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Benzaldehyde lyase from the Pseudomonas fluorescens catalyzes the reaction of aromatic aldehydes with methoxy and dimethoxy acetaldehyde
and furnishes (R)-2-hydroxy-3-methoxy-1-arylpropan-1-one and (R)-2-hydroxy-3,3-dimethoxy-1-arylpropan-1-one in high yields and enantiomeric
excess via acyloin linkage. Aromatic aldehydes and benzoins are converted into enamine-carbanion-like intermediates prior to carboligation.

Enantiopure 2,3-dioxygenated aryl propanones are highly There are several methods in the literature for the synthesis
valuable chiral synthons useful for the synthesis of various of rac-2,3-dioxygenated aryl propanone derivatitelsyt
biologically active molecules such as the 1,4-benzodioxanethere are few examples of the enantioselective synthesis of
framework, which has often been found in biologically active these compounds. Yuen et al. synthesiZeX,3-dihydroxy-
natural product$.These compounds are important starting 1-phenylpropan-1-one by the addition of a phenylmetallic
materials for the synthesis of cytoxazone (a novel cytokine reagent to 1,2-isopropylideneglyceraldehyde followed by
modulator)? the side chain of taxol, and-Bhethoxyhydno-
carpin, which has multidrug pump inhibitor actiVitfScheme
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the oxidation of the newly formed hydroxy group by Moffat's On the basis of the preliminary information available to
reagen®. us from our previous work with BAL-mediated carboligation
In this context, the enantioselective-C bond-forming reactions of aromatic aldehydes with acetaldehyde, we tried
reaction using an enzyme, i.e., a ThDP-dependent enzymea series of acetaldehyde derivatives for the enantioselective
appears to be a highly promising process. Thiamin-dependentarboligation reaction of aromatic aldehydes (Scheme 3).
enzymes have been used for various cartmarbon bonding
reactions@ Transketolases transfer an active glycolaldehyde _
group from a ketose donor to an-hydroxyaldehyde Scheme 3
acceptof® Pyruvate decarboxylase (PDC), benzoyformate o
decarboxylase (BEID), fand Iphenylpyrluvate decargoxylase 0 och H OCH, )Oj\ o o
enzymes are capable of catalyzing acyloin-type condensation OCH H OCH,
reaction leading to formation of chiral-hydroxy ketoneg. Ar)l\(‘):kOCHa ‘TLa A T BAL Ar)l\(‘)?ocm
None of the above-mentioned enzymes are capable of 3 1 2
catalyzing the carboligation reaction of aromatic aldehydes
with derivatives of acetaldehyde. _ o
In our ongoing studies, we reported the ability of benz- Neither h.a_logenated acetaldehyde derlyatlves nor glyoxal
aldehyde lyase (BAL), a novel thiamin diphosphate (ThDP)- 9ave positive results, but metho>§y and dimethoxy acetald_e—
dependent enzyme froRs. fluorescens Biar |, to catalyze ~ hydes were found to be good choices from among the readily
the enantioselective formation dR and ©)-benzoins and ~ available functionalized agetaldehyde derlvgtlves.
(R)-2-hydroxypropiophenone Rj-2-HPP) derivatives via Benzaldehydel(g) was dissolved in potassium phosphate
C—C bond cleavage and-€C bond formation. R)-2-HPp  buffer (80 mL, 50 mM, pH 7.0, containing MgS(2.5 mM)
derivatives are formed in preparative scale by benzaldehyde2nd ThDP (0.15 mM)) containing 20% DMSO and methoxy
lyase (BAL)-catalyzed €C bond formation from aromatic ~ acetaldehyde. After the addition of BAL, the reaction was
aldehydes and acetaldehyde in buffer/DMSO solution with @llowed to stand at room temperature. The reaction was

remarkable ease in high chemical yields and high optical monitored by HPLC with a chiral column. After 48 h no
purity® (Scheme 2). more change was observed and purification of the crude

product by column chromatography gaw-2-hydroxy-3-

I | hoxy-L-phenylpropan-1-on@d) in 94% yield (ee>
98%) (Table 1). A similar reaction was carried out with

Scheme 2 dimethoxy acetaldehyde, and the correspondifRy-2¢
o o] hydroxy-3,3-dimethoxy-1-phenylpropan-1-orgs)Y was ob-
ArJ\rAf + CHaCHO BAL AF)J\‘/ tained in 91% yield and ee 98%.
OH OH This reaction was carried out with a wide range of aromatic
BAL T aldehydes and heteroaromatic aldehydes, and the correspond-
BAL
0 0 |
2Ar)J\H Ar)LHJr CHACHO Table 1. Synthetic R)-2-HPP Derivatives
ARCHO (R)-2a—j (R)-3a—c
1 yield (%)2 ee (%)° yield (%) ee (%)P

In this paper, we focus on the synthetic potential of BAL

. . . . ph 94 >98¢ 91 >Q8gi
w!th regard fco its ability to catalyze_€C t_)ond formation 2 4-F>CeHs 81 o4 e poe
W|th ar_omatlc aldghydes and. fungtlonallzgd gcetaldehyde ¢ 4-MeOCgHs 87 92c 79 ~ogk
derivatives to qbtaln the functionalized derl\_/at|ves of_HPP.. d 2-MeOCgH, 91 94¢
No such reaction was observed when using an aliphatic e 2-furanyl 90 95d
aldehyde other than acetaldehyde (propanal, butanal, etc.)f 4-HOCsH4 94 95¢
Carboligation with functionalized acetaldehyde derivatives 9 3-OH-4-MeOCeHs; 7?2 na
may be a new and efficient way to obtain important chiral " 2v5‘F2%6_H3I 7gh 919 o
lyox m nas. I i pyr.I _Iny b b
polyoxo compounds j  4-pyridinyl <5h <5h
(3) Stermitz, F. R.; Lorenz, P.; Tawara, J. N.; Zenewicz, L. A.; Lewis, a Acetaldehyde derivatives were used in excess amounts, and yields are
K. Proc. Natl. Acad. Sci200Q 97, 1433. based on aromatic aldehydésse value is measured immediately after
(4) (@) Krueger, K. H.Chem. Ber.1956 89, 1016. (b) Smith, L. I.; workup. ¢ Chiral HPLC analysis, Chiralcel OD column, UV detection at
Anderson, R. HJ. Org. Chem1951, 16, 963. (c) Guillot, G.Bull. Soc. 254 nm, 95:5 hexane/2-propanol, flow 0.6 mL/mfrChiralcel OD column,
Chim. Fr.1972 2393. (d) Cahnmann, Bull. Soc. Chim. Fr1937 226. UV detection at 254 nm, 90:10 hexane/2-propanol, flow 0.5 mL/min.
(e) Beracierta, A. P.; Whiting, D. Al. Chem. Soc., Perkin Trans.1B78 € Chiralpak AD, UV detection at 254 nm, 90:10 hexane/2-propanol, flow
1257. 0.7 mL/min." Not determined? Chiralpak AD, UV detection at 254 nm,
(5) Delton, M. H.; Yuen, G. UJ. Org. Chem1968 33, 2473. 80:20 hexane/2-propanol, flow 0.7 mL/mihDetected by GC-MS.Chiral-

(6) (a) Schioken, U.; Sprenger, G. ABiochim. Biophys. Act4998 1385 cel OD column, UV detection at 254 nm, 85:15 hexane/2-propanol, flow
229. (b) Turner, N. JCurr. Opin. Biotechnal200Q 11, 527. 0.8 mL/min.! Chiralcel OD column, UV detection at 254 nm, 95:5 hexane/
(7) (@) Ward, O. P.; Singh, ACurr. Opin. Biotechnal200Q 11, 520. 2-propanol, flow 0.8 mL/mink Chiralcel OD column, UV detection at 254

(b) Ward, O. P.; Baev, M. IiStereoselecte Biocatalysis Patel, R. N., nm, 97:3 hexane/2-propanol, flow 0.8 mL/min.

Ed.; Marcel Dekker, Inc.; New York: 2000; p 487.
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Scheme 4
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A)H/\\OC + (S)4a OCH;, H 3 (S)4a + Ar/LH/\OCHe,
r Hs OH OH
OH BAL BAL
(R)-3a rac.4a (R)-2a
yield:46.5% yield:45.5% only (R)-3a <—— (R)-4a ——> only (R)-2a yield47%  yield:48%
ee>98% ee>98%

ee>98% ee>98% no reaction «—— (S)-4a —> no reaction

ing acyloin derivative®a—j and3a—c were obtained in high  afforded R)-2a, (R)-3a, and §)-benzoin in optically pure
enantiomeric excess, as summarized in Table 1. The opticalform after separation of the products by column chroma-
purity of the products was determined using HPLC with a tography (Scheme 4). To obtain full conversion &)-(

chiral column, and the data were compared with those from benzoin into R)-HPP derivatives, methoxy and dimethoxy
racemic products synthesized either using classical chemicalcetaldehydes have to be used in excess and should be added

synthesis methodolodyor by racemization of chiral com-
pounds’ Since HPP generated through wild-type BAL-
catalyzed reaction is oR)-configuration, we assumed that
HPP derivatives also posse&3-€onfiguration. To determine
the absolute configurations of the produc®)-2-hydroxy-
3-methoxy-1-phenylpropan-1-on2dj was converted chemi-
cally to the known R)-2,3-dihydroxy-1-phenylpropan-1-ohe

to the reaction mixture at fixed time intervals. Some
representative examples of the synthesis of benzoins are
shown in Table 2.

Table 2. Synthetic §)-Benzoins andR)-2-HPP Derivatives

by means of a selective cleavage of ether function&flity. rac 4 (S)-4a—e (R)-2
As shown in Table 1, BAL is able to bind a broad range Ar yield (%)*  ee (%) yield (%)* ee (%)°
of different aromatic and heteroaromatic aldehydes te C2 4 pn 47 >9g¢ 48 >9gf
ThDP prior to ligation. The yield of the reaction depends b  2,4-F,CeHs 44 >98¢ 385 93f
on the structure of the aldehyde. Fluorine substitution on ¢ 4-MeOCgH,4 46 >98d 45.5 94f
the 3,5- and 2,4-positions of the phenyl ring decreased the d  2-MeOCeHs 39 > 98¢ 45 96
2-furanyl 45.5 92¢ 44 929

yield of the reaction. Pyridine carbaldehyde also furnished ©

a low yield, but furfural and-methoxy benzaldehyde gave a Acetaldehyde derivatives were used in excess amounts, and yields are
in hi ; ; ; based on benzoi®.Ee value is measured immediately after workup.

the products _m high yleldg. The steric and e,le,Ctromc d_emandCChiralpak AD, UV detection at 254 nm, 90:10 hexane/2-propanol, flow

of the substituent putatively plays a decisive role in the 0.8 mL/min.dChiralpak AD, UV detection at 254 nm, 75:25 hexane/2-

conversion rate.

In our previous communicatiorffswe showed that BAL
is also able to accept benzoin as a substrate to catalyte C
bond cleavage followed by carboligation in the presence of
acetaldehyde (Scheme 2). AccordinglR)-benzoin was
reacted with BAL in the presence of methoxy and dimethoxy
acetaldehyde; the reaction was monitored by HPLC. Addition

of the corresponding acetaldehyde derivative resulted in the

formation of R)-2-hydroxy-3-methoxy-1-phenylpropan-1-
one @a) and R)-2-hydroxy-3,3-dimethoxy-1-phenylpropan-
1-one Ba) in high yields and almost optically pure form

(Scheme 4). As anticipated, the same reaction starting from

(9-benzoin failed. Repeating this reaction witdtt-benzoin

(8) (@) Demir, A. S.; Pohl, M.; Janzen, E.; Mer, M. J. Chem. Soc.,
Perkin Trans. 22001, 633. (b) Demir, A. S.; Sesenoglu, O.; Eren, E.; Hosrik,
B.; Pohl, M.; Janzen, E.; Kolter, D.; Feldmann, R;rikelmann, P.; Mler,

M. Adv. Synth. Catal2002 344, 96. (c) Dinkelmann, P.; Kolter-Jung, D.;
Nitsche, A.; Demir, A. S.; Siegert, P.; Lingen, B.; Baumann, M.; Pohl, M.;
Muller, M. 3 Am. Chem. So@002 124, 12084. (d) Pohl, M.; Lingen, B.;
Muller, M. Chem. Eur. J.2002 8, 5289. (e) Iding, H.; Donwald, T.;
Greiner, L.; Liese, A.; Mller, M.; Siegert, P.; Grzinger, J.; Demir, A.
S.; Pohl, M.Chem. Eur. J200Q 6, 1483.

(9) Demir, A. S.; Hamamci, H.; Sesenoglu, O.; Neslihanoglu, R.;
Asikoglu, B.; Capanoglu, DTetrahedron Lett2002 43, 6447.

(10) (a) Seetharamiah, Al. Chem. Socl1948 894. (b) Nagaoka, M.;
Kunitama, Y.; Numazawa, MJ. Org. Chem1991, 56, 334.

(11) Tamura, Y.; Yakura, T.; Terashi, H.; Haruta, J.-.; Kita, Ghem.
Pharm. Bull.1987, 35, 570.
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propanol, flow 0.95 mL/min& Chiralpak AD, UV detection at 254 nm, 98:2
hexane/2-propanol, flow 0.90 mL/mihChiralcel OD column, UV detection

at 254 nm, 95:5 hexane/2-propanol, flow 0.6 mL/nfiChiralcel OD
column, UV detection at 254 nm, 90:10 hexane/2-propanol, flow 0.5 mL/
min.

The results presented here are in accord with the mecha-
nistic investigation of other ThDP-dependent enzymes. Since
structural information about BAL is still lacking, a structure-
based discussion of the observed stereocontrol is not yet
possible.

The method described herein presents the first enzyme-
catalyzed highly enantioselective synthesisR){Z-hydroxy-
3-methoxy-1-arylpropan-1-one andR)¢2-hydroxy-3,3-di-
methoxy-1-arylpropan-1-one via acyloin linkage. The reac-
tion works in organic-aqueous medium, overcomes the
solubility problem with organic substrates, and paves the way
for large-scale preparation. The products are obtained in high
yields starting from simple, easily available aromatic alde-
hydes, benzoins, and methoxy and dimethoxy acetaldehyde
via C—C bond cleavage and carboligation reactions. This

(12) Kochetkov, N. K.; Nifant'ev, E. EJ. Gen. Chem196Q 30, 1848.

(13) (a) Enders, D.; Breuer, K.; Teles, J. Helv. Chim. Actal99§ 79,
1217. (b) Enders, D.; Kallfass, ngew. Chem., Int. EQ002 41, 1743.

(14) Clecak, N. J.; Cox, R. J. (Int. Business Machines Corp.) U.S. Patent
3499763, 1970Chem. Abstr197Q 73, 89166.
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type of polyoxygenated products in optically pure form can
be used for the synthesis of many biologically active
compounds.
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