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We introduce a simple nonequilibrium model for a driven diffusive system with nonconservative
reaction kinetics in one dimension. The steady state exhibits a phase with broken ergodicity and
hysteresis which has no analog in systems investigated previously. We identify the main dynamical
mode, viz., the random motion of a shock in an effective potential, which provides a unified framework
for understanding phase coexistence as well as ergodicity breaking. This picture also leads to the exact
phase diagram of the system.
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FIG. 1. Phase diagram for �a � 0:7 and �d � 0:1 with two

chastic model of diffusing particles on a one-dimensional
lattice with a hopping bias in one direction [8]. Each site

high-density phases (HD1, HD2), a low-density phase (LD), a
coexistence phase, and the nonergodic phase.
The closely related questions of phase coexistence,
ergodicity breaking, and hysteresis in noisy one-
dimensional systems with short range interactions and
finite local state space (such as in spin systems or vertex
models) are intriguing and have received wide attention
in the context of driven diffusive systems [1–8].

Recently it has been demonstrated that phase coexis-
tence occurs in a one-dimensional driven diffusive system
even in the presence of Langmuir kinetics A � 0 which
break the bulk conservation law [9]. This mechanism is
inspired by the process of motor proteins moving along
actin filaments. Earlier this model was introduced as a toy
model reproducing stylized facts in limit order markets
[10]. The formation of a localized shock in this system
which separates a domain of low particle density from a
domain of high density has been studied subsequently
[11,12]. However, the two different domains do not rep-
resent two possible global steady states. The process is
ergodic even in the thermodynamic limit and no hystere-
sis is possible.

It is the purpose of this Letter to demonstrate the
existence of hysteresis and broken ergodicity (in the
thermodynamic limit) in a driven diffusive system with-
out bulk conservation law. Surprisingly, adding noise
which is on average spatially homogeneous (a nonconser-
vative reaction process) to a conservative spatially homo-
geneous nonequilibrium system with a nonvanishing
particle current leads to a space-dependent effective po-
tential which determines the stationary position of the
shock connecting low-density and high-density regions.
In the absence of this noise, i.e., in the usual totally
asymmetric exclusion process (TASEP), the shock per-
forms an unbiased random walk in the coexistence region
and hence is unlocalized, whereas suitably chosen reac-
tion kinetics may create a variety of effective potentials
which lead to broken ergodicity by localizing the shock.

To be specific we investigate the TASEP augmented by
nonconservative reaction kinetics. The TASEP is a sto-
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from 1 to L is either empty (‘‘[’’) or occupied by one
particle (‘‘A’’). In the bulk particles hop stochastically
from site i to i� 1 with unit rate, provided that the target
site is empty. The boundaries act as particle reservoirs
with densities �� on the left and �� on the right: On site 1
particles are created with rate ��, provided the site is
empty, which corresponds to a particle hopping from the
left reservoir onto the first site. Particles on site L are
annihilated with rate 1� ��, corresponding to a particle
hopping from the last site into the right reservoir.

In our model particles also undergo the following re-
action process: On a vacant site enclosed by two particles
a particle may be attached with rate !a, and a particle
enclosed by two other particles may be detached with rate
!d. This process can be symbolically written as A[A �
AAA and may be interpreted as activated Langmuir ki-
netics. Without the TASEP dynamics the stationary den-
sity of this process is either K � !a=�!a �!d� or zero,
with no correlations [13]. As in previous work, we con-
sider the physically interesting case when L ! 1, and
these rates are proportional to 1=L [9–12]. Hence we
define renormalized rates
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!a � �a=L; !d � �d=L; (1)

where �a and �d are kept constant while L ! 1. For
other choices of the attachment-detachment (AD) rates
the dynamics is governed by either the TASEP [!a;d <
O�1=L�] or the AD process [!a;d > O�1=L�].

We find a stationary phase diagram of the model with
five distinct phases (Fig. 1). The stationary density profile
�i is not constant as a function of lattice site i.Yet some of
the phases are comparable to those of the usual TASEP
with open boundaries [14,15]: in the high-density phases
(HD1 and HD2) one finds �i > 1=2, while in the low-
density phase (LD) �i < 1=2. In HD1 the bulk density
profile is dependent on ��, while it is independent of both
boundaries in HD2 as in the maximal current phase of the
TASEP. On the other hand, two additional phases exist: A
coexistence phase which is characterized by a stable
shock position, i.e., a jump in the density profile which
is localized at a certain position in the bulk of the system.
The shock connects a low-density domain to its left with
a high-density domain to its right, as known from related
models studied previously [9,11]. Notice that in the usual
TASEP there is a coexistence line in the phase diagram
with a nonlocalized shock. In a different parameter re-
gime we find a novel phase with an unstable shock posi-
tion in the bulk. In this phase both the LD and HD states
are stable (if L ! 1) which implies that ergodicity is
broken in the thermodynamic limit. Although for finite
systems a transition between the two states is possible, the
mean lifetime of each steady state is exponentially large
in the system size L (see below). We note that this is not a
spontaneous symmetry breaking since there is no sym-
metry relating the two metastable states. This phase has
no analog in the TASEP with open boundaries.

Hysteresis in this nonequilibrium setting was observed
by measuring the space-averaged density ��� along the
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FIG. 2. Hysteresis plot for L � 2000, �a � 0:7, �d � 0:1,
�� � 0:45. �� was changed by 10�4 in every 5000 (solid line),
1500 (dashed line), and 500 (dotted line) MC steps. The
hysteresis loop gets wider as the speed of changing �� is
increased.
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curve of constant �� � 0:45 while changing �� in such
a way that the system starting from the LD phase passed
through the nonergodic phase and ended up in the HD2
phase. Then the process of changing �� was reversed. A
relevant parameter in hysteresis phenomena is the speed
of sweeping: in our simulations �� was changed by 10�4

in every k Monte Carlo (MC) steps (k � 500; 1500; 5000).
A time average was not taken, and ��� was measured in
every k step. In Fig. 2 one can see the resulting hysteresis
loops. We found that the hysteresis loop inflates with
increasing speed which is reminiscent of hysteresis in
usual magnetic systems.

To rationalize these observations we first consider the
hydrodynamic limit on the Euler scale; i.e., we take
L ! 1 while the lattice constant is scaled by a � 1=L
and the time by t � tlattice=L. Thus the spatial coordinate
x � i=L becomes continuous. Following the line of argu-
ments of Ref. [11] the hydrodynamic equation for the
density takes the form

@
@t

��x; t� �
@
@x

j��� � S���; (2)

with the exact current j��� � ��1� �� of the TASEP and
the cubic source term

S��� � �a�2�1� �� ��d�3; (3)

resulting from the activated Langmuir kinetics. For the
stationary state @t��x; t� � 0 holds, and using @xj �
@j=@� 	 @�=@x we obtain

vc���
@��x�
@x

� S���; (4)

with the collective velocity vc � @j=@�. This nonlinear
differential equation can be integrated analytically and
yields the flow field
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with an integration constant c.
As the differential equation is of first order and the

boundary condition fixes the density at two positions,
following a line of the flow field does not represent a
solution of the boundary problem in general. In the origi-
nal lattice model this inconsistency is resolved by the
appearance of shock and/or boundary layers as described
in [11]. Apart from the discontinuities the stationary
density profile follows the flow field of Eq. (4).

In order to understand quantitatively the selection of
the stationary shock position (which determines the phase
diagram) and also to explain the phenomenon of hystere-
sis from a microscopic viewpoint, we describe the domi-
nant dynamical mode of the particle system in terms of
the random motion of the shock. To this end we generalize
the approach of [16] and introduce space-dependent hop-
ping rates
238302-2
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wx!x�a �
jR�x�

�R�x� � �L�x�
;

wx�a!x �
jL�x�

�R�x� � �L�x�
;

(6)

for jumps of the shock over a lattice constant a. Here
the indices L and R denote the solutions [lines of the
flow field (5)] on the left and right, respectively, of the
shock. Similar hopping rates are used in [12]. The space-
dependent hopping rates furnish us with the picture of a
random walker in an effective energy landscape E�x�
inside a finite box. The energy landscape is generated by
the interplay of the particle current with the reaction
kinetics. In this way we relate the original nonequi-
librium many-particle system to an equilibrium single-
particle model. Let p�x� be the equilibrium probability of
the shock being at position x. Then due to detailed bal-
ance

wx!x�a

wx�a!x
�

p�x� a�
p�x�

� exp
�E�x� a� � E�x��; (7)

which defines the energy landscape.
The potential E�x� is a monotonically increasing (de-

creasing) function for the HD (LD) phase (Fig. 3). This
implies that although there are fluctuations the shock is
always driven to the left (right) boundary. In the coex-
istence phase there is a global minimum in the bulk
resulting in a stable shock position (Fig. 3) at a macro-
scopic distance from the boundaries. Here the dynamics
can be well approximated by a random walker in a
harmonic potential which gives a Gaussian distribution
for the shock position. Hence the width of the shock
distribution is proportional to

����

L
p

[13] which was also
found in [9,12] for the TASEP with Langmuir kinetics.

The nonergodic phase is characterized by a global
energy maximum in the bulk (Fig. 3), leading to an
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FIG. 3. Examples for the energy landscape in four phases.
Note that in the HD and LD phases E�x� can be either convex or
concave.
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unstable bulk fixed point of the shock. The two minima
at the left and right boundaries correspond to the two
stable stationary states. Starting with an initial condition
close to 1 of the minima, the random walker will drift
most likely into this local minimum and stay in its
vicinity for a time of the order of the mean first passage
time ��� before it traverses to the other minimum. This
leads to hysteresis. Using a formula for the mean first
passage time derived by Murthy and Kehr [17], one
expects that ��� grows exponentially with the system size
L. Moreover, one expects the transition from one mini-
mum to the other to be a random Poisson process with an
average waiting time ���.

This simple one-particle picture is well borne out by
MC simulations. For judiciously chosen parameters it
is possible to perform simulations to times much larger
than ���. Using multispin coding [18] for the MC algo-
rithm, rather good statistics become available for the
waiting time � (the time the system spends in one of
the stationary states before switching to the other). For
tracing the position of the shock we use the second-class
particle technique [19], which allows for tracking the
flow of local fluctuations required to determine the shock
position on the lattice scale [13].

We measured the position of the second-class particle
as a function of time: a typical realization is shown in
Fig. 4.

As shown in Fig. 5 the numerically determined cumu-
lative distribution function ��t� � P�� < t� of the wait-
ing time � is hardly distinguishable from the expected
exponential distribution

��t� � 1� exp��t= ����: (8)

With this picture of a moving shock in mind and using
the expression (5), it is also possible to derive the exact
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FIG. 4. Snapshot of the time evolution of the scaled position
of the second-class particle for L � 1000, �� � 0:2705, �� �
0:63, �a � 0:5, �d � 0:1. A position of the second-class
particle near the left boundary (x 
 0) corresponds to the
high-density state, while a position near the right boundary
(x 
 1) corresponds to the low-density state.
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FIG. 5. Numerically determined cumulative distribution of
the transition times from the upper state to the lower (solid
line) compared to the exponential distribution (dashed line)
with parameters as in Fig. 4. Similar results are found for the
transition in the other direction, but with a different ��� [13].
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phase transition lines defining the phase diagram pre-
sented above by adapting the arguments of [11]. The
sign of the slope of the energy profile, i.e., the stability
of the shock position, can be analyzed by considering the
average shock velocity

vs�x� �
jR�x� � jL�x�
�R�x� � �L�x�

: (9)

A shock position at the boundary is stable when it is
driven towards the boundary; i.e., vs�0�< 0 at the left
boundary, and vs�1� > 0 at the right boundary. Thus the
lines separating the phases are calculated by comparing
the values of �L�x� and �R�x� at the positions x � 0; 1. In
the high- and low-density phases, respectively, the energy
profile has a unique minimum at one of the boundaries.
In the nonergodic phase the energy profile exhibits two
minima at the boundaries, so that the shock position is
stable at both of them.

We mention in passing that the analytical treatment
predicts a phase near the intersection point of the two
nontrivial lines in the phase diagram with an energy
profile having a minimum and also a maximum in the
bulk. However, the region in the (��; ��) space is rather
narrow and the energy landscape is too flat to observe this
in simulations.

To conclude, we have presented a simple nonequilib-
rium system with local nonconservative dynamics and
finite local state space which exhibits ergodicity breaking
and hysteresis in the thermodynamic limit, in the usual
sense that in finite volume the sojourn time in two meta-
stable steady states increases exponentially with system
238302-4
size. We stress that the two different stationary distribu-
tions are not ordered states in which the activated
Langmuir reaction kinetics would be dynamically sup-
pressed. The description of the nonequilibrium many-
body dynamics in terms of a collective single-particle
mode moving under equilibrium conditions yields the
exact stationary phase diagram as well as the numerically
verified flipping process between the metastable states of
the finite system. Details of the flipping dynamics will be
presented elsewhere [13].
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