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Absolute Values of Surface and Step Free Energies from Equilibrium Crystal Shapes
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It is shown that exact images of the three-dimensional equilibrium shape of crystallites (ECS), recorded
at several temperatures between 0.3 and 0.8 of the melting temperature of a solid, can be evaluated to
yield absolute values of the surface and step free energies versus temperature, in addition to the formation
energy of kinks. The essential input for this novel approach is the temperature variation of the size of a
facet on the ECS and of the separation between the Wulff point and that particular facet. This approach
promises access to surface free energies over a large temperature range and for well-defined low-index
surface orientations.

PACS numbers: 68.35.Md, 68.35.Bs, 82.65.Dp
The absolute value of the surface free energy of solid
materials is a fundamentally important energetic quantity
which is needed for the understanding of a large number of
basic and applied phenomena, such as crystal growth, sur-
face faceting, growth and stability of thin films, the shape
of small crystallites in a supported catalyst, and many
general materials science applications. Despite its well-
recognized significance, there are relatively few reliable
primary data of experimental surface free energies because
they are very difficult to measure. Only a few techniques,
such as the zero-creep [1–4] and the cleavage techniques
[5], have been used repeatedly in the past to obtain quanti-
tative values for a limited number of solids, mostly metals.
“Recommended” values of surface energies of metals have
been derived in a phenomenological systematic compari-
son of some experimental solid surface free energies and
liquid metal surface energies for a large number of ele-
ments [6]. All of the known values are considered to
be averaged over a range of crystallographic orientations.
Finally, very little is known about the temperature de-
pendence of the surface free energy of solids since most
experimental data were obtained at temperatures near the
melting point.

In this Letter we propose to utilize the equilibrium crys-
tal shape (ECS) of a solid crystallite for the quantitative de-
termination of absolute surface energies as well as step free
energies for a range of temperatures well below the melting
temperature. The starting point is an exact image of por-
tions of the ECS at a given temperature, obtained, for ex-
ample, by high resolution scanning tunneling microscopy
(STM) [7,8]. In previous work we have demonstrated how,
at a single temperature, the relative formation energies of
kinks and steps as well as the step interaction energies of
vicinal (111) surfaces can be determined from the regular
ECS of small Pb crystallites [9]. We propose now, that ana-
lyzing such a crystallite at several temperatures by STM
and measuring the facet and crystal size versus tempera-
ture, the absolute values of kink formation, step formation,
and surface free energy of the low-index facet orientation
can be evaluated, as long as the ECS is continuously differ-
entiable, i.e., exhibiting all crystallographic orientations.
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The ECS of a solid is governed by the temperature
dependent anisotropic surface free energy which in turn
depends on step and step interaction energies [10–13].
Figure 1 illustrates schematically the geometric relation-
ship between the orientation dependent surface free energy
and the ECS in a two-dimensional Wulff plot. Surface and
step free energies are related to each other by length ra-
tios in the ECS, such as the separation between the center
of the crystallite (Wulff point 0) and the facet, z0, and the
distance between the center of the facet and the edge of
the facet, jr�T �j, in a direction perpendicular to low-index
steps of surfaces vicinal to the facet [11,12]. With increas-
ing temperature, the diameter of a facet becomes smaller,
corresponding to a decreasing step free energy. The main
reason for the decreasing step free energy is the excitation
of kinks, possible at any finite temperature.

Lattice model calculations in the framework of an Ising
model and various forms of the solid-on-solid model
have illustrated the thermal evolution of two- and three-
dimensional ECSs in great detail, providing the theoretical
background for the orientation and temperature dependent
surface and step free energies and also for the relationship
between step free energy and facet radius [11,14–17].
Lattice theory in combination with extensive Monte Carlo
simulations has also produced a realistic view of the tem-
perature dependent ECS [14,18,19]. For regular shapes

FIG. 1. Schematic of the equilibrium crystal shape (ECS) cross
section, together with the anisotropic surface free energy, g�u�,
drawn in a polar plot (Wulff plot). A facet is outlined by r�T�.
The separation between the facet and the center of the plot is z0.
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it is understood that the facet radius in a high symmetry
direction is a direct measure of the free energy of an iso-
lated step. Considering such a single step in a 2D Ising
or solid-on-solid model, the temperature dependence of its
free energy, f1�T �, regulated by the kink formation energy,
´k , is given by the following expression [13,15,16,20]:

f1�T � � f1�0� 2 kT ln

∑
coth

´k

2kT

∏
, (1)

where f1�0� is the step energy at 0 K. Compared to re-
sults obtained by 3D lattice calculations, this equation is
estimated to be valid at least for temperatures below about
70% of the roughening temperature of the nearest facet,
TR � 1.135´k�k [14,15,18]. The kink formation energy
is here assumed to be temperature independent.

Vibrational motion of step atoms, in particular, normal
to the surface, is also likely to be important [21–24], espe-
cially at lower temperatures where kink excitation is still
negligible. To account for this effect, we approximate the
vibrational free energy of step atoms by an Einstein model
where the dominant contribution of the spectral density
of surface atom vibrations perpendicular to the surface is
considered. The vibrational free energy of step atoms is
understood to be an excess energy [25], relative to that
of a flat terrace. We include here for the first time this
additional free energy in Eq. (1), rewriting it in terms of
relative energies and approximating the ln coth�x� function
by 2 exp�22x�, valid for exp�24x� ø 1. This yields
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where Qs and Qt are the Einstein temperatures of step and
terrace atoms, respectively. For T ¿ Q the vibrational
free energy is 3kT ln�ns�nt�, with ns and nt being charac-
teristic frequencies of step and terrace atoms, respectively.
We assume the ratio of these frequencies to be equal top

Ns�Nt where Ns and Nt are the respective coordination
numbers. For close-packed steps on a fcc(111) vicinal
surface, the logarithmic term in Eq. (2) amounts then
to 0.188. To visualize the effect of surface vibrations
on the temperature dependence of the step free energy,
we show a comparison of Eqs. (1) and (2) in Fig. 2 for
a set of reasonable parameters. For this purpose we
introduce a relative temperature scale, T�TM , where TM

is the absolute temperature of melting. We have examined
recent experimental and theoretical data of step energies
[26], mostly for the �110� oriented steps on (111) metal
surfaces, e.g., for Al [27], Pb [9], Cu [28,29], and Pt [30],
and have chosen an average value of f1�0��kTM � 2.5.
For the kink energy we assume a value of 0.4f1�0��kTM ,
i.e., ´k�kTM � 1.0. The calculated functions in Fig. 2
illustrate that the onset of vibrational entropy occurs
FIG. 2. Plot of the relative step free energy, f1�T��f1�0�, ver-
sus relative temperature, T�TM , according to Eqs. (1) and (2).
Relative Einstein temperatures, Q�TM , of 0.120 for step atoms
and 0.136 for terrace atoms have been chosen (solid line). In
the high temperature limit of the Einstein model, the ratio of
Einstein frequencies was set equal to

p
7�9 � 0.882 (dotted

line). A value of f1�0��kTM � 2.5 and a relative kink energy
of ´k�kTM � 1.0 have been selected in all cases.

at much lower temperatures than that of the configura-
tional entropy due to kink formation. Vibrational effects
are thus likely to be important for the entire range of
temperature. On the other hand, the high temperature
limit of the Einstein vibrational free energy is a good
approximation which we adopt from now on.

To relate the expression in Eq. (2) to experiment, we
replace f1�T ��f1�0� by r�T ��r�0�, recognizing that a ratio
of step energies is equal to a ratio of corresponding facet
radii [11,12], taken for the same facet at the same azimuth.
We now describe how Eq. (2) in the high temperature limit
can be applied towards the evaluation of absolute step and
kink formation energies of a single step. Note that the step
free energy as related to the facet radius is by definition
that of a solitary step, consistent with using Eq. (2).

Experimentally, the variation of the radius r�T � of a
low-index facet with temperature can be readily measured
by a suitable STM, capable of imaging the same crystal
over a range of temperatures, e.g., between 0.3 and 0.8
of the absolute melting temperature, TM . The kinetics of
equilibration are expected to be sufficiently fast for crys-
tallites of the size 200–1000 nm diameter, for the smallest
ones even at 0.3TM or below. Let us assume that a number
of facet radii versus temperature on an equilibrated crystal
have been determined. With the relative energy scale in-
troduced for kink and step formation, such as ´k�kTM and
f1�T ��kTM , we transform Eq. (2) into the form
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There are a total of three unknowns in Eq. (3): r�0�, f1�0�,
and ´k . All of these can be obtained by an iterative
process. At first, we assume r�0� as the value mea-
sured at the minimum temperature, r�Tmin�. Secondly,
according to a plot of ln��TM�T � �1 2 r�T ��r�0��	 versus
TM�T , Eq. (3), an approximate value of f1�0��kTM is ob-
tained from an extrapolation to TM�T � 0. This value is
used to calculate the vibrational part of the free energy,
ay � 0.188�2kTM�f1�0��, which is added to the left side
of Eq. (3). If we now plot ln��TM�T � �1 2 r�T ��r�0�� 1

ay	 versus TM�T , a nearly straight line should result, with
the ordinate intercept being equal to ln�2kTM�f1�0��, and
the slope of the line equal to ´k�kTM . With the new
value of f1�0��kTM , a more accurate value of r�0� can be
accessed through r�0� � r�Tmin�f1�0��f1�Tmin�, and step
number two can be repeated. A few iterations of this kind
should yield the absolute step energy at 0 K and the kink
formation energy ´k for that step. Of course, having f1�0�
and the kink energy, the variation of the step free energy
f1�T � with temperature, given by Eq. (2), is also known
over a large range.

Once the step free energy has been determined for a cer-
tain temperature, the surface free energy for the facet ori-
entation, f0�T �, at the same temperature, is easily obtained
from the three-dimensional ECS. For regular shapes we
use the important relationship mentioned above [11,12],
namely, that

f0�T �
z0�T �

�
f1�T �
r�T �

. (4)

This means that the surface free energy f0�T � can be cal-
culated from the length ratio z0�T ��r�T � and the step free
energy f1�T � at T . The length z0 can be evaluated from
the ECS image by locating the center of the crystallite and
measuring its distance to the facet. Note that the tempera-
ture variation of z0 with T is to a first order negligible, be-
cause the crystal volume stays constant at all temperatures
and the maximum anisotropy of the surface free energy
is small. A better approximation is to treat the missing
volume due to facets as sphere segments and calculate a
function r�z0� by assuming a number n of equal segments,
representing n facets, on the ECS. The result is

r�z0, T � �

∑
4r3

sph

3nz0
2

4z2
0

3n

∏1�2

. (5)

Figure 3 shows a plot of z0�r� versus r�T � for n � 6
and 8, respectively. Note that z0 decreases by only 16%
for a 16-fold increase in facet radius r , for a fictitious
change in temperature from near TM to 0 K. A ratio
of r�z0 � f1�0��f0�0� � 0.34 0.4 [26,31] marks the low
temperature end. The dependence in Fig. 3 can be used
to make a correction for the temperature dependence of
z0�T �, at least for those temperatures where z0�T � cannot
be obtained experimentally because of kinetic limitations.
The approach described in this Letter yields then for the
5806
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FIG. 3. Plot of the separation between facet plane and Wulff
point, z0�T�, versus the facet radius, r�T�. The calculation
assumes six and eight circular facets, respectively, each of which
cuts away a spherical segment from a perfect sphere (equivalent
to the ECS in the liquid state). The radius of the sphere is
500 units. The volume of the truncated sphere (ECS) is kept
constant and equal to that of the complete sphere in the liquid
state. High values of r�T� correspond to low temperature.

first time reliable absolute values of the surface free energy
over a considerable range of temperatures, even down to
low temperatures near 0.3TM . If the correction to z0�T �
is made, according to Eq. (5), the absolute surface energy
of a facet orientation can in principle be obtained even at
0 K. This is another important feature because no other
experimental approach yields surface energies at 0 K. On
the other hand, such values are needed for a direct com-
parison with corresponding a priori theoretical values.

The advantages of deriving absolute step and surface
free energies from accurate three-dimensional images of
the ECS are manifold. First, utilizing a modern variable
temperature STM, possibly in combination with scanning
electron microscopy [32], makes investigations of small
crystallites at temperature feasible. Facets and their
changing size with temperature can be readily measured.
Second, comparing the experimental effort of a clean
zero-creep experiment [3] to STM imaging of small
crystallites, the latter carried out under ultrahigh vacuum
conditions and excellent surface cleanliness control,
makes the currently proposed new technique to be the
first choice. A similar argument holds for the compari-
son with cleavage experiments which are, in any case,
feasible for only a small number of materials. Third, the
approach outlined in this Letter yields specific energies
of well-defined crystallographic orientations, something
that is very difficult to achieve in a zero-creep study of
thin foils. Fourth, the technique of evaluating surface and
step free energies from ECS allows a much larger range
of variables, such as temperature, orientation, adsorbates,
thin overlayers, etc. In particular, the study of the effect
of adsorbed species on surface and step free energies is
a largely neglected area of research, but most interesting
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in terms of Gibbs’ thermodynamic theory, and should
become feasible with the newly proposed technique. A
final advantage should also be noted, namely, that the
anisotropy of the step and surface free energies is also
given by the ECS [9,33].

Finally, we may add that a variation of the technique
can also be applied to small mounds created on a flat
crystal substrate (e.g., by vapor deposition or lithography).
Although these mounds are nonequilibrium features, it is
conceivable that they may exhibit quasiequilibrium shapes
near their tops, in particular, if those are faceted. Then the
same procedure outlined above for the three-dimensional
ECS can be applied to the top facet of the mounds, leading
to the determination of kink and absolute step free ener-
gies. Absolute surface free energies, however, cannot be
obtained in this way. This approach would complement
a recent proposal for evaluating the absolute step free en-
ergy from the temperature variation of equilibrated two-
dimensional adatom or vacancy islands [28,34].

We are grateful to Walter Selke for a discussion of lattice
theory in context of Eq. (1). We also thank Harald Ibach
for numerous valuable discussions and his critical reading
of the manuscript.
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