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Preface

This report comprises the Proceedings of the Workshop on Parallel / High Per-
formance Object-Oriented Scientific Computing (POOSC’03) that was held at
the European Conference on Object-Oriented Computing (ECOOP) in Darm-
stadt, Germany, on 22 July 2003. The workshop was a joint organization of
Research Centre Jülich and Los Alamos National Laboratory.

Scientific programming has reached an unprecedented degree of complexity.
Sophisticated algorithms, a wide range of large-scale hardware environments,
and an increasing demand for system integration and portability have shown
that language-level abstraction must be increased without loss of performance.

Work presented at previous POOSC workshops has shown that the OO ap-
proach provides an effective means for the design of complex scientific systems,
and that it is possible to design abstractions and applications that fulfill strict
performance constraints.

However, OO still isn’t fully embraced in high performance computing and
there is still a need for research, development, and discussion. Previous POOSC
workshops have proven that a workshop is an ideal venue for this.

For the last few years there have been no official proceedings for ECOOP
workshops, these having been replaced by free-form summaries published as the
ECOOP Workshop Reader. As in the past the POOSC organizers have reserved
the option of independently printing a workshop proceedings if warranted by the
quantity and quality of submissions. This year’s contributions have demonstrated
the depth, variety, and multidisciplinary character of this research field; this
volume comprises a selection of those papers.

We thank all the contributors, referees, attendees, and the ECOOP workshop
organizers for helping to make this workshop a highly successful event.

July 2003 Jörg Striegnitz
Kei Davis
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Object-Oriented Framework for Multi-method

Parallel PDE Software

Pieter De Ceuninck1, Tiago Quintino1,2, Stefan Vandewalle1, and Herman
Deconinck2

1 Dept of ComputerScience, Katholieke Universiteit Leuven, Celestijnenlaan 200A,
B-3001 Leuven, Belgium

2 von Karman Institute for Fluid Dynamics, Waterloosesteenweg 72, B-1640
Sint-Genesius-Rode, Belgium

Abstract. We study the application of object oriented (OO) techniques
in the design of parallel software for the numerical solution of partial
differential equations (PDEs).
The differences between the emerging multitude of methods to solve
PDEs numerically frequently force developers to limit themselves to one,
or at most, to a family of related methods. The solution for this seems
obvious: tackle the complexity with flexibility and code reuse, by using
standard OO practices.
But at first glance, different methods appear to require incompatible in-
terfaces. However, when looking at them from a software perspective, it
is possible to devise compatible interfaces. This is accomplished by sur-
passing the bounds of software engineering and working with the math-
ematical abstractions that describe these methods, allowing us to see
beyond the differences. When searching for shared functionality between
different families of methods, it is straightforward to reuse linear alge-
bra or parallel interface packages. It is hard though, to find this at the
algorithmic level and it’s even harder at the data storage level.
In this paper, we address how to provide clear interfaces and come up
with common high-level functionality that allows to maximize code reuse
and share common data structures between completely different numer-
ical methods (e.g. Finite Element and Finite Volume Methods).
We also address the ever conflicting issue of dependency between the
numerics and the physical models. Although we do not claim to solve it,
we encourage the minimisation of such links by providing some design
guidelines to avoid common pitfalls.

1 Introduction

In the last decades, the reuse of scientific software has gained a lot of attention
and several scientific manuscripts by Ahlander, Haveraaen and Munthe-Kaas
([1]), and Cai ([3]) have addressed this issue. Researchers want to add compo-
nents to an existing software package in order to be able to rapidly test new
features. A multitude of methods to solve partial differential equations (PDEs)
numerically, combined with a multitude of physical models call for a software
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environment where both the numerical methods and the physical models can
easily be exchanged.

The object oriented (OO) paradigm, as described by Meyer ([10]), suits these
needs perfectly, offering a set of key features to tackle the complexity with flex-
ibility and code reuse: encapsulation, inheritance, polymorphism and dynamic
binding. Gamma et al. present a catalog of solutions to software design problems
in the form of design patterns ([6]).

As stated by Pree ([11]) creating a framework demands clear interfaces, de-
fined by abstract classes. However, the different numerical methods appear to re-
quire incompatible interfaces. Mathematical abstractions describing these meth-
ods allow us to see beyond the differences and distill a common interface, at the
software level. We discuss these abstractions in section 3.2. They support the
development of one single multimethod solver, capable of performing simulations
based on numerical methods that have not yet been put together into one single
software package, as far as could be investigated.

The scientific work discussed in this paper has been done in the COOLFluiD
project. COOLFluiD stands for Computational Object Oriented Library for
Fluid Dynamics and is intended as a framework for numerical simulations of
physical processes, targeted at conservation laws:

∂U

∂t
+∇ · F (U) = 0. (1)

Here, U is the vector of conserved quantities and F (U) is the flux vector. For
the 2D Euler model we have

U =




ρ
ρu
ρv
ρE


 , F x =




ρu
ρu2 + p

ρuv
ρHu


 , F y =




ρv
ρuv

ρv2 + p
ρHv


 , (2)

with p and H the pressure and enthalpy of the fluid.
This requires the coming together of a number of different disciplines: physics,

mathematics, applied mathematics, numerical linear algebra, and last but not
least software development.

This paper is organised as follows. First we sketch the background of the
COOLFluiD project. In section 3 we discuss the most important elements of the
multimethod design: the mathematical abstractions, the datastructure and the
dependency between numerics and physics. Thereafter, we give a short overview
of the preliminary results and future work. We end with some concluding remarks
in the last section.

2 COOLFluiD Project

2.1 Motivation

The COOLFluiD project is a collaboration between three institutes: the von
Karman Institute for Fluid Dynamics (VKI), the Centre for Plasma Astrophysics
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of the K.U.Leuven (CPA) and the Scientific Computing group of the department
of Computer Science of the K.U.Leuven (SciCo). Their main common interests
lie in computational fluid dynamics (CFD) and magnetohydrodynamics (MHD,
see Bittencourt, ([2])) simulations.

In the past, the partners of VKI and CPA have developed a software package
called THOR, capable of performing explicit and implicit CFD and MHD simu-
lations on unstructured meshes in 2D and 3D. The architecture of this package
however, does not allow adding and combining more complex functionality like
multigrid accelleration, error estimation, grid adaptivity. Just like many other
research development packages, THOR has grown from a small piece of soft-
ware, designed to do just one type of simulations, into a large monolithic code,
capable of performing a whole assortment of numerical simulations, but rather
difficult to maintain. Numerous versions of the code have been developed, each of
them adding new functionality, but none of them offering all of the functionality
together.

Mastering this level of complexity, using a procedural programming language
(i.c. C) is nearly impossible. Conditional expressions are abundant all over the
code and adding a minor feature may require knowledge of a major part of
the software, since many aspects have been hardcoded and global variables are
accessed everywhere.

2.2 Object Orientation vs Procedural Programming

A possible approach to extend the procedural THOR-code, would be to create
an object oriented wrapper around it and call blocks of THOR-code from within
that new structure. Although this is technically achievable, it requires the orig-
inal procedural code to be very well modularized. However, in the development
history of THOR, high coupling and low cohesion have slipped in. While they do
give a performance gain, they certainly do not support the necessary modularity.
Refactoring the THOR-code is impossible, because the changes cannot be done
incrementally (one of the most important characteristics of refactoring, accord-
ing to Fowler et al. ([5])). The choice for a tabula rasa approach, a complete
rebuild using the object oriented paradigm is clear-cut.

2.3 The Need for a Framework

As a first step, the goals of the project and the requirements of the new soft-
ware package are stated. COOLFluiD is intended as a framework for numerical
simulations of physical processes, defined by conservation laws. This demands
the combined insight in several scientific fields: physics, mathematics, applied
mathematics, numerical linear algebra, and software development.

One of the main goals of COOLFluiD is to provide a high level of exchange-
ability for the different components of a simulation: space discretisation, time
discretisation, physical model, error estimation, multigrid, adaptivity, etc. Any
combination of these components can be regarded as a single application.
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Similar vs Shared Features. Based on work on numerical simulations we
have come to think that a lot of the actual code of the different single appli-
cations of the family could actually be shared. The similarities in the resulting
code have fostered this expectation. A framework however, is based on shared
features between a number of working applications. Such shared, common parts
of code need to be generalized, while the working applications remain in working
condition by refactoring them to use the generalized code.

To create the generalisation on the basis of an analysis of domain seman-
tics, without first creating a number of single applications of the family, has
most often shown to be impossible. Although often semantic commonalities can
be seen in the different applications of the family, these commonalities are no
ideal basis for generalisation into a framework. A common theory that exists
in a domain outside software development often seems to generalize different
applications. However, when trying to put such a scheme into code, it turns out
that the generalisation actually appeals to human subjectivity, and is not of an
algorithmic nature. The basis for generalisation of code in a framework can only
be the shared software structure.

In order to be able to use the shared code in a single application, funda-
mental redesign of that application might be necessary, and certain trade-offs in
the area of performance will need to be made. It is even probable that certain
detailed decisions in the domain of physics, mathematics and numerics need to
be standardized to gain access to the common code base. This is also where the
mathematical abstractions (see section 3.2) come into play. Yet, given the enor-
mous cost of the development of these applications, and the current progress in
computer performance, the feeling is that these trade-offs are worthwhile.

2.4 History and Experiences

At the start of the project, two people are working directly on COOLFluiD:
a member of the K.U.Leuven and a member of the von Karman Institute. In
the first stage of the project the typical Unified Modeling Language (UML)
artifacts are created, such as a conceptual model and collaboration diagrams,
following the ADI-method. ADI stands for Analysis, Design, Implementation,
the three basic steps in the iterative process of OO software development. The
ADI-approach, described by e.g. Larman ([9]), was chosen since it is a standard
way of tackling software development problems.

The main focus was put on implementing the mesh structure in the second
stage, reinforced by a third team member (from VKI). After that, we switched
to another approach, because we experienced the lack of power of the ADI-
approach. ADI is suitable for small projects, where you actually do not need
ADI. However, it does not work well for bigger projects, and it certainly does not
scale up for frameworks. The fourth team member (from K.U.Leuven) recognized
this and proposed a more agile process.

eXtreme Programming. The best known type of Agile Processes is eXtreme
Programming (XP). XP, as discussed by Wells ([12]) and Jeffries ([8]), is based
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on pair programming (two persons sitting behind one screen) and the one-room
way of working. So, all persons involved in the project are in the same room
and can consult eachother continuously. The big block of analysis that has to
cover the whole problem in one shot is skipped and small problems are pitched
into, one at a time. Small parts of software are built constantly, adding new bits
and scrapping others. Short development and test cycles are inherent to XP. In
this way, the framework can grow from experience. Most of the problems only
arise when turning thoughts into real, compilable, running code and not during
a high level, abstract analysis phase. This way we implemented the first physics
and numerics modules and the communication between them.

3 Multimethod Design

In this section, we explain where the power of the multimethod design comes
from. We first give an overview of the most important design patterns, then elab-
orate on the mathematical abstractions, necessary for this new design, but warn
for a few common pitfalls. Thereafter, we discuss the design of the datastructure
essential for the multimethod design. We also treat the concepts of Topologi-
cal Region Sets and the TensorField, crucial for the flexibility of the design.We
conclude with several design guidelines for decoupling physics and numerics.

The power of our multimethod design of the presented solver does not lie in
some clever low-level optimisation tricks or implementation details. It is achieved
by a fresh look at the numerics of a simulation and results in new concepts at a
considerably higher level of abstraction in the software design.

3.1 Design Patterns

The implementation of the multimethod design is based on a few well known
design patterns, quintessential in numerical software. Here, we only list them
concisely, but we refer to Gamma et al. ([6]) for more details.

Strategy: Strategies provide a way to configure a class with one of many be-
haviours. The many variants of spatial and temporal discretisation schemes
are encapsulated and interchangeable via a common interface, the blueprint
of every simulation.

Command: The Command pattern is typically used when you want to struc-
ture a system around high-level operations built on primitive operations. The
different components of the numerical schemes (Timestepper, SpaceMethod)
are built from NumericalCommands, functions encapsulated in an object.
Every command has the necessary intelligence to get the information it needs
to perform its task on the entities in the mesh. Since all NumericalCommands
respond to the same interface, they can be exchanged without trouble. This
strongly promotes the modularity of the multimethod design.

Abstract Factory: All separate substituents of a Simulation are built by an
Abstract Factory. This allows the construction of a family of related or de-
pendent objects, without specifying the concrete subclasses.
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3.2 Mathematical Abstraction

A multimethod PDE solver has to be able to deal with Finite Element Methods
(FEM), Finite Volume Methods (FVM) and possibly a mixture of both, like
Fluctuation Splitting Methods (FSM or Residual Distribution Schemes, RDS).
The algorithms, representing the different methods, must be compatible with one
single interface, in order to be fully transparantly callable by the PDE solver.
This has not yet been done in other projects, for as far as we could check it. Our
multimethod solver offers this interface.

An object oriented software interface contains a set of signatures for oper-
ations that classes, wishing to provide this interface need to implement. The
interface only contains the signatures and does not administer a concrete imple-
mentation. That is left to the classes, inheriting from that abstract class (C++)
or implementing that interface (Java).

This abstract software interface however, requires abstraction at the mathe-
matical level. In our design of the multimethod PDE solver, we solve this with
two crucial design decisions.

States vs Nodes. First, we make a distinction between states and nodes. A
state is a vector of unknowns, stored at some location in a cell of the mesh.
The state typically represents the values of the variables, needed to describe the
physical model of the current simulation, e.g.: (ρ, u, v, p) for the 2D Euler model
and (ρ, u, v, w, Bx, By, Bz, p) for the 3D MHD model. A node is a geometrical
point in space, part of the supplied or generated mesh and defining the geometry
of cells in the mesh. A node does not contain any information concerning the
physical model.

This decoupling is no novelty when dealing with FVM, since these methods
typically store the values of the unknowns of a cell in the cell, while the cell is
built from geometrical nodes. The grid of the nodes and the grid of the states are
a staggered. In traditional FVM, states are not really considered as a separate
entity. In FEM nevertheless, states and nodes coincide often but not always.
This happens not only in the mathematics, but also in software.

No clear distinction is being made between the different views on the entities,
putting them into one single class, disallowing a clear software design. There are
3 disparate cases:

– a node has to be looked at as a geometrically acutely defined point in space,
with a set of unknowns (P1 elements in FEM),

– a node has only a geometrical meaning (FVM),

– a node has a set of unknowns, but the geometrical information can only be
inferred and is not used explicitly (a node that is not a corner node of a P2
element in FEM).

This indisputably calls for a new software design acknowledging the distinction.
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Shape Functions. The second crucial design decision affects the role of shape
functions. Shape functions are well known within the FEM framework, but they
are seldomly brought into relation with FVM. One can however consider FVM
as having P0 shape functions, i.e. constant functions per grid cell. Higher order
reconstruction for FVM can still be dealt with, by taking a stencil of cells and
treating them as nodes for a higher order FEM.

From this point of view, all actions performed on a cell, whether it’s in a
FEM or FVM framework, pass through the shape function interface. Again, it
is this mathematical abstraction that leads to a software interface, capable of
dealing with two different numerical methods, never brought together into one
single software package as far as we could investigate.

Pitfalls. We warn for some pitfalls with this new approach. Consistent nomen-
clature is essential. Mixing up between “cell” and “volume” might look like a
slip of the tongue, but is a lot worse. The word “volume” bypasses the notion
of the shape function, while a “cell” has a more profound background than just
being a volume in space. Therefore, in FVM, we do not store the unknown in
a volume, but in a cell. A cell has nodes and states, characterised by shape
functions. Bypassing the notion of the shape function is equal to denying a key
feature of the multimethod design.

In FVM one should work on the unknowns through the shape function, which
means an extra layer of indirection but allows using different types of elements
more easily and transparently.

Concerning higher order methods next to FEM, FVM uses reconstruction
based on outside cells (the stencil), and Discontinuous Galerkin (DG) has extra
states in the cell. This difference is handled transparantly by our approach,
combining shape functions and the distinction between states and nodes.

3.3 Datastructure

The design capable of dealing with the multitude of methods (the algorithmic
part) has to be complemented with a datastructure (the storage part), designed
in an evenly transparent way, to satisfy the different numerical methods.

Every MeshGenerator configures the datastructure in such a way that all
data, needed for the computation, can be retrieved easily. The connectivity tables
(e.g. element-element, element-state connections) are set up when appropriate.
The datastructure can be queried for any specific part, like states, edges, cells,
connectivities, etc. All these aspects are stored in a DataStorage, a container
that can be queried for its content with a key.

Every NumericalCommand is provided with a CommandData and has the
built in intelligence to gather all necessary information. Looping over all Cells
to calculate volume integrals, looping over all edges to compute the line integral
of a quantity, visiting all faces in order to determine a scaled normal,. . . all of
this is possible thanks to the encapsulation of the computation in a command
and the design of the datastructure.
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A timestepping method can easily build extra states at startup in the datas-
tructure and query for them later on. A typical example is the temporary state
for the second order Runge-Kutta method.

3.4 Topological Region Set and TensorField

Next to the multimethod design and its accompanying datastructure, a third
design element, crucial to the flexibility of the solver are the concepts of the
TopologicalRegionSet (TRS) and the TensorField.

A TRS is a set of geometric entities that require a special treatment, like the
boundaries. This way, we can formulate apply different NumericalCommands to
different TRSs, belonging to the same Domain.

A TensorField represents the discretised view on the Domain and serves for
the transition from continuous functions to discretised numerics. A TensorField
has several TRSs attached to it and can filter these, when applying Numer-
icalCommands. This ensures that the NumericalCommands are applied to the
correct TRSs. Using this approach, boundary conditions are dealt with properly.

3.5 Dependency between Numerics and Physics

Different physics often demand different numerics, so decoupling physics from
numerics is no trivial mission. For our class of physics (conservation laws), we
manage to decouple them, to the point that we still need symmetrisable flux
jacobians.

The PhysicalModel (representing the physics) and the SpaceMethod (rep-
resenting the spatial discretisation method) do not have datamembers inside
pointing to eachother. Instead, the coupling is done at a higher level, in the
Domain. There is one PhysicalModel and a SpaceMethod per Domain. This ap-
proach also permits multiphysics simulations, by defining several Domains and
looping over them.

4 Preliminary Results

4.1 Conceptual Model of COOLFluiD

We briefly discuss the design of COOLFluiD, based on the conceptual model
of Fig. 1. The Simulator controls the Simulation, that is defined by a Numer-
icalModel, a DomainModel and a PhysicalModel. The NumericalModel is de-
termined by a ConvergenceMethod (e.g. an explicit Timestepper or Multigrid)
and a SpaceMethod (e.g. FSM). The main component of a PhysicalModel is the
StateVector with the values of the unknowns describing the physical model and
the computation of the local flux jacobian. The DomainModel takes care of the
Mesh and stores the StateVectors. The TopologicalRegionSet is an important
part of the DomainModel, as discussed in section 3.4. It offers a lot of the so
desired flexibility.
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Simulation DomainModelNumericalModel
defines defines

ResultsDataBaseLoadBalancer

controles consults

controles

Simulator

is based on defines is adapted by

AdaptationMethodPhysicalModelAnalysisMethod
is based on is based on

Fig. 1. Simplified conceptual model of the multimethod PDE solver COOLFluiD.

The AnalysisMethod analyses the temporary solution, based on the Numer-
icalModel and the PhysicalModel to check e.g. if another iterationstep is neces-
sary. The AdaptationMethod queries the DomainModel and the PhysicalModel
to adapt the Mesh (h- or p-adaptivity).

The ResultsDataBase and the LoadBalancer can be considered as external
code. The former is consulted by the Simulator to restart a simulation or to
save results to, while the latter strives for a balanced workload on the CPUs in
cooperation with the Simulator.

4.2 Current Implementation

As a first numerical method to implement, the Fluctuation Splitting Method
(or Residual Distribution Scheme) is chosen. FSM incorporates ideas from both
FEM and FVM: the representation of the unknowns originates from FEM and
the discrete conservation of the flux contour integral along closed surfaces is
typical for FVM. A successful implementation of FSM is a clear indication that
our design will also satisfy both FEM and FVM. This justifies the decision to
choose FSM first. In our multimethod solver we support the N , B, PSI and LDA
schemes in a transparant way. A comprehensive overview of FSM is discussed
by Deconinck et al.([4]).

A few explicit Timesteppers are implemented to illustrate the independency
between the Timesteppers and the SpaceMethods: forward Euler and Runge-
Kutta second order. Extensions to higher order Runge-Kutta methods are fore-
seen and easily realizable.

The currently implemented PhysicalModels are a scalar linear advection
problem (∂tu +∇ · (au, bu) = 0), a non-linear advection equation of the Burgers
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type (∂tu +∇ · (u2/2, u) = 0) and a system containing both equations. Figure 2
shows the simulation of the Burgers equation. One can clearly see the formation
of the shock wave. The non-monotone character of the LDA-scheme is illustrated
in Fig. 2(b). The boundary conditions are:

x0 = −1 : u = 1.5, x0 = +1 : u = −0.5,

x1 = −1 : u = 0.5− x0, x1 = +1 : outflow.

(a) N-scheme, forward
Euler

(b) LDA-scheme, forward
Euler

(c) PSI-scheme,
RungeKutta2

Fig. 2. Simulations of the Burgers equation on a triangulated square mesh.

5 Conclusion

In this paper, we illustrated how mathematical abstractions can lead to clear
software interfaces and thus form the basis of a multimethod solver for par-
tial differential equations, PDEs. We studied the application of object oriented
techniques in the design of a framework for the multimethod PDE solver.

A fresh look at the numerics of a computational simulation results in a consid-
erably higher level of abstraction in the software design. The key design decisions
in our multimethod solver are the distinction between states and nodes and the
use of shape functions for Finite Element, Finite Volume and Fluctuation Split-
ting Methods. The algorithmic part in the design of our multimethod solver is
complemented with a datastructure (the storage part), designed in an evenly
transparent way, to satisfy the different numerical methods.

The flexibility of the design benefits also from the concepts of the Topological
Region Set and the TensorField, offering a means to treat some regions in a
special way (e.g. the boundaries). The coupling between numerics and physics
is brought to a higher level in the design (the Domain), avoiding a tight link in
the algorithms. This also permits multiphysics simulations, by defining several
Domains.
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The eXtreme Programming approach is the basis for the implementation of
our multimethod design. The inherent constant communication and short devel-
opment/test cycles provide a better modus operandi than the classic iterative
Analysis-Design-Implementation scheme for a software project of this scale.
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Natural Convection in Enclosures

Luis M. de la Cruz Salas1 and Eduardo Ramos Mora2
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Abstract. In this work we present advances in the construction of a
class library for solving the governing equations of natural convection
in enclosures. We concentrate on newtonian and incompressible fluids.
The governing equations are partial, non-linear and coupled, and are
solved using the finite volume method. The pressure coupling is solved
with SIMPLEC method, where a pressure correction equation is used to
account for mass conservation.
The finite volume method transforms the three governing equations in
linear systems that contain coefficients for diffusive and convective terms.
The algebraic systems are then solved using an iterative methods.
All conservation equations are written in a general form, in such a way
that it is possible to make an abstraction of the concept on a base class
for all equations. In this way, it is possible to define energy, Navier-Stokes
and pressure-correction equations as subclasses of the general equation
class. These clases are polymorfic and their behavior is handled with
”adaptors”. The adaptors implement different numerical schemes and
are derived from each equation using the Barton and Nackman trick.
The main issue of OOP is the performance. Many C++ constructions
produce hidden temporaries that affect the peformance. In the past few
years the use of the technique known as ”Expresion Templates” has mit-
igated and in some cases solved the problem. The Blitz++ library, which
includes expression templates is used in our library for array manipula-
tion and has shown very good performance.
The library also contains a subset of classes for running in parallel ar-
chitectures via MPI. The class Domain decompose the global domain in
several subdomains and each one is managed for a different processor.
All subdomains must get ghost boundary conditions from its neighbors.
Decomposition is made in cartesian fashion in such a way that every sub-
domain has information from all its neighbors. This feature permits us
make a persistent communication from the beginning in order to avoid
the overhead of initializing sockets between processors in each iteration.
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Abstract. We present a domain-specific, library based approach for
parallelizing mesh-based data-parallel applications (like numerical PDE
solution) using the domain partitioning paradigm. Concepts are pre-
sented to formalize the notions of domain and mesh partitioning. Generic
programming is used to implement reusable software components that
encapsulate the common core of domain partitioning and make it avail-
able to application programmers. A novel aspect of our approach is its
independence of the underlying sequential structured or unstructured
mesh data structures, which makes reuse of most pre-existing sequential
application code possible.

1 Introduction

Despite continuously increasing power of computer hardware, parallel comput-
ing is — and will remain — the only viable option for many scientific simulation
challenges. The proper use of parallel architectures poses a number of problems
to the programmer, who in general has to be more explicit about the underlying
hardware then he wishes. This constitutes a significant barrier to the construc-
tion of efficient parallel scientific applications.

Although research for general-purpose automatic parallelization support has
been pursued for decades now, success has been limited. In our opinion, this
stems from the (unavoidable) diversity of different parallelization patterns (see
e.g. the work in [1]) which withstands a uniform treatment.

On the other hand, when we focus on a specific domain, like parallel PDE so-
lution, or more generally, structured or unstructured mesh-based “data-parallel”
applications, the situation changes. Analyzing typical parallel applications in this
area, we can see that they all exhibit strong structural similarities, as they all
use the same parallelization paradigm called domain partitioning.

Hence, there is hope of providing some general support for parallelizing such
applications, and even to encapsulate the repetitive task entirely into reusable
components, which is what we propose here.

The essential feature of our approach is that it is purely library based and
works in a bottom-up way: The parallel application programmer gets supplied
high-level constructs to express data distribution, but retains full control over
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parallel execution. No extra tools like special pre-processors or compilers are
needed. Most of the existing code and data structures can be reused, the “par-
allel” enhancements are simply “wrapped around” it, with a very low memory
overhead which is close to what a manual parallelization would need. This “wrap-
ping” is enabled by leveraging generic programming techniques in C++, which
allow to abstract from concrete data representation issues.

The reuse of original sequential data structures is a key difference to the top-
down approach followed by parallel frameworks for PDE solution, like Overture
[2] or AMROC [3], which concentrate on (hierarchies of) structured grids. Here,
an application programmer has to reuse the (data) structures provided by the
framework. This makes programming more comfortable for new developments,
but also more restrictive.

The dynamic distributed data (DDD) library by Birken [4] in contrast has
distributed graphs as underlying abstraction and is therefore more general than
our approach. Lacking the more specialized notion of distributed meshes, it can-
not directly offer specific support for them.

An approach related to our one is the GRIDS library [5], which uses scripts
and a special pre-processor to generate parallel Fortran code. Other approaches
centered on unstructured meshes like DIME [6] or PMO [7] are more like frame-
works in that they require reuse of their native data structures.

The organization of this paper is as follows: First, we describe the domain par-
titioning paradigm (Sec. 2.1) and then general concepts for distributed meshes
in a general way (Secs. 2.3 – 2.6). Next, their implementation using generic
programming is discussed in Sec. 3. Finally, we discuss further research issues.

2 Concepts for Distributed Meshes

2.1 The Domain Partitioning Paradigm

Domain partitioning (also known as geometric partitioning) is the parallelization
paradigm of choice for mesh-based applications for PDE solution, for instance
using finite elements, finite volume or finite differences. It exploits the fact that
the data dependencies of these spatial discretizations (stencils) are merely local.
The computational domain (i.e. the mesh representing it) is divided into pieces
of roughly the same size, and the discretization algorithms are applied to each
piece in parallel. In order to guarantee efficient access to the needed information
(data locality), some data has to be replicated on different processes by adding an
overlap region (or halo) to each mesh part. Data associated to the overlap mesh
region must be updated regularly in order to provide a consistent view of the
global state. In general, it is most efficient to perform these updates altogether
to minimize communication costs.

The domain partitioning approach implicitly assumes data-parallel algo-
rithms, in which case it can produce results identical with the sequential case
(except effects due to different orders of floating point operations). While the
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assumption of data-parallelity is often satisfied, for instance finite element stiff-
ness matrix assembly or finite volume flux balance computation, it is violated
in some important cases, most notably the solution of linear equation systems
which introduce a global data dependency. In this case, an application of the
paradigm produces a modified algorithm, which may or may not be appropriate
(Jacobian iteration is about the only broadly used data-parallel algorithm for
solving linear systems, which explains its low efficiency). More often, one uses al-
gorithms specialized to domain partitioning, like interface iteration using Schur
complements [8]. Nonetheless, the concepts like overlap, ownership and general-
ized stencils we are going to develop are useful for this more general situation,
too.

Now, while the general ideas are common to virtually all implementations of
parallel PDE solution, individual applications differ in the details:

– How large is the overlap?
– Which data has to be exchanged when?
– How is the data transferred?
– What kind of data structures are used for grids and grid functions?

In the following sections, we will see how to formalize these intuitive concepts.
Further on, we will show how generic components can parameterize the associ-
ated choices, in order to provide the application programmer with exactly those
high-level abstractions needed for implementing data-parallel algorithms on ar-
bitrary grids. As the parallelization is driven by mesh distribution, distributed
data structures for grids and grid functions are the essential components which
can encapsulate most of the technical details.

In this paper, we will not discuss issues related to the partitioning itself, see
e.g. [9] for a survey.

2.2 Some Grid-related Terminology

In order to understand the following sections, we some introduce some termi-
nology. By a (combinatorial) grid (or equivalently, mesh) G of dimension d we
understand a tuple (G0, . . . ,Gd) of element ranges of dimensions k = 0 (vertices)
to k = d (cells), together with an incidence partial ordering. Two elements e1, e2

are incident , if e1 one is contained in the topological closure of e2, that is, e1 is
on the boundary of e2.

A grid function F on G is a mapping F : Gk 7→ T for some set T . Grid
functions (often called fields) are a means of storing data on grid elements, and
play a crucial role in parallelization as this data has to be kept in sync on different
parts.

2.3 Distributed Overlapping Grids

We can take two complementary views on distributed grids (Fig. 1). The global
point of view sees a global grid, partitioned into local parts (with overlap).
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We use the term parts here to emphasize the independence of the concepts of
the physical distribution aspects. The local point of view starts from local parts,
equipped with correspondence maps between overlaps of neighboring parts. This
correspondence gives rise to a (virtual) global grid. Thus, the local view in general
corresponds more closely to the actual physical situation, where the global grid
does not actually exist. It represents also a good compromise between a more
idealized global view and the actual physical distribution, which leads to a simple
yet powerful and efficient programming model.

global

view

local

view

logical view physical view

global grid ̂G

distributed

overlapping

grid (DOG)

local over-

lapping grid (OG)

locally

owned

range

Fig. 1. Components for representing a distributed grid. The global grid
�
G is in general

not physically represented. The local grid Gi underlies the overlapping grid OG.

The basic data structure of each local part is a local grid Gi, represented
by an arbitrary sequential grid data structure typically provided by the sequen-
tial application, which contains an appropriate amount of overlap Oi. A local
overlapping grid divides this overlap into a system of subranges, making them
available to the application programmer, thus allowing him to control the scope
of local computation (see Figs. 16 and 18). The top layer, distributed overlap-
ping grids, complements local overlapping grids with system of correspondence
mappings Φ between overlap portions of neighboring parts.

More formally, let Gi, 1 ≤ i ≤ N be a family of local grids. An overlap

structure on (Gi)1≤i≤N is a system of grid isomorphisms on bilateral overlaps

Oij

Φij : Oij ⊂ Gi 7→ Oji ⊂ Gj

satisfying
Φij(Oij) = Oji, Φ−1

ij = Φji, (symmetry) (1)

and
Φij ◦ Φjk = Φik on Oij ∩ Φji(Ojk) (transitivity) (2)
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for 1 ≤ i, j, k ≤ N . The local overlap of part i is given by the union Oi =⋃N

j=1Oij .
The functions Φij give rise to a equivalence relation between elements of the

local grids, with ei ∼ ej iff ej = Φij(ei). The equivalence classes ê form the

elements of the global grid Ĝ, which can thus be reconstructed from the local
grids and the correspondence Φ.

2.4 Ownership on Overlaps

private (owned)

exposed (owned)

shared (formally owned)

shared (not formally owned)

copied (not owned)

i k

Fig. 2. Typical 1-cell overlap example,
without shared cells.

The overlap Oi of part Gi is now
further divided into subranges reflecting
ownership: We distinguish between ex-

posed ranges Eij , which are owned by
part i, shared ranges Sij , which belong
to both part i and part j, and copied

ranges Cij , that belong to part j. The
following symmetry relations must hold
between these ranges:

Eij = Φji(Cji)

Sij = Φji(Sji)

Cij = Φji(Eji)

Oij = Eij ∪ Sij ∪ Cij

and Eij ,Sij , Cij are pairwise disjoint. See
figure 4 for the general picture.

For the classical Schwarz domain decomposition technique, there are no
shared ranges, and the overlaps are disconnected (Fig. 6). For the so-called non-
overlapping domain decomposition, we have only shared ranges (Fig. 5).

These bilateral ranges are useful primary for data exchange be-
tween different parts. For deciding where calculation has to take place,
and where not, so-called total ranges are needed, which are roughly

the unions of the bilateral ranges:

Pi = Gi \
n⋃

j=1

Oij private

Ci =

n⋃

j=1

Cij copied

Si =
n⋃

j=1

Sij \ Ci shared

Ei =
n⋃

j=1

Eij \ (Si ∪ Ci) exported
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private exposed shared copied

owned

formally owned

local

Fig. 3. Logically layered structure of
overlap ranges

On exposed elements in Ei, the local

part is exclusively responsible for performing any calculation. On the shared
range, several parts will in general contribute to the calculation, or calculations
are done redundantly on each part. On copied elements, typically no local calcu-
lations are performed. Besides these elementary ranges, we often need a formally
owned range Fi ⊂ Pi ∪ Ei ∪ Si (Fig. 3) which further split the shared elements
in an arbitrary way, such that Fj ∩ Φij(Fi) = ∅ for i 6= j. This is useful e.g. for
implementing global reduction operations.

private
Pi

exposed

co
pie

d shared

E i,
j

Ei,k C i,
j

Ci,k

Fig. 4. Generic overlap
configuration

private

sha
red

Fig. 5. Configuration
for “non-overlapping”
domain decomposition

private

private
exposed

cop
ied

Fig. 6. Configuration for
Schwarz domain decom-
position

2.5 Distributed Overlapping Grid Functions

Data on the grid is given by grid functions in the sequential case, and by dis-
tributed grid functions (DGFs) in the distributed case. Because a DGF is mul-
tiply defined for overlap elements, we must define its consistency state.

With an overlapping grid function F (the local representative of a DGF),
we associate a write range W a read range R, and a function f defining the
algorithm used to define the values of F . Typical values for W is the owned
range, and for R the local range (cf. Fig. 3).

We now assume f to be a function

f : G × Sf 7→ T
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which depends on a state Sf of variables, for example other grid functions. If
F 6∈ Sf , we call the loop

for all e ∈W do

F (e)← f(e, Sf )

a data-parallel loop, and f a data-parallel algorithm for F and Sf . For example,
if F is a vector on grid vertices, and f is the local Jacobi relaxation on a vertex,
then the loop is data parallel. In contrast, for the Gauss-Seidel relaxation, the
loop is not data-parallel, the corrected values are immediately used.

It is now straightforward to define consistency on the tuple (F, f, W, R), given
a distributed grid (Gi)1≤i≤N with correspondence relation Φ: F is locally con-
sistent on a range L ⊂ W , iff F (e) = f(e) ∀e ∈ L. A distributed grid func-
tion (Fi, f, Wi, Ri)1≤i≤N is globally consistent, iff each (Fi, f, Wi, Ri) is locally
consistent on Wi and for each pair ei ∈ Ri, ek ∈ Rk with êi = êk we have
Fi(ei) = Fk(ek). In other words,

Fi = Fk ◦ Φik on Ri ∩ Oik

The action of making a DGF globally consistent is called synchronization.

pr shex cp gf k

gf i cp sh ex pr

Fig. 7. Redundant calculation on
shared ranges

pr shex cp gf k

gf i cp sh ex pr

Fig. 8. Partial calculation on shared
ranges

On shared elements, two different strategies of computation are possible:
Either redundant (Fig. 7), in which case each part calculates its results on the
shared range locally, or partial (Fig. 8 ), in which case the results from all sharing
parts have to be combined afterwards. For example, when computing a finite
element stiffness matrix in a non-overlapping configuration like in Fig. 5, the
rows belonging to shared vertices have to be added if a consistent representation
of the matrix is needed.

The concepts presented in this section are surprisingly powerful for imple-
menting parallel grid-based algorithms. However, in order to provide a complete
solution of the parallelization problem, there must be a means of generating the
data structures like overlap ranges defining the distributed grid. This task is
tackled in the following section.
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2.6 Stencils and Overlap Generation

In finite difference terminology, the term stencil is used to denote the local data
dependency of an algorithm (discretization), and typically described by (the
non-zero pattern of) a matrix. If we want to generalize stencils to unstructured
meshes, we must abandon the matrix notion.

for all Cells c ∈ Gd
do

flux(c) = 0;
for all Neighbor cells c′ of c do

flux(c) += numflux(c,c′,U)

Fig. 9. A simple finite volume flux bal-
ance

Fig. 10. its associated stencil (2, 1, 2),
or (d, d−1, d) dimension-independently

Looking at the algorithm in figure 9, we see that this algorithm contains a
global loop over all cells, and for each cell c, every neighbor cell is accessed, i.e.
every cell sharing a facet with c. The stencil of this algorithm is shown graphically
in figure 10. It can be described algebraically by the sequence (d, d−1, d) (where
d is the dimension of the mesh), meaning “start from grid elements of dimension
d, go over incident elements of dimension d− 1 (the facets) to incident elements
of dimension d (neighbor cells)”.

If we analyze each algorithm in a program this way, we arrive at a num-
ber of different stencils. These can be used to find the necessary overlap for a
partitioned mesh.

Fig. 11. A tiny mesh, partitionend into
3 parts.

copied
exposed
private
copied
shared

exposed

Fig. 12. Overlap for one part gener-
ated from the stencil of Fig. 10
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3 Generic Components for Distributed Meshes

Our aim is to develop software components which implement the concepts pre-
sented before in a way which is as general as possible, while being easily adaptable
to the specific application at hand, and inducing as few changes as possible in
existing application code.

To achieve this aim, we extend the functionality of the sequential program
layer by layer by the additional functionality needed for a parallel application.

A given sequential grid data structure forms the core layer. All local,
application-dependent, grid-related algorithms continue to be based solely on
this data structure and thus do not need to be changed. Any global, distribution-
dependent functionality is provided by an additional layer – distributed grids.
This layer itself is configurable in order to be adaptable to different physical
distribution contexts and communication libraries.

This layering leads to a clean separation of algorithmic from distribution
aspects, and is crucial for the a-posteriori parallelization of existing applications,
where algorithmic code is based on a specific sequential grid data structure.

The technical basis for this data structure independent approach is given
by a generic programming technique, which we discuss very briefly in the next
section. The solution we are going present is based on C++ and is applicable
directly only to applications also written in C++, however, providing interfaces
to C and Fortran would be possible.

3.1 Generic programming

Generic programming aims at separating data representation details from higher
level components like algorithm implementations. Thus, a new level of generality
and reusability is achieved. One of the most prominent examples for generic
programming is the C++ Standard Template Library (STL) [10] part of the
C++ standard library, which deals with sequences (containers) and algorithms
on sequences.

IN: U : Gd 7→
�p

OUT: avg : G0 7→
�p

for all Vertices v ∈ G0
do

avg(v) = 0, vol = 0
for all cells c incident to v do

avg(v) += volume(c)*U(c)
vol += volume(c)

avg(v) = avg(v)/vol

Fig. 13. Algorithm for vertex averag-
ing of cell values

grid_function<Cell, state> U; // IN

grid_function<Vertex,state> avg(grid,0);// OUT

for(VertexIterator v(grid); v; ++v) {

double vol = 0;

for(CellOnVertexIterator cv(*v); cv; ++cv) {

avg[*v] += geom.volume(*cv) * U(*cv);

vol_sum += geom.volume(*cv);

}

avg[*v] /= vol_sum;

}

Fig. 14. Generic implementation of the vertex
averaging
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An approach similar in spirit suitable for meshes has been investigated by
the author within the open source Grid Algorithms Library GrAL [11]. With
GrAL, it is possible to develop algorithms and derived data structures which are
independent of the underlying mesh data structures, a feature which is crucial
for implementing the concepts presented before in a truly reusable and general
way.

The concepts of GrAL cannot be discussed here in detail, the interested
reader is referred to [12] or [13]. Here, we restrict ourselves to an example.
Looking at figure 14, we see a generic implementation using the GrAL interface
of the algorithm of Fig. 13, which volume-averages cell values on vertices.

The generic class template grid function allows to store any type of data
on any grid element type (e.g. cell or vertex). With a VertexIterator, we can
iterate through all vertices of a grid (or a subrange!); a CellOnVertexIterator

allows to access all cells incident to a vertex.
We notice that this code is independent of the mesh dimension, type (struc-

tured/unstructured) and representation. It only requires the two iterator types
mentioned before to be defined for the actual grid type. In a similar way, the
data structures and algorithms for distributed grids discussed below can be im-
plemented, and “wrapped around” a user supplied sequential grid data struc-
ture. To enable this wrapping, a user has to provide a description of his grid
data structure in terms of a GrAL-compliant interface.

3.2 Components for Distributed Grids and Grid Functions

In the following, we discuss several generic software components which can be
used to enhance a given sequential grid data structure with support for dis-
tributed programming. In order to keep the exposition short, we do not give
syntactic details – the reader is referred to the reference implementation avail-
able in GrAL. A high-level view on the components relationship in an UML-like
notation is given in Fig. 15.

Overlap ranges A data structure for representing the overlap of a distributed
grid must provide efficient access to any segment (copied, shared etc., see Fig. 3)
of both total and bilateral ranges, for any grid element type needed (cells, edges,
vertices etc.). As the segments can be combined by simple unions of adjacent
elementary segments (i.e. private, exposed, shared, and copied, Fig. 3), it is
straightforward to derive an efficient representation for both total and bilateral
overlaps for each element dimension by using arrays of element handles (a sort
of minimal element representation, typically an integer, defined in GrAL).

Using the overlap data structure (Overlap<Grid> in Fig. 15) combining these
layered ranges, a programmer of a parallel application can then access total
ranges, for instance all copied cells, all formally owned vertices etc., for con-
straining iteration in a parallel loop. Also, the distributed grid functions can ac-
cess bilateral ranges for communication. Bilateral ranges are used to implicitely
represent the correspondence mappings Φij by a consistent ordering or their
elements.
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Grid grid function<E,T>

Overlap<G>

OverlappingGrid<G> OverlappingGridFctOverlappingGridFct<E,T>

1

Distributed

Grids

MpDistributedGrid<G>

CompositeGrid<G>

Distributed

Grid Fcts

MpDistributedGridFct<E,T>

CompositeGridFct<E,T>

1 np 1 np

Distributed

Grids

MpDistributedGrid<G>

CompositeGrid<G>

Distributed

Grid Fcts

MpDistributedGridFct<E,T>

CompositeGridFct<E,T>

Fig. 15. Components for distributed overlapping grids and their relationships. Over-
lapping grid functions may contain their own overlaps (dashed line).

For the total overlap, it is in principle possible to manage with O(1) memory
overhead if we can sort the mesh elements in a way consistent with the elementary
segments.

Overlap ranges are contained in overlapping grids, and optimized (i.e.
smaller) overlap ranges may also be part of overlapping grid functions.

Distributed overlapping grids We distinguish between basic overlapping
grids (OGs) with local semantics, and distributed overlapping grids (DOGs) with
global semantics, representing the complete grid. Depending on the physical
nature of distribution, there are different versions of distributed overlapping
grids, for example message passing DOGs for distributed memory architectures,
which typically contain a single OG, or composite grids, which are a set of OGs
living in a single global memory. Such composite grids can be used for shared-
memory parallelization using threads, to avoid cache conflicts and false sharing,
and to test a parallel application sequentially.

Overlapping grids are used to factor out common functionality that is inde-
pendent of the physical distribution. They consist of a user-supplied mesh data
structure, enhanced with a GrAL-compliant interface, and an overlap range data
structure like that described before.

Distributed overlapping grid functions For grid functions, the same dis-
tinction between local and global points of view as in the case of grids leads to
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overlapping grid functions (OGFs) on the one hand, and distributed grid func-
tions (DGFs) on the other hand, where the latter group has further ramifications
depending on the underlying DOG type, for instance message passing distributed
grid function or composite grid function.

An overlapping grid function contains a user-defined, GrAL-compliant se-
quential grid function, has a reference to an overlapping grid, and optionally
might contain an own overlap which is a subset of the overlap provided by the
OG. Thus, an overlapping grid function which is used only on formally owned
cells can avoid superfluous data communication.

A distributed grid function adds communication handlers to an OGF, which
encapsulate the protocol for copying data, for instance using MPI or simple mem-
ory copy. It provides methods begin synchronize() and end synchronize()

for bracketing the updating process, and thus allows for asynchronous commu-
nication and overlapping of calculation and communication.

A DGF is responsible for performing synchronizations in the right order for
correctness, for instance, shared ranges must be updated before copied/exposed
ranges if partial calculation is active.

Global reduction operations are defined on DGFs, parameterized by a bi-
nary reduction operator (for instance sum or maximum). These operation rely
on formally owned ranges. In some cases, the binary reduction operator may
require additional information, in which case the user may want to perform an
explict local reduction by hand (cf. CFL-number computation in Fig. 17). A
global reduction on the scalar values is then performed by a generic routine
global reduce().

3.3 Overlap Generation

A cornerstone of the whole approach is the ability to generate the overlap with
correct extent automatically, based on a stencil, and starting from a partitioned
grid. For doing so, the concept of the hull generated by a stencil and a set of
germ elements is crucial. Intuitively, the hull is defined by starting at the germ
elements and successively adding incident elements according to the stencil. This
is described in more detail in [14].

Overlaps can now be computed either from a partitioned global grid, or from
an already distributed grid containing the correspondence information for shared
elements. In general, a user only has to provide a partitioning and the stencil,
all subsequent steps can be handled automatically.

3.4 Application Examples

Below, we present some simple but typical examples for parallel algorithms using
the components presented before. In Fig. 16, we see the parallelized version of
the sequential vertex avering of Fig. 13. We observe that the basic parallelized
algorithm is almost identical to the sequential version, only the loop bounds
and the final synchronization operation have to be added. A similar observation
applies to the explicit reduction loop in Fig. 17.
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IN: U: Gd 7→
�p

OUT: flux: Gd 7→
�p

for all Cells c ∈ owned(G)d
do

flux(c) = 0;
for all Neighbor cells c′ of c do

flux(c) += numflux(c,c′,U)
synchronize(flux)

Fig. 16. Simple parallel version of Al-
gorithm 9

IN: U: Gd 7→
�p

OUT: maxcfl: maximal CFL value
for all Cells c ∈ formally owned(G)d

do

maxcfl ←max(maxcfl, cfl(c,U));
maxcfl ←global reduce(maxcfl, max);

Fig. 17. Parallel reduction code: Explicit
loop

If we want to optimize it by overlapping computation and communication,
the straightforward solution is to duplicate the loop (Fig. 18), which is ugly. A
better possibility is to use iteration over different ownership ranges, as indicated
by figure 19 (not yet implemented in GrAL). Yet another possibility would be to
implement a sort of for each cell() template function, which takes the loop
body as an argument. This has the advantage of making parallelity more explicit
in the interface, while allowing an arbitrary ordering of computation behind the
scenes. While it is in principle possible to implement such a loop template in
C++ by writing a specialized class executing the loop body (local algorithm), it
turns out to be clumsy, and to require substantial changes to program organiza-
tion. Unlike functional languages, C++ does not support closures or unnamed
“lambda functions”. Approaches like the boost lambda library [15] are probably
only of limited help here.

IN: U: Gd 7→
�p

OUT: flux: Gd 7→
�p

for all Cells c ∈ exposed(G)d
do

flux(c) = 0;
for all Neighbor cells c′ of c do

flux(c) += numflux(c,c′,U)
begin synchronize(flux)
for all Cells c ∈ private(G)d

do

flux(c) = 0;
for all Neighbor cells c′ of c do

flux(c) += numflux(c,c′,U)
end synchronize(flux)

Fig. 18. Parallel version of Algo-
rithm 9, overlapping communication
and computation. Note the unwanted
duplication of the loop body.

IN: U: Gd 7→
�p

OUT: flux: Gd 7→
�p

for all Rge. R ∈ {exp(G)d, prv(G)d} do

for all Cells c ∈ R do

flux(c) = 0;
for all Neighbor cells c′ of c do

flux(c) += numflux(c,c′,U)
begin synchronize(flux, R)

end synchronize(flux)

Fig. 19. Parallel version of Algorithm 9,
using range iteration to overlap computa-
tion and communication. Here, only one
loop body is needed.

The components described here have been used to develop a generic two-
dimension solver for one- and two-components Euler solver which is described
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in [16]. This application uses the same generic code for sequential and parallel
executables, and achieves typical parallel efficiency for explicit discretizations.
Also, an application for solving the two-dimensional, incompressible, stationary
Navier-Stokes equations using a SIMPLE pressure correction method has been
parallelized a posteriori, i.e. using the original data structures. Only a few dozens
of lines of the original code had to be changed, plus the creation of a GrAL adap-
tation layer for the original mesh data structure, which could be developed and
tested completely separatly. The straight forward parallelization of the nested
iteration of the SIMPLE algorithm worked correctly, but is not very efficient.
Here, algorithms better suited to the distributed case have to be applied.

4 Conclusion

We have presented a set of concepts formalizing the notions of domain and mesh
partitioning based parallelization. Building on that, we have shown how generic,
reusable software components can encapsulate many of the related technical
issues, thus making high-level parallel programming possible in the context of
mesh-based, data-parallel applications. A key feature of these components is their
non-intrusiveness: They allow to continue reusing existing sequential application
code and data structures to a great extent, thus radically cutting down the
parallelization work.

A necessary step for applying the generic components is the definition of a
GrAL-complying interface for the mesh data structures of the sequential appli-
cation. Albeit in principle not difficult, it can be a substantial barrier. GrAL
already contains support for such adaptation, but it may be worthwhile to go a
step further and create almost ready-made solutions for typical cases.

A useful enhancement to distributed grid functions would be to allow separate
overlap ranges per grid functions, which could be organized in an overlap data
base to save memory. Also, iteration over ownership ranges (Fig. 19) will be
useful.

The concepts and components described here are for static mesh distribution.
While for the concepts, nothing would change for dynamic mesh distribution,
components for dynamic distributed grids would be highly useful. As for the
automatic overlap generation, the complicated machinery could probably com-
pletely hidden behind a simple interface.

We plan to base the parallelization of an octree based mesh generator on top
of the parallel components described here. The somewhat more irregular algo-
rithmic patterns of a mesh generator may result in additions to the components,
such as distributed partial grid functions.
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Abstract. 1

The Parallel Event-driven Programming Interface is a middleware - de-
veloped in the Microsoft .NET environment - that supports Object-
oriented parallel program development. By using it applications can be
created that are based on the type-checked and multi-parted message
communication system. Addressing the messages can be independent
from the physical positions and the platform of the nodes. Resolving the
address is handled in the background according to standard TCP/IP.
Taking advantage of this and the .NET architecture, the binary distri-
bution of the application is capable of running on grids and clusters,
having various platforms (currently Windows and Linux platforms are
supported). Developed in the .NET environment, these distributed ap-
plications are backed up with plenty of supply by the services of .NET’s
Base Class Library and even with the advanced features of OO program-
ming (garbage collector, exception handling etc). With the help of the
already defined interfaces in the system, the objects of the user’s program
can be easily linked to the process of sending and receiving messages. Be-
side the usual way of sending and receiving blocking messages, callback
based message handling is also available. The incoming messages can
be handled seperately by these callback functions. The system supports
the writing of multi-threaded programs, and the calling of these callback
functions can be within a thread or in a thread group. An easily cus-
tomizable possibility of logging the messages for debugging purposes is
included in the system. . . .

1 The Distributed Programming System

P.E.D.P.I. is a message passing interface, by using it we can develop a distributed
application in Microsoft .NET environment.

First the environment, where these applications can be run, will be described.
The ”Developer’s computer” is the computer, on which the developer

works.

1 Partially supported by OTKA T037742 and 0089/2002 IKTA
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The ”Application Broker” is a server, to whom the developer can send the
application with small descriptive configuration remarks. In these remarks the
developer writes down the resources needed by the application, and the licenses
he has to run. The broker checks the licenses using a ”License Server”, and
determines the clusters where the license grants the rights for the resources, and
a scheduler looks after the application.

The ”Cluster Gateway” is the main computer which can start applications
on the cluster controlled by it.

The ”Mosaic Broker” is another server with an Open Programming In-
terface support. In this server OO classes can be stored with a well-defined
assignment. The distributed application can specify which class is needed for its
run. The Application Broker asks the Mosaic Broker for a class, and completes
the application with the best class matching the actual conditions.

This system is under development: several functions are working now, but a
number of points and protocols are under construction.

2 The P.E.D.P.I. itself

Physically PEDPI is a DLL (Dynamic Link Library) developed in C#. It is a
middleware with several useful functions - and independent from the environ-
ment introduced previously. The connection between the two products is that
the environment is the one which schedules the PEDPI applications. The next
version of PEDPI, which is under development, will be closer to the environment:
dynamically allocates nodes for computing, using the Servers and the scheduler
in the process.

2.1 Messages in PEDPI

Since PEDPI is a message passing interface, understanding the message is essen-
tial. In contrast to MPI, PEDPI sends typed messages. A message can consist
of one or more parts. Every part has a unique type ID. The built-in types in C#
can be completed with user defined types (classes).

2.2 User-defined objects as the part of a message

A user defined class can be part of a message when it fulfils the following re-
quirements:

– has to implement an ”ISelfDescriptive” interface with two simple meth-
ods:

• public bool WriteMyselfToStream(BinaryWriter write)

• public void ReadMyselfFromStream(BinaryReader read)

– has to have a default (parameterless) public constructor
– has to be registered by RegisterUserObject( Type myType) method
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The ”WriteMyselfToStream” is analog to the serialization technic, (read and
write itself to a stream). The reason for not using the serialization methods is
that this is not an object serialization - it is the sending of a message. An object
may not want to send all the data about itself as a message.

When a user-defined object wants to be a part of a message, the method
”WriteMyselfToStream” will be called during the sending procedure. On the
other side, during the receiving, an object will be created using the default
constructor, then the ”ReadMyselfFromStream” will be called. The object has
to control its writing and reading from the stream.

An object can not cause an error during reading itself from the stream,
because the stream behaves as if it contained only that part of the message. It
can’t read more data than that was written for this part.

When the receiver has no registration to that user defined class, this part of
the message will be a raw data (byte array).

Example of a simple PEDPI Program

class myClass:PPE.PEDPI.ISelfDescriptive

{

private int myData=0;

//...................................................

public myClass()

{

}

//...................................................

public bool WriteMyselfToStream(BinaryWriter write )

{

write.Write(myData);

return true;

}

//...................................................

public void ReadMyselfFromStream( BinaryReader read )

{

myData = read.ReadInt32();

}

//...................................................

//... myClass’s computation methods are here ...

//...................................................

}

static void Main()

{

TContext myContext = PEDPI.Start();

Message msg = new Message();

double d = 1.1; msg.Add( d );

myClass c = new myClass(); msg.Add( c );
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myContext.SendMsg( msg, myTag, targetNode );

PEDPI.Stop();

}

When a message is constructed, it can be send to a node. A node must be a
member of a context. A context is a group of nodes. Inside a context every node
has a unique ID, which is an integer value (like in MPI). In the PEDPI there is
a context node table, which stores the additional information on the target node
- eg. its IP address and port. This table is synchronized between the nodes, by
using system level messages, and can be modified when a node wants to define
a new context, or a node is attaching dynamically to the running distributed
application.

In the beginning, every node is in the default context. Any node can initiate
to built up a new context specifying the nodes in the new set.

On the receiver side the arriving stream will be automatically separated into
the original data types and data values. Therefore the receiver application can
use the data immediately:

Message msg = mpi.BReceive( myTag );

Console.WriteLine("Number of parts={0}",msg.MsgLength);

The parts of the message can be processed incrementally:

if (msg.isDouble()) // is the next part a double?

Console.WriteLine("1.st part={0}",msg.asDouble());

or by its index:

if (msg.isBool(2)) // is the 2nd part a bool ?

Console.WriteLine("2nd part={0}",msg.asBool(2));

A message can be sent only in asynchronous mode. During sending, a com-
munication channel will be built up between the sender and the receiver node.
If it is impossible to create, an exception will be raised. Thus the sender node
will know if the message has arrived correctly to the target node or not, but will
not know if this message is processed or not. The message on the receiver node
will arrive into a ”Message Store” object, which will store the message until the
application wants to process the message.

On the other side, the node can receive the message in a blocking or in a non-
blocking mode, or through a callback function. The blocking and non-blocking
mode is the same as in other systems: the application can use a ”peek” function
to check if a special message has arrived or not, or can wait until a specified
message arrives.

3 Callback functions

The callback functions can become a new technique to process incoming mes-
sages. The application can contain several callback functions. These functions
can be placed into groups, which has attributes.
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A callback function can be:

– Single Grouped callback function: single means that only one method from
the group set can be active at the same time. The developer can create many
groups, and place the callback methods into separate groups. The methods in
the same group act like a one-threaded application. The methods in different
groups act like a multi-threaded application.

– Single Standalone callback function: this method can only be activated
when it has finished processing the previous message. This is like a Single
Grouped function, which stands in a group alone.

– Multi-threaded callback function: this method can be activated immedi-
ately when the message is arriving - even if it is running on processing the
previous message. This type of callback functions can be used to monitor or
debug messages and the application itself.

– Blocking receive: in fact, it is not a callback function, however, when a
thread uses a blocking receive the thread will be suspended, and a callback
function will be automatically installed. When a message, which satisfies the
requirements of the blocking receive, is arriving, this callback function will
be activated, and will resume the thread, so the thread can continue its run.
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handler

Message
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Fig. 2. Inside P.E.D.P.I.
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The callback functions must be registered into a context, specifying the mes-
sages it can process. This is a message filter, where one can specify the tag-s.
A ”tag” is a user- defined integer value attached to the message. Using it the
application can scatter the messages very quickly in a ”switch”.

PEDPI uses a TCP/IP socket, through which it can receive the incoming
messages. The socket is listened by the ”Message Center” object, which can
receive system level messages and application messages.

The ”Message Store” stores the incoming messages until its process is fin-
ished. The incoming message is stored immediately, then the ”Callback Han-

dler” is informed about the message. It selects a registered callback function
from its own list, and activates one. When none can be activated - it will not do
anything. It means that the message needs to remain stored.

When a callback function is registered, the handler checks the message store
to see if any stored message satisfies the requirements of the new callback func-
tion. In this case the callback function will be activated to process the ”old”
messages first.

When more than one callback function can process an incoming message
(because their message filter is matching the incoming message) a decision will
be made:

1. Is there any blocking receive points? If yes - it will get the incoming message
2. Is there any multi-threaded callback functions? If yes - it will get the incom-

ing message
3. Is there any single standalone or single grouped callback functions? If yes -

it will get the incoming message

Observing what has been covered; the distributed application can easily be
a multi- threaded application - even if the programmer does not want it to be.
By using the callback functions the programmer can implement an event-driven
application - where the events are incoming messages. But he has to be aware
of the possibility that it might become multi-threaded.

4 Log

In order to help the development, PEDPI contains a built-in message logging
feature. It can be easily activated and used. It produces ASCII text files (log
files) about the incoming, outgoing and processed messages. The developer can
register his own log objects, and implement any kinds of logging and debugging.

5 The speed of the .NET and C#

The next graph proofs, that the handling of network under the .NET envi-
ronment on Windows XP is not slower than Linux/MPI at all. The following
diagram shows how many times we need to send and receive 100.000 messages
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Fig. 3. 100.000 messages send and receive

between two nodes varying the length of the message body from 1,2,4,8,16 up to
16384 bytes. The axis y signs the time of sending and receiving in milliseconds.
The axis x signs the size of one message in bytes.

– NSock means: low level network Socket was used in the communication
(C#, .NET, WinXP)

– NStream means: Network Stream over a socket was used in the communi-
cation (C#, .NET, WinXP)

– MPI means: MPI was used in the communication (C, MPI, Linux)

Unfortunately, this test can’t be run on PEDPI, because PEDPI builds the
message channel up every time a message is sent, and after transferring a number
of messages Windows generates an exception that too many network sockets are
open - in spite of closing every socket immediately after it was used. It might be
the fault of GC, but it will be corrected in the next version of PEDPI.

6 An example - N queens on the chessboard

The classical ”N queen on the chessboard” problem solved in C# using PEDPI.
The following diagram shows the speed-up varying the number of the queens
(and the number of columns and rows of the chessboard) and the number of
nodes assisting the calculation of all the solutions on the problem.

– Seq means: the sequential algorithm
– PEDPI 2 means: parallel algorithm with PEDPI on 2 nodes
– PEDPI 4 means: parallel algorithm with PEDPI on 4 nodes
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– PEDPI 8 means: parallel algorithm with PEDPI on 8 nodes
– PEDPI 16 means: parallel algorithm with PEDPI on 16 nodes

During solving the problem the nodes share the backtrack interval among
themselves. Increasing the number of nodes the intervals will be shorter, and the
communication becomes more frequent, and it decreases the performance.

The axis y signs the time in microseconds, the axis x signs the number of
queens on the chessboards.
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In the future we would like to cooperate with the Hungarian JINI project
to join our forces together to develop a much more reliable, robust and flexible
message passing interface.
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Abstract. The application of object-oriented (OO) design to atmo-
spheric models is presented exemplarily for the newly developed model
. The model employs a finite volume discretisation, which is inherently
very modular. This modularity and flexibility is preserved in the design
and implementation. Some well established OO design patterns are ap-
plied, partially in modified form to accommodate the special needs of a
scientific computing application, e.g. to improve performance. The model
is implemented in the C++ programming language, which provides the
special means of templates. These are used in some places to improve
performance.
The design of a3m is developed roughly following software development
processes and models of established ‘best practices’ of OO design. Use-
case-driven software development processes are found to be not directly
applicable to constructing a low-interaction application such as an atmo-
spheric model. Instead, an extension of the software development process
to include the mathematical modelling and the discretisation of the re-
sulting equations as development activities is proposed. This provides
the means to decompose the complexity of the final application, an at-
mospheric flow model, into manageable units. A programming technique
based on partial specialisation of C++ templates to further facilitate the
decomposition of complexity is demonstrated.

1 Introduction

From a certain point of view, an atmospheric model is just a computer pro-
gram, a piece of software. However, new approaches for software development
are rarely used in the construction of atmospheric models. The newly developed
atmospheric flow model a3m applies some unusual approaches and methodolo-
gies for atmospheric modelling: it is designed following the object-oriented (OO)
paradigm and that design is implemented in the C++ programming language.
This distinguishes a3m from the vast majority of atmospheric models which are
built following the structured programming / procedural paradigm implemented
in Fortran.

The OO paradigm provides more and more powerful means of abstraction,
namely classes, inheritance and polymorphism. In general, OO designs permit
better encapsulation and separation of concerns, thus providing a high degree of
modularity and flexibility and greatly increase the potential for re-use of single
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system components. Additionally, the C++ programming language provides the
very special feature of templates: classes and functions can be parameterised by
types and/or compile time constants. This feature has received a lot of attention
in the scientific computing community [1, 2, 3].

The recursive acronym a3m stands for “a3m is an adaptive atmospheric mo-
del.” The model is based on the flow equations for compressible, inviscid media,
the Euler equations. It employs a set of relatively recent numerical methods to
obtain approximate solutions of these equations, a high-resolution finite volume
(FV) discretisation using essentially non-oscillatory (ENO) recoveries to gain
higher order accuracy. A detailed description of a3m is given in [4].

The design presented here is essentially a design for a FV framework. Special
emphasis is put on retaining the modularity inherent to FV schemes and, most
importantly for a3m, on flexibility with respect to the type of computational grid
employed.

Some well established OO design patterns are applied in a3m’s design. Some-
times they have to be adapted to suit the special needs of a scientific computing
application, e.g. to improve performance. The behavioural patterns Strategy,
Iterator and Template Method of the “Gang of Four” (GoF), Gamma, Helm,
Johnson and Vlissides, described in their book [5] are of special interest. Some
modifications have to be made to the design for the sake of performance: real
polymorphic behaviour can be costly in terms of execution time and is thus elim-
inated by the use of C++ templates in some critical places. That way, a specific
choice from a set of possible classes is determined at compile time, an approach
sometimes referred to compile time polymorphism.

A modified and extended version of an OO software development process
similar to the “recommended processes and models” described by Larman [6] is
devised for the development of a3m. It should be also applicable for developing
similar scientific computing applications. It was motivated by the special nature
of this class of applications: driving the development by use cases (i.e. ways the
system is interacted with) is not an option for a low-interaction program. Instead,
an extension of the development process to explicitly include the mathematical
modelling and discretisation as development activities is proposed. From these
other means of driving the development, decomposing the systems’ complexity
into manageable units, can be derived. With this respect, a programming tech-
nique based on partial specialisation of C++ templates to aid the decomposition
of complexity is demonstrated.

Section 2 gives a short description of the mathematical discretisation methods
and discusses the goals for the design of a3m and approaches to achieve them.
In Sect. 3 the applicability of a typical OO software development process to the
creation of an atmospheric model (or a similar scientific computing application)
and the need for adaption of the process to this kind of application are examined.
Section 4 discusses some implications of the OO approach on performance, which
is one of the major constraints for atmospheric models and scientific computing
application in general. Section 5 summarises the conclusions from this work and
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discusses some limitations of the design presented here as well as possible future
directions.

2 Discretisation and Design

The atmospheric flow model a3m uses a finite volume (FV) spatial discretisation.
A general description of FV schemes can be found in [7], [8] and [9]. Here only
some some terms and concepts to be found again in the remainder of this paper
are introduced. The basic idea of FV methods is to partition the computational
domain, the region of space in which to simulate, into a set of small volumes
or cells. The governing equations, the compressible flow equations in the case
of a3m, are averaged over the cells yielding one value for each cell. These cell
averages evolve over time due to sources and sinks within each cell and due to
fluxes exchanged between neighbouring cells through their common boundaries,
the faces. Cells and faces are essential components of the computational grid used
for the FV discretisation. The accuracy of the method is enhanced by recovering
approximations of the equations’ solution on each cell which are better than the
piecewise constant approximation by cell averages.

FV methods are inherently very modular. Several distinct functional units
and concepts can be identified in their construction: numerical flux functions,
recoveries and quadratures. In principle, instances of these functional units can
be combined at will and with various time integration schemes.1 Also, they are
applicable with any kind of computational grid. One central design goal is to
preserve this modularity and flexibility in the implementation of the atmospheric
model.

2.1 Time Integration

Time integration methods differ in the way an integration step is performed,
i.e. how, given a particular spatial discretisation, the solution at time t + δt
is computed from the solution at time t. The algorithm for the Euler forward
scheme is given in Fig. 1 on an abstract level. Other time integration schemes
require different sequences of similar operations and iterations. A simple way of
providing these variations while maximising code re-use is to employ a Template
Method [5] for performing the time step: an abstract base class ‘TimeIntegration’
provides code common to all schemes, while concrete integration schemes, as
presented in Fig. 1, only provide an implementation of the ‘step()’ method and
inherit the rest. Figure 2 shows this relationship as an unified modelling language
(UML) class diagram [10].

2.2 Modularity and Separation of Concerns

The choice of recovery procedure largely determines important properties of the
FV method as a whole, most importantly the amount of artificial oscillations

1 Not all possible combinations actually make sense or are numerically stable.
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1. For each cell:
compute the recovery function.

2. For each pair of neighbouring cells:
compute the flux through their common face and record the
induced tendencies of the cell averages.

3. For each face-cell pair on the domain boundary:
compute the flux to or from the exterior of the domain and
record the induced tendencies.

4. For each cell:
compute sources and sinks and record the induced tendencies.

5. For each cell:
update the cell average using the accumulated tendencies.

Fig. 1. Sequence of operations for one step of the Euler forward time integration.

and numerical diffusion introduced into the solution. Thus, being able to easily
exchange this unit without modifying unrelated code is highly desirable. Simi-
larly, other functional units should be changeable without impact on other parts
of the code.

One of the key features of a3m is a high degree of control over spatial reso-
lution, i.e. where to have small and large cells. There is a large number of ap-
proaches to achieve this goal, e.g. by using a distorted structured grid [11, 12], a
locally refined block-structured grid [13, 14, 15] or even an unstructured grid [16].
Introducing an abstraction of the computational grid enables their interchange-
ability, so that the type of grid, (block-)structured or unstructured, refineable
or not, can be varied easily without changes to other components of the model,
e.g. of the FV solver.

A general rule of thumb for program design is to assign the responsibility
for a certain part of the systems’ functionality to the component which has the
necessary knowledge to perform the task. This is also referred to as the Expert
pattern in [6]. Following this rule, it is the grid’s responsibility to iterate over the
combinations of it’s cells and faces needed for the different operations of the FV
scheme. But the concrete computations must not be coded directly into the grid
classes themselves. Otherwise the interchangeability of either, the type of grid
or the FV solver components, is violated and the classes are not focused in their
concerns anymore: a grid class represents a particular kind of computational
grid, not a complete FV scheme.

A solution to this problem is provided by the GoF Iterator pattern [5]. How-
ever, separate iterator objects were found to perform poorly [4], even with heavy
use of C++ template to replace real runtime-resolved polymorphism (Sect. 4).
Therefore, all of a3m’s grid classes provide iterator methods taking a FV solver
component as an argument and passing the necessary cell/face combinations to
them. This is also shown in the class diagram in Fig. 2, where the FV solver
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Fig. 2. An UML class diagram of a3m’s basic design.
The boxes in this diagram represent classes, the different compartments display the
class name, attributes and methods. Solid arrows with a hollow triangle head indicate
Generalisation: they connect sub-classes (more specialised) to super-classes (more gen-
eral), e.g. an instance of class ‘EulerForward’ is a ‘TimeIntegration’. Other solid lines
represent Associations, where arrow heads indicate navigability: instances of different
classes referencing one another, e.g. a ‘TimeIntegration has a ‘FluxFunction’. For a
detailed description of the notation see [10].
Note that the FV solver components other than numerical flux function have been left
out of this diagram for the sake of simplicity.
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components other than numerical flux functions have been left out of the dia-
gram for the sake of simplicity. The FV solver components act as a variation of
a GoF Strategy [5]. Thus, the grid classes provide specialised looping constructs
depending on the type of iteration (for computing recoveries, fluxes or sources)
and spatial dimension (see also Sect. 3.2), while the kernel of these loops, the
concrete FV solver component passed to the iteration method, is injected into
them.

3 A Software Development Process for an Atmospheric

Model

Citing Larman [6], a software development process “is a method to organise the
activities related to the creation, delivery and maintenance of software systems.”
The focus of this paper is the creation of an atmospheric model. Considering the
creation of such a complex software system, one of the main issues addressed in
a software development process is to provide methods for an incremental and
iterative development, tackling one unit of manageable complexity at a time.

3.1 Driving the Development

The development process (“recommended processes and models”, RPM) de-
scribed by Larman, which may also be viewed as an instance of the Unified
Process [17], knows several activities or disciplines: planning, analysis, design,
construction and testing. Unlike the older ‘waterfall approach’, disciplines are
not performed sequential in time: the development is organised in relatively short
cycles over all of the disciplines. This allows e.g. for the requirements to change
over time and to immediately account for those changes in the analysis, design
and implementation in the same development cycle.

The Larman’s RPM [6] is use-case-driven: the complexity of the complete
software system to build is partitioned by cases of how that system is used,
i.e. interacted with. The use-cases are implemented one by one, incrementally
and refining the functionality and increasing the complexity towards meeting
the defined requirements, each in a cycle of analysis, design, construction and
testing.

For an atmospheric model like a3m (and similar scientific computing appli-
cations) there is essentially only one use-case comprising the total complexity
and functionality: a scientist conducts a simulation. Hence, the decomposition of
complexity and driving the software development has to be achieved by different
means to derive analysis, design, implementation and testing tasks of manage-
able complexity.

To this end, the development process is extended to explicitly include the
mathematical modelling and discretisation as development activities. The mod-
ified development cycle is sketched in Fig. 3. Note that the activities shown are,
again, not sequentially in time, only the iteration cycles of the process become
bigger.
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Fig. 3. The activities of a3m’s extended development process.

Now that the particular nature of the problem domain to implement, a
mathematical discretisation method applied to a particular set of equations,
is accounted for in the software process, new ways of driving that process are
accessible. The possible approaches include:

1. start with fewer spatial dimensions,
2. start with a simpler mathematical discretisation method (leave out func-

tional units of the FV solver, e.g. using only a first order scheme, or use
trivial instances of functional units)

3. start with a different, simpler set of equations than the atmospheric flow
equations and

4. start, due to the special goals for a3m (Sect. 2.2), with a simpler type of grid.

As an example, the implementation of a3m began with a first-order method
(requiring no recoveries at all) solving the one-dimensional advection equation
and later the Burgers equation on a simple structured grid. The later versions
solve the fully compressible Euler equations in multiple space dimensions on
block-structured grids.

This way of driving the development blends well with the requirements to-
wards the design postulated in Sect. 2. It is the modularity achieved by the strict
separation of concerns between the different FV solver components as well as
the time integration and grids that enables their interchangeability from absent
or trivial via simple to complex versions of these components needed for the
approaches 2 and 4 above. Figure 4 shows the evolution of the conceptual model
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[6] during a3m’s development. The two diagrams show some of the concepts of
the problem domain to implement, a FV discretisation method, and their inter-
relations. The upper diagram shows a very early stage of the development, where
no recovery (approach 2) and only a simple structured grid (approach 4) were
used. The lower diagram uses piecewise linear recoveries on a block-structured
grid.

The full design of a3m also includes a parameterisation by the physical prob-
lem to simulate, ranging from linear advection to the full equations of atmo-
spheric motion. This is only hinted at in form of the ‘SolutionValue’ concept
in Fig. 4. The physical problem classes include different representations of the
solution for the actual model state, the cell averages, and computing recoveries
as well as those computations immediately involving the analysis of the equa-
tions (e.g. eigenvalues of the fluxes’ Jacobian) which are used by some FV solver
components. This parameterisation allows a variation of the equations solved,
i.e. to pursue approach 3 above, but for simplicity this shall not be discussed in
more detail at this point.

3.2 Decoupling Spatial-Dimension-Dependent Code Using Partial

Specialisation of C++ Templates

Following approach 1 above, the development of a3m was begun with only one
spatial dimension. It should be noted that only some parts are dependent on
the spatial dimensions. All other parts can be re-used directly if decoupled prop-
erly from the dimension-dependent code. The time integration and sources do
not depend on the spatial dimension. Since the design currently limits recovery
functions to at most piecewise linear functions in space, the responsible methods
of the FV solver components take two, three or four cells to recover in one, two
and three dimensions, respectively. This can be easily achieved by overloading
these methods. The flux computation is essentially the (approximate) solution
of a one-dimensional Riemann problem at the face between two cells and is thus
independent of the spatial dimension. In more than one dimension, a rotation
to a local coordinate system is performed. This rotation is dependent on the
number of dimensions. Another part depending on the spatial dimension are the
grids’ iteration methods which apply the FV solver components to the necessary
combinations of cells and faces.

A possible method to follow approach 1 above would be to implement sepa-
rate grid classes for each dimension and type: one for 1d structured, 1d block-
structured, 2d structured, etc. But this approach results in very low code re-use
among grids of the same type.

Taking into account that specifying the number of dimensions at compile
time is not a significant restriction, a special feature of C++ for generic pro-
gramming can be employed: templates. So the grids are parameterised by the
number of spatial dimensions with a template parameter of type ‘int’. Unlike
polymorphism, which has to be resolved at the time of execution, this has no
impact on performance. A grid class would look something like shown in Fig. 5.
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(a) early development

(b) late development

Fig. 4. Evolution of the conceptual model during the development.
The notation is the same as in Fig. 2. Additionally, filled diamonds on association ends
indicate Composition, i.e. the class on the other end of the association is an integral
part of the class on the one end. See [10] for more details.
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template <class Problem, unsigned int dimension>
class Grid {
public:

...
inline void computeFluxes(FluxFunction& fun) {

if (dimension==1) {
...

} else if (dimension==2) {
...

} else if (dimension==3) {
...

} else {
throw

”computeFluxes() only implemented for dimensions 1..3”;
}
}
...

};

Fig. 5. A naive grid class implementation.

A decent optimiser should be able to eliminate the unused branches. Never-
theless they have to be correctly parsed and code has to be generated for them,
just to be removed afterwards. Also, throwing an exception at run time when
failure is already certain at compile time makes little sense.

A different approach is followed in a3m using another interesting feature of
C++: partial specialisation of templates. So specialised implementations of the
iteration methods could be given for the number of spatial dimensions while all
other template parameters are still unspecified. Usually, a compiler instantiates
only those specialised functions actually used, so that no code is generated for
the unused versions. If there is no specialised (and no generic) version, an error
is reported latest while linking.

Unfortunately, partial specialisation is only legal for classes and not for func-
tions, not even member functions (methods). Adhering to the proverbial “an-
other layer of indirection will solve it”, this can be circumvented by defining
a specialised implementation helper class as shown in Fig. 6. The specialised
implementation of class GridImpl in 2d is shown in Fig. 7.

This approach even enforces proper encapsulation: class GridImpl really is
just an extension of class Grid and should only be accessed by that. This is
achieved by declaring the computeFluxes() member function of the specialised
class GridImpl<Problem, 2> private and making class Grid<Problem,2> a
friend of its helper class.

Specialised versions of the rotation can be gained similarly.
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// Just declaration: there is no generic iteration.
template <class Problem, unsigned int dimension>
class GridImpl;

template <class Problem, unsigned int dimension>
class Grid {
public:

...
inline void computeFluxes(FluxFunction& fun) {

// delegate iteration to specialised helper
GridImpl<Problem, dimension>::computeFluxes(fun, ∗this);
}
...

private:
friend class GridImpl<Problem, dimension>;
Array<Cell, dimension> cells;
Array<Face, dimension> faces[dimension];
};

Fig. 6. Implementation of a grid class using a helper class.

4 Resolving Performance Issues of the Object-Oriented

Design

Polymorphism is one of the major features of the OO approach and is used in
many design patterns, including the Strategy and Template Method patterns
used in a3m’s design [5]. But polymorphism, realised in the C++ language by
virtual functions, may have a significant impact on performance: the actual type
of an object, and thereby the exact method to call, has to be determined at run
time. This is not only costly compared to a normal function call, it also prevents
inlining of the function and all further optimisations inlining usually enables.
Although other issues have received a higher priority in a3m’s development,
end-to-end execution time is an important issue. Therefore, real polymorphic
behaviour – involving virtual member functions – is eliminated by the use of
C++ templates in some critical places, an approach is sometimes referred to as
compile time polymorphism.

In general, a virtual function should be replaced if it is called often and if the
function performs only few computations. Performing a virtual function call to
the ‘step()’ method of the ‘TimeIntegration’ class has little impact on the total
execution time, since the method performs, although mostly indirectly, a lot of
complicated computations (a whole step of integration). Virtual function calls
for methods performing I/O also have little impact: I/O is generally slow and
streams of the C++ standard library use virtual functions anyway.
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template <class Problem, 2>
class GridImpl {
private:

friend class Grid<Problem, 2>;

static void computeFluxes(FluxFunction& fun,
Grid<Problem, 2>& grid) {

for(int i0 = 0; i0 < grid. cells .extent(0) − 1; ++i0) {
for(int i1 = 0; i1 < grid. cells .extent(1) − 1; ++i1) {

// call FluxFunction fun here...
}
}
}
...

};

Fig. 7. Implementation of a specialised helper class used in Fig. 6.

The FV solver components are called for all cells or all certain combinations
of cells and faces every time step. Hence, the polymorphism in these classes
is dropped and they are passed as template parameters to the concrete time
integration class and from there on to the grids’ iteration methods. Applying
this principle to GoF Strategies like the numerical flux classes also has some
resemblance to policy-based class design [18]. In Alexandrescu’s approach a host
class inherits publicly from one or more policy classes and thereby also inherits
the behaviour of the policies. The important difference to a3m’s design is that no
inheritance is involved: the Strategies are template parameters to inner template
functions of the grid classes. The modified design is shown in Fig. 8.

Summarising some important differences to the polymorphic design shown
in Fig. 2, ‘NumericalFlux’ and ‘Grid’ are no classes in the implementation any-
more. They just serve to illustrate what numerical flux functions and grids are,
respectively. Also, the ‘apply()’ method of the numerical flux functions (class
‘Osher’) is now a static member function: numerical fluxes have no state any-
way, they just provide behaviour (a piece of code to be injected in some loop).
The abstract class ‘TimeIntegration’ has no ‘fluxFunction’ and ‘grid’ attributes
anymore. The grid and numerical flux function are template parameters of the
concrete time integration ‘EulerForward’. Accordingly, ‘EulerForward’ is now
constructed with a grid and the numerical flux function is accessed only by its
type passed as the second template parameter.

5 Summary

The software design of the new atmospheric model a3m was presented and dis-
cussed. Unlike the vast majority of atmospheric models, which adhere to a pro-
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Fig. 8. Design with compile time polymorphism using C++ templates.
The notation is the same as in Fig. 2. Additionally dashed arrows with a hollow triangle
head indicate Realisations of a Type, which are present for conceptual purposes only and
do not represent classes in the implementation, other sashed arrows indicate different
kinds of Dependencies and dashed boxes on classes represent parameters to that class,
i.e. they are template classes. Again, see [10] for more details.
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cedural approach, this design follows the OO paradigm. It makes use of some
well-established OO design patterns. The design was implemented in the C++
programming language. C++ templates were used to avoid runtime penalties
from polymorphism while retaining encapsulation, proper separation of concerns
and, thus, a very high degree of modularity.

A software development process based on that described by Larman [6] was
employed. It was extended to explicitly include the mathematical modelling and
discretisation as software development activities. Instead of driving the process
by use cases, a strategy tailored for more interactive applications, these exten-
sions provide the necessary means of decomposing the systems’ complexity.

A programming technique employing partial specialisation of template
classes, a special feature of the C++ language, to decouple code immediately
depending on the number of spatial dimensions of the physical problem to solve
(iteration loops for structured grids, rotations) from other program parts was
demonstrated. This technique enables a further decomposition of complexity
and, thus, aids driving the proposed development process.

Although, for the sake of a cleaner presentation, this paper covers only a
simplified version of a3m’s design, some of its’ limitations should not go unmen-
tioned: currently quadratures are not explicitly modelled in the design and recov-
eries are limited to piecewise linear. Both limits the accuracy of the FV method
to second order. A more general approach would require significant changes in
the design and was postponed to potential future development cycles.

Other directions of development are well supported by the design in the
current state. These include a transition from locally refined to fully adaptive
block-structured grids, i.e. grids which change in their spatial distribution of res-
olution during a simulation and parallelisation. The former lies exactly within
the stated requirement of an interchangeable computational grid. Due to the
achieved separation of concerns in a3m’s design, this requires only the imple-
mentation of a new grid class (an extension of the existing block-structured grid
class) while the rest of the code remains unchanged.

Parallelisation can be achieved similarly: the distribution of data to differ-
ent computational nodes can be achieved by partitioning the grid into suitable
blocks, each of which is processed in parallel. Adhering to the proverbial “an-
other layer of indirection will solve it”, a more advanced strategy would be to
use distributed containers (arrays) for storage of the face and cell data within
grid blocks and delegate iterations (for recovery, flux computation, etc.) to the
these arrays. In either way, the rest the code remains unchanged, especially the
FV solver components are not cluttered with the details of the parallelisation.
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Fast Expression Templates for the Hitachi

SR8000 Supercomputer
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Abstract. Expression templates(ET) can significantly reduce the im-
plementation effort for mathematical software. On the Hitachi SR8000
supercomputer it can be observed, however, that classical ET implemen-
tations do not lead to an optimal performance in the case of certain
expressions such as c = aabbab. This is because they do not assist the
compiler in recognizing that variables are used several times within an
expression. Therefore, we introduce the concept of enumerated variables,
which are provided with an additional integer template parameter. Since
different variables have different types, a modified implementation of ET
leads to an optimal C++ code on the Hitachi SR8000. These so-called
Fast Expression Templates perform better than classical ET, even when
variables are not used several times. Performance results are presented
on the Hitachi SR8000 supercomputer with automatic vectorization and
parallelization.

1 Introduction

While object-oriented programming is being embraced in the industry, its ac-
ceptance by the High Performing Computing community is still very hesitant,
mainly because of supposed performance losses. For example, supercomputer
manufacturer Hitachi tells us that there is not a single user of C++ on Hitachi
supercomputers in Japan. Indeed, introducing abstract data types and operator
overloading empowers the software engineer to forge entire user-defined lan-
guages based on C++, which can be understood by C++ compilers. However,
there are not any language features in C++ which are designed to inform the
compiler about allowed transformations of mathematical expressions involving
user-defined abstract data types. Therefore, though such user-defined mathemat-
ical expressions can be compiled by C++-compilers, they perform very poorly.
The first solution to overcome these performance problems were expression tem-
plates in C++, whose development we will summarize in the following.

By adding templates to C++, the language gained much more than origi-
nally intended. Todd Veldhuizen recognized the potential of this facility and in
1995 and 1996 published the first articles about template meta programming [11]
and expression templates [12]. Expression templates were proposed to overcome
performance problems which arise from simple operator overloading in mathe-
matical expressions. Unnecessary temporaries are avoided by performing some
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kind of expression dependent inlining within a single loop. For many systems
the performance of expression templates competes with Fortran [13].

Soon, there was a rapid development of powerful mathematical packages
based on expression templates, e.g. Blitz++ by Todd Veldhuizen [14] and the
Generative Matrix Computation Library(GMCL) described in [4]. Further im-
portant steps were PETE [7] and POOMA [10], which are two projects started at
the Los Alamos National Laboratories. PETE is a tool for implementing expres-
sion templates for various applications. POOMA supports the implementation
of mathematical algorithms for solving partial differential equations. Users of
POOMA write sequential source code similar to FORTRAN 90 and get auto-
matic parallelization on various platforms just by using compiler switches.

Some aims of the POOMA project are shared by the EXPDE project [8]. EX-
PDE eases the implementation of parallel 3D finite elements codes by providing
finite element and multigrid operators on arbitrarily shaped domains. Mathemat-
ical algorithms can be formulated with EXPDE in a language very close to the
mathematical language. Expression templates enable automatic parallelization.

Performance problems with expression templates were discovered for the first
time by Federico Bassetti, Kei Davis and Dan Quinlan in 1997, see [2] and [3].

In this article we want to present another problem with expression templates.
The solution of this new problem solves prior problems, too. Let us look at a bit
of C++ code with a ∗ b understood as component-wise multiplication:

Vector a, b, c;

c = a*a*b*b*a*b;

On a single node of the Hitachi supercomputer SR8000 a classical expression
templates implementation of this code - as suggested in [15] - achieves a per-
formance significantly inferior to handcrafted C code, although the expression
templates code is fully vectorized and parallelized, see figure 4.1.

Generally, expression templates derive a so-called parse tree or expression
object representing an expression and perform some expression dependent in-
lining. Classical implementations split the information about an expression into
two parts. The data type of the expression object represents the structure of
the expression and member variables represent the variables involved within
the expression. The data type of the expression object is known at compile-
time. However, use of information represented by member variables is compiler-
dependent. For example, information accessible at compile-time about the ex-
pression a*a*b*b*a*b is equivalent to:

Vector*Vector*Vector*Vector*Vector*Vector

Therefore, classical expression templates do not assist the compiler in recogniz-
ing that the Vectors a and b are used several times within the expression and
performance losses can arise.

This problem can be overcome by introducing the concept of enumerated
variables. Enumerated variables are provided with an additional integer tem-
plate parameter. Since different variables have different types, the compiler can
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perform more intelligent expression dependent inlining. Moreover, by using enu-
merated variables, the intermediate C++ code can be forced to be identical to
handcrafted C code and performance measurements on the Hitachi SR8000 show
optimal C++ performance. Even all the performance issues recognized by Bas-
setti, Davis and Quinlan do not occur with our new implementation of expression
templates.

1.1 Structure of the Paper

In the next section we will explain in detail how expression templates are clas-
sically implemented, how they work internally and which problems they suffer
from. Thereafter, we present in detail a suggestion for a modified implementa-
tion. In the last two sections we show performance results and draw conclusions
about the use of expression templates in High Performance Computing.

2 Classical Expression Templates

Let us discuss a minimal classical expression templates implementation for vec-
tors with component-wise multiplication, as suggested in [15]. Our example was
implemented on the Hitachi SR8000 supercomputer. The program runs on a
single node of the Hitachi, which is equipped with 8 processors. Each processor
has so-called pseudo-vectorization facilities. For our presentation it is enough
to imagine that each processor is a vector-processor. Parallelization and vec-
torization is enabled by the C99 keyword restrict and the compiler directive
/*voption indep*/, see [5] and [6]. The mathematical operator times is en-
capsulated by:

struct times {

public:

static inline double apply(double a, double b) {

return a*b;

}

};

The expression class is implemented as:

template<typename Left, typename Op, typename Right>

struct Expr {

const Left &leftNode_;

const Right &rightNode_;

Expr(const Left &t1, const Right &t2)

: leftNode_(t1), rightNode_(t2) {}

inline double Give(int i) const {

return Op::apply(leftNode_.Give(i), rightNode_.Give(i));
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}

};

Here is a simple vector class:

struct Vector {

Vector(double *restrict &data, int N) : data_(data), N_(N) {}

template<typename Left, typename Op, typename Right>

inline void operator=(const Expr<Left, Op, Right> &expression) {

int N = N_;

/*voption indep*/

for(int i=0; i < N; ++i)

data_[i] = expression.Give(i);

}

inline double Give(int i) const {

return data_[i];

}

double * &data_;

int N_;

};

and here the operator*:

template<typename Left>

Expr<Left, times, Vector> operator*(const Left &a,

const Vector &b) {

return Expr<Left, times, Vector >(a, b);

}

Now wee see it in action:

...

Vector

a(a_data, N), b(b_data, N), r(r_data, N);

r = a*b*a;

...

We will now explain how expression templates work. Let us look at the line
r = a*b*a;. The simulated run of the compiler looks like:

r = a*b*a;

= Expr<Vector,times,Vector>(a,b)*a;

= Expr<Expr<Vector,times,Vector>,times,Vector>(

Expr<Vector,times,Vector>(a,b),a);

=: expression;
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It then matches r.operator=:

r.operator=<Expr<Expr<Vector,times,Vector>,times,Vector> >

(expression) {

int N = N_;

/*voption indep*/

for(int i=0; i < N; ++i)

data_[i] = expression.Give(i);

}

Now expression.Give(i) is expanded by inlining Give(i) from each node of
the expression object:

data_[i] = expression.Give(i);

= times::apply(expression.leftNode_.Give(i),

expression.rightNode_.Give(i));

= times:apply(times::apply(

expression.leftNode_.leftNode_.Give(i),

expression.leftNode_.rightNode_.Give(i)),

expression.rightNode_.Give(i));

= times::apply(times::apply(

expression.leftNode_.leftNode_.data_[i],

expression.leftNode_.rightNode_.data_[i]),

expression.rightNode_.data_[i]);

= expression.leftNode_.leftNode_.data_[i] *

expression.leftNode_.rightNode_.data_[i] *

expression.rightNode_.data_[i];

Although component-wise multiplication of three vectors is a very trivial appli-
cation of expression templates, the intermediate C++ code inlined by expression
templates is quite complex. More difficult applications like expression templates
for differential operators in 3D yield even more complex intermediate code. If
operator= is inlined, a C++ compiler can, in principle, optimize the above
expression in the sense that it evolves to:

for(int i=0; i < N; ++i)

r.data_[i] = a.data_[i] * b.data_[i] * a.data_[i];

Indeed, this requires a compiler to have good optimization facilities. Since the
Hitachi C++ compiler does not cope with C++-specific optimization facilities,
on the Hitachi SR8000 classical expression templates suffer from several perfor-
mance problems.

3 Fast Expression Templates

After this short discussion of classical expression templates, we present an al-
ternative approach. The main idea is to derive an expression object from an
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expression whose information is completely accessible at compile-time. This al-
lows more intelligent inlining and guarantees optimal C++ performance. We
achieve this by introducing enumerated variables. Enumerated variables have an
additional integer template parameter, which has to be chosen uniquely for each
variable. Then different variables have different types. As before, we present a
minimal implementation of this new approach. This causes the examples to be
somewhat cumbersome, but we feel that it makes understanding the approach
easier.

The presented implementation restricts us to use only three different enumer-
ated variables, but is easily extended to an arbitrarily high number of enumer-
ated variables. An alternative, more elegant, approach would use typelists, as
described in [1]. In this case there are no restrictions on the number of enumer-
ated variables. Global variables are easily avoided by additionally introducing
expression wrapper classes, which wrap a single enumerated variable within an
expression.

First we introduce some macros, which simplify the handling of enumerated
variables:

#define params_in double *restrict data0_, \

double *restrict data1_, \

double *restrict data2_

#define params_out data0_, data1_, data2_

#define DeclareEnumVariables double *restrict data0_, \

*restrict data1_, \

*restrict data2_

double *global0_, *global1_, *global2_;

The classes, which derive the expression object from a mathematical expression,
have the same structure as in the classical case. However, they do not have any
member variables and the methods can be defined as static. The complete
information about an expression is now represented by its data type.

struct times {

public:

static inline double apply(double a, double b) {

return a*b;

}

};

template<typename Left, typename Op, typename Right>

struct Expr {

static inline double Give(params_in, int i) {

return Op::apply(Left::Give(params_out, i),

Right::Give(params_out, i));

}

};
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The main implementation idea consists of introducing the enumerated variable
class vector. The expression dependent inlining is again performed by methods
defined as static. Furthermore, it is remarkable that the new approach allows
to abandon the compiler directive /*voption indep*/. We achieve paralleliza-
tion and vectorization just by using compiler switches and the C99 keyword
restrict:

template<int varnum>

struct Vector {

template<typename Left, typename Op, typename Right>

void operator=(const Expr<Left, Op, Right> &expression) const {

DeclareEnumVariables;

// double *restrict data0_, *restrict data1_, ...;

int N = global_N;

// Preparations, can be implemented in a more elegant manner

data0_ = global0_; data1_ = global1_; data2_ = global2_;

for(int i=0; i < N; ++i)

GiveData(params_out)[i] = expression.Give(params_out, i);

}

static inline double Give(params_in, int i) {

return 0.0;

}

static inline double*restrict GiveData(params_in) {

return NULL;

}

};

template<> inline double Vector<0>::Give(params_in, int i) {

return data0_[i]; }

template<> inline double Vector<1>::Give(params_in, int i) {

return data1_[i]; }

template<> inline double Vector<2>::Give(params_in, int i) {

return data2_[i]; }

template<>

inline double*restrict Vector<0>::GiveData(params_in) {

return data0_; }

template<>

inline double*restrict Vector<1>::GiveData(params_in) {

return data1_; }

template<>

inline double*restrict Vector<2>::GiveData(params_in) {
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return data2_; }

The following piece of code is analogous to the classical code:

template<typename Left, typename Right>

inline Expr<Left, times, Right> operator*(const Left &a,

const Right &b) {

return Expr<Left, times, Right>();

}

template<typename Left, int varnum>

Expr<Left, times, Vector<varnum> > operator*(const Left &a,

const Vector<varnum> &b) {

return Expr<Left, times, Vector<varnum> >(a, b);

}

Last but not least, an excerpt from the main program:

...

Vector<0> a; Vector<1> b; Vector<2> r;

r = a*b*a;

...

We will now explain how this new approach differs from classical expression
templates. To this end, let us look at the expression c=a*b*a. The expression
object for this expression has the following type:

Expr<Expr<Vector<0>,times,Vector<1> >,times,Vector<0> >

Since this expression type contains the complete information about the expres-
sion a*b*a, a more intelligent inlining is possible. The expression is evaluated
as:

r.operator=Expr<Expr<Vector<0>,times,Vector<1> >,times,

Vector<0> >(expression) {

DeclareEnumVariables;

int N = global_N;

// Preparations, can be implemented in a more elegant manner

data0_ = global0_; data1_ = global1_; data2_ = global2_;

for(int i=0; i < N; ++i)

GiveData(params_out)[i] = expression.Give(params_out, i);

}

Now we investigate how expression.Give(params_out, i) is inlined:

data2_[i] = times:apply(

times::apply(

expression::Left::Left::Give(params_out, i),
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expression::Left::Right::Give(params_out, i)),

expression::Right::Give(params_out, i));

= times:apply(

times::apply(data0_[i], data1_[i]), data0_[i]);

= data0_[i]*data1_[i]*data0_[i];

This inlined source code is just the code a programmer would naively write. Since
expression::Left::Left and expression::Right are of type Vector<0>, and
since expression::Left::Right is of type Vector<1>, enumerated variables
allow the most precise static inlining. This static inlining is very important,
because it assures that the expression object is created at compile-time, not at
run-time. This has an important impact on performance.

The new approach for expression templates presented here is much more
powerful than classical implementations. This is not only true for our trivial
minimal implementation with component-wise multiplication, but also for com-
plex expression templates applications on 3D-grids with 3D-stencil-evaluations.

4 Performance Results

In this section we will present performance results for three different vector
expressions on a single node of the Hitachi SR8000 supercomputer in Munich.
A single node is equipped with eight RISC processors and each processor can
perform vector operations with floating point numbers. The peak performance
of a Hitachi node is 12 GFLOPS per second, see [5].

On the Hitachi SR8000 we use the Optimizing C++ compiler sCC by Hitachi,
because it is the only C++ compiler which can vectorize C++ programs on this
platform. Unfortunately, this compiler is available only as a beta version 5. It
has some bugs and is not fully ANSI C++ compliant. However, it optimizes
numerical computations, actually written in C code, fairly well. Examples were
compiled with the compiler options -restrict -Os. The keyword restrict is
part of ANSI C99, see [5].

For each example we compare three different implementations. The first con-
sists of handcrafted C code compiled by a C++ compiler, called No Expres-

sion Templates(NET). The second is a Classical Expression Templates(CET)
implementation and the third is our new approach, called Fast Expression Tem-

plates(FET). For performance measurement of our FET implementation we used
a minimal implementation with five variables and component-wise vector addi-
tion and multiplication. Performance measurements are presented for the three
following examples:

c = a ∗ a ∗ b ∗ b ∗ a ∗ b (1)

a = a + a ∗ a + a ∗ a ∗ a + a ∗ a ∗ a ∗ a + a ∗ a ∗ a ∗ a ∗ a +

a ∗ a ∗ a ∗ a ∗ a ∗ a + a ∗ a ∗ a ∗ a ∗ a ∗ a ∗ a (2)

a = b ∗ c + d ∗ e (3)
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Each expression was evaluated 1000 times and the elapsed time was measured. In
the case of NET and FET code the sCC compiler can optimize away superfluous
floating point operations, but not in case of CET.

4.1 First Example

The first example c = a∗a∗b∗b∗a∗b makes clear that FET is better in advising
the sCC compiler that variables are used several times within an expression.
NET and FET code achieve the same performance. The logfiles created by sCC
concerning loop unrolling, parallelization and vectorization, show that the in-
termediate C++ code inlined by FET is compiled very similar to NET code.
Performance of CET is measurably lower than of NET or FET.
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Fig. 1. Elapsed time per vector component for three implementations of the expression
c = a∗a∗ b∗ b∗a∗ b on a single node of the Hitachi SR8000. With N the vector length,
we plot elapsed time per vector component against log

5
N . The abbreviations NET,

CET and FET stand for No Expression Templates, Classical Expression Templates

and Fast Expression Templates

The following two tables show the performance improvement achieved by
FET in comparision to CET for (1) and the absolute performance of FET mea-
sured in units of MFLOPS per second.

log5(Vector length) 4 5 6 7 8 9
Performance ratio FET/CET 1.22 1.30 1.37 1.36 1.40 1.40

log5(Vector length) 4 5 6 7 8 9
Performance of FET 812 2600 4720 4550 4430 4460
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4.2 Second Example

The second example

a = a + a ∗ a + a ∗ a ∗ a + a ∗ a ∗ a ∗ a + a ∗ a ∗ a ∗ a ∗ a +

a ∗ a ∗ a ∗ a ∗ a ∗ a + a ∗ a ∗ a ∗ a ∗ a ∗ a ∗ a

again makes clear that FET is better in advising the sCC compiler that variables
are used several times within an expression. However, in this example the sCC
compiler can exploit this much more. Hardware counters show that, with N the
vector length, NET and FET perform 12N floating point operations to evaluate
the expression once. According to the Horner scheme this is the minimum number
of operations needed. Unlike NET and FET, the CET implemention performs
27N floating point operations, since in this case the sCC does not recognize that
the variable a is used several times in this expression.

Again, NET and FET achieve the same performance and their logfiles are
identical.
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Fig. 2. Elapsed time per vector component for three implementations of the expression
a = a + a ∗ a + a ∗ a ∗ a + · · ·+ a ∗ a ∗ a ∗ a ∗ a ∗ a ∗ a on a single node of the Hitachi
SR8000. For explanations, see figure 4.1

.

The following two tables show the performance improvement achieved by
FET in comparision to CET and the absolute performance of FET measured in
units of MFLOPS per second.

log5(Vector length) 4 5 6 7 8 9
Performance ratio FET/CET 3.50 5.86 7.46 8.04 9.05 9.14

log5(Vector length) 4 5 6 7 8 9
Performance of FET 1390 3880 5730 6340 6350 6420
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This example shows that for the sCC compiler there are expressions, for
which FET will perform arbitrarily better than CET.

4.3 Third Example

The third example shows that FET perform better then CET, even when vari-
ables are not used several times within an expression. Therefore, FET seem to
solve the problems recognized by Bassetti, Davis and Quinlan in [3], too.
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Fig. 3. Elapsed time per vector component for three implementations of the expression
a = b ∗ c+ d ∗ e on a single node of the Hitachi SR8000. For explanations, see figure 4.1

The following two tables show the performance improvement achieved by
FET in comparision to CET and the absolute performance of FET measured in
units of MFLOPS per second.

log5(Vector length) 4 5 6 7 8 9
Performance ratio FET/CET 1.15 1.16 1.40 1.02 1.02 1.02

log5(Vector length) 4 5 6 7 8 9
Performance of FET 501 1720 4010 1660 1740 1770

5 Conclusions and Perspectives

In this article we wanted to show that classical implementations of expression
templates exploit the potential of the approach only partially, its real potential
being far from recognized. Expression templates should be investigated further in
many directions. Optimal C++ performance is possible if expression templates
are implemented in an optimal way. Since the complete information represented
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by an expression object is accessible at compile-time, optimal C++ performance
should be achievable also for more complex expression templates applications like
3D finite elements expressions. Therefore, the prospects of expression templates
seem to be very interesting. Two possible new applications shall be outlined in
short.

First, let us look at our 3D finite element codes on the Hitachi SR8000. At
the upper level of abstraction it is possible to combine expression templates with
template meta programming. We can then define complex transformation rules
for expressions by template meta programming in order to achieve high-level
optimizations. An expression like DxDx_FE(u) + DyDy_FE(u) + DzDz_FE(u)

could be transformed by template meta programming into Laplace_FE(u).
At the machine-oriented level it should, with expression templates, be possi-

ble to calculate the number of vectorization streams necessary for any particular
mathematical expression. If the number of necessary streams exceeds the number
of available streams, inlining can be controlled such that the entire expression is
divided into several subexpressions. Then, although temporaries are generated,
such expressions perform better on the Hitachi SR8000 due to full vectorization.

Such automatic optimization facilities introduce modularity in the imple-
mentation of mathematical software. The formulation of algorithms can be close
to the usual mathematical language. Optimization, parallelization and vector-
ization of mathematical expressions can be masked completely by expression
templates implementation. This seems to us a great gain.
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Abstract. The Vaucanson library works on weighted finite state ma-
chines in an algebraic framework. As computing tools, FSMs must pro-
vide efficient services. Yet, abstraction is needed to obtain genericity but
also to define properly what objects we are working on.
Even if parameterized classes are a known solution to this problem, the
different kinds of algorithm specializations are limited when using usual
template techniques.
This paper describes a new design pattern called Element which enables
the orthogonal specialization of generic algorithms w.r.t. the algebraic
concept and w.r.t. the implementation. The idea is to make concept and
implementation explicitly usable as object instances.
First, we show how it solves the specialization problem. Then, we detail
its implementation and how we deal with some technical pitfalls.

Vaucanson is a C++ generic library for weighted finite state machine manipu-
lation. For the sake of generality, in Vaucanson FSMs are defined using algebraic
structures such as alphabet (for the letters), free monoid (for the words), semir-
ing (for the weights) and series (mapping from words to weights) [5]. As usual,
the challenge is to maintain efficiency while providing a high-level layer for the
writing of generic algorithms. One of the particularities of FSM manipulation is
the need for a fine grained specialization power on an object which is both an
algebraic concept and an intensive computing machine.

Vaucanson is the core of a project initiated in 2001 by Jacques Sakarovitch
of the École Nationale Supérieure des Télécommunications (ENST, Paris). The
project is now a collaborative work between the ENST and the École Pour
l’Informatique et les Techniques Avancées (EPITA, Paris).

1 Algorithms for weighted finite state machines

1.1 Two points of view

On the one hand, the mathematical aspect of automata requires the definition of
a precise context. Indeed, an algorithm must specify on what kind of semiring or
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alphabet it works. A hierarchy of algebraic concepts is necessary to make their
context explicit. Such a hierarchy can be found in any book about algebraic
structures.

On the other hand, weighted finite state machines are used to process large
amount of data. In addition, algorithms on automata can have exponential com-
plexity, so primitive operations should be as fast as possible. Efficiency cannot
be sacrificed to gain the convenience of abstraction. Choosing the most relevant
data structure is essential. However, many data structures exist to represent
letters, alphabets, words, weights, series and automata. Furthermore, they are
highly correlated since an automaton is built with series, a series is defined by
words and weights, and a word by letters. Then each implementation is parame-
terized by some other implementations leading to something like a nest of dolls.
Such implementations cannot be easily mixed in a monolithic hierarchy. Also,
we want to reuse data structures from external libraries.

Thus, the design problem is to unify these two points of view into the same
object to enable both implementation-driven and algebraic-driven writing of
algorithms.

1.2 Generic algorithms and specialization power

Abstraction has lead to many algorithms with a general formulation. Generic
programming is relevant, because general algorithms should be written once.
More precisely, an algorithm can be generic w.r.t the mathematical concept and
w.r.t the underlying data structure used as implementation of that concept.

However, some theoretical results are restricted to a precise algebraic context.
Thus, we must be able to bound the algorithm input to a particular family of
concepts. Likewise, algorithms can be written using the properties of a particular
implementation, so restriction facilities over implementation parameters must be
available. The figure 1 sums up some desirable specializations.

Subclasses
C

2

3

Subclasses of I
Implementation

Concept

I

of
C 4 1

5 6

1. I,C are fixed ;
2. all I and C is fixed ;
3. all C and I is fixed ;
4. all sub-classes of I and C is fixed ;
5. all sub-classes of C and I is fixed ;
6. all sub-classes of C and I .

Fig. 1. Different type boundings of algorithm input

To be transparent to the final user and to improve genericity, these different
specializations must be compatible with overloading.
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1.3 Plan

The sequel of this paper is organized as follows. The section 2 shows the lack
of answer in the well known C++ template techniques. Then, the section 3.1
presents our design pattern. In section 4, we apply it and observe that it fills our
requirements. Finally, in section 5, the implementation techniques are presented
to explain precisely how we deal with some pitfalls.

2 Confronting our desires with C++ template techniques

In practice, polymorphism implemented with late binding is too expensive for
intensive computing. The generative power of C++ template mechanisms is
known to enable abstraction with limited efficiency loss. The Standard Template
Library (STL) has shown the workability of such polymorphism [4].

Yet, parameterization à la STL is unbounded. We cannot define two generic
functions with the same name and the same arity because type variables are
free. The Barton and Nackman trick [6] and other works [2] tend to reproduce
the object oriented programming. The idea is to compel the open recursion to
be static, ie the static type system knows exactly the subclasses that are used
as instantiations of a particular abstract class. The following code attempts to
illustrate this idea:

// This version is valid for any sub-class of A.
template <class C>
void algorithm(const A<C>& i);

// This version is valid for any sub-class of B.
template <class C>
void algorithm(const B<C>& i);

However, the one-dimensional discrimination of a single object hierarchy is
not enough to design both the mathematical concept and the implementation.
At first sight, the Bridge design pattern [3], or more precisely the Generic

Bridge [1] design pattern could be suitable. Yet, the Generic Bridge is asym-
metric, it is centered on the concept. Consequently, if the object is a concept
parameterized by its implementation, specialization of type 4 is forbidden be-
cause of the invariance of the template argument. The following code illustrates
this:

struct Matrix {};
struct CompressedMatrix : public Matrix {};

// This cannot be called with arguments of type A¡CompressedMatrix¿.
void algorithm(const A<Matrix>& i);
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3 The Element design pattern

3.1 Presentation of the design pattern

Traditionally, concepts and implementations are separated by using abstract and
concrete classes in hierarchies. Doing so, the chosen implementation for member
function calls only depends on the actual class type. Then, a concept can be
denoted by an abstract class whose subclasses are its implementations.

Our idea is to make explicit the separation between the concept and the
implementation at the object level. We compose our entities with an instance of
a concept class and an instance of an implementation.

By separating concepts and implementations in different hierarchies, we allow
separate refinements of concepts and implementation algorithms. Moreover, we
allow to use the same data type to implement distinct concepts, without the
hassle of defining whole new concrete classes.

For example, elements of a tropical semiring are distinguished by their asso-
ciation with an instance of the concept (� , max, +), and can be implemented by
several basic C++ integer types. Conversely, basic C++ integer types can either
represent elements of a tropical semiring or elements of a “classical” semiring
(� , +,×), depending on the concept instance they are linked to. In either case,
a single class Element is responsible for the composition.

As demonstrated later, this design entails more freedom and specialization
facilities.

For the sake of simplicity, we denote the abstract concept associated to an
entity, instance of class Element , its structure and the corresponding instance
the structural element.

3.2 A two-component generic object

Implementation
Set

MetaElementMetaElement

Implementation
Set

Element ImplementationSet

Fig. 2. Class diagram of the Element design pattern

The main item in this pattern is the Element class, a generic class which acts
as a glue between a concept and an implementation. Indeed, the pattern can be
read as Element<S ,T> is the type of an element of set S implemented by T , or
in other words Element<S ,T> structures the value type T by S.
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All services except construction and assignment are provided by decoration
through the parent class MetaElement . Class MetaElement<S ,T> serves three
roles:

– to specify the interface for the class Element<S ,T> viewed as an imple-
mentation of concept S denoting how any instance of T must fulfill the
requirement of the concept S,

– to offer additional abstract services implemented using only services defined
in the specified interfaces,

– to link services to their external implementations.

Of course, this class must be specialized over S and T . For additional gener-
icity, the hierarchy between concepts should be mapped to a hierarchy between
their specializations of MetaElement , so that the final Element<S ,T> is deco-
rated in correlation to the inheritance graph of concepts.

Figure 2 describes the design pattern in UML, while figure 3 details the
decoration mechanism.

3.3 External functions as an adaptation layer

To reduce the number of MetaElement specializations, default code for concept
requirement implementation is needed. We could define it directly in the special-
ization of MetaElement<S ,T> for S fixed and T free, assuming the presence
of methods and inner types (such as begin() / end(), iterator, etc). Yet,
this solution inhibits implementation with partial default behavior. Moreover,
this forces implementations to be C++ classes, whereas C++ builtin types or
externally-defined structures can also be wanted as implementation types.

We decided to use external functions to define how the implementation fulfills
concept requirements. Therefore, any MetaElement specialization is just a way
to choose what external functions are to be used. Doing so, we introduce a fine
grained specification of implementation services. At the same time, we also solve
some binary method problems.

4 Applying the pattern: decomposition for specialization

control

Given class Element , we can decompose any entity, or Element instance, for
typing purpose. The following listing illustrates generic way to implement algo-
rithms over Element :

// Generic wrapper
template <typename S, typename T>
void algorithm(const Element<S, T>& e)
{

// Call the implementation, decomposing
// the Element instance along the way.
return algorithm impl(e.set(), e.value (), e );

}
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Once this framework is set up, implementations of algorithms can be special-
ized in any of the directions illustrated in figure 1. This is done by the following
constructions:

// Type 1: the concept and value type are fixed.
void algorithm impl(const S1& s, const T1& v, const Element<S1, T1>& e);

// Type 2: concept fixed, generic implementation for any value type.
template <class T>

void algorithm impl(const S1& s, const T& v, const Element<S1, T>& e);

// Type 3: value type fixed, generic implementation for any concept.
template <class S>

void algorithm impl(const S& s, const T1& v, const Element<S, T1>& e);

// Type 4: generic implementation for any sub-concept of S1.
template <class S, class T>

void algorithm impl(const S1& s, const T& v, const Element<S, T>& e);

// Type 5: generic implementation for any value sub-class of T1.
template <class S, class T>

void algorithm impl(const S& s, const T1& v, const Element<S, T>& e);

// Type 6: generic implementation for any sub-class of (S1,T1).
template <class S, class T>

void algorithm impl(const S1& s, const T1& v, const Element<S, T>& e);

5 Implementation of class Element

5.1 Design considerations

The implementation of class template Element , and therefore the whole structure
of the design pattern, was subject to the following guidelines:

– object instances of class Element should behave as “naturally” as possible
w.r.t. the user. Especially, a user who has no experience with the library
should be able to infer most of the use cases of Element from simple exam-
ples.

– the behavior and the set of available services in class Element can change
depending on its static parameters. For example, instances of Element in-
tended to represent values in an algebraic semiring have a star() method.
Similarly, instances intended to represent automata have an add_state()

method.
– at any time, a reference to the structural element of an Element instance

can be retrieved with no computation cost. For example, it is possible from
an instance of Element intended to represent a word to retrieve the whole
alphabet over which it is defined.
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– singleton structures should induce no memory footprint in Element in-
stances. For example, there is no run-time data associated with the canonical
semiring structural element surrounding the basic C++ types (int, short,
...). Therefore corresponding Element instances should be as small (from the
C++ compiler’s point of view) as the basic C++ types used as value types,
for optimization purposes.

There are three facets in the current implementation of class Element , closely
related to the requirements presented above.

5.2 Element<S , T> as a wrapper around T

Because Element<S ,T> is actually a wrapper around type T , its main role is
to aggregate a value of type T . Therefore, a number of basic services to handle
the value data are provided by class Element , presented in table 1. Their use is
valid iff the corresponding requirements over type T are met.

Description Example use Requirements

Referencing Element<S,T>& e; (none)
const Element<S,T>& ce;

Access to the aggregated value T& v = e.value();

const T& cv = ce.value();

Default construction Element<S,T> ev; T default-constructible

Copy construction Element<S,T> ev(ce); T copy-constructible
Construction from a value Element<S,T> ev(cv);

Assignment ev = e; T assignable

Destruction T destructible
Table 1. Services of class Element<S ,T>

These basic services are trivially implemented using only the properties of
type T . They are therefore distinct from all additional services presented below,
which also depend on type S and on the availability of related operators.

5.3 Element<S , T> as an element of a set

The power of our design pattern is that the same data type T can be structured
by several distinct structural elements.

However, parameterization of class Element by the static type of its structure
S is usually not sufficient. Indeed, a structure type S may denote several differ-
ent structural elements with distinct behavioral influences on Element<S ,T>.
For instance, this can be observed in Vaucanson when using tropical semirings
where the special infinity value is dynamically defined: the static type informa-
tion (TropicalSemiring) is not sufficient to express the correct computation of
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addition and multiplication in the semiring, because the actual, dynamic value
for infinity must be tested.

Because of this, we chose to hold a reference to the structural element in
each object instances of Element<S ,T>. For this purpose, Element<S ,T> ag-
gregates a reference to an instance of S via a mechanism presented in section
5.5. This reference can be retrieved with the set() method. For consistency
purposes, the following properties must hold:

– once defined, the structural element of an Element instance cannot be
changed nor modified; this is virtually ensured by set() returning a “const”
reference.

– structural elements must be classifiable by means of operator==; this helps
keeping1 global instances of structures, using unique references to designate
unique structural elements, for efficient by-reference comparisons.

Linking Element instances to structural elements is done at instantiation
time, using the following construct:

Element<S,T> e(/∗ structural element ∗/ s, /∗ value ∗/ v);

Take note of the additional argument s given to the constructor of class
Element . This construction does not invalidate the construction style presented
in table 1; in fact, Element instances that have been constructed without giving
a reference to the structural element are in a state called “transitional”, during
which only the basic operations are valid. Passing to the normal state is done by
post-construction binding to a structural element with the attach() method:

Element<S,T> e(v);
// Here e is in the transitional, incomplete state.
e.attach(s );
// Now e is fully defined.

5.4 Subjecting the behavior of values to structures

The design of class Element targeted maximum extensibility via template spe-
cialization and method overloading, as presented in section 1.2. It was achieved
by delegating computation for all services offered by class Element to global
functions with special names (of the form op_X, for each operation X). These
can then be refined via template specialization and function overloading (as in
section 4).

By default, this delegation is set up for all standard C++ operations; table
2 shows how delegations are expressed and table 3 shows the mapping between
standard C++ operations and special function names.

Distinction between sets of delegations is made by parameterized inheritance
of class Element . Indeed, Element<S ,T> inherits from MetaElement<S ,T>,

1 The uniqueness is ensured by a global type table discussed in section 5.6.
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Description Operation Function call

binary operations e1 Op e2 op_##OpName(e1.set(), e2.set(),

e1.value(), e2.value())

e1 Op v1 op_##OpName(e1.set(), e1.value(), v1)

v1 Op e1 op_##OpName(e1.set(), v1, e1.value())

e1 Op v2 op_##OpName(e1.set(), e1.value(),

op_convert(e1.set(),

SELECT(T1), v2))

v1 Op e2 op_##OpName(e2.set(),

op_convert(e2.set(),

SELECT(T2), v1),

e2.value())

difference e1 != e2 !(e1 == e2)

comparison e1 > e2 e2 < e1

e1 >= e2 !(e1 < e2)

e1 <= e2 !(e2 < e1)

negation - e1 op_neg(e1.set(), e1.value())

prefix incr. and decr. Op e1 op_in_##OpName(e1.set(), e1.value())

postfix incr. and decr. e1 Op Element<S1,T1> copy(e1); Op copy

e1: Element<S1, T1>, e2: Element<S2, T2>, v1: T1, v2: T2

Table 2. Delegation of standard C++ operations to function calls

which is by default empty but can be specialized to provide additional methods.
For example, in Vaucanson delegations such as star() (op_star) for semiring
elements or add_state (op_add_state) for automata, have been added.

As a matter of fact, all the standard delegations are set up in Element ’s root
parent class, SyntacticDecorator , from which each specialization of MetaElement
must inherit directly or indirectly.

Figure 3 shows a UML description of the model.

5.5 Eliding references to structural elements

As presented in section 5.3, Element<S ,T> holds a reference to its structural
element, an instance of type S. However in many cases a structural element
is entirely defined by its static type S, i.e., there is no useful dynamic data
associated to instances of S.

In these cases, a simple aggregation of a C++ reference (pointer) in
Element<S ,T> would be a waste of memory space and time (for allocation
and copy of the unneeded reference).

We avoided this waste by the encapsulation of the aggregation through a ded-
icated class, SetSlot . SetSlot derives from class SetSlotAttribute, parameterized
by S and a Boolean value: the specialization of SetSlotAttribute for the Boolean
true actually has a pointer attribute, whereas its default specialization has no
such attribute but an accessor that returns a null reference.
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operator+() op_add

binary operator-() op_sub

operator*() op_mul

operator/() op_div

operator%() op_mod

operator+=() op_in_add

operator-=() op_in_sub

operator*=() op_in_mul

operator/=() op_in_div

operator%=() op_in_mod

operator=() op_assign

operator==() op_eq

operator<() op_lt

prefix operator++() op_in_inc

prefix operator--() op_in_dec

unary operator-() op_neg

swap() op_swap

Table 3. Mapping between C++ operator names and function names

When instantiating SetSlot , the Boolean attribute passed to the parent in-
stance of SetSlotAttribute is taken from the value of dynamic_traits<S>::ret,
dynamic traits being a helper which defaults its attribute ret to false but can
be specialized for any structure type S.

This mechanism is illustrated on figure 4.

5.6 Ensuring unique instances of structural elements

To allow efficient by-reference comparison of structural elements, a mechanism
was set up to ensure that all Element instances sharing the same dynamic type
(structurally equal structural elements) share the same reference to a unique
structural element.

Practically, it ensures that if any two distinct Element<S ,T> instances e1

and e2 were instantiated from distinct structural elements s1 and s2 verifying
s1 == s2, then the property &e1.set() == &e2.set() always holds even if
&s1 != &s2.

This was done by implementing an operator that keeps, for each static type
S, a list of all distinct instances. It reports for any instance of S the address of
the equivalent instance in the list, adding it to the list if necessary.

This mechanism therefore implies two requirements over S for
Element<S ,T>:

– S must possess an equivalence operator==,
– S must be copy-constructible, and values created by copy construction must

be equal by means of operator==.

It is important to notice that this implementation is only efficient when there
are few distinct instances of any structure. When a structure has many instances,
containers such as std::set (requiring operator< over structural elements) or
hash maps (requiring a hash function) could replace the list.
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Fig. 3. Model for Element

5.7 Return types for operators

Most operations over Element instances return values whose types are indepen-
dent from their arguments. That is, the return type can either be the same
Element type or another basic or compound C++ type. However, some opera-
tors, especially arithmetical operators, should return a type computed from the
types of its arguments. In Vaucanson this is shown, for instance, in the multi-
plication of a polynom by a weight or the lazy transposition of an automaton,
which returns its argument encapsulated in a dedicated TransposeView adapter.

For this purpose, most operators are associated with a dedicated trait struc-
ture which computes the return type from both the structure type and value
type; the generalized form for operators is thus:

template<typename S1, typename S2, typename T1, typename T2>
typename op ##OpName## traits<S1, S2, T1, T2>::ret t
operator Op(const Element<S1,T1>&, const Element<S2,T2>&)

with op_##OpName##_traits being specialized as needed.
Of course, since it represents the most widely used case, the default return

type for op_##OpName##_traits<S, S, T, T> is Element<S ,T>.

6 Conclusion

The Element design pattern is relevant for the orthogonal algorithm special-
ization problem, and we are thus using it successfully in Vaucanson. The idea
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Fig. 4. Intelligent aggregation of references to structural elements

can be generalized to problems where objects are built with more than two or-
thogonal components. Therefore, we hope that this design pattern will be used
in other fields.

Finally, we want to thanks Astrid Wang-Reboud, David Lesage, Nicolas Bur-
rus, Niels Van-Vliet and Akim Demaille for their advises about both technical
and writing issues.
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[1] Alexandre Duret-Lutz, Thierry Géraud, and Akim Demaille. Design patterns for
generic programming in C++. In Proceedings of the 6th USENIX Conference on
Object-Oriented Technologies and Systems (COOTS’01), 2001.

[2] Andreas Fabri, Geert-Jan Giezeman, Lutz Kettner, Stefan Schirra, and Sven
Schönherr. On the design of CGAL, the computational geometry algorithms li-
brary. Technical Report 3407, INRIA, April 1998.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-
terns: Abstraction and reuse of object-oriented design. Lecture Notes in Computer
Science, 707:406–431, 1993.

[4] David R. Musser and Alexander A. Stepanov. Algorithm-oriented generic libraries.
Software - Practice and Experience, 24(7):623–642, 1994.

[5] Jacques Sakarovitch. Elment de thorie des automates. 2003.
[6] Todd Veldhuizen. Techniques for scientific C++. Technical report, Indiana Uni-

versity Computer Science, 2000.

82
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Abstract. The High Performance Computing (HPC) community lags
between 10 and 20 years behind other Information Technology (IT) ar-
eas. We figure out some of the reasons for this sluggish acceptance and
incorporation of new technologies and try to find some arguments and
prerequisites for a more lively and finally successful embracement of new
insights, in order to be able to tackle the challenges of future HPC ap-
plications. However, OO—as any other technology—is no silver bullet,
and some care is indicated.

Object-Oriented Design—and even more so OO Implementation—is still a new
and for some people even suspicious approach to software development in the
HPC field. The reasons for this unfortunate situation are many, among them

– real performance loss
– perceived performance loss (rumor, outdated experience)
– lack of training
– lack of time
– complexity of OO languages, like C++ or Java
– plain laziness, or, less offensive, inertia.

Let me elaborate on them a little more, and augment the argumentation with
the experience of some past project using C++ or FORTRAN and some hints
out of a starting project using C++. I will concentrate therefore basically on
these two languages, although others may be similar to these.

Real performance loss This is a pity. If we look at the language definitions
themselves, there is little reason why a piece of code expressed in FORTRAN
should not be as fast as the same code in C++ syntax. Furthermore, the
FORTRAN language provides little functionality not available in C++. The
only real difference is the promise mandated by the FORTRAN standard,
that function arguments may not be aliased, which enables some optimisa-
tions not available for a C++ (or C, for that matter) compiler. By the way,
this peculiarity of FORTRAN has bitten countless programmers. The key-
word restrict, which allows a selective definition of unaliased pointer or
arguments, is standardised currently only for a new revision of C. Compil-
ers, that really make use of that information are even more rare than others,
that accept, but silently ignore this hint. However, while benchmark cases
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can be created in favour of FORTRAN for even an order of magnitude (on
sufficient weird hardware), in real world aliasing or not is more of an aca-
demic question. Aliasing basically conflicts with loop unrolling and software
pipelining. Speculative and out-of-order execution render these techniques
mostly unnecessary with the possible exception of very tight, small loops.
Even then, a good optimising compiler could easily figure out such cases,
generate another instantiation of this function for unaliased arguments, and
generate code to select between the two at runtime according to actual alias-
ing information.
Things are a little different when actual compiler implementations are taken
into account. In my limited experience with free and commercial compilers,
this is not yet settled. On the PC, the C++ compiler seems to be ahead
of its FORTRAN counterpart, while on a workstation the ratio tends to be
reverse. Understandably, because in the PC market the overwhelming ma-
jority of programmers use C/C++ over FORTRAN, while the situation on
a supercomputer is quite contrary. This creates an interesting chicken-and-
egg problem. The FORTRAN compiler has undergone many revisions and
is now quite mature, including its optimiser, which has received decent re-
gard. The C++ compiler is a new technology, and the compiler writers still
struggle with the implementation of the language itself (often enough un-
successful) instead of improving the performance. Consequently, the result is
disappointing, an equivalent piece of code is some small or large factor slower
than the FORTRAN program. Accordingly the programmer attributes this
compiler inadequacy to the language, “C++ is dead slow” and goes back to
its trusted FORTRAN thing. So nobody uses C++ on the supercomputer,
and therefore no manufacturer is interested to invest money in improving the
compiler. Unless some brave—or stupid—people coming from the PC world
stick with their language of choice, kick the vendor and therefore create some
market pressure, there is no way out of this vicious circle. Fortunately, this
seems to happen right now and there is some progress, at least from some
manufacturers.

Perceived performance loss There is no argument against that besides con-
vincing hard data, showing the same (or better) performance for exactly the
same application. “An uncle of mind had a colleague who knew someone
who tried it and he was not satisfied.” Of course, the information content
of such rumour is very close to zero. However, more often than not this is
the most prominent obstacle to the acceptance of C++ (or OO in general),
since it creates a feeling of inappropriateness. And only a fool would use a
tool considered inappropriate.
On the other hand, a seemingly real performance loss is in many cases only
a perceived performance loss, as a different compiler or only a newer release
would have been much more capable than the tried one. As stated before,
compiler technology for C++ proceeds quickly, first to support the standard
language, but recently more on optimisations. Therefore a benchmark run
three or five years before is basically useless these days. Furthermore, even if
the system compiler is still inadequate in its newest incarnation, some third
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parties make a living from providing decent compiler technology for a num-
ber of platforms, and in the HPC market as well.
A still different reason for perceived performance loss is the inappropriate
use of language features, which is a pretty straightforward consequence of
the complexity of the language combined with the lack of training of people
trying to use C++. Again, this is some kind of a chicken-and-egg problem, as
there is little training material of high quality, so nobody gets some proper
training, so nobody is able to produce some material and provide training.
There are several books about using C++ for engineering and computational
intensive applications, but none so far (to the best of my knowledge) with
concepts and techniques useful in HPC for performance on par with FOR-
TRAN. Implementation elegance, that leads to three pointer indirections
and two virtual function calls for each floating point operation is not the
way to go if even hand optimised code on a supercomputer runs for days.
So only a very skilled person using the appropriate features of the language
and a recent sophisticated compiler on the destination platform can do a
trustworthy benchmark and thus enable a solid differentiation between real
performance loss, which is to be attributed to the language, or language
concept, and perceived performance loss, which is the user’s fault.

Let me substantiate these claims regarding performance loss (real or perceived)
with some real figures. As a test case I used the well known Stepanov benchmark,
which just adds a number of double values. This is done with increasing levels
of abstraction, by hiding the value in a struct, using an iterator instead of a
pointer, and masquerading the iterator again with a reverse iterator, in every
possible combination. The time required for each variant is compared to a plain
C function, using array syntax in the most basic way. The ratio for each variant
is listed, and as a final number (every benchmark necessarily has to boil down to
a final number) the geometric mean of all these ratios is output. Of course this
benchmark is as artificial as any one, being able to prove nearly anything. You
certainly know the old saying: there are lies, damned lies, and benchmarks. The
actual code was taken from [1] and slightly modified to check the performance
in native C and FORTRAN as well in one go.

First I collected some older results from the Internet [2], generated with an
older generation of C++ compilers, approximately 2-5 years old. Note that the
Power Mac results are taken directly from Apple [3] and thus to be read with a
grain of salt, especially regarding the superior performance of their own compiler
compared to Metroworks CodeWarrior.
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Machine Compiler MFLOPs Abstraction penalty

IBM xlC 4.3 4.96
KCC 9.5 2.34

Power Mac CW 11 5 12.44
MrC 3.0 59 1.00

SGI #1 KCC 22.4 1.00
SGI #2 CC 110 1.69

T3E CC 10.2 3.85
KCC 53.4 0.74

This data could be interpreted as somewhat encouraging, since one can easily
see that there do exist compilers reaching an abstraction penalty of 1.00, thus
optimising away all the data abstractions. This is supported by other authors,
for example using the Blitz++ library [4]. However, the absolute level of perfor-
mance in our case is partly disappointing. For example, even as I do not know
the exact model of the T3E, even the smallest model has a theoretical peak per-
formance of 600 MFLOPs per CPU. This special machine is notoriously difficult
to push higher than 10% of the peak performance, even in FORTRAN 77, as
some colleagues of mine had to find out after struggling with it for much longer
than they would have liked to. They gave up at approximately 15% peak (using
FORTRAN).

For comparison of more recent compilers I had several workstation type com-
puters at my disposal, as well as some high performance machines. Although I
played a little bit with optimisation options, some obscure combination may
improve the numbers dramatically on one machine or the other.

Machine Compiler MFLOPs Abstraction penalty

Athlon XP 2000+ gcc 3.2 415 1.00
icc 7.1 426 0.98

SGI, R10K gcc 2.95.2 64 1.04
CC 7.3.1 190 1.01

SGI, R12K gcc 3.0.2 159 0.85
CC 7.4 108 3.44

SUN, Ultra SPARC III gcc 2.95.3 211 0.53
CC 5.3 114 8.22

CRAY T3E-900 CC 3.5.0.1 23 6.85
Hitachi SR8000 gcc 2.95.2 22 1.00

CC 14 4.1
NEC SX-5 CC 1.0 rev 0.55 15 60.25

The absolute values again are quite disappointing. The Athlon is pretty much
on its maximum level, besides assembly language, but all the other machines
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show certainly room for improvement. Our sole comfort is that FORTRAN and
C versions of this simple loop are often relatively slow as well. The Power Mac
could probably come close to 360 MFLOPs, the two SGI’s 400 respectively 800
MFLOPs (179 in FORTRAN, 194 in C respectively 370 and 400), SUN should be
able to reach 900 MFLOPs (625 in FORTRAN, 740 in C), this T3E model 900
MFLOPs (218 in FORTRAN, 182 in C), the Hitachi 1000 MFLOPs on a single
CPU (59 in FORTRAN, 61 in C), and the NEC even 4 GFLOPs (930 MFLOPs
in FORTRAN, 950 in C). The NEC result is insofar understandable, as the
C++ compiler is obviously not able to vectorise the loops, being thus forced to
use the much slower scalar unit, but even then the 3-5 MFLOPs of the higher
abstract test cases are a pity. The SGI’s are a little bit peculiar. In principal the
native compiler does a really good job, as the R10K case proves. But there has
been a regression going from version 7.3.1 to 7.4, where the compiler obviously
lacks scalar replacement for all cases where the double wrapped inside a struct.
Leaving this cases out, or running the 7.3.1 code on the R12K machine gives
near optimal results of 395 MFLOPs and an abstraction level of 1.00.

As said before, I certainly do not claim these numbers to be exact, and as the
machines are not dedicated, there is always some error margin of 5-10%. However,
the general trend is quite clear. Workstation type machines have come to a level
where C++ is on par with C and even FORTRAN regarding performance, so
any performance loss is probably either based on outdated data or misusing the
language. Moving on to the high performance machines, speed severely breaks
down, proving my statements about the real performance loss on those type of
computers. Let me now proceed to less measurable factors, which are often even
more important in real life than hard numbers.

Lack of training The training problem has already been brought up in the
last section. Most of the development for HPC happens on universities and
research institutes, which are quite similar actually (at least here in Ger-
many). They want to get a problem solved, in our case some fluid dynamics
or aeroacoustics problem, and use HPC as a tool to do this job. They are en-
gineers, not programmers, and only have some limited experience in coding,
let alone in OO languages. Consequently, they use what they have at their
disposal, and what they are told. The instructors were in the same situation
only a few years before, and consequently can provide help only with the
tools they were told to use, and so on. More often than not, HPC devel-
opment is a little of copy-and-paste of some previous code, messing around
with it and tailoring it to the current needs. I have seen this everywhere I
have been working so far again and again. New programming techniques are
thus adopted only if a new colleague brings in her own experience, but can
hardly grow internally. And the old way has been successful, for so many
years now, so there seems to be no need to invest in training.

Lack of time Closely connected to this issue is the lack of time to make the
transition to OO. Training needs time, re-implementation of old and grown
applications with a new design and a new language takes even more time,
and time is a scarce resource. Most of the people in the HPC only work
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for some limited time there, for example to complete a Ph.D., and they
desperately need all the time to familiarise themselves with the field of study,
to understand the problem, to solve it in the framework provided, and to
write their thesis. Often there is only little temporal overlap between two
people, which results in less communication and thus more time needed to
become acquainted with everything necessary. Few people ensure continuity
to such a project for, say, a decade or more, and thus would be candidates
for extensive training besides their other duties.
This lack of time for training is complemented by the lack of time to rewrite
the applications. Many of them have grown over many years and many people
working on it, and have reached a level of maturity and plethora of features,
that a complete rewrite of these applications in a more modern design and
language would require a huge effort, without any gain in functionality. Of
course, later on new functionality could be added much more quickly (at least
we hope so), but the start-up costs are prohibitively expensive. Combined
with the situation of high fluctuation in staff, and their destination to solve
a new problem in limited time, this adds to a nearly insurmountable amount
of inertia.

Complexity C++ is undoubtedly one of the most complex languages avail-
able, probably even the most complex one. There are countless ways to
solve a problem in C++, as several programming styles or paradigms are
supported: procedural (inheritageheritage of C), modular (as with Modula),
object oriented (taken from Simula, and partly Smalltalk), generic (with tem-
plates inspired by Ada), and of course any combination of them. The basic
philosophy in the design of the language was to provide the programmer ev-
ery detail she might need, and to give control over pretty much everything.
That is the reason why there is no garbage collection in C++, for exam-
ple. Consequently, you can do nearly everything with C++, even on a very
low level, but there are also countless ways to shoot yourself into the foot.
The initial learning curve is quite steep, and you need very much experience
to choose sensibly between all implementation variants. Things are getting
worse in the HPC area, because it does not lead to success to just hack up
an application, and expect high performance from such an ad-hoc attempt.
Some language features strictly necessary for adequate performance are un-
fortunately challenging enough to be above the level of common program-
mers. Together with the lack of training this is probably the most serious
obstacle to widespread acceptance.

Laziness Well, little can be done about that. But we should remember, that
software, in C++ or in FORTRAN, is written by human beings, and by their
very nature they tend to be less fervent than their managers would like them
to be (the same is true for the managers themselves, of course). As a matter
of fact, learning is laborious, and there is little interest to invest much effort
as long as there is no or little benefit obvious. New concepts mean to say
good bye to old and trusted habits, and human nature is that much inert.
Therefore motivation is everything, and while we do not want to follow the
general trend to short-lived hypes in IT (like Java, B2B, J2EE, E-commerce,
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M-commerce, ...), it could help to establish some feeling of “coolness” of C++
and OO in the HPC community, but only if we simultaneously appreciate
the hard work required to reach the level of sophistication necessary for
successful applications.

After having seen all this more or less reasonable arguments, one could easily
conclude that OO is just not worth the effort. And in our opinion, this is probably
true for some, perhaps even for the majority of applications. Remember, always
use the right tool for the job, and sometimes this definitely is FORTRAN77.

Our group is now in the process of designing and writing a new parallel fluid
dynamic solver, drawing from experience gained previously. I have implemented
myself three such solvers (for unstructured meshes) in C++ before [5, 6, 7], with
a more limited application area, but basically in the same field. Moreover, I have
seen and worked with two more solvers implemented in C++ by other people,
and four in different FORTRAN dialects. If I take my last solver as an example,
the advantages of using C++ are quite obvious:

– At first I used a direct solver for sparse, irregular matrices. With the problems
growing in size, a new handling of these matrices got necessary, to improve
the performance to acceptable levels. Therefore the solver was replaced by
a sophisticated renumbering scheme and Cholesky decomposition with little
fill-in (using the Math Template Library [8]). Besides the new implementa-
tion of this algorithm, the rest of the program was nearly unaffected. Later
on, for even larger problems, this direct solver was too memory intensive, so
I replaced it with an iterative conjugate gradient method. Again, the global
impact was negligible.

– Another part of the problem to solve was to compute generalised eigenvalues
and eigenvectors of large matrices. A direct method (with LAPACK++[9])
was used at first and worked well until the problem size exceeded RAM space.
After that I switched (at runtime, depending on problem size) to an iterative
Arnoldi method [10], provided by ARPACK++ [11], which is a wrapper for
ARPACK [12]. In this latter case, I did not have to adapt my data structures
to the ones required by ARPACK++, but only provided some fundamental
operations to the library, like multiplication of a vector with the matrix.
Again, this was only a very localised change.

– Very late in the project I decided to do (limited) three dimensional problems
as well. More specifically, only domains of a two dimensional mesh extruded
along a perpendicular axis were allowed. This quite significant increase in
functionality was accomplished in less than two weeks, retaining the effi-
ciency of the code for planar problems. Even in this fundamental case the
global impact was minimal, as the entire equation solution and eigenvalue
computation was unaffected.

There is no comparison with a procedural design and a FORTRAN implemen-
tation possible. However, based on my experience collected along the project I
would roughly estimate a doubling in effort, and possibly much more. Others
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may have found different results, but as I do not know any real world bench-
mark between two highly skilled programmers in their respective language, it is
difficult to arbitrate objectively.

For our new solver we try to separate concerns as much as possible. Extensive
use of templates at the computational heart facilitates the exchange of equiva-
lent components (for example viscous/inviscid data, different flux computations
etc.) without sacrificing performance. However, in less performance critical paths
inheritance and virtual functions are used as well in order to decouple different
modules from each other. The design of HPC applications is in some aspects
radically different from more interactive programs, where one of the most im-
portant rules is to optimise later. If we would do so in our context, the overall
structure would probably completely dissimilar and could hardly be polished
to satisfactory speed without a major redesign. As high performance is a key
feature of HPC, it has to be taken into consideration from the beginnings.

However, not only technical reasons and design decisions contribute to the
success or failure of a project. In our opinion, some basic requirements should
be fulfilled, such that a sensible application of C++ can help us reach new levels
of functionality—and in rare cases even of performance, as more complex and
possibly superior algorithms are getting into reach, or new hardware features
can be exploited. If these premises do not hold now, or are at least expected
in the near future, the potential benefits should be very carefully weighed up
against the investment of time and money into a transition to OO.

Availability Application development never happens in empty space, but is
tailored to one or several platforms. In the HPC market the platforms are
diverse, and many different technologies compete with each other, for exam-
ple highly parallel machines with vector computers, distributed with shared
memory, common-off-the-shelf components and special purpose equipment.
If no C++ compiler is available, there is little to discuss. And if there is a
compiler at our hands, but full of bugs and with a lousy optimiser, and the
vendor does not show any initiative or competence to improve it in the very
near future, the situation is only slightly better. So a serious evaluation of
the destination platform(s) is the very first step before going any further. On
workstations, or clusters of workstations for that matter, the tendency today
is that there is little loss in performance, if the language is used properly.
For the remaining 5-20% that might be left other factors are much more
important, as cache issues, loop ordering, I/O, parallelisation opportunities.
On supercomputers, prospects are still dismal.

Necessity It is difficult to advocate the adoption of new technology just for
the sake of technical superiority or elegance. A gradual transition to an
OO implementation is usually very difficult and results often in a complete
rewrite, but with the old structure still retained, and thus little advantage.
Therefore a new startup from scratch is the better alternative, but only if
we can justify the time to lift the rewrite to already available functionality
by clear advantages for further, already scheduled improvements. The best
date for such a rewrite is when such an improvement would be result in a
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major redesign of the existing code anyway. We have this for example when
we wanted to move a monolithic code, written for a shared memory vector
supercomputer, to a new platform with many nodes and distributed mem-
ory. The monolithic data structures would have to be completely redesigned
and broken up for a message passing paradigm with explicit communication
instead of data exchange in shared memory, and at this point experience
tells us that this results more or less in a complete rewrite. In such a case,
a rewrite with a new technology and new design is much simpler to account
for than for an evolutionary process.

Support The powers that be have to provide the necessary setting for the
redesign and a new implementation. This includes training for the people
working on the project, availability of time to reach the goals and some
tolerance against one or the other complicacy throughout. Especially if such
a task is undertaken for the first time, many issues will eventually come
up and hinder progress. A certain long sight is then needed not to give up
half-way through before the profits can be gathered.

Continuity Along the same lines is the requirement of some continuity in the
project, especially for the people. A high fluctuation in early phases of design
and implementation (where the design often has to be adjusted) is clearly
undesirable, as new personnel needs adjustment to the job and thus distract
others from their work. At least the project leader making all the major
design decisions should stay until a level of functionality comparable with
the old code is reached. Later on, when the design and most of the code
base have settled and it comes to a continuing evolution of the software this
continuity is less imperative, but even then somebody with longer experience
should guide the others in their strategies on how to improve the code.

Competence This is probably the most important one prerequisite, and the
most difficult one to guarantee. I consider a project doomed without at least
one highly skilled person with experience in a similar subject, since nobody
else is able to devise a sound design and head the rest of the team through
early stages. Such people are very rare, as is the application of OO and
C++ in HPC in general. Therefore only very few have the chance to gain
experience in a similar subject, since an excellent programmer for banking
software, for example, is not necessarily equally qualified for HPC.

Taking these requirements into account, only part of all HPC applications seem
to qualify for a transition to OO. Some of these requirements will certainly
improve over time, as the lack of decent compilers, as well as the scarcity of
competent programmers. Others are more difficult to estimate, as the support
in management and the motivation of people to learn new skills. So if we try to
answer the question initially stated in the title, all we can reply responsibly is:

It depends.
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Abstract. The implemented Clean-CORBA and Haskell-CORBA in-
terfaces open a way for developing parallel and distributed applications
on clusters consisting of components written in functional programming
languages, like Clean and Haskell.
We focus on a specific application of this tool in this paper. We de-
sign and implement an abstract communication layer based on CORBA
server objects. Using this layer we can build up computations in form of
distributed process-networks consisting of components written in several
programming languages, some components written in functional style in
Clean, while other components written in an object-oriented language
like Java or C++.
The speed-up of computations is investigated using a simple example.

1 Introduction

One of the easiest way to provide powerful infrastructure for parallel and dis-
tributed computing is to build a cluster and interconnect clusters via the internet
into a Grid.

Functional programming is very suitable for expressing parallelism. Composi-
tion of functions is an associative operation, so evaluation of functional programs
can be done in parallel or distributed way. So functional programs are inherently
parallel but the evaluation in parallel of an expression is not always worthwhile.

There are several elements in the functional programming language Clean
which support to control parallel and distributed evaluation and communication
[11, 1, 13]. Also the Haskell language has several dialects with parallel features:
GpH [9], pH [10], Eden [4], Distributed Haskell with Ports [8]. These solutions
are different in efficiency and in power of expressiveness and require different
hardware and software infrastructure.

A higher degree of abstraction level expressing parallelism can be achieved by
parameterizing computational skeletons with evaluation strategies. Evaluation
strategies [12, 6] may be applied in parallel computations separating dynamic
evaluation issues from static requirements. Evaluation strategies are appropriate
tools in order to control the evaluation order and degree, the dynamic behaviour

? Position paper. Technical paper to appear in Proceedings of SPLST’03 [7]. Supported
by the Hungarian National Science Research Grant (OTKA), Grant No. T037742
and by IKTA 89/2002 (JiniGrid).
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and the parallelism [12]. A skeleton is a parameterized algorithmic scheme. Skele-
tons in functional languages are higher order functions parameterized by func-
tions, types and evaluation strategies. There were several studies regarding skele-
tons [3, 12] from the apparently very simple but very useful skeleton parmap, to
the more complex skeletons like the parallel elementwise processing [6].

Functional programs can also be developed and tested on cluster systems. The
first study was the comparison of the GpH and the Eden languages regarding
their performances [9]. The GpH and Eden comparison was done on a Beowulf
cluster. A Haskell version of parallel elementwise processing implemented on a
cluster was presented in [5].

Our intention is to test and to verify how the Clean functional programming
language fits into the parallel programming framework offered by clusters. We
use an architecture, which allows to build up applications consisting components
written in several programming languages, some components written in pure
functional style for example in Clean, while other components written in an
object-oriented language.

A Clean-CORBA interface [13] is used as an infrastructure for parallel com-
munication. The interface implements a language mapping from Clean to IDL.
Our Clean-CORBA interface uses the MICO CORBA implementation and al-
lows to write CORBA clients and servers in the lazy functional programming
language Clean.

We designed and implemented an abstract communication layer based on this
software architecture. The distributed computation is built up from components
implemented in form of CORBA clients. These components communicate via
channels which are CORBA server objects. The channel object is written in two
variants, in Clean and in C++. The clients may be written in any language with
CORBA interface.

We have chosen an implementation of a pipeline computation as an example
in this paper to present the main features of our approach. We implemented the
clients of this example in functional style, in Clean. We measured the perfor-
mance of the application on a cluster consisting of 16 processors.

Section 2 describes the Clean-CORBA interface. The mapping from the
CORBA IDL to the Clean functional language is described according to the
language elements.

The third section presents an implementation of asynchronous communi-
cation channel, which can be used for connecting Clean programs and other
programs in a cluster environment.

The pipeline skeleton is very suitable for the computation of functions which
can be built by the composition of small components, for the detailed description
of the problem see the fourth section.

The last section (section 5) concludes.
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2 Clean-CORBA interface

To access CORBA from a programming language a language mapping for the
particular language is needed. This mapping should contain the following ele-
ments: an IDL module mapping to the specific language, the simple and com-
posed types of IDL association with the types of the language, the projections
of the definitions and operations of the IDL interface, the implementation of
services offered by the CORBA server and of the pseudo-objects of the CORBA
into the language.

In Clean-CORBA interface the operations are associated with functions,
CORBA objects with Clean records. For communication through TCP ports
and for IP identification the services of MICO Binder are used. Interfaces are
generated differently for clients and for servers.

The identifiers of the IDL are the same in Clean, the names of the modules
are included in the identifiers. IDL constants are mapped to Clean constants.

The different integer types are associated with the Int type of Clean, in the
same way the real types are projected into the Real type of the Clean language.

Enumeration types are mapped to Clean algebraic types.
IDL Structures are mapped to Clean records. The field names remain the

same. If the structure contains an ‘anonymous’ field (like sequence <long> m3),
then the IDL compiler will create a new Clean type (in this case Foo__m3), and
this will be the type of the corresponding field in the Clean record. Recursive
structures and unions are supported too. IDL unions map to Clean algebraic
data types, with one data constructor for each legal discriminator value. IDL
sequences map to Clean lists.

The most interesting is the mapping of TypeCode, which gives us information
about the IDL types during runtime.

IDL Interfaces map to abstract Clean types, which contain the object refer-
ence in their hidden parts. Each interface type has a corresponding <T>__nil

function which returns a NIL object reference of the given type. Conversions
between interface types are supported through <T>__narrow and <T>__widen

functions generated by the IDL compiler.
Each IDL operation maps to a Clean function which performs the CORBA

call (for examples see [13, 7]). The first argument of each function is the re-
ceiver CORBA object. Since these functions have side effects, they both take
and return a unique World argument which represents the environment of a
Clean program. The operation my fail, so the result belongs to the algebraic
type ResultOrException, which is an union type. If the IDL operation has out
or inout arguments, the functions return them, too. For example:

Account_balance2 :: Account *World

->(((ResultOrException (CORBA_Void,CORBA_Long) CORBAException),

*World))

For each IDL attribute, the IDL compiler will generate both a getter and a
setter function.
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The Dynamic Invocation Interface (DII) is supported through the following
function:

CORBA_invoke :: CORBA_Object String [CORBAArg] TypeCode [TypeCode]

*World -> (Any, CORBAException, [CORBAArg], *World)

The meaning of the arguments: target CORBA object, the name of the op-
eration, a list of the arguments, return type of the operation, typecodes of IDL
exceptions, the unique environment: the world.

The result is a tuple with the following parts: the return value of the oper-
ation, the exception raised by the operation, if any, the value of the out and
inout arguments, the new World.

The server side mapping uses a simplified version of the Object IO framework
[1]. The IDL compiler generates servant types for each IDL interface. A servant
is a record type with one field for each IDL operation in the interface. The
programmer must create an instance of this servant type, and register it with
the system before it can answer CORBA requests.

The implementation consists of a CORBA-CLEAN interface library, and an
IDL-TO-CLEAN compiler. The interface library consists of three layers:

1. The lowest layer is a collection of C functions giving access to CORBA
functionality.

2. The middle layer simply consists of Clean wrapper functions around the C
functions in the previous layer.

3. The third layer contains the high level interface described above.

The implementation uses CORBA DII and DSI for communication, similarly
to the MICO-TCL interface software TclMico.

The IDL compiler works by first uploading the contents of the IDL file into
a CORBA Interface Repository daemon, then reading this data using normal
CORBA calls into an intermediate representation, and finally generating Clean
code.

For detailed description end examples of the mapping see [13, 7].

3 The implementation of a channel object

Many problems can be viewed as networks of message-communicating processes,
therefore it is very useful to implement an abstract channel object for asyn-
chronous message passing.

To interconnect processes or distributed programs we can implement com-
munication primitives for asynchronous message passing using CORBA server
objects. We store the messages in the local state of the server.

The program has to import the channel interface, which defines the channel
operations. The program also has to import the Clean standard environment and
the Corba package. These are the basic modules for our Clean-CORBA interface.
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The initialization of the CORBA system uses the CORBA_ORB_init function,
which returns a CORBA_ORB object. CORBA_Server_run initializes the CORBA
server.

In our model the channel initializes the ORB and starts a CORBA event
handler. By the ServerInit we create a servant, which will be registered by the
ORB. ServerInit transforms the general object reference into the desired type.
The event handler system will assure that the requests of the clients are passed
to the servant objects.

Start w

# (orb,_,w) = CORBA_ORB_init args w

= CORBA_Server_run orb Void ServerInit w

where

ServerInit ps w

# (obj, ps, w) = Channel__servant_open ps servant w

# w

= WriteIORToFile (CORBA_Server_get_orb ps) obj "channel.ior" w

= (ps, w)

servant = { Channel__servant |

ls = messages,

impl_send = my_send,

impl_receive = my_receive,

}

my_send (ls, ps) what w

= ((ls ++ [what], ps), Result Void , w)

my_receive ([x:xs], ps) w

= ((xs, ps), Result x, w)

Channel__servant_open registers the servant at the IO system. The ser-
vant defines the operations of the channel. These operations are state transition
functions, which modifies the local state of the channel (ls). The messages is
the sequence containing the elements of the channel. The function my_send is
the implementation of the channel operation send and adds to the sequence an
element sent by the client. The my_receive function implements the channel
function receive and sends to the client one data from the sequence.

4 The pipeline skeleton

The pipeline skeleton is a special type of process network usually applied for
calculating a composite function. The processes are organized linearly. A pro-
cesses running on a pipeline element calculates a component function and sends
intermediate results to its immediate successor. The data input is processed at
the beginning of the pipeline.

We consider a simple description of the pipeline problem [2].
Let D =� d0, d1, . . . , dM � be a sequence of data, where M � N , and let

F =� f0, f1, . . . , fN � be a sequence of functions.
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Let f i(x) denote fi(fi−1(. . . f0(x) . . . )); we assume that f i(x) is defined for
all i, 0 ≤ i ≤ N and all x in D.

We compute the sequence fN(D), where fN (D) =�
fN (d0), . . . , f

N (dM )�.
The pipeline problem is implemented in the following form: the Clean pro-

grams are Corba-clients and calculate the components of F .
The computation can be parameterized by the component function fi and

by the type of its argument (skeleton). The send and receive functions are im-
plemented by the abstract channel CORBA server, the object presented in the
previous section.

For sending data on the channel we have the following function:

sendf x obj w

# (Result l, w) = Channel_full obj w

| l = sendf x obj w

= Channel_send obj (f x) w

The function checks if the sequence of data is full. In case is full will try
again, in case it is not full will send the data to the server object. For receiving
data we have the following function:

receivef obj w

# (Result l, w) = Channel_empty obj w

| l = receivef obj w

= Channel_receive obj w

The function verifies if the sequence is empty. If it is empty then will try
again, otherwise receives a data from the server.

As an example we compute sin(x) ≈
n∑

i=0

(−1)i ∗ x2i+1

(2i+1)! . For this we use the

following data structure: d = (xx : Real, s : Real, e : {1.0,−1.0}, h : Real). The
function sin(x) ≈ sinn ◦ · · · ◦ sin0(x), where

sin0(x) = (x2, x,−1.0, x)

sini(d) = (d.xx, d.s + d.e ∗ d.h ∗ d.xx
(2i)∗(2i+1) , d.e ∗ (−1), d.h ∗ d.xx

(2i)∗(2i+1) )

sinn(d) = d.s + d.e ∗ d.h ∗ d.xx
(2n)∗(2n+1)

The following lemma can be proved:

f i(x) = fi ◦ · · · ◦ f0(x) = (x2,
i∑

j=0

(−1)j ∗ x2j+1

(2j+1)! , (−1)i+1, x2i+1

(2i+1)! )

for all i = 0, . . . , n− 1.
According to the lemma the pipeline skeleton will produce a correct result.
The evaluation order of Clean programs is lazy, so the evaluation of some

expressions may be postponed by the run-time system. In case of distributed
applications the order of evaluation may be important in several cases, so for
some expressions a strict evaluation should be enforced. Functions returning the
value of the system clock has to be evaluated strictly for example.
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5 Performance measurement

The cost of the communication via the CORBA server objects is relatively high
compared to the cost of this simple computation. If we slow down the computa-
tion sini functions simulating a most complex computation (we apply a weighted
function), then we can observe even a small speedup (see figure 1).
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Fig. 1. Speedup with different number of input data

6 Conclusions

The presented Clean-CORBA interface and the abstract communication layer
on top of it is applicable for implementing computations in form of distributed
process-networks. The application may consist of components written in several
programming languages. We presented a simple pipeline computation written
in the pure functional language Clean. We observed a small speed-up of this
computation on a 16 processor cluster.
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