
PHYSICAL REVIEW E 67, 016112 ~2003!

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Juelich Shared Electronic Resources
Fast crack propagation by surface diffusion

Efim A. Brener and Robert Spatschek
Institut für Festkörperforschung, Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany
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We present a continuum theory which describes the fast growth of a crack by surface diffusion. This
mechanism overcomes the usual cusp singularity by a self-consistent selection of the crack tip radius. It
predicts the saturation of the steady state crack velocity appreciably below the Rayleigh speed and tip blunting.
Furthermore, it includes the possibility of a tip splitting instability for high applied tensions.
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I. INTRODUCTION

One of the most challenging puzzles in nonequilibriu
physics and materials science is the phenomenon of frac
It is important for the vast field of material failure and pro
ably also for friction processes@1#. Despite its relevance
even the motion of a single crack is poorly understood@2#.
Experimentally, the maximum attained crack velocities
far lower than the theoretically expected Rayleigh speed@3#.
Beyond a critical velocity, a so far unpredictable tip splittin
of the crack can happen and produce strange oscillation
the crack speed@4#.

The classical theories@3# are based on the linear theory
elasticity and on an integral energy balance in the vicinity
an infinitely sharp crack tip. However, a more detailed a
proach based on equations of motion for the crack shap
needed to describe the intriguing spectrum of phenom
near the crack tip. Hence, the curvature of the crack tip
required as a new relevant dynamical variable which a
allows to avoid stress singularities. We emphasize that
contrast to models which describe crack propagation by b
breaking at the infinitely sharp tip, growth with a finite t
radius always requires a transport mechanism in orde
preserve the shape~see Fig. 1!. Recently it was proposed tha
this lengthscale is dynamically selected by the threshold
plastic deformations in the tip region@5#. Unfortunately, ap-
proaches of this type~see, also, Refs.@3,6#! require the in-
troduction of dynamic theories of plasticity which are us
ally much more speculative and less verified than
ordinary linear theory of elasticity.

Here we demonstrate that thelinear theory of elasticityis
sufficient to describe consistently crack propagation, driv
by surface diffusionalong the crack surfaces. Of course,
many situations plasticity is very important, but the beauty
our approach is that it predicts, in a simple and well co
trolled continuum theory, steady state crack growth, the
splitting instability and also slow deformations of alrea
existing cracks. The goal of this paper is to present a co
pletely new description of crack propagation by aconsistent
set of equations of motion. We focus our interest on
generic features and qualitative predictions of this approa
Usually, many complicated inelastic processes happen
zone around the crack tip. If one assumes that this pro
zone is relatively thin, then one can try to describe m
transport phenomenaeffectivelyby surface diffusion.

The idea of crack propagation by surface diffusion h
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previously been studied by Stevens and Dutton@7#, who as-
sumed anad hoccrack shape which is not found by solvin
the full free boundary problem and requires mass trans
over large scales. Therefore, their model cannot describe
usual fast crack growth.

Our basic mechanism is related to the Asaro-Tille
Grinfeld ~ATG! instability @8#, which predicts a morphologi-
cal instability of a uniaxially stressed solid interface due
surface diffusion. Relatively long-wave perturbations of t
interface lead to a reduction of the elastic energy of the s
tem, whereas short-wave corrugations are hampered by
face energy. In the long time behavior, deep grooves
form, producing shapes similar to cracks@9,10#. According
to previous theories, which used only thestatic theory of
elasticity, the notches propagate with increasing velocity a
decreasing tip radius and collapse to a finite-time cusp
gularity. Similar to crack dynamics the lack of tip radiu
selection becomes obvious, and already shows the clos
lationship between the ATG instability and crack propag
tion.

Usually, it is believed that surface diffusion is slow, bu
surprisingly enough, it should not be ignored even in f
fracture processes. Our main idea is that surface diffusio
driven by the strong gradient of the chemical potential in
tip region. This can be a very efficient mechanism for cra

FIG. 1. Calculated shape of the crack~without elastic displace-
ments! driven by surface diffusion forD52. The advance of the
crack in the positivex direction is indicated by the dashed curv
This requires the redistribution of matter along the crack by a tra
port mechanism.
©2003 The American Physical Society12-1
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propagation if the transport length is sufficiently small. A
ditionally, energy release and strong dissipation bring
local temperature close to the melting temperature@11,12#.
This drastically increases the surface diffusion coeffici
and makes fast crack propagation essentially independe
the outside temperature.

II. STEADY STATE CRACK GROWTH

We use a two-dimensional plane-strain situation w
mode I loading to describe crack propagation@3#.

On the surfaces of the crack the normal stresssnn and the
shear stresssnt vanish, whereas the tangential stressstt
usually does not. The chemical potential at the interface
given by

m5VS 12n2

2E
stt

2 2ak D . ~1!

Herea is the surface energy,k is the curvature of the inter
face andV is the atomic volume.E andn are Young’s modu-
lus and Poisson ratio, respectively. Nonhydrostatic stre
drive a surface flux proportional to the gradients of t
chemical potential along the surface; in turn the normal
locity equals the divergence of this flux due to conservat
of material,

vn52
D

aV

]2m

]s2
, ~2!

where]/]s denotes the tangential derivative andD ~dimen-
sion m4s21) is proportional to the surface diffusion coeffi
cient. ~It is related to the usual surface diffusion coefficie
Ds by D5DsV

2da/kT. Hered is the number of atoms pe
unit area of surface,k is the Boltzmann constant andT is the
temperature.!

First, we are interested in steady state solutions of
equation of motion, with a crack moving in positivex direc-
tion with velocity v ~see Fig. 1!; In comoving polar coordi-
nates,x5r (u) cosu,y5r(u) sinu, the steady state equatio
for the shaper (u) reads after one integration of Eq.~2!,

vr sinu52
D

aV

1

Ar 21r 82

dm

du
. ~3!

Generally speaking, this, together with Eq.~1!, is a compli-
cated, nonlinear third-order equation with nonlocal contrib
tions arising from the elastic fields, sincestt depends on the
entire shape.

In the tail region stresses decay and the shape equati
a third-order linear differential equationDy-5vy with two
growing ~and oscillating! and one decaying solution. Onl
the latter,y(x→2`)5A exp@(v/D)1/3x#, asymptotically de-
scribes physical shapes and is allowed. Let us focus on s
metrical solutions,r (u)5r (2u), and start integration at th
crack tipu50. Since the physical properties, curvature a
stresses, do not depend on the choice of coordinate sy
but only on the crack shape, we can arbitrarily chooser (u
50)5r 0, with the a priori unknown tip radius r 0
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51/k(0). Then from symmetry and the definition of the t
curvature,k5(r 212r 822rr 9)/(r 21r 82)3/2, the natural con-
ditions r 8(0)5r 9(0)50 arise. Integration over the upper in
terfaceu.0 requires the suppression of two growing exp
nentials at the tail, which imposes two boundary conditio
For a given external loading, these conditions can be fulfil
by a proper selection of the tip radiusr 0 and growth velocity
v. By this argument the situation seems to be fully describ
However, as we mentioned already earlier, the use of astatic
theory of elasticity does not allow a selection of the tip r
dius. The reason is that both contributions to the chem
potential, surface energyms;k, and elastic energymel

;s2 behave asr 0
21 close to the tip: In the tip approximation

stresses behave as@3#

s i j 5
K

r 1/2
f i j ~u!, ~4!

with the static stress intensity factorK;s`L1/2, wheres` is
the applied remote stress andL is the macroscopic length o
the crack,L@r 0, which is not considered here. Instead w
assumeK to be kept fixed. The universal stress distributi
f i j depends only on the orientation relative to the crack@3#.
The asymptotic distribution~4! is valid far away from the tip,
r 0!r !L, but it gives the correct scaling of stresses also
the crack surfacer'r 0. Therefore, a dimensionless rescalin
of all lengthscales, e.g.,r̃ 5r /r 0, and of the growth velocity

ṽ5vr 0
3/D leaves the equation of motion invariant and, thu

cannot determine the lengthscaler 0. Consequently, a stead
state solution does not exist. This is the reason for the
ready mentioned cusp singularity of the ATG instability.

The main idea of this paper is based on the fact that a
elastodynamicdescription restores the selection of th
lengthscale. It is known that at least for higher crack spe
the angular distributionf i j become strongly dependent on th
ratio v/vR (vR is the Rayleigh speed@3#!. The dynamical
stress intensity factorKdyn is related to the static one use
here by an extra velocity dependent functiong(v/vR),
Kdyn5Kg(v/vR). The crucial observation is, that velocit
appears now in two different combinations in the equation
motion, vr 0

3/D and v/vR . Thus, by the introduction of the
new parameterv/vR , a selection of bothv and r 0 happens.

From these general arguments we conclude that
steady state crack propagation by surface diffusion is ind
possible. However, the exact solution of the problem is te
nically very difficult, because it requires the solution of a
elastodynamic problem for ana priori unknown crack shape
The bulk equations of elasticity

]s i j

]xj
5rüi ~5!

are subject to the boundary conditions on the crack surf
~surface of discontinuity! @3#

s in1ru̇ivn50, ~6!
2-2
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with the mass densityr and the elastic displacement fieldui .
This is just the momentum balance equation on the free
face which moves with normal velocityvn . Finally, the ex-
pression for the chemical potential on the crack surf
should also be corrected compared to the static case

m5V~ 1
2 s ikuik2 1

2 ru̇i
22ak!. ~7!

Equations~5!–~7! together with surface diffusion, Eq.~2!,
and given loading configuration describe the crack propa
tion in our model. We note that inertial effects appear n
only in the bulk equations of elasticity but also in the boun
ary conditions and in the expression for the chemical pot
tial. All these effects lead to the appearance of the param
(v/vR)2 in the problem compared to the quasistatic desc
tion.

The preceding equations~5!–~7! can be derived from the
Lagrangian

L5E
V(t)

S 1

2
ru̇i

22
1

2
s i j ui j DdV2E

S(t)
adS, ~8!

with V(t) being the time-dependent volume of the solid a
S(t) its surface. The elastic equations and boundary co
tions follow by the condition thatS5*Ldt is stationary with
respect to variations of the displacementui , and the chemi-
cal potential is related to the variation ofL with respect to
the interface position@13,14#. Evaluation of the exact equa
tions of motion requires extended numerics, especially in
time-dependent case.

III. THE LOCAL CRACK TIP MODEL

We simplify the problem in order to make further analy
cal progress and to expose the general idea of our appro
It will turn out that one cannot describe all effects by th
approximation and further refinement is necessary, but
main results are qualitatively very robust against change
the model.

We mimic the tangential stress by alocal description in
the spirit of Eq.~4!, as depending on the propagation velo
ity and only on the local properties of the interface. It tak
both the velocity dependence of the angular distribution
the decrease of the dynamical stress intensity factor into
count,

stt5K@A12~v/vR!2cos~u/2!1~v/vR!2 sin4u#/r 1/2.
~9!

This form reflects the first-order transition of the princip
stress directionu50 for low velocities towardsuÞ0 as a
function of v/vR @3#. The use of more sophisticated expre
sions~e.g., the singular dynamical field in full detail! would
not provide a large gain, since, anyway local approximati
cannot lead to exact results. For the same reasons we
neglect inertial corrections to the boundary conditions in E
~6! and in the chemical potential~7!.

However, we have checked that a model with a conti
ous transition in azimuthal stress@replacement of sin4u by
sin2u in Eq. ~9!# gives qualitatively the same results.
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Now Eq. ~3!, together with Eqs.~1! and ~9!, is a closed
third-order differential equation for the shaper (u) which can
be easily integrated numerically. It provides both the cra
shape~Fig. 1! and a selection ofv/vR andr 0 as functions of
the dimensionless driving forceD5K2(12n2)/2Ea. The re-
sults are given in Figs. 2 and 3.

One of the main results is that the upper limit for th
steady state crack velocity is appreciable below the Rayle
speed, as known from experimental results. The insta
neous velocity in the nonsteady state regime can of cou
reach higher values@4,12#. For relatively low driving forces,
the growth velocity increases with increasingD, but for
higher values ofD, it even decreases. Simultaneously, the
becomes sharper at first, but then blunts again.

IV. STABILITY

Although the decrease of the velocityv as function ofD
might be naively understood as a sign of instability, t
model itself is stable: We performed a straightforward b
tedious numerical stability analysis and found no unsta
modes. The point is, that onlyv/vR decreases, butvr 0

3/D

FIG. 2. Steady state velocity of the crack versus dimension
driving forceD.

FIG. 3. Dimensionless crack tip radiusr 0 versus dimensionless
driving forceD.
2-3
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increases. Only a decrease of this parameter, which app
in combination with the dissipative coefficientD, would be a
real sign of instability.

Nevertheless, our solution is subject to the ATG instabi
above a critical threshold of the driving forceD. The desta-
bilizing effects stem from the nonlocal elastic contributio
which we neglected in our model, but which are obviou
present in the real problem. This can be proved by sim
dimensional analysis arguments: The characteristic w
length of the ATG instability isl;Ea/stt

2 @8#; in the tip
region it readsl (t ip);r 0 /D. Thus, as soon as a certain cri
cal driving force Dc is exceeded, the characteristic wa
length of instability fits into the tip region. The material in
dependent numberDc is the threshold for the instability o
the steady state solution, whereasD51 is the Griffith point.
Since, according to the steady state solution,v/vR is a uni-
versal function of the dimensionless parameterD, the thresh-
old of instability in terms ofv/vR is also essentially materia
independent. It is important to note that our steady state
dictions are valid only below the threshold of instabilit
Thus, the main part or all of the decrease of velocity ver
D is screened by the instability. Beyond the instability poi
the behavior of the system is governed by the full tim
dependent evolution. Hence we expect the ATG instability
be the relevant mechanism for the experimentally obser
microbranching instability@4,12#. In contrast to the long-
wave instability@15#, this instability is localized in the tip
region and cannot be suppressed by convective effects.

V. CONCLUSION

We have developed a self-consistent continuum mode
crack propagation in homogeneous media. Both ingredie
of our theory, thelinear elasticitywhich is valid everywhere
in the bulk andsurface diffusionwhich provides a mass
transport and dissipative mechanism for crack propagat
are well established. The model is essentially parameter
leading to the prediction that two dimensionless quantit
the crack velocityv/vR and crack tip radiusr 0(vR /D)1/3 are
universal functions of the dimensionless driving forceD.
Strictly speaking, these functions still depend weakly on
Poisson ratio. We note that these statements, together
the prediction of the tip instability above some critical velo
ity, are based on the general structure of our theory and
not involve the specific modeling of the surface stresses.
specific results given in the figures should differ from ex
solutions only quantitatively.

It is important to realize that our model does not cont
dict classical theories@3#, but contains more information
This allows to calculate both the crack velocity and the fr
ture energy, while the classical theories predict only a re
tion between these quantities~the integral energy balance!.
In our model, this energy balance is not fulfilled by a
proaching the Rayleigh speed limit with increasing drivi
force, as the classical theories predict, but by an increas
01611
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the fracture energy by tip blunting, which eventually leads
the tip instability.

At a first glance, fast crack propagation by surface dif
sion seems to be counterintuitive, since the diffusion proc
is usually believed to be slow. However, according to o
theory, the scale of velocity is set byvR and is independen
on the diffusion coefficient. The length scale of the tip is s
by (D/vR)1/3. As we already noted, strong dissipation brin
the local crack tip temperature close to the melting tempe
ture @11,12#. The heat is convectively transported from th
hottest spot in the tip region towards the tail. Therefore,
diffusion coefficientDs is about 1027 m2 s21 @16# at the tip
and independent of the outside temperature. Witha
;1 J m22, the interatomic distancea;10210 m and vR
;103 m s21, we conclude that the lengthscale of the tip is
order of atomic units. On this scale, our continuum desc
tion can be of course only qualitative.

Even more important is the fact that the term ‘‘surfa
diffusion’’ should not be taken too literally. Usually, man
complicated physical processes like a plastic bulk flow ta
place in a small zone around the tip. Assuming that this z
is relatively thin, the mass transport caneffectivelybe de-
scribed by surface diffusion, where all the detailed inform
tion about the process zone is hidden in the effective surf
diffusion coefficient. It can be much larger than the ba
surface diffusion coefficient. This is very similar to the d
namics of the surface of a thin liquid film, where the Navie
Stokes equation in the lubrication approximation reduces
diffusion equation for the interface profile; the effective d
fusion coefficient increases cubically with the thickness
the film @17#. The relevance of atomic redistribution close
the crack surface is also confirmed by molecular dynam
simulations@18#.

We admit that the direct application of our model to re
brittle materials might be problematic and remains an op
issue. The main goal of this paper is to introduce a we
defined theoretical model which contains explicitly ma
transport and a dissipation mechanism in the process zon
the moving crack. Such a formulation, based on the mec
nism of surface diffusion, is presented here; the full set
nonlocal equations leading to a free boundary problem
given by Eqs.~2! and ~5!–~7!. Its solution is, in practice, a
major project which leads to extensive numerics and has
been accomplished so far. Instead, we have explored
main ideas by introducing a local model of stresses a
solved this simplified scenario. We believe that the used s
ing and counting arguments for this reduced description
the same as for the full problem.
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