aging regimess@1 and
t−s@1 is (see Refs.[6,10,12,17,18,27])

Rst,sd = r08S t

s
Dd/4

st − sd−d/2, s30d

with r08=s4pd−d/2. From Eq.s2d, we read offa=sd−2d /2 and
lR/z=d/4. We point out that this exact result fora is in
contradiction with the claims10d raised by CLZ. Further-
more, we see that the exact resultfEq. s30dg has precisely the

FIG. 2. Field-cooled susceptibilityxFCstd for the 3D kinetic
mean spherical model in a Gaussian random magnetic field of width
G=0.01 and atT=2,Tc (full curve) and T=Tc.3.96 (dashed
curve).
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form s4d predicted by local scale invariancef9,10g. A similar
test can be performed forT=Tc f6,10g, or even in a spherical
model with spatially long-ranged interactionsf13g. It is im-
portant to note that the local scale invariance predictions4d
applies to the full response functionRst ,sd and not to the part
remaining after subtraction of a stationary term, as suggested
in Ref. f18g.

(2) As a second example, we give numerical evidence
that A=0 in the 2D Glauber-Ising model quenched to its
critical point T=Tc. We used a standard heat-bath algorithm
and measured the integrated linear response through Eq.(8).
Data forxFCstd thus obtained are displayed in Fig. 3 and we
see that saturation occurs.

In summary, extending a heuristic argument of Sec. II, we
have argued that for ferromagnetic systems in classL, one
should find saturation for the field-cooled susceptibility, viz.,
xFCstd,Os1d. We have confirmed this expectation in some
models.

The heuristic arguments in this and the preceding section
can only be applied indù2 dimensions. Indeed, the aging
behavior of the 1D Glauber-Ising model at its critical point
Tc=0 is peculiar and will be discussed in the Appendix.

IV. SCALING OF THE THERMOREMANENT
RESPONSE

Since we have seen that the terms which describe the
physically interesting aging effects are only subleading in the
zero-field-cooled susceptibilityxZFCst ,sd, we discuss in this
section the scaling of the thermoremanent susceptibility
rTRMst ,sd. As we shall see, the case where the waiting times
is small needs particular consideration. It is well known[29]
that the response with respect to a fluctuation in the initial
state scales as

Rst,0d , t−lR/z. s31d

On the other hand, it can be shownf27g that there is a time
scaletp,sz, with 0,z,1, such that if the time difference
t= t−s& tp, then the response function is still the one of the

equilibrium systemRst ,sd.Rggstd while scaling sets in and
s2d holds if t* tp. For example, in the spherical model one
hasz=4/sd+2d f27g. We then have

rTRMst,sd =E
0

s

duRst,ud

=E
0

s

dtRst,s− td

=E
0

tp
dtRggs2td + sE

tp/s

t«/s

dvRft,ss1 − vdg

+E
t«

s

dtRst,s− td

.E
0

`

dtRggs2td + s−aE
0

1

dvs1 − vd−1−afRS t/s

1 − v
D

+ c`t−lR/z. s32d

Here, following Refs.f3,27g, we have introduced a third time
scalet« such thats− t«=Os1d. In the third line, the limits
→` is taken and the last term is estimated from the mean-
value theorem, wherec` is a constant. Since we are perturb-
ing with a random magnetic field, the system is not driven to
a new equilibrium state and consequently, the first termr`

=e0
`dtRggs2td vanishes if the initial mean magnetization

was taken to be zero. As a result, we have the scaling
form, already announced in Ref.f7g

rTRMst,sd = s−afMst/sd + s−lR/zgMst/sd, s33d

where fMsxd and gMsxd are scaling functions. These results
only depend on the assumption of dynamical scaling. If, in
addition, local scale invariance applies, the form of the re-
sponse functionRst ,sd is given by Eq.s4d and thereforef7,9g

fMsxd = r0x
−lR/z

2F1S1 + a,
lR

z
− a;

lR

z
− a + 1;

1

x
D ,

gMsxd . r1x
−lR/z, s34d

and wherer0,1 are nonuniversal constants and2F1 is a hyper-
geometric function[28].

The importance of taking this finite-time correction into
account is illustrated in Fig. 4. For a fixed value ofx= t /s and
T,Tc, we plot data for the Glauber-Ising model in 2D and
3D, respectively, and the exact solution of the Langevin
equation of the spherical model, withG=0. A fully disor-
dered initial state was used. We compare the data with the
leading scaling formrst ,sd,s−a which for the times acces-
sible does not fully describe the data, but inclusion of the
second term in Eq.(33) gives a very good fit. From this fit
we find the nonuniversal values ofr0,1 listed in Table II. In
order to achieve this, however,a must take the values given
in Table I. Specifically, for the Glauber-Ising model withd
ù2 (which is in classS), we must takea=1/2, while if we
had chosena=1/4 asadvocated by CLZ, only a fit of very
low quality is obtained, see Refs.[7,30]. This provides fur-
ther evidence against the proposed Eq.(10). We point out

FIG. 3. Field-cooled susceptibilityxFCstd in the 2D Glauber-
Ising model at the critical temperatureT=Tc<2.269. An alternating
field hi = ±h with h=0.05 was used. Systems with 3003300 spins
have been simulated.
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that having fixedr0,1 for a given value ofx, the scaling of
rTRMst ,sd is completely fixed and does not contain any fur-
ther tunable parameter. Repeating the comparison between
the data and Eq.(33) for other values ofx therefore allows to
test the predictions of local scale invariance and this has been
carried out in detail for the 2D and 3D Glauber-Ising model
[7,11]. While in the 2D Glauber-Ising model the curvature of
the data, see Fig. 4(a), already suggests the presence of
strong finite-time corrections to scaling, in 3D it might ap-
pear at first sight that a reliable value of the exponenta could
be derived, see Fig. 4(b). However, the inclusion of the lead-
ing correction term from Eq.(33) together with the study of
the x dependence of the coefficients, as carried out in Ref.

[7], is required in order to avoid a systematic error in the
determination ofa. In this way the expected valuea=1/z
=1/2 isreconfirmed. Carrying out the analysis of the scaling
functions as described in Ref.[7], we can conclude that local
scale invariance holds in the 2D and 3D Glauber-Ising model
with T,Tc.

A closer inspection of Table II shows that in the spherical
model with d.4 andT,Tc, the signs ofr0 and r1 change
and that the term which was treated as a correction in Eq.
(33) becomes dominant. Indeed, the exactly known expo-
nentsa=sd−2d /2 andlR/z=d/4 cross at the upper critical
dimension d* =4. We conclude that the scaling argument
used in Ref.[7] to derive the relationa=sd−2+hd /z for
classL systems should rather be viewed as a hyperscaling
argument.

V. CONCLUSIONS

In this paper, we have analyzed the long-time behavior of
integrated response functions in aging spin systems without
disorder. While from the scaling form(2), one might have
expected a simple scalingxst ,sd,s−a of the integrated re-
sponse, we have shown that matters are more complicated.
Conceptually, the issue can be clarified by studying the scal-
ing of thefield-cooledsusceptibilityxFCstd and we have seen
that two broad classes of systems must be distinguished,
called classesS and L, according to whether their equilib-
rium spin-spin correlator shows short-ranged or long-ranged
spatial decay, respectively[7]. Specifically, we have found
the following.

(1) For systems of classS, we have

xFCstd − x0 , t−A, s35d

whereTx0=1−meq
2 and meq is the equilibrium magnetiza-

tion. The exponentA is related to the interface width ex-
ponentk. If wstd, tk, we have seen that

A =
1

z
− k sclassSd, s36d

but provided that the temperatureT.TR is above the rough-
ening temperatureTR.

(2) For systems of classL, Eq. (35) still holds with x0
=0, but with

FIG. 4. Scaling of the thermoremanent susceptibilityrst ,sd
=MTRMst ,sd /h as a function of the waiting times for a fixed value
of x= t /s for three models.(a) The 2D Glauber-Ising model atT
=1.5 and withx=7 (points) is compared with the scaling prediction,
Eq. (33) (full gray curve), and with the simple scaling form
rst ,sd,s−1/2 (dashed curve). (b) Same comparison for the 3D
Glauber-Ising model atT=3 and withx=5. (c) The 3D spherical
model atT=2 andx=5. The full curve is the exact solution of the
Langevin equation, the dash-dotted line the scaling prediction[Eq.
(33)], and the dashed line the simple formrst ,sd,s−1/2.

TABLE II. Values of the autoresponse exponentlR and of the
parametersr0 andr1 in the Glauber-Ising model in two dimensions
at T=1.5 and in three dimensions atT=3 and of the mean spherical
model atT=2 in several dimensions. An infinite-temperature initial
state was used. The dynamic exponentz=2.

Model d lR r0 r1

Glauber-Ising 2 1.26 1.76±0.03 −1.84±0.03

3 1.60 0.10±0.01 0.20±0.01

Spherical 3 1.50 0.180±0.01 −0.081±0.002

3.5 1.75 0.20±0.01 −0.126±0.003

4.5 2.25 −0.056±0.003 0.095±0.002
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A = 0 sclassLd. s37d

(3) The scaling of the thermoremanent susceptibility
rTRMst ,sd may be affected by a relatively large finite-time
correction term, see Eq.(33) where the associated scaling
functions can be found explicitly from local scale invariance.

(4) Consequently, the leading time dependence of the
field-cooled susceptiblity xZFCst ,sd−x0,xFCstd−x0, t−A,
whereas the aging terms expected from integrating Eq.(2)
merely arise as finite-time corrections.

Our results reproduce the entirety of known results in ag-
ing ferromagnetic spin systems withdù2 but do not require
to postulate an upper critical dimensiond=3 in the Glauber-
Ising model. For systems of classS, the exponent relation
a=1/z is reconfirmed while the proposed Eq.(10) is invali-
dated.

If questions of simulational efficiency play no role, it
might be technically easier to avoid both the zero-field
cooled (ZFC) and the thermoremanent(TRM) protocol, as
already suggested in Ref.[18]. For example, we propose the
“intermediate” protocol, which runs as follows: quench the
system att=0 without a magnetic field and fix a waiting time
s. At time s/2, turn on a random magnetic field and keep it
on until the waiting times. Then turn the field off again and
measure the magnetization at the observation timet.s. The
intermediate integrated responseis

rIntst,sd = MIntst,sd/h: =E
s/2

s

duRst,ud

= s−af Intst/sdf1 + oss−lR/zdg s38d

and should be free of the leading term coming from the in-
terface roughness as well as the finite-time correction of or-
derOss−lR/zd. We illustrate this for the mean spherical model
in Fig. 5, where it can be seen that already for times much
shorter than those in Fig. 4scd, the linear responses28d ob-
tained from the exact solution of the Langevin equationswith
G=0d converges to the expected power law, witha=0.5 in

3D. It would be interesting to see if a recent method to
calculate xZFCst ,sd directly in the Glauber-Ising model
f31g fwhich in turn is based on a method to estimateRst ,sd
in an Ising model with a different dynamics modified from
Glauber dynamicsf32gg could be generalized to find
rIntst ,sd as well.
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APPENDIX

In the main text, we studied the time-dependent scaling of
the integrated responsexFCstd. We shall now attempt to ex-
tract further information on the scaling ofRst ,sd when t<s.
Note that thescalingform Eq.(2) cannot be used close to the
upper integration limit, since there the conditiont= t−s@1
needed for the validity of Eq.(2) does not hold. Rather, one
might argue that there should be some time scalet* such that
Eq. (2) holds for waiting timess& t* . If in addition t− t* is
some “small” constantDt* for large times, we may write

xFCstd =E
0

t*

dsRst,sd +E
t*

t

dsRst,sd

. t−aE
t/t*

`

dvva−1fRsvd + st − t*dRst,t8d

. t−aE
1

`

dv va−1fRsvd + Dt*Rst,t8d, sA1d

where we used the mean-value theorem andt8P ft* ,tg. If the
second term in Eq.sA1d is the leading one, then comparison
with the scaling ofxFC gives Rst ,td.1+Ost−Ad, provided
the conditions stated above are satisfied. Here the value of
the constant is fixed from the physical consideration that
for t= t−s!1 the system should still be in quasiequilib-
rium.

We can now try and see to what extent this argument
applies in specific models and to what extent it might be
justified. The only model of classSwe studied here is the 2D
Glauber-Ising model atT,Tc. Thena=1/2 andA=1/4, and
the contributions close to the upper integration limit are in-
deed dominant. One should therefore expect lim«→0Rst ,t
−«d.cste. +Ost−1/4d for large t.

On the other hand, we have considered in Sec. III several
examples of systems of classL, where we have foundA=0
throughout. First, for the spherical model, the exact expres-
sion for Rst ,sd gives Rst ,t−2«d= fs«dÎgst−2«d /gstd.1

FIG. 5. Integrated linear responserIntst ,sd according to the in-
termediate protocol for the 3D mean spherical model withT=2, an
infinite-temperature initial state, andx=20. The full curve is the
exact solution, the dashed line is a power-law fit,s−0.5.
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+«ff8s0d−g8std /gstdg+Os«2d. Since for larget one hasgstd
, tc with a known exponentc [6,12], we obtain for«→0
Rst ,t−2«d.cste. +Ost−1d, and have indeedA=0, since the
constant is different from unity. Second, a similar conclusion
should also hold true for the 2D Glauber-Ising model at criti-
cality. Third, an analogous result can also be obtained in the
2D linear voter model at criticality[33], where the exact
response function lim«→0Rst+« ,td,sln td−1.

Additional studies to test these conclusions further would
be welcome.

The heuristic arguments presented in this paper assume
dù2 space dimensions throughout. As an illustration what
can happen in one dimension, we now consider the 1D
Glauber-Ising model at its critical temperatureTc=0. This
model has been investigated countless times and we shall not
repeat the details of its definition(see, e.g., Refs.[34,35] and
references therein) here. The exact autoresponse function is

Rst,sd = e−st−sdI0st − sdf1 − C1ssdg, sA2d

where C1ssd is the equal-time correlator of two spins on
neighboring sites. For an infinite-temperature initial state,
one hasf35g

C1ssd = e−2sFI1s2sd + 2o
n=1

`

In+1s2sdG
= 1 −e−2sfI0s2sd + I1s2sdg, sA3d

where in the second step the Bessel-function identityez

= I0szd+2on=1
` Inszd was used. It has recently been shown that

for any initial correlators of the power-law formCinisrd
, r−n with nù0, the leading scaling behavior ofC1ssd for
s large is unchangedf35g. Therefore, for any power-law
correlated initial state we have for larget

lim
«→0

Rst,t − «d .
1

Îp
t−1/2. sA4d

Comparison of Eqs.sA1d andsA4d, if admissible, would then
give A=1/2. Such a result would appear to be natural in the
setting of Sec. II if we recall that atT=0 there are fully
ordered domains where the width of the domain walls is one
lattice constant, thuswstd=cste.

On the other hand, integrating Eqs.(A2) and (A3), the
field-cooled susceptibility becomes for an uncorrelated initial
state

xFCstd =E
0

t

ds e−t−sI0st − sdfI0s2sd + I1s2sdg, sA5d

and we show this in Fig. 6. Clearly, there is saturation for
large times and in the spirit of Sec. III one would conclude
A=0. Therefore, a naive application of the arguments valid
for dù2 would lead to two different values ofA in this 1D
model. We leave open the question how this apparent incon-
sistency might be resolved.
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