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We study the complexation of long thin semiflexible polymer chains with an oppositely charged
cylinder. Starting from the linear Poisson–Boltzmann equation, we calculate the electrostatic
potential and the energy of such a charge distribution. We find that sufficiently flexible chains prefer
to wrap around the cylinder in a helical manner, when their charge density is smaller than that of the
cylinder. The optimal value of the helical pitch is found by minimization of the sum of electrostatic
and bending energies. The dependence of the pitch on the number of chains, their rigidity, and salt
concentration in solution is analyzed. We discuss our results in the light of recent experiments on
DNA complexation with cylindrical dendronized polymers. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1707015#

I. INTRODUCTION

Compactification of DNA into;100-nm large com-
plexes with oppositely charged proteins and polycations is an
important tool in gene therapy1 to deliver DNA into an in-
fected cell.2 In particular, DNA condensates with
polylysine3,4 and polyamines5,6 are used for these purposes.
Nucleosome core particles and supercoiled DNA’s are also
fundamentally important biological objects which involve a
DNA arrangement in a helical manner. Although the com-
plexation and aggregate formation of chains of various flex-
ibilities and of different lengths with oppositely charged
spheres and cylinders has been studied theoretically,7–16

experimentally,4,17–22and by computer simulations,23–30sev-
eral features of this phenomenon are still not completely un-
derstood.

One of these features is overcharging of a cylinder
by adsorbed oppositely charged chains predicted
theoretically15,16and recently reported experimentally for cy-
lindrical DNA/dendrimer complexes.19 In contrast, DNA
wrapped around spherical dendrimers was shown to form
preferentially neutral complexes.18,21,22 Nature also uses
similar techniques to compact the genetic material in cells,
where the nucleosome can be substantially overcharged by a
DNA molecule wrapped around it.31,32Another aspect is the
theoretically predicted release of a chain from a sphere
at high salt concentrations8 that reminds salt-induced DNA
release from the nucleosome observed experimentally.33,34 In
experimentsin vitro at higher salt concentrations, it has been
reported that DNA attaches stronger to cylindrical
dendrimers20 but weaker to spherical ones.21 The physical
origin of this effect is not clear yet.

In many cases, electrostatic interactions play a dominant
role in the formation of complexes between highly charged
macromolecules. Wrapping of DNA duplexes around a
cylindrical/spherical object is, however, a formidable electro-
static problem, which can involve chiral interactions between
DNA helices.35 The details and discreteness of charge distri-

bution on DNA might also be important~DNA overwinding
from 10.5 bp/turn in solution36 to about 10.2 bp/turn in
nucleosomes31,32,37 occurs!. Large charge densities of both
objects introduce additional complications, since the linear
Poisson–Boltzmann theory may not apply. However, to un-
derstand the basic physical properties of complexes, it might
be sufficient to start from the simplest model.

In this article we consider the wrapping of thin semiflex-
ible charged chains around an oppositely charged cylinder.
We calculate the electrostatic potential and energy of the
helical complex using linear Poisson–Boltzmann theory.
Hence, our calculations extend those of Ref. 12, because the
full solution of the linear Poisson–Boltzmann equation is
considered for the particular charge distribution and not sim-
ply a superposition of Debye–Hu¨ckel potentials. This has
consequences for the amount of DNA adsorbed on a cylin-
der. Within our model neutral and undercharged complexes
are preferred, whereas the calculations of Ref. 12 predict a
significant overcharging. We compare the predictions of the
model with available theoretical and experimental data. In
the end we discuss some possible extensions of the model.

The paper is organized as follows. In Sec. II the model is
outlined and the electrostatic energy for a helical charge dis-
tribution on a cylinder is calculated. In Sec. III the electro-
static energy for a helical charge distributions is determined.
Results for the helical pitch are presented and discussed in
Sec. IV. Finally, Sec. V summarizes our findings.

II. ENERGY CALCULATION

A. Model and approximations

We solve thelinear Poisson–Boltzmann equation for an
infinitely long, positively charged cylinder with negatively
charged semiflexible strings adsorbed on its surface in a he-
lical conformation. The strings are considered to be infinitely
thin charged lines. No fluctuations of the strings on the cyl-
inder surface are considered~zero-temperature solution, the
helices are ideal!. The cylinder has the radiusa and the sur-
face charge densitysc ~the linear charge density ise0tc , e0

is the elementary charge!. For simplicity, no distribution ofa!Corresponding author. Electronic mail: a.cherstvy@fz-juelich.de
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the electrostatic potential inside the cylinder is considered.
Every string is characterized by a linear charge densitye0tp

and the mechanical persistence lengthl p . The water is con-
sidered as a dielectric continuum~no discreteness effects!
with the dielectric constant«'80. The dielectric constant of
the cylinder interior is the same as in the bulk solution~no
image forces!. No effects of charge fluctuations and correla-
tions are considered.

B. Electrostatic energy

The electrostatic energy of such a charge distribution
follows from the electrostatic potentialf(rW) with the charge
densityr(rW) according to

Eel5
1

2 E d3rWf~rW !r~rW !

5
a

2 E0

2p

dwE
2`

`

dzf~z,w,a!s~z,w!. ~1!

The volume charge densityr is related to the surface charge
density s of the complex viar(z,w,r )5d(r 2a)s(z,w).
Cylindrical coordinates are used, where thez axis is oriented
along the axis of the cylinder. Below, we consider a helical-
like distribution of charges that suggests using a Fourier rep-
resentation of the potential and of the surface charge density,
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Note thats(z,w) in these relations may have no helical sym-
metry. In terms of Fourier components of the electrostatic
potential f̃(k,n,r ), and of the surface charge density
s̃(k,n), the general energy expression is

Eel5~2p!2
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f̃~k,n,a!s̃~2k,2n!. ~4!

C. Electrostatic potential

We now consider the complex~cylinder plus wrapped
semiflexible strings! in an electrolyte solution with the De-
bye screening lengthk21. We calculate the electrostatic po-
tential f(z,w,r ) created by the charge distributions(z,w)
using the linearized (ue0fu!kBT) Poisson–Boltzmann equa-
tion
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Applying the Fourier transformation, the equation for
f̃(k,n,r ) reads

d2f̃~k,n,r !

d~ k̃kr !2
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2S n2
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wherek̃k5Ak21k2. This is the differential equation for the
modified Bessel functions of the second kind. Its general
solution is

f̃~k,n,r !5aKn~ k̃kr !1bI n~ k̃kr !, ~7!

where the constantsa andb are to be found from the bound-
ary conditions. When the cylinder is inserted into a cylindri-
cal cell of the radiusRs , the boundary conditions on the
surface of the cylinder~Gauss theorem! and on the surface of
the cell are
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U

r 5Rs

50,
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The general solution forf̃(k,n,r ) satisfying the boundary
conditions~8! is

f̃~k,n,r !52
4ps̃~k,n!

«k̃k

3
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. ~9!

For a uniformly charged cylinder the surface charge is
s(z,w)52sc.0 and hences̃(k,n)52scd(k)dn,0 , where
d(k) is the Dirac delta function anddn,m is the Kronecker
delta (dn,m51 if n5m anddn,m50 otherwise!. The electro-
static potential is then of the forme0f0(r )/(kBT)
52jK0(kr )/@kaK1(ka)#, where l B5e0

2/(«kBT) is the
Bjerrum length andj5 l Btc is the well-known polyelectro-
lyte charge density parameter (1/tc is the separation between
unit charges along the cylinder axis!.

For a complex in an infinite volume (Rs→`), Eq. ~9!
yields

f̃~k,n,r !52
4pas̃~k,n!

«

Kn~ k̃kr !

k̃kaKn8~ k̃ka!
. ~10!

Since the fixed charges are located on the cylindrical surface,
the energy depends only on the surface potential. Equation
~4! then gives the general energy expression

Eel52a~2p!3E
2`

`

dk (
n52`

` us̃~k,n!u2

«k̃k

Kn~ k̃ka!

Kn8~ k̃ka!
~11!

in terms ofus̃(k,n)u2 for arbitrary helical charge pattern.

III. HELICES

In this section we determine the charge densitiess̃(k,n)
and the energies for an adsorbed double helix on a neutral
cylinder as well as for a double helix and multihelix ad-
sorbed on the surface of an oppositely charged cylinder. The
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first two results can be used to study certain electrostatic
properties of the double-stranded DNA. The third distribu-
tion is used in the present work to calculate the energy of a
complex of many polyelectrolyte chains adsorbed on the sur-
face of an oppositely charged cylinder in a helical manner.
As cylinder charges are distributed homogeneously on its
surface, we speak further about the ‘‘jellium’’ helices~for
DNA, for instance, the smeared out charge of adsorbed cat-
ions forms the cylinder charge!.

A. Double helix

We model a double helix by two negatively charged he-
lical strings on the cylinder surface, with a mean surface
charge densitysp . The helices are right-handed with the
helical pitchH.0 and are separated by the distanceh along

the axis of the cylinder. The charge distributions(z,w) for
the infinitely long helix38 is given by is given by

s~z,w!5psp(
m

$d~w12pm2gz!

1d@w12pm2g~z1h!#%, ~12!

whereg52p/H. The Fourier coefficients of the charge den-
sity ~12! are given by

s̃~k,n!5spd~k1ng!@11exp~2 ingh!#/2. ~13!

Using the Fourier coefficients~10! and Eq.~2! the electro-
static potential created by a charge distributions(z,w) is the
sum of harmonics,

e0f~z,w,r !

kBT
52jp

K0~kr !

kaK1~ka!
22jp(

n51

`
$cos@n~w2gz!#1cos@n~w2gz!2ngh#%Kn~knr !

knaKn8~kna!
, ~14!

where jp5 l Bhtp and h5A11(2pa/H)2. The renormal-
ized reciprocal screening length fornth harmonic is

kn5Ak21n2~2p/H !2. ~15!

The termn50 in Eq. ~14! corresponds to the potential
f0(r ) of a uniformly charged cylinder. The terms withn
Þ0 are ‘‘corrections,’’ which reflect the helicity of the
charge distribution. These potential terms vary along the he-
lix and may produce an accumulation of mobile cations
in the vicinity of the negatively charged helical strings~cf.
Fig. 1!.

By evaluation of the integral of Eq.~11!, we obtain the
electrostatic self-energyEel per pitch~linear energy density!
as the sum of harmonics,

Eel5
4p2sp

2a2

« H K0~ka!

kaK1~ka!

2 (
n51

`
@11cos~ngh!#Kn~kna!

knaKn8~kna! J .0. ~16!

Term with n50 corresponds to the self-energy of a uni-
formly charged cylinder with surface charge densitysp . The
terms withnÞ0 again are corrections to this energy caused
by the helicity of the charged strings.Eel @Eq. ~16!# has a
minimum at h5H/2, where the electrostatic repulsion be-
tween the helical strings is minimal. WhenH decreases,kn

increase and the electrostatic interaction becomes effectively
better screened. Thus the sum in Eq.~16! favorsH→0. The
value of each term in the sum decreases withk anda, since
the functionKn(ka)/@2kaKn8(ka)# decays withka.

In the limit h→0, we obtain the energy density for a
single strand,

Eel5
4p2sp

2a2

« H K0~ka!

kaK1~ka!
22(

n51

`
Kn~kna!

knaKn8~kna!J .

~17!

This corresponds to the self-energy of the helix considered in
Ref. 12. The energy terms are, however, different. The au-
thors of Ref. 12 findEel;tp

2h(h21), whereas our solution
of the Poisson–Boltzmann equation yieldsEel;tp

2h2. This
difference has severe consequences on the charge of the cyl-
inder and on the possibility of its overcharging by adsorbed
helices, as we will discuss in the next section.

B. Double-stranded jellium helix

We now consider two negatively charged helical strings
with a helical pitchH adsorbed on the surface of a positively
charged cylinder. The charge density reads

FIG. 1. Electrostatic potential of a double helix withB-DNA parameters,
with no adsorbed cations, according to Eq.~14! with w50 at physiological
salt concentration. The potential variation decreases with increasing separa-
tion from the molecular axis increases~lines indicate the potential of the
corresponding uniformly charged cylinder!. If the counterion condensation
is taken into account, the potential variation along the molecule will be less
than unity, and the linear Poisson–Boltzmann theory becomes strictly valid.
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s~z,w!52sc1psp(
m

$d~w12pm2gz!

1d@w12pm2g~z1h!#%, ~18!

and s̃(k,n)52scd(k)dn,01spd(k1gn)@11exp
(2ingh)#/2. The electrostatic energy density of the charge
distribution ~18! is given by

Eel5
4p2sc
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kaK1~ka!
~12u!2

2u2(
n51

`
@11cos~ngh!#Kn~kna!
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where we introduced the ratio

u5
sp

sc
5

htp

tc
.

The repulsion between the strings disfavors full compensa-
tion of the cylinder charge by wrapped strings, and the com-
plex is usuallyundercharged. In the limit h→0, the energy
density of a single string is obtained. Finally,Eel decreases
nearly exponentially withk at largeka.

The molecule with the charge distribution~18! can be
considered as a model for aB-DNA helix: charges on the
strands represent the phosphates and cylinder charge corre-
sponds to adsorbed cations, smeared on the DNA surface~for
B-DNA:32 a'10 Å, h'0.4H).39

C. Multistranded jellium helix

The model for two strands can easily be extended to a
situation with many adsorbed strands. ForNs helical nega-
tively charged strands, equally separated on the surface of a
positively charged cylinder, the charge distribution is given
by

s~z,w!52sc1psp(
m

(
s50

Ns21

d@w12pm

2g~z1sH/Ns!#. ~20!

Here sp denotes the mean surface charge density for each
string andH/Ns is the separation between the strings along
the cylinder axis. If the total charge density of the strings
Nssp52sc , they totally compensate the charge of the cyl-
inder. The electrostatic energy density of the charge density
~20! is given by

Eel5
4p2sc

2a2

« H K0~ka!

kaK1~ka!
~12u!2

2u2(
j 51

` 2K jNs
~k jNs

a!

k jNs
aKjNs

8 ~k jNs
a!J . ~21!

The productjNs gives the index of the functionsKn(kna).
For Ns52, the expression~21! turns into Eq.~19! @only the
terms with evenn survive in Eq.~19! at h5H/2]. The en-
ergy density for a single string follows forNs51. This cor-
responds to the situation considered in Ref. 12. However, the

expressions for the total energy of the cylinder1helices are
different ~cf. Sec. III B!. This has consequences for the ef-
fective charge of the complex.

The first term in Eq.~21! vanishes when the strings fully
compensate the charge of the cylinder. Thus this term favors
a finite value ofH, i.e., a helical conformation of the strings.
The second term~the sum! represents the repulsive interac-
tion among the strings. The sum is always negative, because
Kn8 is negative. Hence this term will lead to a larger pitch the
one given by the first term alone. As a consequence, the
complex will at best be neutral or its effective number den-
sity of charges,teff5tc2htp , will exhibit the same sign as
the cylinder, in contrast to the findings in Ref. 12.

The convergence of the series in energy expressions
~16!, ~19!, and ~21! depends on the ratiok/(2p/H). If the
argument of the Bessel functionkna grows substantially
with n, the nth term in the sum~16! decreases rapidly with
n. Thus, for relatively largeH (k@2p/H), the contribution
to kna with increasingn is small and the convergence of the
series is slow. In the opposite limit (k!2p/H), the conver-
gence is fast. Thus, with increase ofH the summation be-
comes less accurate and we have to take into account more
terms in the sum to achieve the same precision. The conver-
gence of the series is better for a larger number of adsorbed
strings,Ns ~at the sameH).

D. Bending energy

The mechanical bending energy (Ebend) associated with
the rigidity of a string disfavors the helical conformation,
which is favored by charge neutralization of the complex.
Larger persistence lengthsl p and smaller cylinder radiia
result in a higher bending energy for the wrapped conforma-
tion. Parametrization of the radius vectorrW(s) along the he-
lix, rW(s)5$a cos@2ps/(hH)#,asin@2ps/(hH)#,s/h%T, yields for
the energy density along the cylinder withNs wrapped
strings,

Ebend~H !'NskBT
l p

2
lim
l→`

1

l E2 l /2

1 l /2S ]2rW~s!

]s2 D 2

ds

5NskBT
l p

2a2

~2pa/H !4

@11~2pa/H !2#3/2, ~22!

whereudrW(s)/dsu51. This energy is the same as used in Ref.
12. Other effects, which can affect the wrapping of the
chains, are considered in the next section.

IV. RESULTS AND DISCUSSION

A. Linear Poisson–Boltzmann approach

The optimal helical pitch of the complexH is found by
minimizing the total-energy density

E~tp ,tc ,k,Ns ,H,a!5Eel~tp ,tc ,k,Ns ,H,a!

1Ebend~H,a,l p ,Ns!. ~23!

Figure 2 shows results forH at various string numbersNs in
the case of constantsurface charge densityu51 of the
strings and of the cylinder. As expected, the optimalH value
increases with increasing chain stiffness. The optimalH also
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increases withNs because of the higher total bending
energy.40 For largerk the optimal pitch increases since the
electrostatic interaction is more efficiently screened and the
same bending energy leads to an energy minimum at larger
H ~dashed lines in Fig. 2!.

For constantlinear charge densitiestp and tc and for
weakly charged chains~when tp!tc), the electrostatic en-
ergy has a minimum at a finite value ofH and thus the
helical conformation is favored for smallNs values. Larger
persistence lengthsl p disfavor wrapping~Fig. 3!. Conse-
quently, a smaller fraction of the cylinder chargeu5sp /sc

5htp /tc is compensated by wrapped chains~cf. Fig. 3!.
The pitch increases withNs and with l p ~Fig. 3!. For given

tp andtc and beyond a certain number of adsorbed strings,
the energy difference between a helical conformation and a
conformation with straight rods is rather small. Hence we
may observe both kinds of conformations, in particular when
we take thermal fluctuations of strings into account. This
applies to the system withNs.5 in Fig. 3. Vice versa, for a
given Ns there is a threshold ratiotp /tc above which the
straight conformation is almost as favorable as the helical
one.

With an increase of the cylinder radius, the correspond-
ing electrostatic energy decreases for fixed linear charge den-
sities. That may lead to higher values of the helical pitch
~althoughEbend decreases! and to a weaker charge neutral-
ization of the cylinder by wrapped strings~Fig. 3!. With de-
creasing linear charge densities, the value of the helical pitch
increases more rapidly with the persistence length. Please
note that in Fig. 3 such largetp andtc values are used that
the linear Poisson–Boltzmann theory is no longer strictly
applicable. But, it will provide an estimation of the features
following from the full theory. With increasing salt concen-
tration, the value of the optimal helical pitch increases for
weakly charged chains~Fig. 4!. At small k, the electrostatic
interaction between string and the cylinder is strong enough
to compensate a large portion of the cylinder charge, whereas
with increasingk the neutralization fractionu decreases rap-
idly. Figure 4 shows this dependence forNs51 and for sev-
eral values of the persistence length.

Our theory agrees with experiments on DNA/dendrimer
complexes which display an increase of the pitch with de-
creasing dendrimer charge density.19 Theoretical predictions
of Ref. 12 also indicate that the straight conformation of a
single string adsorbed on an oppositely charged cylinder be-

FIG. 2. Optimal helical pitch of the complex withNs equidistant strings as
a function of their persistence length for the parametersu51, a510 Å, and
sc5sB2DNA516.8mC/cm2 @Eq. ~21! is used#. The dots on the curves de-
note the points with an energy depth of 0.1kBT/Å, compared to theH
→` state.

FIG. 3. Optimal helical pitch of the complex and its charge neutralization
fraction u for constanttp,c and for various chain numbers. Parameters:a
510 Å anda520 Å, k51/(20 Å), tc51/Å, andtp50.1/Å ~the cylinder
is ten times more charged than each string!.

FIG. 4. Optimal helical pitch of the complex and its charge neutralization
fraction as a function ofk for Ns51 and for several values of the persis-
tence lengthl p . Other parameters are the same as in Fig. 3.
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comes favorable at high salt concentrations. Our model also
shows that for a fixed number of stringsNs the optimalH
increases whenk increases~cf. Fig. 2!, becauseEel de-
creases and the energy minimum shifts to largerH. In ex-
periments, the pitch of DNA wrapping around dendrimers
indeed increases withk for spherical21 dendrimers, but it
decreases for cylindrical dendrimers.20,41 One might argue
that the DNA persistence length decreases at high salt con-
centrations, because the electrostatic42 persistence length
l p,el5 l B /(4k2bp

2) decreases. The DNA could then wrap
denser around the cylinder. However, such effects should oc-
cur for spherical complexes also, but have not been observed
in experiments.

Another unresolved issue is the charge of DNA/
dendrimer complexes. Preferentially neutral complexes of
DNA with spherical dendrimers were observed in experi-
ments of Refs. 21 and 22, in contrast to a pronounced~up to
two times! overcharging of cylindrical dendrimers by
wrapped DNA reported in Ref. 19. The adsorption/attraction
of cylindrical complex onto a positively charged silica sur-
face was used as an evidence for overcharging in Ref. 19. To
have this attraction, however, the overcharging may not be
required, since the negative DNA charges are closer to the
silica surface than the positive charges of the dendrimer.
Hence advanced experiments are required to understand the
nature of a possible overcharging of cylindrical DNA/
dendrimer complexes.

B. Extensions of the model

We summarize below a few possible extensions of the
model.

~i! In the main text the adsorption of chains directly on
the cylinder surface was considered. At nonzero temperature
this is entropically unfavorable. For instance, the free energy
penalty upon confinement of the chain of the lengthL@ l p

within the cylinder of diameterd is proportional to L,
Fcon f;kBT(L/ l p)ln(lp /l). Here l5 l p

1/3d2/3 is the so-called
deflection length46 ~see also Ref. 47!. The minimization of
Eel1Fcon f would then lead to an optimal thickness of the
layer of adsorbed polymer. Like for the polyelectrolyte ad-
sorption on the plane,48 the chain may start to adsorb on the
cylinder only atsc.sc

th . The entropic repulsion between
the chains within the layer is expected to become more pro-
nounced withk, like for DNA adsorption on a plane.49 An-
other entropic effect is the counterion release upon adsorp-
tion of a polymer chain on an oppositely charged
macroion.10,16 This occurs when the polymer is not directly
on the cylinder surface. Its quantitative investigation requires
the full calculation of the ion distribution around the polymer
and the cylinder,50 before and after the polymer adsorption.

~ii ! We considered infinitely long chains and the mobile
ions were assumed to ensure screening only, with no adsorp-
tion onto the surface of the cylinder. In reality, the polymer
chains may have a finite length and the mobile cations can
also be adsorbed on the surface of a highly charged macro-
ion. Then the coverage should be determined self-
consistently, like in the problem of competitive adsorption in
electrochemistry.51 A proper free-energy functional can be
constructed on the basis of the Flory theory.52

~iii ! Several mechanisms of macroion overcharging by
oppositely charged polymers were suggested in the
literature.10,12,15,16,53One mechanism, which is relevant for
adsorption on curved surfaces, suggests that the adsorption
of highly charged semiflexible chains of finite radius around
a cylinder may be accompanied by charge neutralization
along their contact~like for DNA wrapping around the his-
tone core in the nucleosome32!. Then excess charges on the
outer chain surface appear, and their electrostatic repulsion
produces a spontaneous curvature of the chain towards the
cylinder. This would change the calculated helical pitch and
may even lead to an overcharging of the complex.

V. CONCLUSIONS

In the present article, we have analytically calculated the
energy of the helical conformation of charged strings on the
surface of an oppositely charged cylinder and the depen-
dence of the helical pitch on the model parameters. We have
calculated the electrostatic potential created by a helical
charge distribution and the energy of the system in such a
potential. The present work extends the treatment of Ref. 12
for an arbitrary number of helical strings. We have also
shown that the transition from a helical to a straight confor-
mation is a continuous transition, rather than an abrupt one.
In our pure energy minimum solution we do not observe the
pronounced overcharging of the complex, reported in Ref. 12
on the basis of a superposition solution for interaction ener-
gies. We rather find neutral or undercharged complexes. We
currently extend this Poisson–Boltzmann treatment to
spherical complexes. The results will be reported elsewhere.
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19I. Gössl, L. Shu, D. Schlu¨ter, and J. P. Rabe, J. Am. Chem. Soc.124, 6860
~2002!.
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