Publication Series of the John von Neumann Institute for Computing (NIC)
NIC Series Volume 15







John von Neumann Institute for Computing (NIC)

Numerical Methods for Limit and
Shakedown Analysis

Deterministic and Probabilistic Problems

edited by
Manfred Staat
Michael Heitzer

Report of the European project:
FEM-Based Limit and Shakedown Analysis for Design and Integrity
Assessment in European Industry — LISA

Project funded by the European Commission under the Industrial
& Materials Technologies Programme (Brite-EuRam I11)

Contract n°: BRPR-CT97-0595

Project n°: BE 97-4547

Period: January 1, 1998 to May 31, 2002

NIC Series Volume 15 ISBN 3-00-010001-6

Central Institute for Applied Mathematics



Die Deutsche Bibliothek — CIP-Cataloguing-in-Publication-Data
A catalogue record for this publication is available from Die Deutsche Bibliothek

Publisher: NIC-Directors
Distributor: NIC-Secretariat
Research Centre Jillich
52425 Jilich
Germany
Internet: www.fz-juelich.de/nic
Printer: Graphische Betriebe, Forschungszentrum Julich

© 2003 by John von Neumann Institute for Computing

Permission to make digital or hard copies of portions of this work for personal
or classroom use is granted provided that the copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise requires prior specific permission by
the publisher mentioned above.

NIC Series Volume 15 ISBN 3-00-010001-6



Foreword

The Commission of the European Communities has supporédI8A project onLi mit
and ShakedownAnalysis for industrial use, which connects direct methaddglasticity
with stochastic methods of structural reliability in a gexi@urpose Finite Element pack-
age. There was no commercial Finite Element Code that carfdqn either of this kind
of analysis at the time when Professor P.D. Panagiotopa@uds began the first planning
of the LISA project ten years ago. Therefore, we had to answeselves three questions:
Who may benefit?, Why now?, and Is the idea challenging, damriealized and will it be
successful?

The first question was easily answered from observing reoemds in engineering design
codes and standards. Instead of the traditional reintiapza of Finite Element Analyses
by stress assessment, modern design codes address striature modes directly with
the objective to use inelastic deformations of ductile malke for the extension the load
carrying capacity. More economic steel structures, pressassels and piping can be
designed with checks against plastic collapse (grossipldsformation) and ratchetting
(progressive plastic deformation) by Limit and Shakedowmalisis. Optionally, Low
Cycle Fatigue (alternating plasticity) may be excludedrafal to the LISA project, the
new European pressure vessel standard EN 13445-3 has betglisbed with a direct route
for design by limit and shakedown analysis. It is a seconuttia modern design codes to
base partial safety factors on the stochastic conceptsuttgtal reliability analysis. Limit
analysis also forms the basis of a number of simplified twiea assessment methods
in ductile fracture mechanics. Limit and shakedown analf@ind applications in a wide
range, spanning from soil mechanics to wear in rolling amdirgj contact. This answers
the second question 'a posteriori’.

Although being based on exact theorems of classical pigstimit and shakedown analy-
sis are considered as simplified methods. Simplificatiochsewed without any additional
approximation, by restricting analysis to only the failgtates of the structure. From an
engineering design standpoint, the merit of more elabaattyses has to be judged in
the light of the uncertainty of material data and the diffi@d in obtaining suitable con-
stitutive equations. One of the most important results efsimplification is that limit and
shakedown analysis makes robust assessments of strisafenl. Robustness of a method
is its ability to provide acceptable results on the basisleta than ideal input data.

Limit and shakedown analysis states the design problem aslagear optimization prob-
lem for the maximum of a safe load or for its dual, the minimuiha dailure load. This
is a challenging concept, because the number of constrdgiiising a safe load and a
failure load in lower and upper bound analysis, respegtivelhuge with Finite Element
discretization. Realistic industrial problems are moetkMith several 100 thousands of
unknowns and constraints today. Different methods fordagale optimization have been
developed by the research groups contributing to the LIS#ept. The present report in-
cludes: basis reduction by plastic analyses and searchéamaximum in a sequence of



low dimensional subspace by Sequential Quadratic Progragn(8QP); dual upper and
lower bound analysis of the full size problem by large-scalelinear programming meth-
ods based on a sequence of linear elastic analyses; refdramubf the problem in the
form of a Second Order Cone Programming problem (SOCP).aZ&arkethod has been
contributed as an additional direct plasticity method,chkiestimates the plastic deforma-
tion prior to failure. Methods which try to go around the ditfities of optimisation are
not considered in the LISA project: deviatoric map and mdshbased on elastic mod-
uli modification such as the Generalized Local Stress S{@LOSS) analysis, the elastic
compensation method or the linear matching method.

The LISA project extends the perfect plasticity models #ratused in design code appli-
cations. More realistic structural behaviour is modellgdatiwo-surface plasticity model
for bounded kinematic hardening, by the inclusion of motidydarge deformations and
displacements, and by continuum damage models. Two catioits treat the structural
reliability problem for uncertain material data and loaglby First and Second Order Reli-
ability Methods (FORM/SORM). These methods become pdditueffective with limit
and shakedown analysis yielding linear limit state funt$ioMoreover, the solution of the
optimization problem in limit and shakedown analysis gates already the sensitivities
needed for the reliability analysis. The extension to ckasanstraint stochastic program-
ming is indicated.

The contributions from the different research groups te thport have been written self-
contained such that they can be read independently. Some b#s been made to use
similar notations for the convenience of the reader. Fetwpeasblems have been chosen
to demonstrate that limit and shakedown analysis combimeemual insight with the
economy of computational effort for a wide range of comparggometry and loading
conditions.

| thank all LISA project partners and the authors for theinteibbution to this book. | also
thank Mr. D. Koschmieder, Prof. Dr. E.F. Hicken, and Dr. M.itder for assisting me
during the coordination of the LISA project.

It was sad that Prof. Panagiotopoulos unexpectedly pas&ggdseven months after project
start. The project would not have come into existence withaipersonal commitment to
our plans and his encouraging promotion. | will always bdejta for the experience of

his authentic warmth, brightness and reliability.

Manfred Staat
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M. Heitzer, M. Staat

1 Formulation of the problem

1.1 Introduction to limit and shakedown analysis

Static theorems are formulated in terms of stress and deffeestructural states giving an
optimization problem for safe loads. The elasto-plastitadveour of a structure subjected
to variable loads, is characterized by one of the followingibilities:

e purely elastic behaviour,
e purely elastic behaviour after initial plastic flow (sha&each),
e Low Cycle Fatigue (LCF) by alternating plasticity,

e Incremental collapse by accumulation of plastic defororatiover subsequent load
cycles (ratchetting),

¢ Instantaneous collapse by unrestricted plastic flow at limaid.

The maximum safe load is defined as the limit load avoidingapsk and the shakedown
load avoiding LCF and ratchetting. Alternatively, kinemaheorems are formulated in
terms of kinematic quantities and define unsafe structtass yielding a dual optimiza-
tion problem for the minimum of unsafe loads. Any admisssxéution to the static or
kinematic theorem is a true lower or upper bound to the safd, lcespectively. Both can
be made as close as desired to the exact solution. Let us @elfiael factorn = P, /P,
whereP, = (f;, p;) andP, = (fy, py) are the plastic limit load and the chosen reference
load, respectively. We will first suppose that all loatibgdy forces angh surface loads)
are applied in a monotonic and proportional way. Then we nray $tate the limit load
theorems.

1. Static limit load theorem (lower boundkn elastic—plastic structure will not collapse
under monotone loads if it is in static equilibrium and if theld function is nowhere
violated.

2. Kinematic limit load theorem (upper boundphe structure fails by plastic collapse
if there is an (kinematically admissible) velocity field suthat the power of the
external loads is higher than the power which can be dissipaithin the structure.

If the loads vary in the load domaifi one may ask by which load factar > 1 it may
safely be enlarged toL. This question is answered by the shakedown theorems.

1. Static shakedown theorem (lower boundn elastic—plastic structure will not fail
with macroscopic plasticity under time variant loads iiin static equilibrium, if the
yield function is nowhere and at no instance violated, aradl lastic deformations
decay.
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2. Kinematic shakedown theorem (upper bounihe structure fails with macroscopic
plasticity under time variant loads if there is an (kineroally admissible) velocity
field such that the power of the external loads is higher tharpbwer which can be
dissipated within the structure.

1.2 Lower bound approach

1.2.1 Limit analysis

The objective of the lower bound approach of limit analysia find the maximum load
factora;, for which the structure is safe. A maximum problem can be tdated:

max — «
s.t. F(o)< 05 inV
dive = —afy, inV (1.1)

on= ap, ondV,

for the structuré/, traction boundaryV, (with outer normah), yield function £, yield
stresss,,, body forcesnf, and surface loadsp,. From now onF’ is chosen as the square
of the von Mises yield function (1.14).

1.2.2 Shakedown analysis

The concepts for time-variant loading are more involvethdis denoted by. The stresses
o can be decomposed into fictitious elastic stressesnd residual stressgsby

oc=oc"+p. (1.2)

o? = E : € are stresses which would appear in an infinitely elastic rizdtior the same
loading, so that thp result from plastic deformations. The residual stressgefestresses)
p satisfy the homogeneous static equilibrium and boundangitions

divp =0 inV (1.3)
pn =0 ondV,. (1.4)
One criterion for an elastic, perfectly plastic materiabt@mke down elasticallig that the
plastic straing’ and therefore the residual stresgeBecome stationary for given loads
P(t) = (f,p) in a load domairc:
tlim ef(x,t) =0,

lim p(x,t) =0, VxeV. (1.5)

t—o0

4
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In every considered failure mode there is at least one poaitthe structure where con-
dition (1.5) is violated. Thus there exists at least one foifor which the density of the
plastic energy dissipatiom, per unit volume

w,(x,1) = /0 o(x,7) s £P(x, 7) dr (1.6)

increases infinitely in time. To avoid the possibility of gii@ failure the maximum possible
plastic energy dissipation

W,(x) = tlim wy(x,t) < ¢(x) (1.7)
must be bounded above for all pointse V. We restrict ourselves to the shakedown
criterion (1.5). This means, that independent of the logdiistory the system has to
approach asymptotically an elastic limit state. For dstafl the extended theorem see
[27]. The following static shakedown theorem holds [33].

Theorem (Melan)
If there exists a factar > 1 and a time-independent residual stress figll)
with [ p: E: pdV < oo, such that for all load® (¢) € L it is satisfied,
14

Flao®(x,t) + p(x)] < o) VxeV (1.8)

then the structure will shake down elastically under thegivad domairC.

The greatest valuesp which satisfies the theorem is callsdakedowsfactor. The static
shakedown theorem is formulated in terms of stresses amd givower bound tosp.
This leads to the mathematical optimization problem

max Q@ (1.9)
s.t. Flao”(x,t)+p(x)] <ol VxeV (1.10)
divp(x) =0 Vx eV (1.11)

px)n =0 vx € 9V, (1.12)

with infinitely many restrictions, which has to be reducedtiinite optimization problem
by FEM discretization (see the following sections). Shaked analysis gives the largest
range in which the loads may safely vary with arbitrary logddry. If the load domaima L
shrinks to the point of a single monotone load, limit anaysiobtained as special case.

Remark

In special cases the load domaircan be divided in a load domaify of the
time-variant loadP; and a time-independent (dead) lo&g, such thatl =
L;®Py:={P|P =P+ P, P € L;}. With o’ (x) corresponding to the

5
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dead loadF, the condition (1.10) in the shakedown analysis is transéorm
into:
FlooP(x,t) + o (x) + p(x)] < o2 (1.13)

whereo” (x, t) corresponds to the load € £, ando¥(x) is constant in time.

1.3 Upper bound approach

Koiter has formulated an upper bound theorem in kinematangties [26]. It may be
obtained from Markov’s theorem for rigid perfectly plastiaterial [56], [62]. We will
derive it as the formal dual of the static or lower bound tleeor

The simplest smoothi,-yield function was proposed by von Mises
3 1
F(o) = éo—D coP =30y, Jy= éaD co” (1.14)
o =deveo = o — g(tra)l.

2

In associated plastic flow the plastic deformation rate remabto the yield surfacé’ = o,

OVF
Jo
with the nonnegative consistency parameter 0. The irreversible response to loading

and unloading obeys the following Karush-Kuhn-Tuckemplementarity conditions

el =\ (1.15)

NF(o) - o2

)

] =0, A >0, F(o)— o, <0. (1.16)
additionally\ > 0 satisfies theonsistency condition

INVF
oo
These flow rules are non-smooth. For the von Mises yield fandtL.14) one obtains

A & =0. (1.17)

‘9\/F_\/§ of _3 9" (1.18)
oo 2\/0'D:0'D_2\/F(0'). .
Inserted into (1.15) it holds

3 oP

el = /\5 (1.19)

VF(o)

which satisfies the incompressibility requirement

tre =0,

6
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so thate” is equivalent with its deviator. Now the effective plasticaim rateég; may be
computed

r_ [2.p .p 20VF OVF 23voP . oP
€y =1\|Z€ & =M|/zc—— —=M/oc—————=212>0, (1.20)
q 3 3 Oo oo 32 /F(o)

which equals the consistency parameteT he internally dissipated powé;, is obtained
from the plastic dissipation densiiy(éfq)

D(EL)y=¢eP 1o = éfqay = Aoy, (1.21)

eq

We could then formulate a minimum principle

min  ay
with oy = W, = / el oydV
1%
s. t. 1:Wm:/f§udv+/p§udszo,
1% v,

&(t) = %(vu +(va)T) inv,
u(t) =u’(t) on 9V, (1.22)

or the structuré/, boundanpV’ = dV,,udV,,, displacement boundaéy¥,,, given velocity

u’.

The objective functiony is non-smooth on the boundary of the plastic region. Then the
optimization problem resulting from a FEM discretizatienalso non-smooth. It may be
solved with a bundle method [65]. As a practical alternatilrferent regularization meth-
ods are used as smoothing tools in [56] and in [24], [25], [@3]e regularized minimiza-
tion problem is solved by a reduced-gradient algorithm mgoction with a quasi-Newton
algorithm [35].

1.4 Discretization with FEM

While using the FEM for the limit and shakedown analysis,ldbendary conditions of the
lower and upper bound approach eventually vanish becau$e afpproximative calcula-
tion of the stresses and displacements. To handle a wide Hrmpmplex structures it was
decided to use the commercial FEM-Code PERMAS (INTES, &ttt [36]) for the lower
bound approach. The program calculates the fictitiousielstsesses “, the optimization
procedure is a decoupled process (see [14]).

7
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For the FEM the structur® is decomposed itV E finite elements with the Gaussian points
x;, ¢ = 1,..., NG. The restrictions of the optimization problems are cheakalg in the
Gaussian points.

The structurd/ is subjected to the loa#(¢) and the discretized fictitious elastic stresses
of(t) = o¥(x;,t) are calculated with the displacement FEM (see [36]). With dis-

cretized residual stressps= p(x;) the discretized necessary limit and shakedown condi-
tions are derived with the yield stresg, in every Gaussian point

F(Uf(t) +p;) < U;,i’ (1.23)

With the element matrices;, the element incidence matrix and the global maixhe
discretized equilibrium equations of the residual stresse derived ([1], [14], [36], [64]):

NG
> cip, = 0. (1.24)
=1

We use the abbreviatiohs

NE number of elements of the structure
NF  number of DOF's
NG number of Gaussian points of the structure
NSK number of stress components of each Gaussian point
NV number of load vertices

The element matrices are calculated by the nodal point displacements and thedaoyn
conditions of the structure such that € [RV**N5K andp, € IRV*K holds. With the
abbreviation€C = (cy,...,cye) andp” = (p!',..., pLs). eq. (1.24) yields

Co = 0. (1.25)

The matrixC € IRNF'*(WSK-NG) has maximum rank because rigid body movements are
excluded. The rank is defined by the numb&f of DOF’s of the structuré’. All vectors

o which fulfill eq. (1.25) are the kernel of the linear mappirggided by the matrixC and
define with the addition and scalar multiplication a vecioaeB, the so calledesidual
stress spaceThe dimension of is given by dimB) = NSK-NG— NF. This dimension

is dominated by product of the number of Gaussian paitg and the number of stress
componentsVS K. The discretized problem of the lower bound approach is ddfoy

max «
s.t. Flaol(t)+p;] <02, i=1,....NG, Pt)eL, pcB. (126)

This problem hasVSK - NG + 1 unknowns: p, and the load facto«.. Because of the
time dependence of the fictitious elastic stressfsve have still infinite restrictions. So
we have to discretize also the load domain to obtain an @feeatgorithm for the limit and

shakedown analysis.

1For simplicity of notation we assume here that all elemeat&hhe same number of Gaussian points.

8
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1.5 Discretization of the load domains

Let £ be a load domain containing any possible load which acts emstiitucture/’. Any
load P(t) € L could be specified by a variabte For a variable cyclic loading the load
domain contains infinitely many loads (for a monotonic laatimit analysis it is presented
by one single load.) In shakedown analysis the sufficientitmms must be verified for
all the non-countable load(t).

Usually the cyclic loading could be described by a finite nemdif load case® (k), k =
1,...,NV. These load casd3(k) vary between given load limit®(k)~ and P(k)*, e.g.
for a cyclic pressure load the pressure is bounded by minimaodhmaximum pressure
(see [28]). We restrict ourselves to problems where thditradoundarydV, remains
constant (see e.g. [27], [43] for moving loads on plates &34 $tructures with contact).
By defining the load caseB(1),..., P(NV) via the load limits in each case, any load
P(t) € Lis given by an unique convex combination of théj), s.t.

NV
P(t) =Y NP(j), > A=1, and \;>0,j=1,...,NV. (1.27)
j=1

This yields, that the load domaifi is a convex polyhedron and the load cases form the
vertices of the polyhedron, so they are calleald vertices

Let () be the fictitious elastic stress in the Gaussian pojmrresponding to thg-th
load vertices. From the principle of superposition for tlesec stresses we derive the
convex combination of the stresse§(¢) by

NV
(1) = Nol () (1.28)

For the verification of inequality (1.26) in the poigt the reduced verification for the
stressew ? () is sufficient [47]

F(ao?(j) +p;) <ol (1.29)

Y

Because of the convexity df in all x; we derive from (1.27)-(1.29) for alP(j)

NV NV
FlaoP(t)+p] = Fla) XoP()+p]=F[3_ Aol () + p)]
NV " NVji
< D NFlaof() +p) <Y Ao, =02, (1.30)
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The sufficient shakedown conditions (1.26) must be verifidgl m the load vertices, such
that we deduce the discretized minimum problem for the Iéadserfectly plastic material

max o
st. Flao?(j)+p;] <o?

Yt

i=1,...,NG, j=1,....NV, g€ B. (1.31)

The unknowns are the time independent residual strgssasd the load factow. This
means a reduction ty V' - NG inequality andV F' equality constraints, resulting from the
yield condition and the equilibrium condition, respeclywe

The number of restrictions is finite and for structures wit' Gaussian points we have to
handleO(NG) unknowns and (N G) restrictions. For realistic FEM models of industrial
structures no effective solution algorithms for nonlineptimization problems of such a
Size are available.

Remark

In the special case of a load domainwith one dead load’, and a variable
load0 < P(t) < P, the conditions (1.31) and (1.13), have the form:

Flaal(j) +of; + b

On the other hand, the convex combination of the load vextige= I, and
P, = Py + P giveswith0 < \ < 1:

AP L+ (1= NPy = P+ (1= N (Py+P)=Py+(1-\P, (1.32)

such that the load domaifiis spanned by the load verticés and P,. There-
fore, by choosing different ratios df,/ P,... @ whole shakedown interaction
diagram can be generated with the shakedown analysis (hs3&ad of (1.13).

1.6 Duality

The minimum and maximum problems resulting from the statid kinematic theorems
for the discretized structures are dual. In case of limitlysig we give a prove of this
statement ([2]).

Let the lower bound problem be the primal problem

Maximize o
s.t. f(s)—r<o,
Cs—a,p=0. (1.33)

10
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The quantities in theVG Gaussian points were collected to the vectfrs, », andp to
formulate the matrix notation of the constraints. The unkn® are the limit load factor
as and the stresses. The minimum problem with restrictions is transformed iato
unrestricted problem by the Lagrangiéfyy,, s, i, A), such that the optimality conditions
for unrestricted problems hold (see [2], [7], [30]). Wittethagrange factord > 0 and«

it holds

L(ag, s,%,A) = a,+4"(Cs—ap) — AT (f(s) —r). (1.34)

In the minimum the Lagrangiah(«as, s, @, A) has a saddle point, so that the optimal value
is the solution of

min max L(ag, 8, %, A). (1.35)
’u7>\ O, S

The necessary optimality conditions of the maximum are

oL .

= 1-a"p=0, (1.36)
Oayg
oL _ wro_ ot _y (1.37)
0s 0s

Equation (1.36) means a normalization of the external pafadingV,, = u’p = 1
of the discretized structure. By substituting (1.36), 73.B the dual objective function
l(w,A) = max L(as, s,u, A), with the Euler PDE for the homogeneous functif(s),

of(s)
T _
s P = f(s), (1.38)
and with\ > 0 it follows
I(A) = maxL(as, s, X) = ATr = Win(é). (1.39)

Equation (1.35) is derived by eq. (1.36), (1.37) and (1.88gh that the dual problem is
defined by the non-smooth mathematical program

Minimize A'r (= )

s.t. A>0,
w'p=1,
cTu— A2 _y. (1.40)

0s

Because of the normalizatidii,, = 4”p = 1 it holdsay, = I(A) = Wi, (&).

11
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The Lagrange factors of the primal problem are the unknoviriseodual problem. The
dual problem is formulated in the kinematic tersasind\. With

e = ,\Tm (1.41)
0s

(1.37) could be formulated for the associated flow rule &hé: € in the collapse state
CTu—e=0, (1.42)

which is automatically satisfied in a displacement FEM diszation. Equation (1.21)
shows thatA\ may be replaced by the collection of effective strain ratgsand always
A = é., > 0 by inequality (1.20). Then the dual problem reduces to

Minimize el r (= o)
s.t. a'p=1. (1.43)

The saddle point properties of the Lagrangian show, thanémamum problem is concave
and the minimum problem in convex such that both problem tia@same optimal value

maxy, = a = Minay. (1.44)

Because of the convexity of the problem the obtained locahapn is a global one (see
[2], [7]) such that the limit load factor is unique.

2 The basis reduction technique

For a Finite Element (FE) discretization a finite but gerlgdarge number of constraints
is achieved. The basis reduction method keeps only a smaibau of unknowns. It
was developed for linear optimization in [43] making use fué special structure of the
shakedown problem for perfectly plastic material. In thensaconstitutive setting the
method has been extended to nonlinear optimization in [1@], [46], [64].

Instead of searching the whole vector sp&cr a solution of the maximum problem, a
d—dimensional subspadg, is searched. In thé-th step of the algorithm different sub-
spacesBt are chosen iteratively to improve the obtained load faafor The dimension
of the chosen subspace is rather small compared to the diomenis3, we use typically
dim B% < 6. The subspaceB% c B could be generated by linear independent base
vectorsb?, such that for alp* € B there exist$uy, . . ., pq € IR with

p" = b¥ bk 4 bl (2.1)

12
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Instead of the unknown residual strespes B¢ the unknownsu, . .., iy are chosen. If
we collect the base vectoks, i = 1, ..., d of BY c B to a matrixB** it holds

B = (b},...,bk),
such that for alp® € B exists a vectop” = (i}, ..., uk)T € IR? with
pF = by + ... + pabl = Bk,

With the load facton*~! and the stressgg~! (p° = 0) resulting from the step — 1 of
the algorithm the new problem i’ is given by

max o (2.2)
st. Flofaf(j)+pf ' +BM* R <02, i=1,....NG,j=1,....NV,g" € IR".

This problem hasl + 1 unknowns &* and u*) and NG - NV restrictions. This basis
reduction technique is well known in the field of optimizatiolnstead of searching the
whole feasible region for the optimum a search directiore¢oar small dimensional) is
chosen to find the best value in this direction (see ([2],.[7)) sketch of this method
for a two dimensional feasible region is shown in Fig. 2.1eBabspaces are chosen as
one dimensional search directions such that each seagssiae ste in the subspace
technique.

f
o

Objective function  f(X,y)

()5“,}7 ) Feasible region

y E
X=

Variables

Figure 2.1: Sketch of the subspace technique for optintimgiroblems

It has to be clarified how the base vectors of the residualpades3’ have to be chosen,
such that the optimum in the residual stress spaeéll be reached. Further it has to be
pointed out if it is possible to guarantee that every stefdgian improvement of the load
factora”.
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2.1 Generation of residual stress spacB,

Some authors offer different methods for the generatioh®fésidual stress space. Shen
suggests in [43] a method for generating the residual sspase with FEM. The base
vectors are calculated by an equilibrium iteration. Grd¥sege and Weichert suggest
in [10] a modified method. Buckthorpe and White calculatelibse vectors by thermal
loading ([4], [5]), because all thermal stresses are rediduresses. We will follow the
method of Shen, because of its easy implementation into anssoial FEM-Code.

The base vectors aB, are generated by an equilibrium iteration with the FEM-Code
PERMAS V4 (see [36]). By using a general purpose FE-Code possible to treat all
loading cases, element types and structures. The basidi@utechnique could be imple-
mented in all FE-Codes which could generate plastic stsemse residual stress bases.

In the plastic part of the equilibrium iteration in PERMAS ¥dditional load increments
were applied iteratively. The following algorithm is impiented in PERMAS V4. For the
special nomenclature see also [1], [36], [43].

Starting from the actual nodal stress and steajrande, respectively, resulting from the
preceeding load step, the following steps are performed

1. The plastic strain incremeaf is derived from the estimated equivalent plastic strain
incrementsfqA and a nodal stress? proportional to the deviator af:

P__P _d
EN = Eeqn O

2. With the elastic material stiffness matikxthe initial elemental nodal load increment
J,a is calculated
Joa = —hE ei.

3. The total nodal load incremept, of the assembled structure is generated by the
total initial load incremenp,,, theJ,» and the element matrix by

PiA = Pa1 — a’ Jpa.

4. The nodal displacement incremerx is calculated with the structural stiffness ma-
trix K from
uA = I<_1 ptA

5. The element nodal displacement incremeri{sare
u} =aua.

6. By the strain-displacement matri}, the elastic material stiffneds the fictitious
stress incremenis;, are calculated:

e
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7. The actual nodal stress incremer is derived fromo ;o andeX

OA = OA —Eei.

8. Now the actual nodal stresses are the sum of the initiahlnstdessesr, and the
nodal stress incremeanta
O =0+ 0.

9. From the actual nodal stresses the equivalent plasaai'n:lsirrcrementfqA is gener-
ated and the convergence is analyzed.

If the given convergence criterion is fulfilled the new ialthodal stresses, = o and a
new load incremenp ,, are defined. Otherwise, all steps are repeated with the new-eq
alent plastic strain incremenf, , and the old load incremens, ,. The stiffness matrix is
not updated during the iteration, because this would bédogfe for large structures (see
[44] and [11] for an updating schema of the stiffness matiixthe conventional algorithm
the iteration is repeated until convergence is reached.

In the basis reduction technique we define a residual nod&ssbyp = o, — o, fol-
lowing a suggestion in [43]. The nodal stresegs o, are calculated during one iteration
corresponding to the same load incremggt for different iteration steps:, n. The static
equilibrium conditions of the discretized structure to libad incremenp are:

p=Ku+alJ.
For the nodal stressgs= o,, — o, it yields

P = P, P,=K(u, —u,)+ aT(JpAm - JpAn)
= [pa1 — a’ JpAm — Par + a’ JpAn] + aT(JpAm - JpAn) =0, (2.3)

such thao is in fact a residual nodal stress. For the generationdeftmensional residual
subspacé, we iterated+1 times to get the nodal stresses . . ., o?*! and the differences
p,=0’—ot ..., p; =0t —qagl. Al p,,...,p, are residual nodal stresses if the
iteration converges or not.

In shakedown analyse$8V load vertices have to be considered in every gten order

to obtain an effective algorithm, a new load incremppts defined only in the active load
vertices of the preceding load stép- 1 to generatg new base vectors. The number of
base vectors is restricted ta 3,6, such that eventually not all active load vertices geeera
the same number of base vectors. Nevertheless, usuallgta doad vertices are taken
into consideration. By iterating this base vector genemtad—dimensional subspads’

of the residual stress spateis obtained in every step. In the subspacB’ the problem
(2.2) is solved and one gets the improved solutiepsind p,,. These values are the new
starting values for the next iteration step- 1.
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2.2 A convergence criterion

The main objective of this section is a criterion which guéeas, that in every new sub-
spaceB” of the residual stress spaean improvement of the load factet* is obtained
(i.e. of — a*~! > 0). For 2—dimensional problems a similar criterion is achikin [64].
The criterion below is an extension of this criterion to 3adnsional problems. Lét " a
base vector of an one-dimensional subspaté of BZ. In stepk — 1 the load factor* !
and the residual stressg%~! are known, such that

o t=ar el + pf’l. (2.4)

7 7

We search a base vectbt” such that the increastda = o* — o is maximal. This
means a solutiofAa”, u*) is searched of

Aao* — max
F(a*af + pi™ +by"u") = F(o}™ + Adkol + b u¥) < o2 Vie I (2.5)

with Aa > 0. In stepk — 1 not the whole structure reaches the yield stress in all Gauss
points. We split the set of indicdsin the set of active indiced*~! and the set of inactive
indicesC*~1, such thatr = A*tuCk-tand A1 NCF! = 0. It follows

F(of 1) = O’Z Vie A (2.6)

)

Gaussian points corresponding to inactive indices I \ A*~! admit a small additional
load increment, such that they are not taken into consideréarther. We consider only
such indices € A*~! C A*~! such that the stresses in the corresponding Gaussian points
further reach the yield limit due to an increase of the loanlament. The Gaussian points
corresponding to the indiceése A%\ A" are relieved from stress, such that we study
the following optimization problem

Ao — max
F(o* ' + Aac? + ufblF) < 02 Vie AF! (2.7)

Y

The next lemma is an extension of the 2-dimensional one @4g to the 3-dimensional
case. The proofis given in [14]

Lemma
The problem (2.7) has a solutigiha®, «*) with Aa* > 0, if and only if
either oF
—— b <0 Vie A
Jo ok
or op
—— -b* >0 Vie A holds.
oo 0?71
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The residual stresses bases are generated by the equiliibeiation by PERMAS in the
given way. If the equilibrium iteration converges, then thsidual stresses fulfill the as-
sumptions of the lemma. This is derived from the vanishintghefe? during the conver-
gence and the convexity of the yield surface. Thus we haveidoagtee, that the applied
load increment is lower than the limit or shakedown load. @éneyal the limit or shake-
down load is unknown, such that we have to apply a strategih®decrease of the load
increments. Additionally the load increments have to besehcsuch that theonstraint
gualifications(see [2], [7]) of the optimization problem are fulfilled. Bhineans that the
generated residual base vectors are linearly indepenbreall. limit load models a bisec-
tion of the load increments after 2 or 3 load steps yields gmowergences. For all models
with known analytic solution of the limit loads the soluti@achieved within 10 iteration
steps with an error of 5 %. After 20 iteration steps the ersdypically less than 1-2 %,
so we limit the number of steps to 20. Shakedown analysigisdlly much faster.

If the applied load increment exceeds the limit or shakedimad, we could not guarantee
that we get an improved load factor, but the base vectorst#fireesidual stresses. Nev-
ertheless, after the next bisection of the applied loaceiment we get an improved load
factor.

3 Mathematical optimization techniques

In this section the mathematical basis for the solution eflttmit and shakedown analysis
is given (see [37], [38], [39], [40], [41] and [42]). The cdraned optimization problems
were analyzed and a strategy based on a Sequential Quaeiragiamming (SQP) algo-
rithm is derived. Because of the special structure of themapation problem and the close
connection to the FEM-code PERMAS a self-implemented wearsi the SQP-algorithm
is used instead of a commercial mathematical software IKNCELOT or MINOS (see
[6], [35]). The complete algorithm is summarized in the fibnact in fig. 3.1

The mathematical formulation of the shakedown analysigap & of the SQP-algorithm
is given. The limit analysis can be derived by modifying ttrecture for one load vertex.

(OP) Maximize a®
s.t. F(a*af(j)+pf 7 +Bf*x) <02 VieZI jeJ
with the fictitious elastic stresses”(;j) corresponding to the Gaussian poirgnd to the
load ;. All stresses were handled as vectors. 'leé“ are generated by the basis vectors

of the subspacB? (d = dim B%) of pointi in the k—th step of the iterationx is the vector
of the coefficients of the basis vectors (see eq. (2.2)).

The indices: andd from o andB?"* are omitted in this section for abbreviation. Lt
be the optimal residual stress of iteration step 1 of point: to the load; (with p° = 0).
Let |Z| = NG and|J| = NV be the number of Gaussian points and the number of load

17



Basis reduction technique for limit and shakedown problems

Structure of
ductile material

Finite Element Model

Calculation of elastic
stresses by PERMAS

Calculation of residual subspacé
by a plastic equilibrium iteration

Solution of the mathematical
optimization problem by Sequential
Programming Methods

Convergence ?

No

Convergence ?

Limit load resp,
shakedown load

Figure 3.1: Flowchart of lower bound limit and shakedownlypses
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vertices, respectively. With the definitidi(o) = o Qo it holds for the constraints holds:

Flaof(j) + pi '+ Bx) (3.1)
= a’F(af(j)) + 20(0] ()) Q(B:x) + F'(Bix)
+ 20(af ()" QP+ 2(p ) Q(BX) + F(pf )
= a2al(j) + 2ab! (j)x + XTC {(9)x 4 2ad;(5) + 2e] (j)x + fi (3.2)
with  a(j) = F(o7(j) € R d;(j) = ( U)TQPST € IR
bi(j) =B{ (/)Qol(j) € R e(j) =B (5)Qp; ™" € IR
Ci(j) = B{ ()QB; € IR fi=F(p{™") € R (3.3)
and for 3-dimensional problems it holds
1 —-05 —-05]0 0 O
—-0.5 1 —05|10 0 O
—0.5 —-0.5 1 0 0 0
Qs = 0 0 0 |3 0 0 (3.4)
0 0 0 0 3 0
0 0 0 0 0 3
In point: to the load; (and with the abbreviation|; ;) it holds withB; = (b)x, |;; and
Q = (qr)r:
b1 - b q11 qim b1
Ci(j) = : : : : (3.5)
bld bmd dm1 Amm bml
2> biagribn > > bkiqribia
k=11=1 k=11=1
Z E braqribi E Z braqribia
k=11=1 k=11=1 ij
C,(y) is symmetric by definition and therefore it holds
: ai(j) | bf (j) ) (d+1)x (d+1)
Di - B L B c .ZR .
b) ( b.(j) | i)
Withy = (a,x)T € IR™! andF,(j) = (d;(5),ei(4)) it follows for the constraints of the

problem (OP’) with equation (3.1)

Flaol(j)+py ' (j) + Bix) =y ' D;(j)y + 2F:(j)y + f; VieZ jeJ.
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Q is positive definite in the deviatoric stress space and theedzolds forD;(j). From
now on, we analyze the following optimization problem witielar objective function and
guadratic constraints

(OP) Minimize -1
s.t. —yTDi(j)y—ZFi(j)y—fiJrUZ >0 Viel je J.
Remark
By scaling the constraints of (OP) with a constant fa¢tor.e. by considering
the problem

—t*y"D;(j)y — 26°F;(j)y — *f; + t°0, >0 VieI, je J,

the solution of the optimization problem is not changed. 3¢eded constraints
of problem (OP’) are

F(atef(j) +tpf ™ +tBx) < (to,)? VieI, jeJ.

If we consider the stressed”, p*~! and the matrixXB of point: and load; the
optimal value is not changed. In the case of numerical ingiab based on
nearly singular matrices it is of benefit to use scaled stiess

The idea of the SQP-algorithm is to replace a nonlinear prolidy a sequence of quadratic
subproblems. The sequence of solutions of the subproblem&mes to the solution of
the original problem. Therefore, we define the following geh nonlinear problem by

(GNP) Minimize f(x)
S.t. gi(x) >0 Viel,

withx € IR" andf, g; : IR" — IRV i € Z. Let'R (feasible regiohbe the set of admissible
points for (GNP), i. eR = {x € IR"|g;(x) > 0,7 € Z}. In general not every constraint
is active ¢;(x) = 0) in a pointx of the feasible region. So we define the active mapping by

To(x) = {i € Z]gi(x) = 0}.
Let 7x(R) be the tangential space &fin pointx
Tx(R) = {€ € [R"|¢"Vgi(x) =0, i € T}.

We define the Lagrangian function L of the problem (GNP) by
L(x, 1) = f(x) = > 1igi(x).
i€l
Let x* € R be a local minimum of the problem (GNP) and tt@nstraint qualifications
are fulfilled inx* (e.g. if the vectors/g¢;(x*) are linear independent forc Z,(x*)) then
T
there exists Lagrangian multiplier$ such that withv(-) = (8(') m) holds

oz’ ) Oxn
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1) ps >0, Yiel
pigi(x) =0, Viel
VL(x*,u*) =0,

2) EVAL(x, p)E >0 VEE T (R).
The first necessary condition is called Kuhn-Tucker—caoulit It means that in a local
minimum the gradient of the objective function is a positiveear combination of the
gradients of the constraints. The second necessary comditeans, tha¥’?L(x*, u*) is
positive semi-definite on the tangential spage(R).

The conditiony;g;(x*) = 0V i € Z is thecomplementary condition®ecause it holds
w; = 0fori € 7\ Zy(x*), such that the Lagrangian multipliers vanish in the inactiv
constraints. With the complementary condition and the &agran multiplierg:; we write
the first necessary condition of a minimwhonly in the active constraints:

1) w0, Vi€ To(x")
>, mVgi(x) =V
1€Zo (X*)
If a pointx* € R with the Lagrangian multiplierg! fulfills additionally to the Kuhn-
Tucker-conditions the conditions

1. puf>0Vie Zy(x")

2. V2L(x*, u*) is positive definite orvx- (R)
thenx* is a local minimum of the problem (GNP). Instead of solving gtoblem (GNP)
the SQP-algorithm analyzes linearized constraints andaargtic approximation of the

objective function. If we expand the objective functignin the kth step of the SQP-
algorithm in a Taylor series in poinis, of (GNP) it holds

fx) = flxe) + VxR (x—xp) + %(X —xi) V2 f ) (x —xp) + -

9(x) = g(xk) + Vgxe)(x —xx) + ... 3.7)

If we use only the first order expansion we derive the algoritf the Sequential Linear
Programming (SLP) (see [32]). The SQP-algorithm yieldsteebapproximation, because
the structure of the problem could be modeled more precisely

We defined = x — x;, as search direction in (3.7), such that we derive the tramsfon
Minimize 1d" V2 f(xx)d + V f(xx)d + f(xx)

The optimal value of a problem with a translated objectivection by a scalar is the
same as the original optimal value. With the approximation~ V? f(x;) we derive the
problem

(QP) Minimize 1d"Ad + V£(x,)d
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This problem has the unknowrdsec IR™ and the feasible region
R ={d € IR"|Vg] (xx)d + g;(x;) > 0,i € T}.

The Lagrangian function L is given by

Ld ) = pd A+ VfGo)d — 3 u(Voux)d + ou(x)),
i€l
VL(d,u) = Apd+ Vf(xx) — Z 1V gi(xy) and
1€l

VL(d, pn) = Ay (3.8)

The matrixA is positive definite and is an approximation of the Hessighetagrangian
function of (GNP) in the minimum witthA, = 1. Therefore, the second necessary condi-
tion of a minimum is fulfilled, because witA;, also V2L(d*, u*) is positive definite on
T1+(R)).

d

For the active constraints we must solve the following lmsetem

VL(d,p) =0
Vi (xi)d +gi(xx) =0 Vie Io(d). (3.9)
If for a solution d*, p*) of this system it holdg.; > 0V i € Zy(d"), thend™ is a local

minimum of (QP) because of the positive definitenes¥' 4t (d*, u*) = A,. We write the
linear system in the forrilz = h with m = |Z,(d*)| and

A | =Vai(xk) ... =Vgn(x) d —Vi(yr)
~Vgi (xx) 0 co 0 po | 91(xx)
V)| 0 .0 o ()

~~ JH_/ v~
H Z h

H is symmetric but not positive definite, because v8th= (Vgi(xx), ..., Vgn(xx)) €
IR™ ™ it holds
[ A |-S
H = ( A ) |

After one step of a Gauss’ elimination method we have two tatazil blocks and it holds
det(H) = det(Ay) det-S”A;'S). In the pointx,, the constraint qualifications are ful-
filled (i.e. Shas maximum rank) and,, (andA ;') is positive definite, such that we derive
detH)< 0. For the problem (OP) the sequential subproblem (SOP) irktihestep with
dy = Vf(xr)d = (—1,0,...,0)d is given by:
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(SOP)  Minimize 1d"A d — 4,
S.t. —2(ygDZ+FZ)d—(y{DZ+2FZ)yk—fﬂraZ Z 0 Vi EI,
The Lagrangian function L and ;L. are given by

1
i€l

Vil(d,p) = Agd+d;+2) u(Diy, +Fo), (3.10)
i€l
with d; = (—1,0,...,0)T. If we use only the active constraints the necessary camditi

of problem (SOP) for every load case are given by (with (3r@) €8.10))

Ard +d; +2 ZMz‘(Dz‘Yk +F;) =0
i€l

—2(yID; + F)d — (yID; + 2F,)y, — fi+ 0> =0 VieIy(d), (3.11)

such that in every load vertex we solve the linear system= h with m = |Zy(d")|,

Ay ‘ 2(Dyy, +F1) ... 2(Dny,+Fn)
_— 2(y;€D.1 +F)) o o
2(y{Dm +F,) 0 0
h = (1,...,0,0] — (yiD1 + 2F1)y, — f1,....0) — (Y D + 2F0)yy, — f)"
z = (dy,....dap1, fi1,. - pm)", (3.12)

with H € R (d+1+m)x(d+l+m) j ¢ JR d+1+m andz ¢ IR ¢+, For the solution of this
problem we use an active set strategy (see [7], [30]). Theisol of (SOP) is based on an
iterative solution of finite linear systems.

Let d, be an admissible approximation of (SOP) and/lgtl;) be the set of active indices
in the pointd,. With the introduction of the slack variablésandd = d,, + & the problem
(SOP) of active constraints is equivalent with the problem

(GSOP) Minimize ~ 36"Ayd + (d] +dfA,)d
This is equivalent for every load vertex with the linear sysHz = h with

2(Diyk+F6),i € To(dy) ) ( g ) _ ( —d, —OAkdk )

Ay
2(y;iD; + F;)q,i € Io(dy)

-~

z h

T <

Let 5* be a solution oHz = h. If it holds §* # 0 maybe the feasible region of (SOP) is
deserted. If not, we define the new approximatdan, = d, + 6*. If the feasible region
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is deserted we search on a semi ray (in directiod*¢fstarting fromd,, for the first point
d;. 1 which violates one inequality constraint of (SOP). This neae search along the ray
s*(= &") starting fromd,, for a maximahy, such that the approximatiat),,; = dj + yxs*

is admissiblesy, is the minimum for ali & Z,(d;) with —2(yZD; + F;)s* < 0 of

: 2(y;D; + Fy)dy, + (vi Di + 2F))y, + fi — o
Y = min < 1, T .

Fory, = 1,i.e.Vi & Zy(dy) it holds
2yIDi+Fodi+(yID;+2F )y, + f—02

—2(yTD;+F;)s~
2(yiD; + F)dy, + (yiDi + 2F)y, + fi — 02 < —2(y.D; + F;)s*

= 2

Yy
—  2yiDi+Fy)di + (yiD; +2F))y, + fi —o, < —2(y; D + Fy)(dps1 — dy)
— 2(y;D; +F;)dps1 — (yi Di + 2F))y,, — fi + 0, >0, (3.13)
such thatd, . ; is admissible for (SOP) and we repladgby d; ;.
Ifit holds v, < 1 we definedy; = di+7xs* andZy(dyy1) = Zo(dg) U{i*}, werei* is the
index yielding to the minimal,.. The feasible region is enlarged and we solve (GSOP) with
the new input data. This procedure could be repeated ontg fimes, such that we arrive
afterk stepsd™ = 0, i.e. d;, is the optimum for (GSOP). If the Lagrangian multipliefof
d, are non-negativey is the optimum of (SOP). If at least one multiplier is negative
definei** as the index of the lowest Lagrangian multiplier.. This constraint is deleted,
i.e. we replace the feasible region of (GSOP)Yhd,) \ {i**} and then we solve (GSOP)
again.
If we use all constraints instead of an active-set strategg&vive with the complementary
conditions the nonlinear system:

v

1

VL(d,p) =0
wi(Vgl (xp)d + gi(xx)) =0 VieT. (3.14)
For problem (SOP) it holds for afl € J:

Apd +d; + QZMz‘(Dz‘ +F)y, =0
i1

—2u;(yy Di + 2F;)d — i[(yf D + 2F)y, + fi — 03] =0 VieZ. (3.15)

For every load vertex the systeHz — h must be solved withi = |Z],

A, 2(D1Yk + Fl) - 2(D7¢ﬂyk + Fm)
2,LL1(yZD1 + Fl) (yng + 2F1)yk + f1— 0'5 0o ... 0
N 0
H= . ,
0
21 (Y Do + Fi) | O - 0 (yiDm +2Fp)yy + fi — 0
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z = (dy,doy ..., dgi1, i1y o) andh = (1,0,...,0)T. If the Lagrangian multipliers
of a solutiond™ of the active constraints are positive the solutibris a local minimum of
(SOP) and from convex optimization theory therefore thégloptimum. A sei\/ € IR™
is called convex, if withx,y € M alsoAx + (1 — A\)y € M holdsV A € (0,1).

Letd,; andd, be points of the feasible region of (SOP) then it holdsXdr + (1 — A)da:

—2(yi D; + Fi)(Ady + (1 = N)dy) — (v Di + 2Fy)y, — f; + 0
= )\(\—2(}’;‘5]3@' +F)d; — (yi D; + 2F))y, — fi + o))

/

-~

>0

+ (1=XN(-2(yiD; + F))dz — (y; D; + 2F,)y;, — fi + o))

J

v~

>0

> 0 VAe(0,1). (3.16)

This means that the feasible region of (SOP) is a convex s@inétion f : M — IR (M
convex) is called convex if (Ax + (1 — N)y) < Af(x) + (1 — ) f(y) holdsV¥ x,y €
M,¥ X\ € (0,1) (f is called concave if- f is convex). If the strict inequality holds the
function is called strictly convex. Lef : IR" — IR be twice continuous differentiable
then the following statements are equivalent ([30]):

1. fis convex
2. fy) = f(x) = VIf(x)(y — x)
3. V%f(x) is positive semi-definite x € IR".

A, is positive definite and thus the objective functibd’ A,d — d; of (SOP) is convex.
The following equivalence holds for convex functiofis IR" — IR and convex feasible
regionsRk:

1. x* is a local minimum forf with respect toR
2. x* is a global minimum forf with respect taR
3. x* is a critical point off, i.e. V f(x*) = 0.

We derive the following connection between the feasibléomrgR andR’ of the problems
(GNP) and (QP), respectively (see [8]). Let be an approximation of the solution of
(GNP) andd,, = x — x;, (search direction with constant step length) then

Ry = {x| gi(xx) + Vgi(xp)(x — xx) 2 0,Vi € T}
is the shifted feasible region of (QP). /& is non empty and al}; are concave theR C R,

holds. Therefore, we assume that@lare concave. Fax € R and the approximatioRr,,
holds

i) + 9:(3x1) = —Vgi(x2)(x — xi), brw. gi(x) < gi(xe) + Vgi(x2)(x — ).
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Thus we derive fox € R
0 < gi(x) < gi(xx) + Vagi(xp)(x — xz) Vi €T,

this meanx € R, andR C R,. Because of the convexity of the von Mises—function this
also holds for the feasible regions of (OP) and (SOP).

Lety, be an approximation of the minimum aigd be an approximation of the Lagrangian
multipliers of (OP) in steg. If we solve (SOP) in step we have the solutiod,, with the
Lagrange multipliergs,. A new approximation of the solution of (OP) we derive with

Y € IR by
Yit1 _ [ Yk dy
()= () ()

Therefore, the solutiod,, is a new search direction of the problem (OP). The following
theorem describes the relation between the solution of EDB)YSOP) (see [7]).

Theorem:
Let d;, be the solution of the quadratic problem (SOP) in kkie step angu*
the corresponding Lagrangian multipliers apdbe an approximation of the
minimum of (OP). Ifd; = 0 holds, then the necessary conditions of a local
minimum of (OP) are fulfilled fory,, and g™ .

Proof:

d;. is a solution of (SOP) and therefore the first necessary dondf (SOP) are fulfilled
because of

wi >0 Viel
1 =2(yiD; + Fo)dj — (yiD; + 2F))y, — fi+ 02 =0 Vi€,
Apdy +dy+2) pf(Diy, +F;) =0 . (3.17)
i€l
With d;, = 0 it holds
wi >0 ,Viel
Wil-(yiD; + 2F)y, — fi+02] =0 Vi€l
di +2) p;(Diy, +F) =0 . (3.18)
€T

The problem (SOP) and (OP) have the same Hessian of the lgagnaiunction and thus
the second necessary condition is fulfilled. O

(SOP) is a convex problem and thus a local minimum is also hagloWe must show
that (OP) is a convex problem. The objective functiep, is convex as linear function.
Let S = {y| — (y'Di + 2F))y — fi + o, > 0} be the feasible region for each load
vertex of (OP). If we choose two poings = (ay,x;)T andy, = (a9, x2)T € S with
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o, = aof + pf’l + Bix; andoy = ayo? + pf’l + B;x, it holdsV¥ A € (0,1) and
Ayr+ (1= Ny, :
—[(y1 + (1= N)y,) Dy + 2F Ay, + (1= Nyo] — fi + 0,
= —F[Qa+ (1= Naz)o? + pl + Bi(dxs + (1 — \)x)] + 0,
—FMarol + pl 7' + Bixy) + (1= A)(axef + pf ' + Bixy)] + 0,
= —F(Ao1+(1—XNosg) + 05 >0, (3.19)
becausd' (o) is convex. The convexity of the von Mises—functibrin the variablesr is

transformed into the convexity df in the variabley, such that a local minimum of (OP)
is also a global one.

We derive the following characteristic of the SQP methodsémvex problems (GNP):
Lemma:

Let x;, be an admissible point of (GNR]},, be a solution of thé&th sub-problem with the
Lagrangian multiplierge,,, ux; > 0V i € Z and~ € [0, 1] a step length, then it holds

gi(xx) und

gi(xx, + ydy)

<
V7 gi(xk +d)de <

Proof:
d; as solution of the sub-problem fulfills the complementanyditions such that it holds

u;ﬂ-(gi(xk) + ngz(Xk)dk) =0 VieZ.

From the admissibility ok;, follows, thatV” ¢;(x;)d; is negative. Allg; are concave such
that
9i(xg + ydy) — gi(xx) < 7VTgZ~(Xk)dk <0 VieTl

holds, this is the first assumption of the lemma. Furtheofedl on one hand
9i(xx) — gi(xi +vdy) < =7V gi(x +ydi)dy VieTl
and on the other hand follows
gi(xp, + vdi) — gi(xx) <YV gi(xp)dy, Vie T
Adding the two inequalities it follows
0 < [V gi(x)dr — VT gi(xp, +vdy)di] Vi€ L.

With v € [0, 1], the admissibility ofx; and the complementary condition of the sub-
problem follows the second assumption of the lemma. a
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The second assumption follows independently of the salufip We derive from the
concavey; for two step lengths; and~, with 0 < v <, <1

V7T gi(xy, + yedi)dy < V7 gi(xg + nidy)di Vi€ 1.
The first assumption is extended farand~; with 0 < v, < v, <1 by
g:(xk +72dx) = gi(xk +ndr) < (2 = 1)V gi(xx + mdi)dy
< (2 — 1)V gi(xk)dy, < 0. (3.20)

All functions g;(v) = g:(x.+~d;) are monotone decreasing n1]. For convex problems
the solution converges to the boundary of the feasible regio

We must guarantee that with the choose of the step lepgthe new valuey, , is in the
feasible region of (OP). We define in stephe one dimensional penalty function

i d
L(ve) = ¥, (21 — 6py,) With z; 1= < iz ) andp, := — ( " _k)\k ) .

The function¥,. is defined with a penalty paramete(see [30], [31] and [39]). We define
the augmented Lagrangian function with= (y”, A")” (see [39])

W) = fy) - Y { M)~ P ifly) <

| 27 ,else

As
,

with the derivative

VV,(z) = (Vyf(Y) —EZI{ ()ngi(Y)(Az’—'f’gi(y)) :ieflgei(y) <% )
—9(y)

with

oy (920) a() () o()\"
Vi) = (8%,...,8%“,a)\l,...,a)\z) 7

g" = (g17"'7§|f|)T
_ i Jif giy) < X ,
ay) = {4V AV ST vier

The augmented Lagrangian function gives a penalty if theilid&aregionR is deserted. In
Schittkowski’'s SQP - algorithm we choose for a solutihrof (SOP) the positive constants
7 > 1,2 < 1 and define the paramet&r, ¢, with §_; := 1 by

dTA.d I -
8), = min {’“7’62’“ 5“} and =, = { A R E A (3.21)
[dll 3 , else.
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With this parameters we calculate the smallgswith

11 1 _ In 10—
— < e (1= 26, ) holds, i.e. j, =min {j € IN,j > —=%0=0%) L
7 4 4 In7

The penalty parametey, is given byr;, = max {r;_y, 7*} with r_; := 7. We choose the
start valuegy < 1 and¢ < % and calculate the smallest non negativevith

ix =min {i € IN, U, (zx —v'Py) < ¥y, (21) — 7'V (z1)p, ),

such that we derive the step lengthby 7, = . It holds

V*‘I’fk(zk)pk = _V§f(Yk)dk
(Mt = 79:(¥i)) Vy gi(yi) di
+ Z +0i(¥5) (i — Aki) AL gi(ye) < /\ffi (3.22)
ieT %(MM — ki) ,else

This guarantees that the step length is small enough torstég ifeasible region but large
enough to achieve an improved solution. The algorithm segiith positive step length
and decreases the step length iteratively (Armijo-rulele Tpdate of the matrid, is
given by the modified BFGS-update of Powell (see [39]). Btgnwith a positive definite
matrix A, we calculateA ., ; by

A A T
Ak—i—l _ Ak . kSESE Ak + 495

) 3.23
sTAysy q; sk ( )

Sk = Y41 — Y& IS the increment of the solutions and it holds épr
q, = Hktk + (1 — Qk)Aksk with t, = VL(ykJrl, [.l,*) — VL(yk, [J,*)

p* = Xyp1 are the Lagrangian multipliers of the solutigp, ;. 6, is defined by

{ 1 ,lf Sztk Z OQSgAkSk
ek; — 08S{Aksk
STAs, sTt, , else.

¥ 41 IS calculated with the augmented Lagrangian function shiatsf, = ,d;, holds with
the step length,. obtained by the Armijo-rule. We derive with equation (3.1®) t,. in
every load vertex
ty = ZQMsz(YkH —Yi) = ZQMfDiSk- (3.24)
i€l i€l
Ifit holdss!t;, > 0.2s] Ays; then we derivé = 1 andq} sy = s? t;. If sTt;, < 0.2s] Ays;,
holds it follows

Q. = OSS;{Aksk tk OQSZAkSk — Sgtk
b SgAkSk — Sgtk SZAkSk — Sgtk
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Finally it holds
0.8(sTA Tt +0.2(sFAysy)? — (sTA Tt
oT'sy — OBsn Ause)sy b + 0205, Ausi)” = (S Awswsie _ o oorp o (3.08)

SgAkSk — Sztk

and thereforey!'s;, = max {slt;,0.2sT A;s,} > 0, because of;, # 0 and the positive
definiteness ofA ;. With this definition follows thatA, . ; is positive definite (see [14]).

4 Validation

4.1 Benchmarks

The meshes for the following limit load tests [57] have beeovigled by EDF, FZJ and
ULg and are shared between the partners (FZJ, ULg, EDF anBS)XT

¢ Athick plate (plane strain) under tension with a centerdd .hbhe main geometrical
parameter are the ratio of square lengtand hole diameteb.

e A vessel-head under pressure. Two different geometriels Miiger and shorter
cylindrical part of the vessel are given.

The computing times were made independent on the computirigpement by normaliz-
ing to the time for an elastic step. For examples with defeegsthe report [50].

EDF: The upper bound solutions of EDF were calculated with CAdger] which is
also used for incremental plastic analyses (see [56]). Ltwends are estimated by
a post-processor from the computed upper bounds.

FZJ: The lower bound solution of FZJ were calculated with a deteistic LISA soft-
ware which was developed and implemented into PERMAS V4sjgar4) (see [14],
[45], [46]). Fully integrated finite elements are used.

ULg: The benchmark calculations of ULg are carried out by a divggter bound pro-
gramming method via the FEM code ELSA.

INTES: INTES has contributed some additional incremental analp$¢he benchmark
tests with PERMAS V7 (Version 7).

The calculations are performed on rectangular meshes. Uinencal tests achieved some
quite close results. Others exhibited differences whicly & perhaps attributed to the
used finite elements rather than to the different LISA soféwal he required computing
time as multiples of the time for an elastic calculation hasrbused as fairly machine
independent performance measure. Initial differencewdst the different algorithms
could be reduced during the project. At project end all dineethods achieved convergent
limit analyses in a time needed for 20 equivalent elasticudations typically. A much
more rapid convergence is observed in shakedown analybéd) typically need the time
of only 2-4 elastic analyses.
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4.1.1 Thick plate with a centered hole under uniaxial tensio

There is a well known exact plane stress solution/fgil. = 0.2 (see [9]). Estimating the
corresponding plane strain solution yields the value Q.@24ch shows that the numerical
errors are small. However, the lower bounds estimated by ED# its upper bound
solution appears to be too low i.e. too conservative. Fig.14shows a FE—mesh of the
plate withD /L = 0.2. Further, a plate wittD /L = 0.5 is investigated. The results of the

different partners are shown in Tab. 4.1

HERERTAN

=REO=

I

Figure 4.1: Finite element mesh of the plate with a hole

Plate with a centered hole under biaxial tens
D/L [ 0.2 ] 0.5

inf. EDF Tiim/0oo | 0.710 0.367
sup EDF Tiim /00 | 0.947 0.527

inf. FZJ Tiim/00 | 0.913 0.486
sup. ULg Tiim/00 | 0.926 0.513
incr. INTES Ty /00 | 0.904 0.494

on

Table 4.1: Comparison of the limit load results
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4.1.2 Torispherical vessel head under internal pressure

Both geometries were modeled by a coarser and a finer meshinihads have been
found by the partners close to the collapse load of the spdilgrart. Here, INTES observed
a high influence of the accuracy of the solution on the limégsure values. This needs
some discussion on the failure criterion and the meshing.

Torispherical vessel head under internal pressure
| short/coarse short/fine| long/coarse long/fine
| analytical sphere solutionP;,, | 4.0 | 40 | 4.0 | 40 |
inf. EDF B 3.837 - - -
sup EDF Piim, 3.940 - - -
inf FZJ Pim 3.997 3.982 3.940 3.937
sup. ULg Pim 3.931 3.929 3.942 3.905
incr. INTES Pim 3.918 3.891 3.890 3.832

Table 4.2: Comparison of the limit load results

Model LA6BO, ULg Model LAGBOA, ULG

R A P S

Model | LASCO, ULg

z

T_>n
00
0.0
0.0

\ | RAPS

Figure 4.2: Finite element meshes
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4.2 Mixing device

A mixing device is considered as a complex industrial pcacproblem with high ther-
mal transient loading, internal pressure and externahgipoads. Framatome/Siemens
performed some FE-calculations on the mixing device andHed the thermal analyses.
The modeling details (ANSYS-FEM files) are transformed m@®ERMAS V4 mesh with
30,480 eight nodes volume elements (HEXES8) and 38,196 no#es the shakedown
analysis seven load vertices are chosen from the datasevesf temperature distribu-
tions. These temperature lodfisare chosen at seven time steépst; = 0Os, t, = 14.5s,

t3 = 18.7s, t4 = 33.2s, t5 = 614.5s, tg = 618.7s andt; = 633.2s. They are ap-
plied as temperature differencés= 7; — 50°C'. In addition a constant inner pressure of
P = 3.3MPa s applied. The load domaihis spanned by seven independent load vertices
which makes an illustration impossible.

Different to the model of Framatome/Siemens, the model edfiat the coolant pipe in
X, ¥ and z direction, because it is not possible to introduadtirpoint constraints (MPC)
in the plasticity part of PERMAS V4 At the end of the hot-water pipe precalculated
stress resultants are applied. Due to the symmetry of theehtbd shakedown analysis
is performed only for one half of the model. The shakedowrstraimts are checked in
only two of eight Gaussian points of every element, becafiskeomemory restrictions.
Different choices of the two nodes in the element give noigant difference in the
shakedown analysis. The corresponding shakedown optiorizaroblems with reduced
basis have up to 5 unknowns and some 213,360 nonlinear aomstr Nevertheless, the
FEM-computation of the model is performed with PERMAS fag thihole structure. The
material data are temperature dependent (see the follaabig) corresponding to KTA
3201.1:

[T ]| 50 [100] 200] 300] 400] [°C] |
o, | 191] 177 157 | 136 125]] [MPa]
E || 200] 194 186 179 172| [GPa]
v [ 03]03[03]03]03 -

a; |[ 16| 1.6] 1.7 1.7 | 1.8 | -10°[K

Due to the loading the material data are chosei®@tC' in the first step, such that= 0.3,
E =172 GPa,0, = 125 MPa,a; = 1.8 10"°K~*. A good fit for the yield stress in the
given temperature range is the function

o,(T) = 197.2MPa — 0.19MPa/°C - T.

After the first shakedown analysis the maximal temperatsrestimated and the tem-
perature dependent material data are updated. Under nopsessure loading without

IMPC are available with plasticity from PERMAS Version 6 omda

33



Basis reduction technique for limit and shakedown problems

cold water injection#; = 0s) the highest von Mises stresses in the mixing device are
omaz = 53 MPa, such that no yielding occurs.

The highest fictitious elastic equivalent stresses occuy at 33.2s such that the corre-
sponding load vertex is decisive for the behaviour of thacttire. The model starts to
yield at the maximal highest temperature differefigg,, = 57°C for a fixed cold water

temperature 050°C'.

The obtained shakedown load factocorresponding to the initial load domathinduced
by the seven temperature differenégss o« = 1.3, such that the maximum allowed tem-
peraturel;, . for a fixed cold water temperature 6§ = 50°C' IS 1,0 = aly1qs: +50°C' =
124°C', instead of the applied maximum temperaturé&,gf, = 237°C'. The corresponding
yield stress is, (1 = 124°C') = 173.6MPa.

Therefore no shakedown is achieved for perfectly plastitenred. However, it may be
expected that the kinematic hardening effect leads toielsisakedown.

JUNCTI ON

Zi X

R A P S

Figure 4.3: Mixing device with high thermal transient loagli internal pressure and exter-
nal piping loads
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4.3 Experimental validation

In the LISA project shakedown experiments were carried@utfamatome/Siemens using
a 4-bar model comprising a water-cooled internal tube areetinsulated heatable outer
test bars. The system was subjected to alternating ax@d$osuperimposed with alternat-
ing temperatures at the outer bars. The test parameterparhg selected on the basis of
previous shakedown analyses. PERMAS shakedown analydedetailed ANSYS FEM
ratchetting analyses are compared with the experimen®9jn A tension—torsion shake-
down experiment and shakedown analyses are presented,if4aB

Limit analyses have been compared to of fracture mechaests in [50] and to 281 burst
tests of pressure vessels and piping in [51]. It is found ki@t analysis makes close
predictions of collapse loads for structures with cracle ldefects if the material is not
brittle.

5 Kinematic hardening material model

The static limit and shakedown theorem has been formulatédddan for perfectly plas-
tic and for unbounded kinematic hardening material [34]ings two—surface plasticity
model, a generalization to bounded kinematic hardeningokas proposed in [58]. The
bounded hardening is the key to realistic shakedown arabusé the simple two—surface
plasticity model compares well with the Armstrong and Fregkehardening model [49].

Originally, the basis reduction method has been formulé&tec perfectly plastic mate-
rial model. Its extension to the more realistic bounded ikiagc hardening material has
been achieved in [64], [53] by use of the overlay model (aksited fraction or multiple
subvolume model) which preserves the characteristictstreiof the perfectly plastic for-
mulation. However, before this approach can be used withrareercial FE code it would
be necessary to implement the overlay model for differgoesyof finite elements.

It is the purpose of this section to propose a modified badisateon method for the struc-
ture of a two-surface plasticity formulation of boundeddamatic hardening [17]. It can
be used for any type of finite elements with no need to make hagges in the plasticity
section of the FE code. The new method is implemented in thergeFE—code PERMAS
[36]. An increase of the load carrying capacity due to hairtgis shown in some numer-
ical examples.

5.1 Bounded kinematic hardening

The Generalized Standard Material Model is used to desthidéheoretical frame [13].
An elastic—plastic body of finite volumE with a sufficiently smooth surfacgV’, sub-
jected to the quasi-statical thermo—mechanical Ida@g varying in the load domair
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is considered. The hypothesis of small displacements aradl simains is made and the
strains are decomposed in:

e=cel + e+ e withe” = o, 01 (5.1)

Herea, is the coefficient of isotropic thermal expansion @he: 7' — T;,, whereTj is a
reference temperature. The observable variables arettdiest@ine and the temperature
T. The internal variables” and x will describe the influence of the past history. The
thermodynamic potentiat has the form

Y= ¢(€E7 k,T) = we(gEvT) + (k). (5.2)
It is assumed thaiy, is a quadratic form in the variableand
1
P = §(€E — o) E: (¥ — a,01) + C.6%, (5.3)

wherep is the mass densityf is the elasticity tensoK;. is the specific heat at constant
strain.

The associated variables, i.e. the observable stressaxl the internal back—stresses
are derived from the potential as follows:

o o
O =ppF =P (5.4)

The internal variable: is a kinematic hardening variable and its associated Vartals
associated with the center of the elastic domain.

Assuming the decoupling between intrinsic (mechanica$igation and thermal dissipa-
tion, the Clausius—Duhem inequality gives:

o:el —m:k>0. (5.5)

The linear kinematic hardening corresponds to the traoslaif the loading surface:
Flo — =] =0, (5.6)

The interior of the loading surfacgs | Flo — 7] < 05} is the elastic domain which is
described by the yield functiof” and the yield stress,. The stress is bounded by the
uniaxial limit strengtho, (somewhat below the ultimate stress) and the limit surface i
described with the same von Mises function:

Flo] < o2 (5.7)

The elastic domain remains always in the limit surface andstress point in it may be
reached if and only if
Flr] < (0w —0,)*. (5.8)
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The associated normality hypothesis is made for the pléstic

A=0, if Flo — =] < o?

. Y

ONF A=0, if Flo —=«]=02and

Y

=€ = A= o — =], with (d—ﬁ):%@[a—wko (5.9)

A>0, else.

5.2 Lower bound approach

The extended static shakedown theorem can be formulatedifounded kinematic hard-
ening material as follows [53]:

If there exist a time—independent back—stresses fi¢ld satisfying
Flr(x)] < (0u(x) — 0y(x))?, (5.10)
afactora > 1 and a time—independent residual stress figld) such that
Flao®(x,1) + p(x) — 7(x)] < 0}(x) (5.11)

holds for all possible loadP(¢) € £ and for all material pointx, then the
structure will shake down elastically under the given loathdin L.

The greatest value,, for which the theorem holds is called shakedown-factors Tawer
bound approach leads to the convex optimization problem

max  « (5.12)
st.  Flao®(x,t) + p(x) — w(x)] < o(x) VxeV
Flr(x)] < (0u(x) = 0,(x))*  VxeV
div p(x) =0 Vx eV
px)n=0 Vx € dV,

with infinitely many constraints, which can be reduced to @diproblem by FEM dis-
cretization (see the preceeding sections). For the pérfgletstic behavior £, = o,), the

back-stresses are identical zero due to the second inequality. Melanigioal theorem
for unbounded kinematic hardening can be also deduced fierprevious formulation if
o, — oo. Then the second inequality is not relevant anymore anddbk-stresses are

free variables.

The 3—dimensional overlay (microelement) model, knowrm a&s Besseling’s fraction
model [3], was used in [53] for solving numerically the preil (5.12). In the overlay
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model an infinite number of microelements denoted by theasgak [0, 1] are associ-
ated with each material point of the given structsre V. In a simple model each layer
(characterized by a constafj)tbehaves elastic, perfectly plastic. All layers have theea
elasticity tensor, but they have different yield stressasotied byk(¢). It is assumed that
the internal strength(¢) is a monotonously increasing functionénd for eactx holds,

1

k(x,0) = o,(x), /k(x, £)d¢ = 0,(x). (5.13)

0

It has been proven in [64] that the solution of the probleriZbdepends only on the values
o.(x) andoy,(x), i.e. it does not depend on the functibft).

5.3 Discretization of the problem

The discretization is similar to the perfectly plastic gasech that with the fictitious elastic
stresses 7 (j), the residual stressgs, the back-stresses;, the yield stresses, ; and the
uniaxial limit strengths,, ; in the Gaussian pointsfor the load verticeg the discretized
shakedown problem of the lower bound approach for boundeenkatic hardening be-
comes:

max  « (5.14)
st.  Flao?(j)+p; — 7] < oo

The number of constraints is finite and for structures W@ Gaussian points we have
to handleO(NG) unknowns and) (N G) constraints. Compared to the perfectly plastic
and the unbounded kinematic hardening models, the protBed) has almost a double
number of unknowns. The number of inequality constraintseases byV G because of

the limiting conditionsF[7;] < (0., — 0,.)>.

5.4 Proposed method for bounded kinematic hardening

The basis reduction and the subspace iteration technicgezided in the preceeding sec-
tion cannot be directly applied to the shakedown problenbéamded kinematic hardening
model. A method using the overlay model and the basis realugtas developed in [64],
[53]. The overlay model imposes that all the layers are distad in the same way, i.e. the
elements which lay on top of each other have the same nodesefbhe, the implemen-
tation described in these papers can be applied only fordimeensional finite elements
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or for particular three—dimensional finite elements. Théhroe proposed in this section is
applicable with arbitrary three—dimensional finite elemsen

Under the condition
oy < 20y, (5.15)

we propose a new method for estimating the shakedown loadrfacrresponding to a
bounded kinematic hardening behavior described througleahstitutive equations of the
preceeding section (see also the following Remark 3).

Let o, be the solution of the optimization problem correspondmthe perfectly plastic
case (1.31). The basis reduction technique for perfeciigti material can be used for this
problem. Letp,, be a residual stress such that, , p,,) is a feasible point for problem
(1.31) and at least for one Gaussian p@irdnd one load vertex’, the equality is achieved
(i.e. the vertex* is active). Corresponding to this load vertex the backsstté is chosen:

wr= T (0 6P (%) + p,,.) Withi=1,... NG. (5.16)
Oy.i ’
The following optimization problem gives an estimationtoé bounded kinematic harden-

ing load factoraggp regarding the back-stresses as the elastic response to a fictitious
dead load:

max « (5.17)
st FlaoP(j) +p; —m;] < oy,
fori=1,..., NG, j=1,...,NV, p,€B.

The basis reduction technique for perfectly plastic protdevith dead loads (1.13) applies
to the problem (5.17), this time with the stressgés= —x*. The condition (5.15) assures
that(0, 0) is a feasible point for this problem, therefore its admikesget is non-empty.

The solutiomn* of the problem (5.17) is an estimation of the load faetgg .

If (o, p) is a feasible point for the problem (5.17), then p, =) is a feasible point for
the optimization problem which gives the shakedown loatbfags,, for problem (5.14),
such that it followsv* < aggp.

Also, we must notice that {f, p) is a feasible point for the problem (1.31), thejf o, (o, p)

is a feasible point for the problem (5.14). Consequentfygiteatest possible value®@fs

is 0, /0,04, The constants, ando, denote the minimum, respectively the maximum,
over all the Gaussian points of o, ; ando,, ;, respectively.

Remark 1

Let us consider the particular load domdin= [0, P], i.e. L is the convex set
generated by the load verticesandP. For homogeneous material the yield
and the uniaxial limit strength do not vary with the Gausgamts. In this
case, if(a, p) is a feasible point for the problem (1.31), théifp,] < o for
each: and it follows easily thata, (2 — 0,,/0,) p) is a feasible point for the
problem (5.17). Consequently, in this particular cage< o*.
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Remark 2
In limit analysis, i.e. for the load domaid = {P}, if the yield stress and
the uniaxial limit strength are constant then a well-knoesutt proves that
apsp = ou/0y0,,. Moreover, it follows easily that in this hypotheses also
a* = aggp. For a general load domain this assertion is not true anymore
apsp could take any value in the closed inter\@),,, .,/ 0,0,

Remark 3

Let us consider the particular load domdinvhich contains the zero load (e.g.
as load vertex). We will prove that in the casg> 20, the load factorgsp

for the bounded kinematic hardening shakedown problerd]3skqual to the
load factoray s p for the unbounded kinematic hardening shakedown problem.

The unbounded kinematic hardening shakedown problem is:

max  « (5.18)
st FlaoP(j) +p — mi] < oy
fori=1,...,NG, j=1,...,NV, p, € Bandr; € IRN%N¢
As the feasible set of the maximum problem (5.14) is obvipusthe feasi-
ble set of the maximum problem (5.18), it follows immedigt#datapsp <
aysp. Onthe other handyy sp is the solution of the problem (5.18), therefore

there exisp*, * such thalaysp, p*, ©) is a feasible point for this problem.
The first inequality of (5.18) gives for the zero load:

Flp; —m}] < o2, fori=1,...,NG. (5.19)
From the hypothesis, > 20, it follows that
Flp; — 7] < (04i —0,4)* fori=1,...,NG. (5.20)
On the other hand,
Flayspolf(j)+p; — =) < o2, fori=1,...,NG, j=1,...,NV. (5.21)

Therefore,(aysp, 0, 7" — p*) is a feasible point for the problem (5.14) of
bounded kinematic hardening and it followgssp > aysp. We have proved
thatapsp = aygsp in the caser, > 20,.

Remark 4

Let us consider the particular load domainwhich contains the zero load
(e.g. as load vertex). Letgsp be the load factor for the bounded kinematic
hardening shakedown problem (5.14) andtetsp, p, ) be a feasible point
for this problem. As the zero load is part of the load dom&jrirom the first
inequality of (5.14) it follows that

Flp,— 7| <o, fori=1,... NG. (5.22)
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By using now the first inequality for arbitrary load verticese obtains

\/F[OéBSDO'f(j)] < \/F[OéBSDO'f(j) +p; — ™| + / Flp; — 7] <20y,
(5.23)
Therefore

F [QBQSDUf(j)] < Uii fori=1,...,.NG,j7=1,...,NV. (5.24)

We proved thatvgsp /2 is a feasible point for the problem

max «

st.  Flaol(j)] <o, fori=1,...,NG, j=1,...,NV.

The solution of the previous problem is telastic load factor,;, because it
allows the enlargement of the load domain until the yieldtayts in a point
of the structure. Consequentlyzsp < 2a.. With similar arguments, it
can be proved that the same upper limit is valid for the undedrkinematic
hardening case, i.eacysp < 2ay;. This means, that the enlargement of the
load domain is limited up t@a,, if the load domainC contains the zero load
in the case of bounded or unbounded kinematic hardeningialdtav.

5.5 Local Failure

The shakedown factor for perfectly plastic matetig) could not be greater than the shake-
down factoragsp for bounded kinematic hardening material. Furthermoreréhation
apsp < aysp holds for the shakedown factag;sp for unbounded kinematic hardening
material. The local failure in one point of a structure of anbded kinematic harden-
ing material corresponds to the weakest failure mode ard$leathe greatest shakedown
factor ay,..; such that the following chain holds:

Qpp < apsp < Qusp < Qocal - (5.25)

If o, equals the valuey,,,; all other shakedown factors are the same independent of the
specific hardening mode. For structures made of unboundedridtic hardening material
the shakedown behaviour is dominated by some points of thetste, where the maxi-
mum expansion of the elastic domain is the minimum over atifsx € V:

aysp = gelg(mgx a). (5.26)

If only one point dominates the behaviour it is possible twesthe optimization problem
analytically. In this case the shakedown load for perfeaifystic and unbounded kinematic
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hardening material correspond (see [64]). The shakedowmization problem is solved
analytically for unbounded kinematic hardening matenmthe case of local failure in
proportional loading. The backstressedave no restrictions in the case of unbounded
kinematic hardening material, so that= p — & are free variables. Assuming that the
maximum effective stress would appear at one point of theesysthen the optimization
problem with the backstress@shas to be solved

max !
s.t. F(ozaf+y) SU; j=1,....,NV (5.27)

only in this point (see [52]). The corresponding Lagrangfion is defined as [7]
NV
Lla,y) = —a — Z Aj [05 — F(aaf +y)]. (5.28)
j=1

With the abbreviatiomr; := o7 it holds

T ) T
Flao;+y)=0d’0]Qo;+ 200 Qy +y Qy = (a,y) ( Uf;i% } U@Q ) ( ; ) '

::A.j

(5.29)
The matrixQ € IR%*¢ is defined for a 3-dimensional problem by the von Mises fuorcti
With z := (a,y)? andy € IRS the short form of (5.28) is

NV
L(z) = (-1,0,...,0)z — Z Aol — 2" Az (5.30)
=1
NV
and VzL(z) = (=1,0,...,0)" +2) \A;z (5.31)
j=1
with the differential operatoR/;1(-) = (%, 4> S %’2). From the Kuhn-Tucker—

conditionsVzL(z*) = 0 of a local maximumz* = (a*,y*)? [7] it follows with the
optimal Lagrange multipliera?

NV NV T

Zl)\jO'JTQUj Zl)\j»aj Q

Jj= j=

: B — ‘ j z NV NV

0 ” Q| L N 249
Jj= Jj=
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In the local maximunz* the complementary condition of every restriction reads:

Ni(or—2zTA;z") =0 j=1,....NV. (5.33)
After summation of all complementary conditions, it is deeld with (5.32)

NV NV NV 1 1
05 Z A= Z )\;Z*TA]-Z* =77 Z NA;z" = 5(1, 0,...,0)z" = 5&*. (5.34)
j=1

J=1 Jj=1

There is a unique representationadfby the Lagrange multipliers;:
NV
ot =200 ) N (5.35)
j=1
With Eg. (5.35) it follows from (5.32)
NV NV NV NV
0 = <QZA;aj , ZA;Q) z°=a"Y \NQo;+ <Z A;) Qy* (5.36)
j=1 j=1 j=1 j=1
NV ot
= o) NQo;+—Qy" 5.37

and witha™* > 0
NV
Qy" = —20, > XQo;. (5.38)
j=1

Now with Eg. (5.32) it follows

1 NV NV NV NV
5= <Z )‘;U?Qo'j ) Z Aja?Q) 7' =aof Z )\;O'JTQO']» + Z )\jaJTQy* (5.39)
=1 =1

J=1 J=1

and with Eq. (5.38) itis

NV
QQ*;)\;U;‘FQ"U—l NV T /Nv NV T sNv
F (T (Sven) - (S e (o)
y =1 =1 =1 =1

(5.40)
In the case of proportional loading the load domdirhas two vertices in shakedown
analysis. The corresponding fictitious elastic stregsegind o, with F'(o;) = 0 and
F(o3) = o to the two load vertices read

o1 =(0,0,0,0,0,0) andoy = (s1, S2, S3, S4, S5, S6) (5.41)
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From Eg. (5.35) follows

o =200 (A7 4 A)) (5.42)
such that with Eq. (5.35) and Eq. (5.40) itis
()\1 + AQ)AQ — F‘Q = )\20'2 or AlAQ = r"‘l (543)
Yy Yy

This means, that both restrictions must be active in thd lmeximum. From the Kuhn-
Tucker—conditions and equations (5.35) and (5.43) follows

1
A=A = — and =2, 5.44
1 2 202 a ( )
In proportional loading the shakedown load is twice theteddead for unbounded kine-
matic hardening material if the failure is local, such thatoldsa]’?> = 2. This result

holds independently of the hardening exponent and alsodidegtly plastic material due
to the local failure.

For elastic-plastic structures subjected to thermal logdhne elastic stresses are residual
stressep = o ¥, such that a lower bound for the shakedown load is 2 independent of
the hardening type. Therefore, for structures subjecteddomal loading the shakedown
load factor is twice the elastic load independent of the &mirty type, i.e. for perfectly
plastic, bounded and unbounded kinematic hardening raégeri

5.6 Implementation

The method proposed in the previous paragraph for obtasmngstimation of the shake-
down factor has the advantage that instead of solving then@ation problem (5.14) with
14+ dimB + NSK - NG unknowns, two optimization problems are solved which can
be treated with the basis reduction method for perfectlgtpanaterial with dead loads.
Consequently, even for large—scale optimization problemsave to solve a sequence of
optimization problems with a small number of unknowns (maxn 7 unknowns).

The numerical tests performed for the mechanical problesasribed in the next paragraph
give values okv* which are superior tey,,. For particular load domains the new method
gives a value ofv* equal to the limit value, /o, .

For the considered examples, a reiteration of the methqgaogexd in section 5.4 does not
give an improvement of the load factar. We expect that if the residual streps is
chosen such that*, p*) is a feasible point for the problem (5.17) and if the fictigou
elastic stres&” corresponds to an active load vertex, theris an approximation for the
numerical solution of the problem

max [0
st. Flaof(j) +p; — ™) < oy,
fori=1,...,NG, j=1,...,NV, p,eB
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with the back—stress given by

7, = Jwi ~ Tui (a*&f + p;‘) i—=1,...,NG. (5.45)
Uy,i
Therefore, we consider that a better estimation of the stalee load factorgp cannot

be obtained in this way. The numerical tests have shown lieaparticular choice of an
active load vertex* has no influence on the value obtaineddor

5.7 Numerical results

57.1 Problem1

A thin rectangular plate supported in the vertical directi® considered. The tensigns
applied on the lateral sides and the temperafuis equally distributed on the plate (see
Figure 5.1). The numerical results for the bounded kinetrtadirdening material corre-
spond to the choice, = 1.50,. Due to the symmetry of the problem, only a quarter of
the plate is considered. The nodes on the symmetry plaa® can move only in the hor-
izontal direction and the nodes on the symmetry plare0 only in the vertical direction.
Because of the homogeneity of the problem we have used oel@aroded quadrilateral
plane membrane element QUAM9 [36]. The load factors comeding to the elastic, the
perfectly plastic and the bounded kinematic hardening nateere computed for differ-

ent ratios ofp and7'. The load domair represented in the tension—temperature space has

) y
Dl D
T
0 X
i D

L

Figure 5.1: Thin plate

four load vertices:
P(1) = (p,0), P(2) = (0,7), P(3) = (p,T), P(4) = (0,0). (5.46)

The enlarged domainL is completely determined by the load vertex, oT"). The points
(ap, aT), wherea is the computed load factor, are represented for diffei@ias ofp and
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T. The obtained numerical results are shown in the Figure 312 analytical elastic
solution for purely mechanical and purely thermal load,

1 1
Po = \/ﬁay and T(] = E—atO'y, (547)

respectively, are used for scaling. Heras the Poisson’s ratidy is the Young's modulus
for the considered material and is the coefficient of thermal expansion.

T/, . .
10 bounded kin.hardening—
' perfectly plastic---
elastic -
08} unbounded kin.hardening-
numerical resultss
‘\
06} '
b O . N .\\
‘.., n .
| A [} \
0.4 ", \ N
. N
..“0. ‘I '\'
[ \
0.2} .,.. ' \
“.. ] \‘
0 \
3 \ PRy
L ) b >
0.5 1.0 1.5 2.0

Figure 5.2: Shakedown diagram for thin plate

We have observed only a small influence of the bounded hargéar predominant ther-
mal loadings. A significant increase of the load factor duihéobounded hardening is no-
ticed if the pressure is dominant. The maximal possible stiakn load factor of.5 o,
(i.e. o,/0,~times the perfectly plastie,,) is achieved when there is no temperature load.
The curve obtained from the elastic curve through a hompthetfactor 2 gives an an-
alytical lower bound of the shakedown load factors for umuted kinematic hardening
behavior. In the purely mechanical loading case the plaklyihomogeneously, thus the
elastic and perfectly plastic factors coincide. Due to bi@bkavior it is impossible to gener-

ate nontrivial residual stresses and therefore numerroél@ms occur in the optimization
algorithm.

5.7.2 Problem 2

A thin pipe with the radiusk and the thicknesg = 0.1 R is fixed in the axial direction.
The pressure and the temperature diffferenée> 0 are applied on the interior side (see
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Figure 5.3). The numerical results for the bounded kinesrtzdrdening behavior corre-
spond to the choice,, = 1.350,. Eight axisymmetric ring elements with quadrilateral
cross section QUAX9 [36] are used for the discretization.inkdr temperature distribu-
tion is chosen for the thin pipe. The load factors correspuntb the elastic, the perfectly
plastic and the bounded kinematic hardening material wenepcited for different ratios
of p andT'.

The load domairC represented in the pressure—temperature space has fdwddees:
P(1) = (p,0), P(2) = (0,T), P(3) = (p,T), P(4) = (0,0). (5.48)

The enlarged domain.L is completely determined by the load vertex, aT'). The max-
imal pressurey, computed for purely mechanical loads and the maximal teatpexT;
for purely thermal loads are used for scaling,
20, . 21 =v)ay,

po = A (1+%) and Ty = Far (5.49)
The points(ap, oT') are represented for different ratiosppand7" in Figure 5.4. No influ-
ence of the bounded hardening for predominant thermalggds observed. An increase
of the load factor due to the bounded hardening is observgatéalominant pressure load-
ing. The increase of the load factor due to the consideredeimang has been observed
for those ratios op andT' for which the influence of the mechanical load on the initial
yielding is significant.

Figure 5.3: Thin pipe

5.7.3 Problem 3

A turbine with uniform thickness rotating around its axisaat angular velocityw. A
radial temperature distributidhi(r) = IQ—QQTR with outer radiusR is applied (see Fig. 5.5).
Twenty axisymmetric ring elements with quadrilateral sresction QUAX9 [36] are used
for the discretization. Due to the symmetry of the problery time upper half of the turbine
is considered. The load factors corresponding to the elabie perfectly plastic and the
bounded kinematic hardening material were computed féeraifit ratios ofu and7%.

The load domairC has four load vertices:

P(1) = (w?0), P(2) = (0,7%), P(3) = (v, T%), P(4) = (0,0). (5.50)
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 T/T,
bounded kin.hardening—
perfectly plastic---
10 _ elastic
numerical resultss
0.8
0.6
. .................. .. ........ . -----
0.4
0.2
P/Py
0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 5.4: Shakedown diagram for thin pipe

The enlarged domainL is completely determined by the load vertémﬂ, aTR). The
points(auﬂ, aTR) whereq is the corresponding computed load factor, are represémted
different ratios ofv? and7T*. The obtained numerical results are shown in Fig. 5.5.

R—R
T/T . .
20 0 bounded kin.hardening--
iy s U (0,=190
bounded kin.hardening—
(o =12 02
«“ u .
15 ¢ .\ perfectly plastic---
\ N elastic---
L numerical resultss
\
\
1.00ceemennnnny e .-. \“
LY \ N,
*, - \“ ‘\
0.5 | N,
" \,
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" 0.5 1.0 15 2.0

Figure 5.5: Turbine model and shakedown diagram for turbine

The elastic limits for purely mechanical and for purely that load

2 8a,

20
=— 9% andTPR=22% 5.51
o (3+ v)pR? 0 ( )

Eat’
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respectively, are used for scaling with the the mass depggge the following remark).
Remark

It is assumed that the stresses on planes parallel to the pfahe turbine are
zero, the solution corresponding to an elastic behaviotheturbine is given
in [55] by

3+v r? Ea r?
o.(r) = g ’R? (1—§)+ 4tTR(1—ﬁ)

3+v 5., 1+ 3vr? Eoy, g 3r?
o,(r) = 3 pw”R <1— iy I +— —T 1—ﬁ

The polar coordinates are denoteditgndy. In this case the von Mises yield
function becomes

Flo(r)] = oi(r) + o5 (r) — o (r)o,(r).

Its maximum

3+v 2, Eoy n 2 (1—v 90 Poy R2
maxq [ —— —T ——T
a{( S pw R + 1 , 1 pw R 5

is achieved for = 0 or for r = R. For the considered load domain the elastic
load factor is given by the solution of the following problem

max (0%

3 FE 1— E
s.t. max{a (%puﬂRQ + ZfétTR) ‘ 1 VpuﬂR? _ ﬂTR

Eoy 3
0<a 2TR<0'yand0<a ;g p’R* < o,

1. If TR = 0, the elastic load factor is
_ 8oy
(3 + v)pw?R?’
such that the elastic limit for purely mechanical loads= aw?, which
is used for scaling.
2. If 2 pw’R? > Lo TR > ( then the elastic load factor is

3 E !
a:ay< +pr232+ atTR) .

8 4
The obtained pointénw?, oTF) are situated on the line

3+ v
8

E
e TR =0

pw?R* + 1 y
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3. If 2 pw?R?* < BT then the elastic load factor is

20y
o = .
EO{tTR

The obtained pointénw?, oT®) are situated on the line

20
Th = L.
EOét

The elastic limit of7'# for purely thermal load i§ .

6 Conclusions

Limit and shakedown analyses are simplified but exact metlodcclassical plasticity,
which do not contain any restrictive prerequisites apamfisufficient ductility. The sim-
plifications are obtained by restricting the analysis tofthlere state of the structure. Dif-
ferent to the classical handling of nonlinear problemsiactral mechanics, the methods
lead to optimization problems. A procedure for the diredtwaiation of the load-carrying
capacity of ductile structures is developed on the basihefindustrial FEM program
PERMAS using the basis-reduction technique. With this enpmntation it is possible
to perform shakedown analysis for industrial applicatiasth above 100,000 degrees of
freedom.

The operation range of a structure can be extended to thicplegime, without increasing
the efforts in relation to elastic analyses substantidlhe computing time permits param-
eter studies and the calculation of interaction diagranischvgive a fast overview on the
possible operation ranges. No details of material behawaod of the load history are
needed. This is an important advantage if such data is exegnsicertain or unavailable
in principle.

The basis-reduction technique could be extended for thkesloavn analysis of a two-
surface plasticity model of bounded linear kinematic handg. An analytical proof is
given, that the shakedown load of structures of unboundeenkatic hardening material
subjected to proportional loading and local failure, istevihe elastic load for any harden-
ing exponent. Therefore, shakedown bounds obtained fefdhure mode do not increase
with kinematic hardening. For structures made of perfeglfstic or of unbounded kine-
matic hardening material subjected to only thermal propoal loading the shakedown
load factor is twice the elastic load independent of theufaimode.
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1 Introduction

The development of numerical methods for the assessmelm ¢dmg-time behaviour, the
usability and safety against failure of structures sulej@db variable repeated loading is
of great importance in mechanical and civil engineering. atipular kind of failure is
caused by an excessive plastic deformations during therlggmtocess, leading to either
incremental collapse or alternating plasticity. If, on twntrary, after some time plas-
tic strains cease to develop further and the accumulatesipdied energy in the whole
structure remains bounded such that the structure respaomely elastically to the applied
variable loads, one says that the structure “shakes down".

The foundations of these theories have been given by [1] 2lhdvho derived sufficient

criteria for shakedown and non-shakedown, respectivéBiastic-perfectly plastic struc-
tures. Both criteria presume the existence of a convex gietthce and the validity of the
normality rule for the plastic strain rates. Moreover, thitliences of material hardening,
geometrical effects and material damage are neglectedsggoently, extensions of the
classical shakedown theorems have attracted much intartds last years. Reviews of
former investigations can be found for example in [3]-[18].

In contrast to the theoretical extensions of shakedownrémes, there has been compara-
tively little effort in the development of numerical technies able to compute the safety
factor against failure of structures. It appears that thstiexg packages have been devel-
oped with the aim of performing academic research or speiftications. Nowadays,
shakedown packages including a complete library of fingeneints able to model various
structures and loading occurring in industrial applicasiodo not exist yet.

In this report, a discrete formulation of static and kinemghakedown theorems for large-
scale problems is presented. This formulation is a diredhateto compute the safety
factor against failure, which leads to a problem of math&ahprogramming.

Section 2 of this report is devoted to the formulation of ttaisal and kinematical shake-
down problem in the framework of continuum mechanics. Thapéed constitutive equa-
tions and general assumptions will be reviewed by considexiquasi-static evolution of a
three-dimensional elastic-plastic body taken into acté&urematical hardening, material
damage and geometrical changes.

In section 3, a discrete formulation of statical shakeddwgotem is presented for large-
scale problems using a mathematical programming methabdéaromplete space of resid-
ual stresses and, alternatively, the reduced subspacsidiiat stresses. The discrete for-
mulation is restricted to elastic-perfectly plastic body.

In section 4, a discrete formulation of kinematical shakealdheorem will be devel-
oped for large-scale problems using a mathematical pragiaghmethod for the complete
space. The discrete formulation is restricted to elastiégetly plastic body.
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2 Formulation of the problem

2.1 Basic relations

We consider the behaviour of an elastic-plastic b&tlgf finite volumel” with a suf-
ficiently smooth surfac®V” consisting of the disjoint part8V,, and dV,,, where statical
and kinematical boundary conditions, respectively, aesgribed V' = 0V, U 9V,
oV, N oV, = (). The bodyB (Fig. 2.1) is subjected to the quasi-statically varying ex-
ternal agencieB(x, t) € L at timet consisting of body forcef, in V, surface tractionp,

on dV,, given displacements’ on 9V, and prescribed temperatufgin ¥ and onoV'.

N,

Jo Xo

AVh

Figure 2.1: Structure or body

For the theoretical formulation, linear kinematical hariag is taken into account by us-
ing internal parameters according to the concept of GemethStandard Material Model

“GSMM” [19]. For this, generalized total, elastic, plastind thermal strains and general-
ized stresses are introduced defined by the sets

e=[e,0", ¢ =[e°,w|", & = [e?,k]", & = [¢',0],s= [0, 7]". (2.1)

Here,e¢, e? ande’ are respectively the observed elastic, plastic and théymaluced parts

of the total strain tensar. The observable stresses are represented by the stressdens
and the quantities), k and= are ther-dimensional vectors of internal elastic and plastic
parameters and "back-stresses”, respectively. The dimenslepends upon the particular

choice of hardening model.

The elastic-plastic damage behaviour of materials is éhtced through the concept of
effective stress [20]. Using this concept, the behavioudarhaged material can be rep-
resented by the constitutive equations of the virgin makevhere the usual generalized
stresses on the micro-level are replaced by the effectinergézed stresses defined by

S

—— (2.2)

S=

60



A. Hachemi, M.A. Hamadouche, D. Weichert

Here, the valued = 0 corresponds to the undamaged states (0, D.) corresponds to a
partly damaged state ardd = D, defines the complete local rupturB( € [0, 1]). In the
sequel superposed tilde indicates quantities relatecetddinaged state of the material.

According to the restriction to geometrically linear thgdhe total generalized straims
can be split into purely elastic, purely plastic and tempeeinduced parts’, €’ and¢€,
respectively

e—e e +¢ 2.3)

with
€ = e+l +¢€ (2.4)
0 = w+k. (2.5)

In order to introduce the constitutive equations in the falation of shakedown theorem,
we consider the thermodynamic potentigl assumed to be a convex function of all ob-
servable and internal variables (cf. [21]-[22])

V(e k,D,T) =V, D,T)+ V,(k, D) (2.6)

with
oV, = %(1 — D)(e° — a,fl) : E: (€° — ) + C.0? (2.7)
p¥, = %(1 —-Dk-Z -k (2.8)

wherep is the mass density,. is the specific heat at constant strain the coefficient of
isotropic temperature expansidrthe difference between the absolute temperatliyatd

the reference temperaturg(. E andZ are the tensors of elasticity of observable elastic
strains and internal elastic parameters &nsd the identity tensor of second rank. The
operators+) and (:) stand for simple and double tensor contractiongesgely. Then, the
material constitutive equations read as

o = pgi:(l—D)E:(ee—atHI) (2.9)
ov
- _ — —(1=-D)Z- 2.10
@ Poe = )Z- K (2.10)
ov 1, ., . 1

Hence, the thermodynamic forééconjugate to the damage varialidas the energy func-
tion of the undamaged material [22].

We assume the validity of the normality rule for plastic fleuch that

& € 5p(s) (2.12)
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wheredp(s) denotes the sub-gradients of the plastic potegtia) [19] which is the indi-
cator function of a convex generalized elastic domain Clgflaktically admissible stress
states

selC (2.13)

C is defined by means of a yield functidf(s)
C={9F(3) <oy} (2.14)

Here, it is assumed that the yield functiéits) is of von Mises type

P = \/g <1iDD a 1171)) : <1iDD a 1170) (2.15)

o denotes the deviatoric part of stress tensatefined by

ol =0 — oyl (2.16)

whereoy = 1/30;; denotes the hydrostatic stress(1, 2, 3).

The convexity ofF'(S) and the validity of the normality rule can be expressed bygére
eralized maximum plastic work inequality

(5—8):& >0 (2.17)

wheres® = [0, w°|T is any safe state of generalized stresses sucht&} < oy

We remark that the conditions of convexity and validity ofmality rule can be relaxed
by use of the concept of “Sanctuary of Elasticity”, introdddy Nayroles and Weichert
[23].

2.2 Structural behaviour

The behaviour of the bod§ subjected to variable loadt) (Fig. 2.1), can be classified
by one of the following way [7] (Fig. 2.2):

(1) If the load intensities remain sufficiently low, the resge of the body is purely
elastic (with the exception of stress singularities).

(2) If the load intensities become sufficiently high, thetamtaneous load-carrying ca-
pacity of the structure becomes exhausted and uncongdrpiagtic flowe” = [e”, K]
and damage occur. The structure collapses in this case.

(3) If the plastic strain increments in each load cycle arthefsame sign then, after a
sufficient number of cycles, the total strains (and theeeftisplacements) become
so large that the structure departs from its original formh b@comes unserviceable.
This phenomenon is called “incremental collapse” or “ratthg”.
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(4) If the strain increments change sign in every cycle, tiegyl to cancel each other
and total deformations remain small leading to “alterr@apiasticity”. In this case,
however, the material at the most stressed points may faitaliow-cycle fatigue.

(5) If, after some time plastic flow and damage evolution edasdevelop further and
the accumulated dissipated energy in the whole structanaires bounded such that
the structure responds purely elastically to the appliedbe loads, one says that
the structure “shakes down*.

(o} oF (o
Oma Ommax G
€ € €
- - L
c, Ghin G,
Purely elastic Instantaneous collapse Ratchetting
G\ Sy
Oma Ommax
€ €
G, G,
Alternating plasticity Shakedown

Figure 2.2: Possibilities of local response to cyclic |oadi

The behaviour of the body according to the first point doesnflitence its integrity, since
plastic deformation and damage do not occur at all. Howekerload carrying potential
of the body is not fully exploited.

The failure of types (2)-(4) are characterized by the fduat plastic flow and damage evo-
lution do not cease and that related quantities such asqtegbrmation and accumulated
damage do not become stationary. Thus, there exist partseeofdlume for which the
following holds

lim & (x, 1) # 0, lim D(x,t) # 0, (2.18)

t—o00
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If the case (5) occurs, the body shakes down for the giveotyistf loadingP(t) € L. It
follows that

lim &(x, 1) = 0, lim D(x,t) = 0. (2.19)
If one accounts for plastic deformation and damage in sirattesign, it seems natural
to require that, for any possible loading history, the ptadeformation and damage in
the considered body will stabilize, i.e. the structure siibke down (see [24]-[28]). It is
worthwhile mentioning that the phenomena of incrementiapee and alternating plas-
ticity (low-cycle fatigue) may appear simultaneously, éfgne component of the plastic
strain tensor increases with each load cycle whereas armgbhilates.

The question of shakedown could be answered by examiningtthetural behaviour by
means step-by-step procedure (see e.g. [25]). Howevdn, aycocedure is in general
very cumbersome and, in many cases, inapplicable. Therefiimrect methods, namely
the static method expressed in stress variables and kiremethod expressed in velocity
variables, respectively have been developed allowing tbdut whether a given body will
shake down, without recurring on the evaluation of streaseésstrains. Both methods can
be related to a mixed formulation and lead to bounds of th&est@avn or limit load: a
lower bound by the static method and upper bound by the kitiemmeethod.

2.3 Formulation of the lower bound method

2.3.1 Assumptions

In the following, we introduce the notion of alrely elastic reference bodyB~” (Fig.
2.3), differing from the real bod§ only by the fact that its material reacts purely elastically
with the same elastic moduli as for the elastic part of theenmatlaw in the real body.

Elastic-plastic body Purely-elastic body

Figure 2.3: Purely elastic and elastic-plastic body
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All quantities related to this reference body are indicdtgcguperscriptf). The internal
parameters to describe the state of hardening and damalge material vanish naturally
for the reference bod$”, so that the generalized strains and stresses are given by

e’ = (&) = €%, 07, (e")F =1[0,0/", (€)* = [¢',0]",8" = [0¥,0] . (2.20)

2.3.2 Static shakedown theorem

The extended static (Melan’s) theorem of shakedown can jpeesged as follows:

If there exists a safety factar > 1, a time-independent field of effective
residual stresseg(x) and time-independent limited back-stresg€g) such
that the time-independent field of effective generalizedssiess = [p, 7|7
superimposed on effective generalized purely elasticstss” = [67,0]”
does not exceed the yield condition for any tine 0

F(a8(x, 1) +8(x)) < oy, ¥x €V (2.21)

then the bodys will shake down with respect to the given loadiRg) € L.
The field of purely elastic stresses satisfies the followysjesm of equations

dvol=—f, inV (2.22)
n-of = p, onav, (2.23)
uf = u° on oV, (2.24)
with
1
ef = 3 (V") +v(u")T") (2.25)
ef = E':of 4+ adl (2.26)

and the field of residual stress satisfies

div p =0 inV (2.27)
n-p=0 onoV, (2.28)

wheren is the outward normal vector @V,

Then, the static shakedown theorem for the determinatitdmec$afety factor against failure
due to inadmissible damage or unlimited accumulation dftplaeformations can then be
expressed by the following optimization problem [29]

ki, = max (2.29)
p,#,D
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with the subsidiary conditions (2.27), (2.28) and

D < D, inV (2.30)
o¥ p T .
— < .
F]|:Oé1_D+1_D 1_D:|_0'y inV (231)
o? p .
< :
FL|:O[1—D+1—D}_UU inV (2.32)

This is a problem of mathematical programming, witlas objective function to be opti-
mized with respect t@, 7 and D and with the inequalities (2.30)-(2.32) as nonlinear con-
straints. HereF; and F;, denote the initial yield condition and the limit yield cotidn,
respectively, with uniaxial yield stress- and uniaxial limit strengtlr;;. The condition
(2.30) assures structural safety against failure due temahdamage and (2.31) assures
that safe states of stress&#s= asf + s are never outside the limit surfadé and so
guarantees implicitly the boundedness of the back-stses3endition (2.32) controls the
shakedown requirement of existence of a time-independahtbtress vectar describing

a fixed translation of the initial yield surfad€ inside the limit surface”;, and so assures
that safe states of observable stregseare related to a fixed time independent position of
the initial yield surfacef; inside the limit surfacd;, [30].

2.3.3 Geometrical effects

The formulation of statical shakedown theorem presentedeaban be extended to broader
classes of problems in order to include the influence of gécaéchanges. For that we
assume that the external variable lo&gs, ¢) are of a special type: Up to an instaftthe
body B undergoes finite and given displacemefitwith respect to the initial configuration
(2; at timet = 0 in such a way thaf3 is in the known configuratiofl; in equilibrium
under time-independent loa@&. For timest > t the bodyB is submitted to additional
variable load$" such that:

P(x,t) = PR(x) 4+ P"(x, 1) (2.33)

and occupies the actual configurati@n(see [6], [9]-[10]). Since the actual configuration
should also be an equilibrium configuration and the follagyguations hold:

(i) Statical equations

div(r? 4+ 77) = —flf — ] inV (2.34)
n-(t%+77) = pf + p; ondv, (2.35)

with
R4 = (FF) (e 4+ 0") (2.36)
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(i) Kinematical equations

u= u4u inV (2.37)
F= FFf=I+Vulf+ VU inV (2.38)
1 .
€= 5R+5T:§(C—I) inV (2.39)
u= ul+uj onov, (2.40)
with
C = (FFF®T(F'FR) (2.41)

where all quantities caused by the time-independent |B4dare marked by a superscript
(®), whereas the additional field quantities caused by the tependent load®” are
marked by superscript . The additional field quantities caused By have to satisfy
the following equations:

(i) Statical equations

div(t") = —f{ inV (2.42)
n-r" =p, ondV, (2.43)

with
" =H'Fio" + Flo” + H'Fio” (2.44)

(i) Kinematical equations

Fr=I1+H" inV (2.45)
= SEVIHY HH (HTHIEY iV (246)
u" = u onaV, (2.47)

with
H" = VRUT (248)

In the sequel, we restrict our considerations to loadingphiss characterized by the motion
of a fictitious comparison bodg”, having at timet’ the same field quantities & but
reacting, in contrast t& , purely elastically to the additional time-dependent BRY,
superimposed oR*” for t > t# (Fig. 2.4 (cf. [6],[9]). The differences between the states
in B andB” are then described by the difference fields:

Au = U —UEAF=F —FF Aec=¢"—¢"F (2.49)
AT = 7" —7E Aoc=0"—0"F (2.50)
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and have to fulfill the following equations:

div(AT) =0 inV (2.51)
n-Ar =0 onadv, (2.52)
and
AF = H" —H"F inVv (2.53)
Be = SFRTIAR) + (ARFY)
+ %(FR)T[(H’")T(H’") — (H™)"(H™)(FY) inV (2.54)
Au= 0 onadv, (2.55)
with
AT = (AF)Ffa® + Fi(Ao) + H'Fllo” — H™DFl g (2.56)

In the following, we restrict our considerations to sitoas where the state of deforma-

Q

Figure 2.4: Evolution of real bodg and comparison bodg”

tion and the state of stressfare subjected to small variations in time [6]. Consequently
we neglect in the governing eqns. (2.49-2.56) all termsgciviare nonlinear in the time-
dependent additional field quantities marked by a sup@ts¢ni. This excludes to study
buckling effects induced by the additional time-dependeads. Then the following ex-
tension of Melan’s theorem holds:

68



A. Hachemi, M.A. Hamadouche, D. Weichert

If there exists a time-independent field of effective reaiditresses\a such
that the following relations hold:

(i) div(Ffe®) = —fff inVv (2.57)
n- (Ffg®) = pf onaV, (2.58)

u=uf ondV, (2.59)

(ii) div(AT) =0 inv (2.60)
n-(A7)=0 onav, (2.61)

Au=0 onadV, (2.62)

with AT = (AF)Ffa® + FR(Aa) (2.63)
(iii) Fa8F +8 1+ A8 <oy inV (2.64)

with 8" = [67, #%]7 for all timet > t%, then the original body will shake-
down under given program of loadiriy

Then the safety factor against failure due to non-shakedmwinadmissible damage is
defined by [18]

akp = glg)D(oz (2.65)
with the subsidiary conditions
div(AT) =0 inV (2.66)
n-(A7)=0 onaV, (2.67)
D—D,<0 inV (2.68)
o"F ol i Ao AT .
F — - < 2.
I<a1—D+1—D 1—D+1—D 1_D>_ay inV (2.69)
o't ol Ao .
< .
FL(QI—D+1—D+1—D)_UU inV (2.70)

This is again a problem of mathematical programming, witks objective function to be
optimized with respect té\T and D (D = D + D) and with inequalities (2.68-2.70)
as nonlinear constraints. The condition (2.68) assurastsiial safety against failure due
to material damage and the condition (2.70) assures thatssaties of stresses are never
outside the limit surface.

It should be mentioned, that if we neglect the influence ofemal damage) = 0) and
geometrical effectso” = 0), we get the extended theorem given by [30], [40] and in
addition if we put andr equals to zero, we get the original Melan’s theorem [1].
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2.4 Formulation of upper bound method

2.4.1 Kinematic shakedown theorem

To formulate the upper bound theorem, we restrict oursatvgerfectly plastic material
with the assumption of small geometrical transformatidgising the associated flow rule
(egn. (2.12)) and the von Mises yield criterion (egn. (2 1% plastic dissipation can be

expressed by
DP(e") = o : & = (1 — D)oy /gép . ep (2.71)

which is a non-negative scalar convex function. The adinlissiet of stresses in the static
formulation is unbounded: the addition of a scalar funciiothe diagonal oo, corre-
sponding to adding hydrostatic pressure, does not affecyigid condition. This is why
one need in this case so called “incompressible finite eléshémperform the calculation
of the shakedown loading factor. Then, the shakedown |gg@ictorasp is the minimum
of the following optimization problem:

5 T
b, = EI;]-IAI}L \/;O'y(]_ — D)/0 /V(ép : eP)dvdt (2.72)

with the subsidiary conditions

D < D, inV (2.73)
/ ' / ol ePdVdt inV (2.74)
troép :VO inV (2.75)
AeP = /OT ePdt = %(V(Au) + V(Au)T) inV (2.76)
Au=0 ondV, (2.77)

wheree? and Ae? denote plastic strain rate and plastic strain incremespeaetively,Au
is the increment of residual displacement arfdis the fictitious elastic stresses caused by
external loads. The period of cyclic loading programs isoded byT'.

2.4.2 Regularization by the Norton-Hoff-Friad method
The objective function (eqn. (2.71)) is not differentiabted. To overcome this difficulty
Friad proposed a regularized method [31]-[32] which cstissbf replacing the plastic dis-

sipationD?(é?) of perfectly plastic material by the regularized and défgiable support
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function [D?(&?)]V* of Norton-Hoff viscoplastic material:

1-m 2—m

e = e = Pt - o (G o) @79

m

wherey is Lamé’s coefficient andh is the viscosity parametet (< m < 2). The vis-
coplastic dissipation tends to the plastic dissipationmie viscosity parameter tends to
one (see, e.g. [33]-[34].

For load factors greater thary,, two types of collapse can occur
e incremental collapse, corresponding to an unlimited gnav¥iplastic strains,
¢ |low-cycle fatigue, corresponding to alternating plastiaiss.

3 Discrete formulation of lower bound method

In the discrete formulation of shakedown problem, we reswurselves to the original
Melan’s theorem. Any discrete version of the statical folation of the shakedown theo-
rem presented above preserves the relevant bounding pesd@ if the following condi-
tions are satisfied simultaneously:

() the solution of the fictitious elastic stresses (eqnZP-(2.24)) is exact;

(i) the residual stress field satisfies point-wise the hoemegus equilibrium equations
(eqgns. (2.27)-(2.28))

(i) the yield condition (egn. (2.21)) is satisfied everysvh inV/.

In the numerical analysis of shakedown problems based owl#ssical Melan’s theo-
rem, the existence of the bounding properties was the reagby many authors (see e.g.
[30], [35]-[38]) used the finite element stress method wittiscretization of the stress
field. Moreover, since the extended Melan’s theorem is fdated in static quantities, it is
meaningful to discretize the stress field rather than th@aiement field. Obviously, with
the same degree of discretization the stress method gites besults for the stresses than
the displacement formulation.

However, in statical formulations the discretized stresisifa priori has to satisfy the equi-
librium equations and the statical boundary conditionsic8ithese conditions are more
difficult to fulfill than the respective conditions for thespiacement field in the kinemati-

cal formulations, the FE-stress based method is not widsdg uThe majority of commer-

cially available FE systems are based on displacement fatons.

On the other hand, itis very difficult to preserve the bougdiroperties (i)-(iii). Especially
the first conditions can hardly be satisfied, if other than-dineensional structures are
studied. Thus, in order to make the numerical approach asrgkeas possible, we use
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the displacement method. In this case the well-known digpleent element formulations
involving e.g. isoparametric elements can be applied. Rar purpose it is necessary to
transform the statical equations from their local form itite equivalent global form.

3.1 Discretization of the purely elastic stresses

To calculate the elastic stresse$ in the reference bodf”, we use the virtual work
principle combined with the finite element discretizationhwest functions for the dis-
placement fields. Then, the elastic stress€sare in equilibrium with body forcef, and
surface tractionp, if the following equality holds

5Uint = 5Ue:vt (31)

or

/ {oBH6e"YaV = [ {p,}{o6uF}dS + / {foH{ou"}dv (3.2)
v Vp 1%

for any virtual displacementu” and any virtual strainge” satisfying the compatibility
condition (eqn. (2.25)). The virtual displacement fiéld® of each element is approxi-
mated according to

{ou®} —%N Sus (3.3)
— LOUS _
k=1

whereN;, andduf, denote thé:-th shape function matrix and the vector of virtual disptace
ments of theé:-th node of the elemet respectivelyNK denotes the total number of nodes
of each element. The virtual strain field” (x) is derived by substitution of eqn. (3.3) into
eqgn. (2.25), such that

{6e”(x)} =) " Bu(x)dug (3.4)
k=1

where B] is the compatibility matrix depending on the coordinatdhe integration of
egn. (3.3) has to be carried out over all Gaussian pdifdswith their weighting factors
w; in the considered element where the index refers to thei-th Gaussian point. The
corresponding coordinate vector shall be denotes;bye.

NGE
/V{5€E(X)}T{UE(X)}dV = {ou}’ { > wiIJIi[B(Xi)]T[EHB(Xi)]} {u}

— U KU
- {ou)"{F} 35)

where{F} denotes the vector of nodal forces,the weighting factors,J|; the determinant
of the Jacobian matrix and[ the stiffness matrix.
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This integral leads for theth Gaussian point to

{o"(x:)} = [E][B(x){u°}. (3.6)

3.2 Discretization of the residual stress field

Analogously, the field of residual stress can be determiyed b

/V (p}{oe}dV = 0. (3.7)

By introducing a vector form for the strain tensgrthe corresponding virtual strains
are given in each elemeaty

NK
{6e°} = Broug, (3.8)
k=1

The shape functions of the considered element are the safoeths determination of the
purely elastic stresses. Using this relation and intratlyithe unknown residual stress vec-
tor {p,} at each Gaussian poiftthe equilibrium condition (3.7) is integrated numerigall
by using the well-known Gauss-Legendre technique. Thgraten has to be carried out
over all Gaussian pointy G

NG NK
[ (pH o)Ay =3 il [Z Bkaua] e (3.9
=1 k=1

By summation of the contributions of all elements and byat#on of the virtual node-
displacements with regard to the boundary conditions, avadlyigets the linear system of
equations (see [39]-[42])

NG
Z Cip; = [Cl{p} = {0} (3.10)
=1

where NG denotes the total number of Gaussian points of the refereode 37, [C] is

a constant matrix, uniquely defined by the discretized systed the boundary conditions
and{p} is the global residual stress vector of the discretizedeefee body3”.

3.3 Discretization of the time variable

Up to now, no restrictions have been made to the load domhairhusL can be of arbitrary
form. However in many practical cases the number of indepeinidads is restricted, each
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varying between some given bounds. If the number of suchpierggent loads is, then
the load domain is defined by andimensional polyhedron

L= {P\P<x, 0= w00 € [u;,uﬂ} (3.11)

whereP is the vector of generalized loads; are scalar multipliers with upper and lower
boundsuj andp; , respectively.P; represents: fixed and independent generalized loads
(e.g. body forces, surface tractions, prescribed bourglapfacements, temperature changes
or combinations of them). For subsequent consideratiomsdnners of the polyhedron
(load domainl) are numbered by the index such thaty = 1,..., NV, whereNV de-
notes the total number of corners. The loads, which correspo each corner of are
characterized symbolically b¥;. In view of the convexity of the yield functiof’ (eqn.
(2.21)), whereD = 0 andw = 0, and due to the above assumption on the load doiatin
can be shown that [43]

F(ao®(x,t) + p(X)) < oy (3.12)
is fulfilled at any timet, if

F(aoP(P;) +p;) <oy (3.13)

holds for allj € [1,NV] and for alli € [1,NG]. Then the discretized formulation of the
static shakedown theorem for the determination of the st@ke loading factor is given

by

ok = max o (3.14)
p
with the subsidiary conditions
[Cl{p} = {0} (3.15)
Flao?(P;))+ p;) <oy Vi€ [l,NG]andVj € [1,NV]. (3.16)

The yield criterion has to be fulfilled at Gaussian poings[1, NG| and in each load corner

J € [1,NV], whereNV = 2". The number of unknowns of the optimization problem (3.14)-
(3.16) isN =1+ NG x NSK corresponding tax and{p}. The number of constraints
IS NV x NG + NF, whereNSK is the dimension of the stress vector at each Gaussian
point and N F' denotes the degrees of freedom of displacements of thestizzl body.
This problem can be solved by classical algorithms of oation because for practical
problems the number of unknowns is in general very high. Tirectapproach presented
above of shakedown analysis leads to a problem of mathesmhg@tiogramming, which
requires a large amount of computer memory if other than one@dimensional struc-
tures are studied. Furthermore, for nonlinear yield coolst (e.g. von Mises criteria), the
solution of the respective nonlinear optimization probleften requires highly iterative
procedures and is therefore very time-consuming. ThidtseBom the fact, that the non-
linear programming approaches imply adopting solutioresoés based more on purely
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mathematical considerations disregarding simplifyinggital or technological features.
A Method to overcome the time-consumption is to use a soévpackage for solving
large-scale nonlinear optimization problems (see e.g]-[¢€]) or to apply the so-called
reduced basis technique (see e.qg. [39]-[41], [47]-[50]).

- Geometry
DATA: . Medhanicd charad.
- Loads

A

Calculation of purely
elastic stressdw }

i>__

FEM-
CALCULATION

— (PERMAS)
Determination of the glob:
[C]-matrix with respect to
the boundary conditions
1
1

\ 4
Construction d thefield

of residual stresses {p}

Find: OPTIMIZATION
ag, =Maxa PROCESSES
(LANCELOT)

Subjeded to:
[Cl{p} ={0} ~
:
1
1
1
1
1

F(aoiE+p_=i)sa

Y

fori=1,..., NG

A 4

[ aSD maximum ]

Figure 3.1: Flowchart of the implemented algorithm
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3.4 Large-scale nonlinear optimization problem

The resolution of large-scale non-linear optimizationijeons can been carried out by
using the advanced code LANCELOT [51] which is based on amamged Lagrangian
method. LANCELOT automatically transforms inequality stmints (3.16) into equa-
tions. This technique is extensively used in simplex-liketimods for large-scale linear and
nonlinear programs [52]. The constrained maximizatiorfmm (3.14)-(3.16) is solved by
finding approximate maximizers of the augmented Lagranfyiaation ®, for a carefully
constructed sequence of Lagrange multiplier estimgteonstraint scaling factors; and
penalty parametes

B(X,m,5.0) = FOX)+ Do mbiX) + 55 D sabi(X) (3.17)
=1 i=1
with
f(X) = «a (3.18)
bp(X) = Cpp, p=1,....NFig=1,...,NG x NSK (3.19)

b(X) = Flao? +p,)<oy r=NF+1,....NGx NV (3.20)

The number of optimization variable§ which corresponds ta and{p} is equal toN.
The first-order necessary conditions for a feasible paifit = (a(®), {p}*) of the iter-
ationk to solve the problem (3.17), require that there are Lageangiultipliers,y*), for
which the projected gradient of the Lagrangian functiok&t andn,®) and the general
constraints (3.18)-(3.20) at ®) vanish. Fork = 0 we seta'®) = ay and{p}*) = {0}
whereay, denotes the elastic limit factor of the reference bétdy One can then assess
the convergence of the augmented Lagrangian method byzdefihe projected gradient
and constraints aX *) andn*), The optimization will be terminated if the conditions

IX® — P(X®) — v, o(X® n®) &) k)| < g (3.21)

and
(X)) < e (3.22)

hold for some appropriate small convergence tolerancesidc., where P denotes the
projection operator.

It turns out that the elements ¢p} are not independent of each other and so a Gauss-
Jordan elimination procedure [53] can be applied to theimf®] to eliminate the equality
constraints (3.19) and to reduce the size of the problemn Tive obtain the matrixi]
with the following property

[C][b] =0 (3.23)
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By this means, an arbitrary vect&rwith NX = NG x NSK — NF components yields
with the relation

{p} = [b]{X} (3.24)
a residual stress vectyp}, satisfying eqn. (3.19) for any vectdX }. The column vectors
of [b] represent linearly independent residual stress statédseadiscretized body. Then,
we get the following reduced optimization problem

ok, = max a (3.25)
with the subsidiary conditions
Flaof(P) + b]{X}) <oy  Vie[LLNGLVje[lLNV].  (3.26)

3.5 Reduced basis technique

Instead of solving the optimization problem (3.14) - (3.&he complete space of residual
stresses, it can be solved iteratively in a sequence of agbswith very low dimensions
[39]-[41], [47]-[50]. At the beginning of the iteratiok, we have a known feasible point of
the optimization problem represented by a load faatér?) and a residual stress distribu-
tion {p}~1 = [b;]*~V{X}*=1, Thus, the total stresses in the Gaussian pofat the
load P;, corresponding to thgth corner of the load domain, are given by

{o/(P)} D =" NP (P)} + {p} Y (3.27)
and satisfy the inequality
F ({o:(P)}* ) < oy Vi€ [1,NG],Vj € [1,NV]. (3.28)

If we add a load increment, defined Byn*) > 0 to the known load facton*~, addi-
tional plastic strains will develop. These plastic straiagse a redistribution of the stress
state due to additional residual stresses. This residugglssstate is a meaningful base vec-
tor for the shakedown problem, because it takes care of tliespmnding load domaid.
The residual stress state can be determined by a simple ktestic analysis accounting
for initial plastic strains, provided that the plastic strdistribution is known. For the de-
termination of the plastic strain distribution at theh iteration, we use the normality rule
(egn. (2.12))

OF (o)

el =\ 7o, (3.29)
with
_ F(o;) F(o;)
A= 1— F(0) — for1 — F(0) > (3.30)
_ F(o))
A =0 for1 — F(0) <7 (3.31)
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and
0<~y<1 (3.32)

where
e” = {e"(P)}* and o; = {o(P;)}® (3.33)

A linear elastic analysis accounting for initial plasticashs according to egn. (3.29) then
yields the respective residual stress distribution. Thag,vene gets for each loa one
residual stress state, i.e. one reduced base vector. Heusumber of base vectoréX R

is equal to the number of corners of the load doméin. The factory in egn. (3.32) is a
control parameter for the iteration process and plays tleeafoweighting factor. If there
is no advance i, v will be increased until it reaches the value 1. Fhth improved state
is determined by solving the reduced optimization problem

aég) = max a®) (3.34)
and satisfy the inequality

F (a®{af(P)} + {p}*) + pFW{XFYM) <oy, Vi€ [1, NG|, V) € [1,NV],

(3.35)
The NX R column vectors of the matripp”]*) represent the selected base vectors. The
upper index ‘R” indicates, thatlp”] is a reduced subspace. Heté¢") and{X®}*) are the
primary unknowns of the actual sub-problem (3.34) - (3.35}er solving this problem,
we obtain the improved state by the updates

(P} = {1+ M XMy (3:36)

The iteration process is repeated with the selection of nese lvectors until the conver-
gence criterion
1A = o) — oD < ¢ (3.37)

is fulfilled for some appropriate small convergence toleems;.

It must be mentioned, that this criterion is not sufficienttfte convergence of the original
problem (3.14) - (3.16), because the value\ef*) at each iteration strongly depends on
the choice of the reduced base vectors. It may happenAh&t is very small at the
beginning of the iteration process, while the true loaddais much higher than®), The
check of the Kuhn-Tucker conditions of the original probl] is the only way to assess
the quality of the approximation.
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4 Discrete formulation of upper bound method

4.1 Discretization of the time variable and space

We restrict ourselves to the original Koiter's theorem. Tnesence of time integrals in-
volves in principle difficulties in the application. For thave consider the stress and strain
rate field only at every vertex instead the integration over the time cycle. The plastic
strain rates” can differ from zero at a point of the body only if the stresstestr; cor-
responding to the loading corngrattains the yield surface. Let us denote, respectively,
the fictitious elastic stress and the plastic strain subements during loading at corner
j of domainZ by af ande’. At each load vertex, the kinematical condition may not be
satisfied. However, the accumulated strain in a load cycle

NV
Ae? = Z el (4.1)
j=1

is a compatible strain field in the sense of Koiter. The disza&on in space of the problem
(2.72) - (2.77) can be carried out by standard finite elemestqulures. Then, the vectors
of increments of residual displacemdmtu} and plastic straig Ae?} for an element are
approximated by

{Au} = [N[{AU}, {Ae”} = [B]{AU} (4.2)

where{AU} is the vector of nodal displacementsl][is the shape function matrix and
[B] the resulting compatibility matrix. Then the discretizedmulation of the kinematic
shakedown theorem for the determination of the shakedoadtinig factor is given by

NV NG 2_ m
aSD - mln ZZ 31“ w2|‘]| \/ {ejz}T ]{6]2}) (43)

jlzl

with the subsidiary conditions

NV NG

> will{e ey =1 (4.4)
{_Y}T_{ef;—} 0 45)
[Aer} - Z{eﬂ} ~ [B{AU} 4.6

Here,Y” = {1,1,1,0,0,0} andX = diag I, 1/ 1], wherel denotes the identity matrix
of order 3. The vectof AU} contains all unconstrained nodal displacements of theefinit
element model anfB;] is the assembled compatibility matrix for strains at Gausstg: €
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[1, NG]. Itis worth noting that the plastic incompressibility iSferced at each load vertex
j for the relevant plastic strain sub-increment (egn. (4\while geometric compatibility
is imposed on the cumulative plastic strains of the admissiycle (eqn. (4.6)) [55]-[58].

4.2 Large-scale nonlinear optimization problem

The above outlined discretization with respect to time apace reduces the optimiza-
tion problem (2.72)-(2.77) to a mathematical programmirgpfem in a finite-dimensional

space. The constrained minimization for the kinematic etain problem (2.72)-(2.77)

is solved by finding approximate minimizers of the augmeiggrangian functiord

Bl AU, 7, L) = £(2) + 7y (1) + bo(a) + 3 () @.7)

3

with

NV NG 9_m

fa) = S0 [wwwi\/(g{s;}T[XJ{s;})m (4.8)

j=1 i=1

NV NG
b(z) = 1—ZZwi|J\i{0'ﬁ T{el} (4.9)
NG NV
bo(e) = D _{L) ({h} - [Bl{ALY) (4.10)
NV NG
by(x) = > Y wildli{h}{YIT{Y e} (4.11)

=1 i=1

The resolution of the augmented Lagrangian problem abaveists to find a feasible point
(%, AU, n, L;) so that(e”;, AU) is the solution of the constrained problem. The limit load
factor o, is the limit of %, (m) whenm tends to 1. It may be proven that the duality
theory of mathematical programming provides a meaningll between the lower and
the upper bound of limit load (see e.g. [43]). The unique eshakedown load factor

occurs when the lower and upper bounds coincide sathat= %, = asp.
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Kinematical Formulation on Limit and Shakedown AnalysisStfuctures

Summary

In this report, we deal with a general non-linear kinemaiggroach for limit and shake-
down analysis of structures. The developed methods mayjemented with any displace-
ment-based finite element code. Plastic regularizatiomaust are presented to overcome
the non-differentiability of the objective function. Themiperature-dependence of the yield
limit is taken into account in shakedown analysis and thairstnardening effect of the
material is discussed. By the developed methodologiesjnaaaptation factors may be
separately determined or a combined shakedown solutioregepted. Several effective
numerical methods are developed. The non-linear progragnmioblem is transformed
into a series of linear-elastic-like calculations. At gvéeration, upper bound and lower
bound of limit and shakedown solutions may be dually obthiWgith a rapid convergence,
the numerical solutions obtained tend to the accurate ortedaw calculating costs.

In Section 1, the modified kinematical limit and shakedoweotiems are described The
calculating methods are implemented in displacementebfaisiée element formulations.

In Section 2, the non-differentiability problem of the offjge function is dealt with. Three
regularization procedures are presented

Section 3 concerns the numerical approach for the increahefdsticity analysis. Two
Newton-type algorithms are developed. Upper and lower dswf limit solution are du-
ally given. The convergence of the solutions is proved.

Section 4 describes a kinematic shakedown algorithm, wiiai be considered as a sim-
plified form of the dual method presented in section 5 withstatic conditions considered.

In section 5, we present a new dual shakedown analysis.irfgfdrom kinematic theo-
rem, but we introduce also static variables and optimipationditions to lead to a rapid
convergence and accurate dual solutions (lower and uppgrdsoof shakedown limits).

In section 6, several numerical examples are illustrateshtmwv the efficiency and the
convergence of the methods. The numerical results are gechpathose appeared in the
literature.

Section 7 gives some general remarks and conclusions.

We note that some other developments at University of Ligdleg) on LISA project,
such as pipe finite elements and limit-shakedown analysegoylibrium backstress field
(Zarka’s analysis) are not presented in this report, whielreferred, respectively, to [31]
and [34].
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1 General kinematical theorems and methods

1.1 Loading domains, plastic collapse and shakedown lim-
its

Let us suppose a general loading case: a body occupying threlbd domairl/, is sub-
jected ton time-dependent loadB,(t), k = 1,...,n and a time-independent (dead) load
F,y. Generally loads consist of body fortand surface tractiop. Thermal loading due to
the temperature field will be included when it concerns stieka analysis. We classify
active loading into three cases:

1) Every loadvaries independentlyithin a given range of itself:
Plel= [Pg;ﬁ;] = [u;;uﬂ P k=1,....n (1.1a)

The loading function may be represented as
P(t) = m®)P) gy < palt) < pf (1.1b)
k=1

This forms an—dimensional loading domaifi: a convex hyperpolyhedron in load
space. Fig. 1.1(a) shows such a loading domain (rectaraiigg two variable loads
as example.

2) If n loads, instead of varying independently, can be descrigeadet (n) of linear
inequalities such that

Ay P) <0 j=1, m (1.2)
The loading domain becomes a polyhedron enveloped insedgdimainl of (1.1a),
see Fig. 1.1(b).

3) Astraight line in Fig. 1.1(c), represents a proporticarad monotonic loading.

Now let us multiply the nominal loading domains by a load nmlir «. The objective
of shakedown analysis is to find the largest vadug, such thatwgp P(t) + Py, which
still guaranteeglastic shakedownThis situation means that after certain tinie@r some
cycles of loading, the plastic strain may cease to develaptlad structure returns to the
elastic behaviour.

en(x,1) =0 whent > t* (1.3)
Therefore, the total amount of plastic energy dissipatggvaere must be finite. Generally
the structure may be thought safe if above shakedown condgisatisfied.

Whena > agp, we can distinguish the following cases:
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Figure 1.1: Three types of loading domain: (a) Indepengevdalying (b) dependently
varying (c) proportional and monotonic loading

1) Alternating plasticity(plastic shakedown or low-cycle fatigud_ocal break occurs
after a small number of cycles, as the result of local (or somes global) plastic
deformations alternating in sign (for example, plastic poassion succeeds plastic
extension, and so on). In this case we have the following letation

&%:/%ﬁ:& bute?, # 0 (1.4)

wherer is the cycle time period. If alternating plasticity occuts structure may be
unsafe. However in some practical cases, very local ati@gplasticity is permitted

in engineering design. By consequence a small plasticxsliirounded by a large
elastic body. This is called overall shakedown. For exartiplaugh a local thickness

of a shell, the alternating plasticity should be restri¢teless than 20% of the section
for safety assessment.

2) Incremental plasticityratchetting. Plastic deformation does not change in sign, but
grows with cycles. This leads to the unlimited accumulatbplastic deformation
a mechanism is formed

A%:[%ﬁ#J%%O (1.50)
ey = Mt)Agl;  A(t) is monotonic (1.5b)
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This phenomenon is never allowed in engineering design. &seg that it is some-
times significant to distinguish the above two inadaptatmues. On the other hand
in engineering practice the prevention against these tiréamodes may be quite
different.

Obviously situation 1) and 2) may happen simultaneouslywéir, this does not
pose the difficulty in determining separately two inadaptafactors, because the
two inadaptation limits are independent from each other.

3) If one load vertex?, of load the domain attains the plastic collapse limit, thecttire
may fail instantaneously during this loading process. isi¢hse the shakedown limit
does really coincide with the plastic collapse limit. So weWw that limit analysis
is a special case of shakedown analysis when only one loaéimex is concerned.
The plastic collapse load is representech@®’ + F,. There exist some situations
where, even if dead loa#, cannot be carried alone, the combinatioR + P, with
arp1 < a < arg, can be carried. This happens when there is a compensatem ef
between force” and I

By defining the limit multipliera;, and shakedown limitvsp, as well asyp (shakedown
limit of dependent loading), it is clear that:

asp < ap (1.6)
asp S g, (17)

However, we do not have a general relation betwegandq;, except that the proportional
load be enveloped within the dependent load domain. In #ss eve have also

ap < ag,. (18)

1.2 Limit analysis

It is assumed that a body is subjected to a monotonic and propal load P (f,p) besides
dead a load?(fy, p,). Limit analysis concerns a direct estimation of the plastitapse
load such thatv;, P + P,, beyond which plastic collapse happens. Classical uppendo
analysis is based on Markov’s variational principle apgiie to a rigid-perfectly plastic
and incompressible material. It may be stated:

Among all kinematically admissible and incompressibleciy fieldsv, the actual ve-
locity field corresponding to the limit state renders thddwaing functional an absolute
minimum;

(V) = /V DP(&)dV — L (1.9a)
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L=a / flvav + / pTvds | + / fovdV + pgvdS (1.9b)
1% v, 14 Vp

By adopting von Mises criterion, we have the following piaslissipation function.

/ 1 1
DP(SU) = O'Z?SU = ka Jg(éij), JQ = 56‘:”6” — ééiiéii (110)

wherek, = 0,/v/3, 0, is the yield limit of the materialy? is the stress deviator, ang is
the second strain rate invariant.

It is noticed that the incompressibility condition, altlgbuit is true for plastic deforma-
tions of metals, introduces some numerical difficulty. Byngsplane stress or shell-type
elements, this condition can be naturally achieved by adghe Kirchhoff hypothesis.
However it could not be automatically satisfied by using geh&nite elements (plane
strain, 3D...) formulae. To overcome this difficulty, varfomethods have been used,
which may be classified as follows:

1)

2)

3)

Incompressible or mixed finite element formulations wesed by some authors.
Jiang [13] introduced the complementary strain variabéistying the incompress-
ibility condition. A similar method has been adopted by ERB][by using mixed
finite element formulation. Both velocity and a hydrostatressure field are dis-
cretized. The incompressibility is ensured by dualizatioa weak form and it is
inserted in the equations of the tangent matrix correspmnidi velocity variables.

A method using a modification of Markov variational priplel was proposed [29],
[30]. The fictitious volume strain power is introduced indmtal dissipation calcula-
tion. By this a modification, the variational functional4d) becomes

1-

I1(0) = / (D (é) + She)dV — L (1.11a)

\%4

where
. D - : .. L. .
Dp(é'ij) = Jijgij = 2kv J2((€Z'j>7 JQ = égijgij — 681'1'8@'1' (111b)
_ E
=31 o 1.11

ST G (1.11c)

F is the fictitious linear-viscous Young’s modulusthe corresponding bulk modu-
lus; v Poisson’s ratio.

Penalty function method was used by letial. [22]. The incompressibility as
a constraint condition is enforced in the optimization @& In fact, the second
method of using the modified Markov’s functional is equivdlaumerically to the
penalty method when one takésas a penalty function coefficient (large enough)
and cancels the volume term in the calculatioof
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We used methods 2 and 3 in limit and shakedown analysis tanoégaivalent calculating

efficiency. The methods permit us to use any usual displacebesed finite elements
without any modification. As methods 2 and 3 are similar, wk wge mainly penalty-

method description in the following development. From theeknatical theorem, it may
be stated that:

The actual limit load multipliero;, is the smallest of multiplier set™ corresponding to
the sets of kinematically admissible velocity field

arp =mina™, (1.12a)
1-
at = / V2ky\/Eijéi; + —keéLAV — / fivdv + plvdS (1.12b)
1% 2 1% Vy

s.t. / fivdv + pivdS =1 (1.12c)

Vv Vy

1 .

gy = 5ty ) InV (1.12d)
) =0 ondV, (1.12¢)

The penalty function coefficient should be chosen large enough to assure the incom-
pressibility condition during the optimization procesgjuation (1.12c) represents a nor-
malization to the original problem. It is well known that thissipation function is convex
and homogeneous of order one. So the unique minimizatioh.d24) exists, however the
corresponding optimal field is not unique. In fact there are infinitely many such field.
Here we use (1.12e) to fix the velocity field in a certain corivelk that contains the exact
solution of the problem. Consequently, the number of ogtirell becomes finite but the
limit of functional (1.12b) remains unchanged. It shoulddoented out that thermal load-
ing, by its self-equilibrating property, has no influencetba limit load if the geometric
effect of thermal load is ignored. However if we consideryhedd limit of the material as
temperature dependent, the temperature field will havaicerfluence on the limit load
calculation through the variation &f, or o,. On the other hand, we may use the flow stress
instead of the yield stress to consider the effect of strandéning of the material.

The above formulation may be discretized by any displacésbased finite element. We
define the following discretized terms:

e Displacement rate vector:
v =Nq, (1.13)

e Strain rate vector:
¢ = Bg, (1.14)
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Dissipation density function

D? = 2k,/(Bq,)7DBg, = \/(4,B)7DBA, (1.15)

Penalty function density

%k(qu)TDUBQe (116)

External power due to dead lo&¥(f,, p,)

> [Na)hav + [ (Na7pds — i (1.17)
e Ve

Ve

External power due to nominal lode(f, p)

> g yav+ [ Ng.)pds - o' (1.18)
(& Ve

Ve

WhereN is the interpolation matrixB the strain matrixg, andq are, respectively, ele-
mental and global node velocity vectgrandg, are global load vector due to respectively
nominal and dead loadB. andD,, are the coefficient matrices. The transformation between
elemental and global node velocity vector is realized bymses localization matrix,
such thatg, = L.§. For the sake of simplicity, we will only usg instead ofq, in the
following description. The calculation of limit load mystier may be represented in the
following discretized form:

NG
1.
i ) ~T'RT . “1.alrT . AT
ozL—mqm % w; (\/q B DBq+2kq B Dqu) 99 (1.19a)

st. glg=1 (1.19b)

whereuw; is the integral weight.

1.3 Shakedown analysis

Shakedown analysis needs to be performed when structweesibfected to variable me-
chanical and thermal loading. These loads may be repeagelicjoor varying arbitrarily

in certain range. Such variable loads less than the plasilizpse limit may cause failure
of structures either due to excessive deformation or dueltza fatigue break after a
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finite number of loading cycles (time). As we have pointediaut.1, shakedown analy-
sis may be an extension of limit analysis by taking an inteégneof the functional over a
time cycle. So the principal discussion in limit analysi®abis still valid for the present
shakedown analysis. Here we give only a simple description.

We introduce, according to Koiter [17], an admissible cyaleplastic strain fieldAe];
corresponding to a cycle of displacement fidld;. At each instant during the time cycle
7, the plastic strain raté}; may not be compatible, but the plastic strain accumulated ov
the cycle is required to be compatible. Hence we have thevilig relations:

such that: N oA
p _ L U; Uj .
Asl.j_ 5 ( oz, + oz, ) inV (1.21)
Au; =0 ondV, (1.22)

On the other hand, in order to overcome the numerical difffccbncerning the incom-
pressibility as in limit analysis, we introduced a modifioatof Koiter's theorem. So we
have the following general kinematical shakedown criterio

1) Shakedown happens if the following inequality is satisfied:

//Ugéfjd‘/dt<//< (€i5) + = /{76 )dth (1.23a)
TJV

2) Shakedown cannot happen when the following inequalityshold

. 1.,
/T /V ofeldV dt > / / ( (€i5) 5/@5@%) dv dt (1.23b)

Whereag is the fictitious elastic stress corresponding to a comlanaidf external loads (a
set of variable load’(¢) and dead load ):

ol o aP(t) + Py (1.24)

whereq is a load multiplier. Correspondingly, we can decompq@énto two parts

E Ex EO

o =ao;"(t) + o5 (1.25)
The term1/2f f ké%dVdt is a penalty function. We would point out that shakedown is
a limit evolution of the body after a history of repeated lmgdbut not a state fixed in the
time. As it is shown by Koiter’s theorem, such situation vagipear if the applied loading

does not give more work than the dissipated energy in the Hadwyg the loading cycle.
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Starting from the above general shakedown criterion, weestgablish a kinematical upper
bound formula to determine the shakedown limit:

The actual shakedown load multiplieg is the smallest of multiplier set™ correspond-
ing to the sets of kinematically admissible velocity field

agp = mina™’ (1.26a)

1-
at = / / (\@k@ +§kéfi) dV dt — / / ol ¢;dV dt (1.26b)
TJV v

s.t. / / ol éydV dt =1 (1.26¢)
TJV
1 (0Aw; OAw;
Agij = = - Z) inv 1.26d
% 2 ( aSUj + 8:& ) I ( )
Au; =0 ondV, (1.26e)

1.4 Temperature-dependent yield stress

As long as thermal load exists, represented here as thetrass$ sthe octahedral shearing
limit k,, in fact, changes during the loading cycle. When considgettie yield stress of
material temperaturél|) -dependent, the upper bound property of shakedown salbgo
(1.26a) will not be able to be assured unless the dissipatiwetion D remain convex. To
achieve this convexity, we assume a convex yield functiomtheo — 7' space:

f = F(oy) — ko(T). (1.27)

When using von Mises criterior;(0;;) = 30207, ol is the stress deviatok, (T') =
o,(T)/+/3, ando,(T) is the yield stress of the material depending on the actuapée-
ature. Sincef'(o;;) is convex,o,(T) is required to be concave or linearized for an ap-
propriate upper bound statement [6], [20]. This conditicayrbe satisfied by many metal
and alloys for a rather wide range ©f[21]. However, there exists some situation where
o,(T) is convex. In this case, the solution obtained by the presethod is an approx-
imation instead of a strict upper bound. The error due todbigroximation is generally
small, because a lineat,(7") function is a good approximation in the interesting range of

T. Therefore, we use the following dissipation function:

D(E0 oty = [ ZeP el (1.28)
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with o}, = o,(T). As an approximation, the temperature-dependence of Yeungdu-
lus E and thermal extension coefficient may also be considered in the calculation of
elastic responsey;, although a theoretic proof is expected. In this case, thstielprop-
erty of material will have somewhat influence on shakedowrab®ur. This effect is not
considered in this work for simplicity. However, Borirat al. [6] pointed out that the
method represented by (1.26a) does not give a "proper upperdd when considering
temperature-dependent yield stress by the fact that sbakefdictora™ is inside the dissi-
pation function. Denoting’ as a nominal temperature fielo|(<7;, a;) is defined by (1.28)
but witho! = 7,(a*T). Due to this difficulty, they have developed a so-called iast
kinematic theorem [6], in which an additional "plastic ey rate” field conjugated with
T was introduced. This method opens a new numerical way athdiue finite element
implementation with this method has not yet be realized. élex, it suffers an incre-
ment of variables due to "plastic entropy rate” field. Altatimely in the present paper,
we use a simple strategy. Since the resolving of optimingtio26a) may be realized by
an iterative procedure;, (o 7") may be updated with the actual shakedown factor at every
iteration until final convergence. Therefore the difficuttgntioned in [6] can be overcome
in the range of the classical theorem. In comparison withhbkeretic method proposed by
Borino et al. [6], the present approach does not require to handle additiariables and

it is easy to be implemented in numerical calculations. Forenletails of the method, we
refer to [36].

1.5 Numerical methods of shakedown analysis

The time integral over the above shakedown formulae neeclapaimerical techniques
to work with a discretized time history. Two numerical methovere developed in our
work, which are briefly presented as follows. We refer to [385], [15] for the details of
the methods.

1.5.1 Separate Shakedown Limit method (SSL)

This approach finds separately two inadaptation factorsermmng the incremental plastic-
ity (ratchetting) and the alternating plasticity (plastitakedown), respectively. It is very
interesting to distinguish these two failure modes becauseany practical engineering
problems only the incremental plasticity (ratchettingjitiis used as a design parameter
and it is often not possible to design the structure in thetsttastic shakedown domain.

1.5.1.1 Incremental plasticity limit

To identify the ratchetting limit, a special numerical wagsmdeveloped to transform the
incremental plasticity analysis into an equivalent lirmadysis by the following formulae
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[37]
NG B
arp = mqm; w; (ky\/m + quBTDUBq) — ggq (1_29a)
with
NG
9= wB o™ (1.29¢)
i=1
NG NL
i=1 k=1
+ E _
ol i o (X)AE(X) >0
i { p, if oF(X)Ag(x) <0 (1.29¢)

where we define\é = B”g. This formula is completely similar to (1.12a) except that
the variable loading vector (1.29e) should be updated duhia optimization process. So
we have succeeded to transform the shakedown analysisnrequavalent limit analysis.
The method shows an advantage of having fewer variablegitmiap (independent of the
number of varying loads). When using a standard optiminataxle to solve this problem,
it may concern a minimization with a non-linear (or non-&lconstraint.

Remark 1

When we consider strain-hardening effect of the materiathgyabove for-
mulae,k, (or o,) may be replaced by the hardening strength of the material.
Consequently the incremental load factor is proportionahe chosen ulti-
mate stresg,,. However the obtained load limit may be unsafe due to the
possible geometrical effect. As engineering applicatibrs maybe simple
and approximate to use flow stregs of the material such that, < op < o,.

So a special consideration for strain hardening effect reegaly not neces-
sary in the incremental limit calculation unless the geoitet effect is also
considered.

Remark 2

When we consider the yield limit temperature-dependentor a;) should be
also updated according to (1.29e) for the thermal stresse®oonding to the
temperature field) and to the current load factor. Denofingndls, respec-
tively, the lower bound and upper bound of nominal tempeediield 7", there

are two possible values @& such that: (o, ,T) or ki (axT») to be chosen
at each Gauss point.
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1.5.1.2 Alternating plasticity limit

To identify the alternating plastic limit, one needs to pemni only several elastic calcula-
tions on all vertices of loading domain. We define a generakstresponse
ol = (i + ol (1.30)
k=1

whereaf’C is the elastic stress solution kfth nominal loadP; (including thermal loading)
and . .

N N M — My

Hy = % el = % (1.31)
The sign ofu,, should be decided to render maximum the value of von Misestifum £
The alternating plasticity limit can be represented as

. 1
aap = min

(1.32)

Remark 1
Eq. (1.32) states that the plastic fatigue limit is deterdiby the fact that any-
where in the structure, the maximum varying magnitude ohvedent fictitious
elastic stres&\o ., can not exceed two times the yield limit of the material.
Remark 2
The constant (or monotonic) loads have no influence on trstipfatigue limit
if these constant loads do not change the geometry and tregiedqroperty
Remark 3
Kinematical strain hardening has no influence on the altergalasticity limit
because it does not change the allowed stress variatiorhésther hand, the

alternating plasticity limit is proportional to the curtematerial strength for
an isotopic strain hardening material.

Remark 4

If the yield limit of material is considered temperaturgagdadent, (1.32) may
be represented in another simple form

olt 4 ol
=4 1.33a
o max(Ao,) ( )
or
20, 5y = WO (1.33b)
U= max(Aoe,) %= 2 '

whereo;! ando,? are the yield points corresponding to the actual tempezatur
at the beginning and at the end of the half-cycle.
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Remark 5

By the presence of the singularity at crack tips, the cracteadttures under
varying loads are always unsafe according to the strictredteng plasticity
criterion. In this case, we should consider, by means otdracmechanics,
the fatigue propagation of cracks and their lifetime in ggreondition. How-
ever, owing to the blunting phenomena at crack tips, theusangy of cracks
may reduce or vanish during the loading cycle. So in certéimsons, crack
growth may cease and the structure may still be safe in pbinew of shake-
down.

1.5.2 United Shakedown Limit method (USL)

This method finds directly the elastic shakedown limit (ikdhe smallest one of the incre-
mental plasticity limit and the alternating plasticity lin We consider a special loading
path consisting of all load vertices of the loading domaine Kinematical condition is sat-
isfied by the accumulated strain in a load cycle. Assuminvgriable loads withn = 2™
load vertices. The (elastic) shakedown limit may be founthigyfollowing minimization:

R 20,F [T armaak o K T T k Tk
agp =min Y Y w, \/(qe) B'DBY; + 7 (4;) B'D.BA: —gid; | (1.34a)
q

¢ k=1 i=1 \/g
NV NE
st ) (@h)'ak =1 (1.34b)
k e
NV
D ai=L.g (1.34c)
k=1
where
g = / BYaZdV (1.34d)

where@” andg! are the nodal displacement rate and load vector of elemétivieeto

P, load vertex, respectively. This formula is similar to thenfier one for limit analysis
but with increased number of variables. However, the o@tion size of (1.34a) may be
reduced with appreciate numerical technique, which wilpbesented in section 4 and 5.
We note also that yield stres%’“ depend on the temperature field (with respect to Gauss
pointi) and its variation (with respect to load domain vertgx

2 Regularization of plastic dissipation

Almost all algorithms of limit and shakedown analysis requinowledge of the gradient
of the objective function. However, the objective functismon-differential in the non-
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plastic region of structures where the plastic strain rat@shesz = Bg = 0. This major
numerical problem has been noted by many authors. In thieoeege will present some
approaches to overcome this difficulty.

2.1 Norton-Hoff-Friaa method

This method is developed by EDF [28] on the basis of the pres/igork of Casciaro in
1971, Hutulain 1976 [12] and Friad in 1979. The method is afsplied in [13]. It involves
using a viscous plastic material obeying Norton-Hoff cdostve relation, instead of the
original perfectly plastic one and replacing the dissiafunctionD? by the regularized
and differentiable functio?, :

1-m

Dy, = = —(Eiis)

m
2

s , withl <m <2 (2.1)
In practical calculation witlfCodeAsterdeveloped by EDF, one uses the regularizing pa-
rameteminstead ofn

1 1
or m= with 1 <n < oo (2.2)

m—1’ n

n =

whenm — 1, n — oo, it gives the original plastic dissipation function. So hvé finite
parametern (or m) the regularization functio;, is differentiable everywhere. By this
regularization method, the limit load solution is obtairgdan iterative calculation with a
sequence of increasing parameido find the limit corresponding te — oc. Specially,
the calculation can be stop at any iterative step and rdstantthe previous solution even
with an updated calculating parametefor m). This may speed up the convergence.

2.2 Viscous-plastic regularization method

This method was developed at ULg [25], [30]. It involves tree wf a fictitious linear
viscous-perfectly-plastic material instead of originakolt gives the perfectly plastic con-
dition when the fictitious Young’s modulus tends towardsnityi

The strain rate tensor is decomposed into two parts: lins@ous components); and
perfectly plastic ones]’.

af

i = Hijmow + BA (2.3a)
az’j
whereHZ-jkl is fictitious Hooke’s tensor, and
aO'ij
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if f<O
=0 . of . 2.3C
ﬁ if f =0 and 67'];0-” <0 ( )

f = 0 represents yield surface of the von Mises criterion.

For one-dimensional problem, the density of linear viseqeasfectly plastic dissipation
may be represented as

DW@yzga%—ﬁa%ngﬁg—ﬁ@mﬂ (2.4a)

with
B=0 |if |o| <o, (2.4b)
=1 |if |o| =0y, (2.4c)

whereF is the fictitious Young modulus representing a linear retatietween stress and
viscous strain rate. Introducing a dual yield limit in straate space,

. g
€y = Ey (2.5)
(2.4a) can be transformed into
up E 22 S 2 )2
D =3 (€2 — B(|e] — &,)7] (2.6a)
with
B=0 1if |g]<é, (2.6b)
B=1 |if |g]|>¢, (2.6¢)

Considering a general multiaxial stress state, the deositye fictitious linearly viscous-
perfectly plastic dissipation may be formulated in thedaling form:

. L. = . A
D" (g;5) = §(SijDijklgkl — B Dijrily) (2.7)

whereDijkl is the inverse of the fictitious viscous Hooke tensor. Thesstrdeviatorrg
and strain rate deviater; are defined as:

1 1
D . . . . .
Oi; = 0ij — Smlij 5 Sm = gUz‘z‘, €ij = Eij — §€m5i‘ y o Em = i
wheres,, is hydrostatic pressure ang, volume strain rate. The decomposition of the
strain rate deviator gives:
éij = €5t e, Em=¢p +eén. (2.8)
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Since the plastic deformation does not involve the chang®loime one has

P =0, ép=el, = %’” (2.9)
.o
= QGGU, €ij = e + 6 (2.10)

where k presents physically the fictitious volume modulus. Using’X2he density of
viscous-plastic dissipation becomes

1-
D = G(éyé5 — Berien) + §ké72n (2.11)
or .
D" = Gelél. + DP + éEéfn. (2.12)

Three terms in (2.12) represent viscous deviatoric, p#yf@tastic and viscous volume
strain dissipation, respectively. The von Mises critergowritten as the following function
of the stress deviator:

flel)=F(e])—-1<0 (2.13a)
where . )
Poff) = -/ (), Ralol)) = 5040} (2.13b)

It is possible to write yield the criterion in terms of theasir deviator:

g(éi5) = G(é;;) — 1 (2.14a)
with 1 .
G(e) = p Ja(€ij),  J2(éi5) = ééijéi_j (2.14Db)
Yy
and ¢, = ky (2.14¢)
RATe '

¢, is dual to plastic yield limit, or k,. Then we can define the internal dissipation density
depending on the strain state at any point of the structure:

o If \/J2(é;5) < ep, itis in fictitious linearly-viscous state
_ 1-
D"(éy;) = 2G Jo(éy5) + §kéfn. (2.15)

o If \/J2(é;5) > e,, the plastic deformation occurs. By the normality law, oas:h

_0f _ o0
” 80 2k2

(2.16)
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D —~ . .p —~ - ~ Xo_zlj)
Uij = QG(GZ‘j - el-j) = 2G62‘j -G ) (217)
9 _

1+3¢

Substituting (2.18) into (2.14a), we express the yielditegesin term of total strain rate
deviator:

This gives the plastic intensity:

A =2k, {, [ Ja(éi) — 2%} > 0. (2.20)

It is really equal to the plastic dissipation related to theoimpressible plastic strain rate.
In fact, according to the definition of plastic dissipatiarg have (2.14a)

DP = gyét. = AaDa— =\ =\ (2.21)

5= %0 5D
)

Therefore by adding the linear viscous and fictitious volwstrain energy as (2.12), we
may write the total internal dissipation density as follows

ople S R [ . Ky 1.
D p(eija em) =A + ﬁ + 5]{36371 = 2]{31) { Jg(eij) - E} + 5](?672” (222)
whenE — oo, G — oo but we assumeé remain finite, (2.22) reaches the following limit:

1-
lm  DY(éi,ém) = 2kor/ (i) + §ké; (2.23)

E,G—o

This procedure leads to the modified Markov functional inctional in Section 1.2 The
total internal dissipation is established by assemblirgy @il finite elements.

W, =Y wD". (2.24)

It is obvious that the gradient of the regularized objechiwrection may always be obtained
in both the plastic and the fictitious viscous regions.
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2.3 Smooth regularization method

This simple method has been applied by many authors, for gbeafh]-[3], [8],[38]-[39]

etc., also adopted in our work. It concerns using the hyperbpproximation procedure:

a small real positive numberas a smoothing parameter is introduced in the dissipation
function. It leads to a perturbed objective function:

D? =1/q"B"DBq + 6 (2.25)

It is differential everywhere foe # 0 and remains convex. This method is simple and
easy to be implemented. However, a suitable choice isfsometimes important to have
real optimization solution of the original problem and hawgood convergence, especially
for a Newton type algorithm. Andersen [1] used a Newton bamethod to consides

as a variable of the optimization procedure. As a simpleexisa we use a decreasing
e sequence depending on the reduction of limit multiptier Defining i as the current
iteration, the following relation may be used:

ol — of!

5= AmE iy < 1 (2.26b)
=61 y>1 (2.26¢)

wherem is a calculating parameter. Generally we use: m < 2. When using the direct
iteration method (see section 3.1), the regularizatioreréopmed only in the rigid region.

3 Optimization algorithm of limit and
incremental plasticity analyses

It is shown in section 1 that limit and shakedown load findiogaerns a standard min-
imization with non-linear objective function and linearnstraints. To solve this opti-
mization problem, several methods are developed and apjplieur work such that 1)
a reduced-gradient algorithm (due to Wolfe, 1962) in coajiom with a quasi-Newton
algorithm (due to Davidon, 1959); 2) direct iteration meth{dlewton-Raphson type al-
gorithm) to transform the optimization into a series of dnelastic-like calculations, 3)
Newton-penalty method consisting of Newton’s reducingction and a linear research;
4) Dual optimization method considering the duality of istaind kinematic formulation.
The first method involves applying of a standard optimizatode MINOS [23]; Methods
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2-4 were developed specially for the present applicatiéisnethods concern finding a
reducing direction and performing an iterative calculatio

In this chapter, we discuss mainly method 2 (direct Newtapti&on algorithm) and method
3 (Newton-penalty algorithm). These two methods may be eoiently used limit or in-
cremental shakedown (ratchetting) analyses. As showrctiosel.5.1 the latter has been
transformed into an equivalent limit analysis. Method 4acalgorithm) will be presented
in section 5. More details were given in [16], [37].

3.1 Newton-Raphson iteration method

3.1.1 Upper bound estimation

Starting from (1.19a), we transform it into a non-constrajtimization problem by using
Lagrange multiplien\

NG
1_
LZEZW(wa%mq+§MF§D£{)—£q—M¢ﬁ—m (3.1)

Its optimization condition is

4’ B"DBg

T .
Z w; (ﬂ - k:BTDqu> =\J+0, (3.2)
g'qg=1 (3.3)

Where the regularization described in section 2 should péexpto avoid the singularity
in rigid region of the structure. Since the functional (3 yjuadratic, we, according to
the suggestion of Yang [38] and Zhaagal [39], use the standard finite element iterative
method to change (3.2) into the following iteration (frenton + 1):

B'DB . .
> wi———— + wkB"D,B | 4, = \10+ G (3.4)
i 4/q.B"DBq,
It may be written in a simple form
Knlyp1 = An+19+ 9o (3.5)

This is a classical linear system whéte = K ,,(q,,) is supposed constant for current 1
iteration. To resolve (3.5), we decompose the nodal vel@altution into two parts:

Gni1 = Anrrly + 4y (3.6)
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with
q, =K,'g (3.7)
q; = K;lgo (3.8)

By normalization condition (3.3)g”¢,,,, = 1, we can determine the current Lagrange
multiplier as:

1 .
Ang1 = 97q (1 - gTqII) : (3.9)

1
So an upper bound estimation of limit load multiplier is

iy = Z wi\/qurlBTDBan - ggqn—i—l (3.10)

Then we update the matrkk,, with the new velocity solution to carry out next step calcu-
lation. Such an iterative process described as above pesadusequence of load multiplier
{«a;''}, a sequence of Lagrangian multipligk,,} and a sequence of nodal velocity arrays
{qn+1}. It can be proved that all of these sequences converge withéi In fact, by the
convexity of objective function (1.19a), the optimizatisolution of (3.1) or (3.2) exists
and the minimization of limit load multipliers is uniquegi.

lim ot =a® > af (3.11)
and
lim g, = ¢ (3.12)

Moreover in order to prove the convergence #f }, we do a point multiplication by, ,
for the two sides of (3.4). By normalization condition (3.8 have:

.T T .
B DB —
N = 3w, 220 T, BTD,BA,, | ~ Gl (3.13)
; 4787 DB,

Now we need to prove that the second term is small enough tgrimeed in comparison
with the other terms. Let us consider the following minintiaa concerning the volume
strain rate:
min » w;q"B'D,Bg (3.14a)
1 %

sit. g'g=1 (3.14b)

By taking the same procedure as above, this problem can bsfdraned into a linear
system:

> w,B"D,BG = g (3.15a)
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or
K, = \g (3.15b)

Since matrixD; ! is singular sa< ;! is also. To overcome this difficulty, we add a small
projection: B B
(K, + K/k)q = Ag (3.16)

wherek is large penalty function coefficient. From the property odlgem (3.14a), the
solution of (3.16) is approximately incompressible. Mareoby the similarity between
(3.16) and (3.4), we know that the solution of (3.4) in evegyative calculation is also
approximately incompressible. That is, we hayex 0 at every iteration step. On the other
hand we can prove that the second term in (3.4) representsxapyately a hyperstatic
pressure:

- _ 1

ké;; = kB"D,Bq,,; ~ S (3.17)
So we have B B

kéy, = kd,,,B"D,Bd, ., ~ 0 (3.18)

By neglecting the second term in (3.13) and considering2j3ahd comparing with (3.10),
we have
lim A\, =A=a". (3.19)

Our calculating practice shows that at least in the caseowitiead load?, ), is also an
upper bound of the limit load multiplier and it has a conveigea little better than;!.

3.1.2 Lower bound estimation

The method was proposed by Zhang and Lu [39] for shell-typecgires where the in-
compressibility condition can be satisfied by usual finienent discretization. We have
extended this method for a general case as follows. Accgtdithe lower bound theorem
of Hill, a lower bound estimation of the limit load can be fauby any static stress field
that does not violate anywhere the plastic admissible ¢mmdfyield criterion). Now we
examine (3.4) that represents in fact a static equilibrig@twieen internal stress term and
external load because we can rewrite (3.4) into the follgviorm:

Z wiB o1 = N1+ Gy (3.20)
On+1 = Spt1 + Spnt1 (3.21)
wheres, 1, S,,+1 are the equivalent stress deviator and hyperstatic presdur+1 it-

eration defined by (3.4), respectively. For the conveniesfcealculation, we write the
following equilibrium relations

NG
Z wiB (S + S,1) =9 (3.22)
i=1
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NG
Z w;BT (S + Snrr) = 0y (3.23)
i=1
where DB .
Sr = —qI, Srr = ¢7 (3.24)
\/4,B"DBq, 4,B"DBq,
Shr = ]_ﬂDquI, Sl = ]%DUBQII (325)

They correspond to solutions (3.6-3.8). It is well knownttiie hyperstatic pressure does
not contribute the plasticity criterion, it is not necesstar calculate (3.25) for the present
lower bound estimation. According to the static theoremhaee a lower bound at every
iteration step:

Qg = z‘leizlvnc Qi1 (3.26)
s.t. f(()é;n_’_lS[ -+ S[[) <0 (327)

where f represents the von Mises criterion which can be writtes’@ 's — 1 = 0. So
for the present application we have

(i lr + QU)T(BTDB)i(a;,nHQI +4r7) = hin (3.28)
Defining:
hin = G, (B"DB),q, (3.29)
z =d; (B"DB);4; (3.30)
y = §; (B"DB)q; (3.31)
zZ= Q?I(BTDB)qu (3.32)

The solution of (3.28) at any integral point is

_ . \/y2+x(hl,n_z)_y

[ =
1
,n+ T

(3.33)

The lower bound of the structure is found by using (3.26). sTjtriocedure produces a
sequence of load multipliefa;; }. Since we generally check the yield criterion only at
integration points so the obtained solution is only a quaser bound. Now we prove the
convergence of«,, }. Considering at iteration step+ 1, from (3.6) and (3.29)-(3.32), one
has

himg1 = Gpy1(B'DB)G, 1 = A2y @ + 201y + 2 (3.34)

Solving this equation, one gets

\/y2 +2(hips1 —2) —y
x

(3.35)

)\z’,nJrl =
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Since the velocity field converges according to (3.12), caee h

lim Ay — Ajnsr) =0 (3.36)

n—oo

Egs. (3.19), (3.33) and (3.35)-(3.36) lead to

nlirglooz: = nh_}rrgo An = nh_}rrgo a, = ar. (3.37)
This shows that upper bound and lower bounds, as well as theanhge multiplier have
identical limiting value. Therefore, the obtained solugan limit are all theoretically
exact. Note that the above lower bound analysis needs toriedcaut only in the plastic
region of the structure. If we examine the plastic admigsdadndition passing over all
possible dangerous points of the structure (for exampléerstirface, corners and other
stress singular points), the calculating error of the lolaernd can be reduced.

3.2 Newton-penalty method

3.2.1 Newton’'s decent direction

It is well known that when the gradient and Hessian matrixhef dbjective function can
be given, Newton’s optimization procedure can be used thtegenerally a rapid conver-
gence rate. For this sake, we use the penalty method to dramgifie constrained problem
(1.19a) into an unconstrained one:
min W (q) (3.38a)
q

with

NG >
WG =D w (\/qTBTDBq + §qBTDUBq) +

wherek, fi are penalty parameters. The Newton method consists ofetagidn

(@'a-1°-gyq  (3.38b)

N |

4n41 = q, + Pnd, (3.39)

where ®,, is iteration step size that will be discussed latéy; is the Newton’s decent
direction forn + 1 iteration:
d, = —-H.'G, (3.40)

with gradient vectofG,,

B”DB( _
G,=)» w | ——==+kB"D,Bq, | +7a9(g"g, - 1) -9 (3.41)
; \/6,B"DBa, ( e

108



Yan A. M., Khoi V. D., Nguyen D. H.

with Hessian matrid,,
— =+ kB'D,B | + g’y (3.42)
= \\/¢'B"DBg, /(¢’B"DBY,)

Using the definition oK,, by (3.5), the gradient vector and Hessian matriXiéfcan be
written as

B”DB 1'BTDB¢
H, — Z ws g, 9,

G, = K,a, + 19— Gy (3.43)
H, =K, +/g9"g (3.44)
with
u =i, — 1) (3.45)
K, =K, +K. (3.46)
K,==%"w, 9,8’ DB, (3.47)
= \/(¢"B"DBG,)’

As in direct iteration method, the gradient and Hessiant exiky when the objective func-
tion at the Gauss point is strictly positive, this means ghastic flow occurs at this point.
So the smooth regularization method presented in sectiis 2sed to overcome this ob-
stacle. From the point of view of numeric calculation, thiegkation involving in (3.40) is
also similar as a linear elastic calculation. However, &adiifty is encountered: although
theK,,, askK,, has same form as elastic stiffening matrix, Hessian méatrjxdoes not,
due to the last term in (3.44). In some loading casésmay be a almost-full symmet-
ric matrix. The solving the inverse d,, in a usual way may lead to high calculating
cost. To overcome this difficulty, we apply a Sherman-MamisNoodbury formula [4] to
transform (3.40) into X X

<K K~ T
+Kn 0K O (3.48)
1+ pg"K, g
So only one inverse of matriX,, and some simple additional calculations (such F(L?al[g
andK;lG are needed. This is still approximately equivalent to adirelastic-like analy-
sis. Specially when Hessian matiik, or K,, appears singular, we may simply replace the
Newton’s decent directiod,, by Cauchy’s one for this iteration, that is to tatkke= —G,,.

When the iteration step-siZi, is taken as 1 (this generally happens when the optimal point
will be found in this iteration). The method is referred toths pure form of Newton’s
method. This means that the objective function near optpoait may be approximated
well by a quadratic function. However, this is not a geneealec It should be pointed out
that the present objective function is strongly non-lin@ad has complex form (see after
the discussion in line search method). So we need to takeeaséarch to increase the
calculating efficiency.
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3.2.2 Line search

The line search plays a important role in reducing the coatpart time. A line search pro-
cedure should be suitable to the special characteristitgedtinction to be minimized, and
if possible an exact line search procedure should be castiedFor the present problem,
the line search takes the following form of:

with

I
S.M

w6, + 0d,)787DB(q, + 0d,) + 3

+

DO | F

(9, + @d,,)"'B'D,B(q,, + ®d,,)

+ 5(d"(@, +2d,) - 1)° - g7 (@, + 2d,). (3.50)

where a small positive real valueis used to avoid the singularity, see section 2.2. Fig.
3.1 gives an example of line search functipn Since the first and second derivatives of
the regularized function can be found, an ordinal Newtoré&thad may be used in this
one-dimensional problem. However, if considering the spgwroperty of the function,
we could find a more effective way. Particularly for the pragaoblem, we find that the
following function may be used to well approximate the aragjifunction, especially when
the dead load is absent.

o =+ap>+bp+c (3.51)
wherea, b, ¢ are constant coefficients to be determined. This is difteiremm Newton’s
method that uses a quadratic one. However, it has the sanmabgoint and similar
property as Newton’s method when the current solution is teethe optimal point. Now
we derive the iterative formula @f. Starting fromk-th iteration with current solutio®,,,
the first and second derivatives of function (3.51) are devid:

o QGCI)k + b
2¢/a®? + bd? + ¢
yo a (2a®y, + b)*
Va2 + @2 + ¢ 4y/(a®? + bp? + ¢)?
Suppose that the original function (3.50), and its first aexbad derivatives have current
values asfy, gx, hy. By definingq, = q,, + ®xd,,, we have

@ (3.52)

© (3.53)

) ) k. . T .
fr=w; {\/qZ(BTDB)qk +0+ 50 (B'DyB)G, | + g (g"a, —1)" — gla, (3.54)

(2
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Figure 3.1: The original function with = 0 and the regularized function with# 0

j: (B'DB)d,, - T
g =Y _wi 9.6 DB, f47(87D,B)d, | + i(g"d, — 1)g"d — gl d,
~ /4l (BTDB)g, +

(3.55)
(BT 47(BTDB)d,,) _
i \/q£<BTDB)qk +0 \/(Qf(BTDB)qk +9)
+ p(g'd,)? (3.56)

The equality between replacing functiofi. (g, hx) and original function (3.54)-(3.56)
leads to:

a= fihe + gi (3.57)

The optimal point of the replacing function is determinedivy condition

B Jr9k
fli + g7
This is the deduced iterative formula of step-size. Spieiahen the current point is very

closing to the optimal pointy, — 0, Sog; may be neglected in comparison with term
frhe, (3.59) becomes:

D1 = Py (3.59)

Bpyy = Bp, — %. (3.60)
k
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Therefore, we recover the original Newton’s iterative fatenin the neighbourhood of
the optimal point. It is shown by numerical tests that (3.E2)ds to generally a better
convergence than (3.60) for the present problem.

However, we sometimes encounter another difficulty: thection to be minimized be-
haves nearly piece-wise linearity (cf. Fig. 3.1), which times could not be well sim-
ulated even by the proposed the replacing function (3.51y 32 shows a numerical
example to illustrate this situation. Starting from poir2 #at is closer to the optimal
point P than another point A1, however, its iterative solutP2 is less better than P1 from
Al. That means that sometimes there may not be a convergesolin order to avoid this
situation, we use an alternative method to speed the coenweeg Seeing Fig 3.3, starting
from the k iteration A, ®y, fx, gx), We obtain thek + 1 solution Ay 1 (Pri1, frr1, Grr1)
by (3.59). If a gradient condition defined lgyg,.1 < 0 is satisfied, we perform a linear
intersection as (3.61) to obtain point R®)_ ,, f7.,, g;,) thatis better thanl; and A ;.

b e = e Pege — Prrigrn

k1 = (3.61)
9k — Gk+1
55
5
4.5
4
Function to be minimized
35+ e
f 3r Replacing functions\ ]
25+ > s
P1 . ,
2 B /‘/ —
‘/‘
15 R4 J
1 r A2 "\. / s ’ =
P AT A
0.5 | | |
-1 -0.5 0 0.5 (pk 1

Figure 3.2: Approximation by the replacing functions

Therefore, after each iteration, we could guarantee tamhataimproved solution. Gener-
ally only one such linear intersection is enough becausealditianal liner intersection to
get P’2 may not be better than P’1. The calculating practievs that with this comple-
mentary line-intersection, the line search becomes mdéeeteafe. On the other hand, line
search speeds the optimization procedure. The calculatibne search represents less
than 10% of total calculation. So approximately, a globadation is equivalent to about
1.1 times a linear-elastic like calculation.
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Figure 3.3: Linear intersection in line search

3.3 Direct iteration and Newton method

In Sections 3.1 and 3.2 above, we give a complete descripfittmo optimization methods
developed specially for the present kinematical limit ahdkedown analysis. Although
two methods are independently developed, we hope to finde¢lsential relation in order
to understand well the convergence property of solutions: this sake, we use a La-
grange’s function as (3.1) used for the direct iterationhodtinstead of the penalty form
(3.14a). In this case, by using the previous definition (I323), we have the first and
second derivatives of the function

G, =K,0q, — A\g—g, (3.62)

H, =K, +K/, (3.63)

By neglectingK’, (since it is less important tha,,) and taking a constant step sike= 1,
we have the following classical Newton'’s iteration formula

Op1 =G, +dy (3.64)
where
d, =K, 'G, = -0, + K, (\g+ gy) (3.65)
Substituting (3.65) into (3.64), we get:
Gt = K1 (AG + Qo) (3.66)
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where Lagrange multipliek = A, 1, determined by condition (3.3), so equation (3.66) is
just the iterative formula of the direct iteration methodhefefore, we have demonstrated
that the direct iteration method may be explained as a siiegland modified form of
Newton-penalty method in two ways 1) a simplified Newton e:cirection and a constant
step-size are adopted; 2) Lagrange method, instead of tmatpenethod, is used and
Lagrange multiplier) is accurately determined by the normalization conditioreath
iteration. Generally speaking, the Newton-penalty metbads to faster converge solution
while the direct iteration method is simpler and also a gomaverge rate (although it is
a little slower than the Newton-penalty method). Specialg direct iteration method
may provide at every iteration, besides a upper bound, arlesteénation of the limit load,
which is very interesting and sometimes important. In comgpa with Newton’s penalty
method, the direct iteration method is numerically morélsta

4 A kinematic shakedown algorithm

Specially for the united shakedown limit method (USL), wealep a numerical technique,
already proposed by Zhang [40] for shell type problems andntty by Carvelli et al. [7]
for general structures. We in this chapter give an indepsindemonstration. A lower
bound shakedown limit is also formulated as a by-producppleu bound analysis.

4.1 Optimization condition of shakedown

Considering the modified Koiter’s theorem that the kinematindition is satisfied after a
loading cycle (representing here by the vertices of loadioigain), we can rewrite (1.34)
into the following form by taking the strain rate at each lmgdvertex as the principal
variables.

NG NV i T
. A 20-]3; .TD. A ETD - . T E 41
agp = mlnz sz Wl e.Dé.; + 5 €hiDulri — €070 (4.1a)

NV
st ) &y =B Vi=1,NG (4.1b)
k=1

NG NV

Z Z wenol =1 (4.1c)

i=1 k=1
whereé,; is the strain rate vector at thith Gauss point, related to tt¢h loading vertex.

g is the nodal velocity vector after a cycle of loadingy, o%, are the linear elastic stress
vectors atith Gauss point due to, respectively, the dead load andtthéoading vertex.
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Using Lagrange multipliek andp,,i = 1,... NG, the non-constrained Lagrange function

is written as
NG NV k:
L<eklu q7 )\7 pz = Z Z W; ( \/ ekzDekl + zekzD ekl ezzo-0E>
NG NV NG NV
(Z Z wieL ok — ) - Z w;p; <Z € — Biq> (4.2)
i=1 k=1

i=1 k=1
=1 k=1

wherep, is, in physical, the Gauss-point related residual stres®veThe KKT conditions
for (4.2) are written as follows:

(with respect tag;)

NG NV

NG NV 255 De
ki 7 .
ZZwi \/zi + kD&, — oy —)\Zszakl NVZprZ—O
i=1 k=1 ekZDe]m i=1 k=1
4.3)
(with respect taj)
> wBlp,=0. (4.4)

The derivation tgy, and\ recoveries (4.1b) and (4.1c), respectively. Eq.(4.4) shaweelf-
equilibrium relation of residual stress. It can be proveat {4.4) represents also a static
equilibrium at each loading vertex. In fact, if we write (}iB any Gauss point and any
loading vertex, we get

e De,CZ

Substituting (4.5) into (4.4), we obtain

O.kl' BTDe B
sz b i 1 kBID, & sz i (A\of 4 ol) (4.6)
V3 e,“De,m

The left-hand terms of (4.6) represent the internal stressatbr and hydrostatic stress,
which are in equilibrium with the right-hand terms represan the applied force ak
loading vertex and the dead loads. It is known from the defimiof (4.2)-(4.4) that the
residual stresp, should be independent of the loading vertex (cycle time)weéier this
can be attained only when the optimal field is found. So bycstatations (4.6) or (4.5)
as well as the plastic admissible condition, we can give atewer bound estimation of
shakedown limit. For the simplicity, we temporarily do nansider the second term of
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the right hand side of (4.5) since the incompressibilityditan is enforced by the penalty
method. From (4.5) we have

V3

€ = A
ki
20y

D '\/&.De& (p; + o) + F\/i (Aop) (4.7)
Yy

By using the compatibility condition (4.1b) we can write

_ NV =—1 T N - E
D ‘ D "4/3&,Déioy;
p, = B, — A 5 it (4.8)
% \/3¢L.Déy; =1 Ty

9gki
k=1 Y

This shows that residual strepsis independent of loading vertex (time). Inserting (4.8)
in (4.7) we get back a recursive formula for strain rate devia

\/ €. Déy
TR NV D7 /36l Déy (o f — oF)
o . hi = Chi\U L hi
% A/ e:,; Dé,; h=1 v

ki
g
h=1 Y

i =

In the case of without thermal loading or the yield limit isgerature-independent, (4.9)
may be simplified into:

T N - NV =—1 TN - E E
) \/ €.;.Déx; ) D \/ 36,,D&i(oy; — o4)
O A B.gq, + A Z 20§i (4.10)
> " \/&Déy h=1
h=1

NV
This is similar to a formula proposed by Zhang [40]. Hexes > &,; = B;q, andé;, are

k=1
the cycle strain rate (deviator) corresponding to nodabaig} (after a cycle of loading)
and the strain rate (deviator) fatoading vertex, respectively. Now we substitute (4.8) into
(4.4) to obtain a new optimal condition

NG NG NV SéZ-Dék-
TR LT T B
ZwiBi DB;q ZMZWBZ‘ Oki NG
=1 = =L ke . ~> wBlal (4.11)
NV 38%; Dé.; NV A/ 38%; De]m i=1
DT > oo
k=1 Y k=1 Y
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If the yield limit of material is independent of loading vext(or temperature) we define
D; = (20! /V/3)?D, (4.11) is simplified into

NG NG NV

T . AP T FE
> wBlDBg Y w;» yJehDaBlor
= k=1

= =\ Y wBlof (4.12)
Z \/€l.Déy; Z \/el.Déy; =1
k=1 k=1

Based on the above analysis, we can establish an iteragionithaim for dual shakedown
limits (upper bound and lower bound).

4.2 Upper bound estimation

Starting fromn iteration with€;; known, we look for the solution by + 1 iteration

ui B”D;B; NG
sz’ NV — + Z w;kB] D,B; Qi1 = Mt10, + 9o (4.13)

D DEV(CHEICH R

where

NG NV
9 =) v > VI(€,)7Di(€,)ar; (4.14)

=)V (6)TDi(E)
k=1

NG
0y = Z wz‘Bz'O'éEi (4.15)
i=1

This iteration algorithm is similar as a method proposed hgnf) [40]. Eq. (4.13) rep-
resents an equilibrium relation between equivalent ealdoad and equivalent internal
stress field. Since it is completely similar to (3.2), we carf@rm a calculating procedure
similar to the direct iteration method in limit analysisf(section 2.1):

ann+1 = )‘n+1gn + 0y (4-16)
with ve Ve
BI'D,B,; _
K, = § Wi - § w;kB! D,B; (4.17)

Z:1 =1 =1 Z:1
Z (€::)"D(€;;)
k=1
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For solving it, we decompose the nodal velocity solution imto parts:

qn+1 = )‘n+1QI + QH (4-18)

with
a, =K., 'g (4.19)
a;, =K, 'g, (4.20)

The corresponding strain vectorskabading vertex
eZzH = )\n-i—l (eZerl)] + (ézzrl)[[ (421)

withk =1, NV

(& )1 =NV Ay + Z i V() Di(&;) (o —ow) | (4.22)
> V(&)TD(E;) =

h=1

(€::)"Di (&)
NV
> V(&)TD(&;)
h=1
By normalization condition (4.12): we can determine theeuor Lagrangian multiplier as:

1-3" 3w, &), ok,

Aps1 = —s (4.24)

(ézzrl)ll -

Bid,,, k=1,NV (4.23)

So an upper bound estimation of the shakedown limit at theenuiteration:

NG NV

Qpyy = Z Z wiy/ ()" Diler;) — qgﬂgo (4.25)

1=1 k=1

Then we update the matrix,, andg, with the new velocity solution to carry out next
step calculation. As described in section 3.1 in the casinif &nalysis, such an iterative
process described as above produces a sequence of loaglientiy, }, a sequence of
Lagrangian multiplied \,,}, a sequence of nodal velocity array,} and a sequence of
Gauss point-Loading vertex strain rate arrdgs; }. All of these sequences converge to
their limits.

lim of = ady > asp (4.26)

n—oo

118



Yan A. M., Khoi V. D., Nguyen D. H.

and
lim g, = q (4.27)
lim &, = & (4.28)
lim A, = A = ad, (4.29)

n—oo

Generally,\, is also an upper bound of the limit load multiplier and it ha®avergence a
little better thamy,.

4.3 Lower bound estimation

As stated above, (4.8) give a time-independent residuedstiield and (4.13) represents
the equilibrium relation for an equivalent load that ch&gastic the loading domain. Ac-
cording to Melan’s static shakedown theorem, cf. [24], [Z6lower bound estimation of
the shakedown load can be found by any residual stress figégbendent of time adding
to elastic stress and leading to the plastic admissiblesfreld that does not violate any-
where plastic yield criterion. So we can give a lower bourtdretion of shakedown limit
by following analysis. We rewrite (4.8) in iterative form as

pitt = pitt—oy (4.30)

D. NV
= Z B.ay ™ — A D (€1)TDi(&) o
3 V(&)

k=1

Therefore, we can obtain a lower bound estimation of shakadmnit by the following
calculation
= 11?04;;1 i=1NG k=1NV (4.31)

n+
st flafHer +p) <0 (4.32)
wheref represents the von Mises criterion which can be writtea 8o — 1 = 0.

Alternatively we can perform another procedure for the lola@ind estimation by consid-
ering the equilibrium relation represented by (4.13) foeguivalent load that characteris-
tic the loading domain. We rewrite (4.13) into

NG
> wiB{ o = A, + (4.33)
i=1

ot =8 s (4.34)
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wheres;;™, sfjn* .. are the current(+ 1) equivalent stress deviator and hyperstatic pressure-
like vector related t& loading vertex, respectively. For the convenience of datan, we
write the following equilibrium relations

NG
> wBl (s +5u1) =9, (4.35)
=1
NG
Z wiB] (Si1 + Snir) = Gy (4.36)
=1
where D.B.¢ D.B.¢
St = ‘niTin —, Sir = .ni ;qH — (4.37)
v (G:) " Di(G;) v (G:) " Di (G;)
Shr = %DvBiqb Shir = ]_ﬁDvBinI (438)

It is well known that only stress deviator related to incoegsible strain rate is concerned
in the plasticity criterion, so only (3.24) is performed foe present lower bound estima-
tion. According to the static theorem, we have a lower bourevery iteration step:

Q= ilei]r\;lG Qi (4.39)
S.t. f(Ozi_,nJrlS] + S[[) <0 (440)

Since von Mises criterion can be writtendd;s — 1 = 0, for the present application we
have

(@ i1Gr + qII>T(BTDB)i(a;,n+1QI +4;) =0, (4.41)
Defining: "
hin =Y \/(€:)7Di(&)) (4.42)
k=1
z =d; (B"DB);4; (4.43)
y =47 (B"DB),4y, (4.44)
2= §;;(B"DB)q; (4.45)

The solution of (4.38) at any integral point is

) \/y2+$(hin—z) —y
Ay = ) (4.46)

The lower bound of the structure is found by using (4.39).sTgrocedure also produces
a sequence of load multipligky,, }. We do not yet find a proof for the convergence for
the present lower bound solution. However, according toaksltheorem and by duality
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between Melan’s theorem and Koiter’s theorem, (4.39) ghgiue correct lower bound.
On the other hand, (4.46) may give an approximate estimdtvefr bound, by which we
need not carry out an examination passing over all loadingres.

5 A new dual shakedown analysis

In the above development, we used kinematical method ors lodidfoiter’'s kinematic
theorem. The shakedown solution is found in principal alandecreasing direction (of
upper bounds) although the lower bounds may be also givehéplitained static fields
during the process of optimization. On the other hand, thgcsshakedown analysis is
developed by other partners basing on Melan’s static stoaketheorem. In this case, the
shakedown solution is found along an increasing directodtofver bounds)

However, up to now by all these existing shakedown analyisesiuality of the static lower
bound and the kinematic upper bound have not been pragtieséld in numerical calcu-
lations. The optimization variables are either purelyistat purely kinematic. This fact
explains the difficulty in further improvement of the calatihg efficiency. On the other
hand, although Newton’s method has shown its high efficiaméynit analysis, it was not
applied effectively in shakedown analysis. The applicatbthe duality was explored in
limit analysis by Zouairet al. (1993) [41] in the case where the plastic incompressibility
condition could be automatically satisfied with the useddieiements. Recently, Ander-
sonet al. (2000) [3] developed an excellent analysis for minimizinguan of Euclidean
norms by a primal-dual interior-point method. They havevamdhat the application of
the duality combining with Newton’s method may lead to vecgwrate results in limit
analysis with high efficiency. The present work constittesew development along this
direction in shakedown analysis with variable loading. #ynbe thought an improvement
and development of the methods presented in the previoyserisa

5.1 Normalized kinematic shakedown formulae

In this new dual analysis, we rewrite the upper bound of stiak@ theorem in the follow-
ing normalized form, which is in fact equivalent to that icsen 1.2:

ot =min 3 f, Dr(EsIV “
kelp
(A= 28 (t
k‘EID
u; OAu; . .
cr. ) Be=t(BEa ) inv (9 (5.1)
Au; =0 ondv, (d)
2 fvo-g(x7pl?)éfjdvzl (e)
\ kelp
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wherea™ denotes the shakedown load factoiis the displacement at poirtof V, éfj is
the corresponding strain rate at load vertexA¢;; is the plastic strain increment after a
loading cycle;l; is the set of all load vertices ard? (ef]) denotes the plastic dissipation
rate. By using von Mises’ yield criterion, the discretizeatrh of (5.1) by means of the
finite element method can be expressed as following:

m NG
at =min 3> 3 2wk, /€L Déy + 3
k=1i=1

S~ & = Big Vi=1,NG
P (5.2)
st: J Dyéy =0 Vi=1 NG

m NG T &
DD wigyog =1
k=1i=1

whereé;;,, o denote the vector of deformation rate and vector of the ifictit elastic
stress at Gauss poinhand load vertex; g is the nodal displacement vect&;, is the strain
matrix; m = 2", n is the number of varying load${ G denotes the total number of Gauss
points of the whole structure with integration weight at Gauss point, ¢, is a small
parameter of regularization.

5.2 Duality

By restricting ourselves to a polyhedral form of load domame show in this section that
the static lower bound based on Melan’s theorem is exaatlyltlal form of the kinematic
upper bound (5.2). For the sake of simplicity, let us rewttite upper bound limit (5.2) in
a simpler form by setting:

e The new strain rate vectey, (the dot mark denoting time derivative has been omitted
for simplicity):

e = w;D?gy, (5.3)
e The new fictitious elastic stress fidig:

tyy = D%k (5.4)
e The new deformation matrii;:

B; = w;D'/?B, (5.5)

In the above definitio®'/? andD~'/? are symmetric matrices (of the siBex 6 in the
three dimensional case) such that:

D-1/2 — (D1/2)*1

D= D1/2D1/2 (56)
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With these definitions, the objective function in (5.2) beas:

m NG m NG

ZZ\/Qwikv\/ kDezk+eO V2k, ZZ\/ elei +¢e? (5.7)

k=1 i=1 k=1 =1

In the formulation (5.7)s? is a small positive number suitably chosen to avoid the dargu
ity of the objective function. By substituting (5.3)-(5.iAfo (5.2) one obtains a simplified
version for upper bound of shakedown limit:

m NG
ot =min 2k, 3 3 \/ehei + €2 (a)
k=1i=1
% — Biq =  =1,N
s.t: sD,€r =0 Vi=1,NG,Vk=1,m (c)
NG m
> > et —1=0 (d)
i=1 k=1

where factor 1/3 is added in (5.8c) for a technical reasons Kimematic formulation is
called henceforth the modified kinematic formulation.

Andersenet al. [3] have found that in case of limit analysis there exists al dorm for
(5.8), while considering a problem of minimizing a sum of kdean norms. A general-
ization for shakedown analysis is presented hereafteugrthe following propositions:
Proposition 1:

If there exists a finite solution™ for the kinematic shakedown load multiplier (5.8) and if
e? = 0 thena ™ has its dual form as:

a7 = max o
Vik B,
17k + B; + tiwadl| < V2k, (a) (5.9)
s.t: NG
; B?ﬁik =0 (b)
having no gap tax™ where:|| - || denotes Euclidean vector norm.

Proof:

By settings? = 0, let us write the Lagrange dual function of (5.8) as:
m m 1

Z{Z\/_k \/ EEir — ng 7:Dv8ir) — <ZeLk—BQ>}

=1 1

NG m
(ZZ fiti — ) (5.10)

i=1 k=1
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wherev;;, 3,, « are Lagrange multipliers. Note thaf., 3, are vectors at Gauss poirtor
each load vertex while « is merely a scalar.

The dual problem of (5.8) is now:

max (min FL) (5.11)

Vik B, \ €ik»q

Because a finite solution for (5.8) exists, the constraistesy (5.8b)-(5.8d) is affine and
the objective function is convex, then the duality theoreates that there exists no dual
gap between primal and dual solutions:

NG m
min OZZ\/QkU\/eﬁeﬂg = max (minFL) (5.12)

h(eir,q)= i=1 ne1 Yike Bir \ €iksq

whereh(e;, q) = 0 stands for linear constraint system (5.8b)-(5.8d).
The Lagrange dual function (5.10) may be written in anotbemt

& V2k €ik ! NG T
Iy = ZZ e — ik — B; — tpx euﬁrZﬁi B.q+ « (5.13)
i=1 k=1 ik ik i1

2

In writing (5.10) in the form (5.13) we adopt here the conv@mthat if the vector norm of
strain rate|e;;|| is equal to zero then?/ikive”feik = 0.

Due to the existence of a dual solutian having no gap to the primal*, it is required

that for any solution set of Lagrange multipligrs;., 3, «) the function( min FL) must

€ik,q

have a finite value. To this end, the following system mustdiised:

T
Vahey Yik — B —twa | € >0 Vey (a)
\/ €hen (5.14)
NG
> BiBig=0 v (b)
otherwise we always have:
min F;, — —o0o (5.15)

€ik,q

According to (5.14), the function ({min FL) is bounded from below:

€ik,q

min F;, > « (5.16)

€iksq
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It reachesy when, for example, all strain rates and displacement araléquero. This
fact leads to the conclusion:
min F;, = « (5.17)

€ik,q

The condition (5.14b) is equivalent to:
NG
> BB, =0 (5.18)
=1
Further more, it is possible to point out that the conditi®rida) is equivalent to restriction
on only multipliersy;s, 3;, c

||Vie + B; + tiwar|| < V2k, Vi, k (5.19)

Equalities (5.17), (5.18) and inequality (5.19) conclude proof. We explain in physical
meaningy;x, 3;, tir as the hydrostatic, residual and elastic stress of strestoespectively.

Admitting that kinematic formulation (5.8) has its finitelswon and its dual form (5.9),
it is also amenable to present the primal-dual forms as afs&atonary conditions or
Karush-Kuhn-Tucker (KKT) conditions as following:

Vokey (vik + B; + atir) =0 (a)

eiTkeik

D.,ep. = (b)

%C:} e, — Biq (c) (5.20)
(8/8)) -0 (d)

i=1

NG m

Zzeﬁ;tzk_l =0 (6)

N
Il
—
£
Il
—_

Despite the fact that the dual form of (5.8) exists, equaf®f) does not appear as the
discretized Melan’s theorem. In order to have von Mises'dibon in the dual form,
the Lagrange multiplier;, in the above system must be eliminated and the following
proposition can be proved without any difficulty:

Proposition 2:

If there exists a finite solution™ for the kinematic shakedown load multiplier (5.8) and
if £2 = 0 then the kinematic formulation has its dual form as the statie resulted from
Melan’s theorem, if the incompressibility condition maysokomatically satisfied with the
used elements:

NG m
h(eliuszoz Z V2k,y\ /€L e, = ) max a (5.21)
17 i=1 k=1 flasl +px) <0

A demonstration of the proof is given in [16].
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5.3 A dual algorithm

The developed dual algorithm aims at obtaining simultasgdooth primal and dual val-
ues (the upper bound from velocity and strain rate field, &aeddwer bound from stress
field) by solving the system of stationary conditions (5.200fortunately, solving directly
this system is not a good idea because it results in a systeaquations much bigger
than that in the case of purely elastic computation. Thetesgystem thus requires large
amount of computer memory as well as computational effosolee. Trying to keep our
problem size as small as possible, we use here the penaliypdt handle equality con-
ditions (5.20b)-(5.20c) with Lagrange multipliers (sses) playing intermediate roles. A
similar technique, which showed great efficiency in larggeproblems, has been success-
fully applied to limit analysis by Andersen et al. [3]. Nunully speaking, the stationary
conditions (5.20) are very difficult to satisfy due to theggitar property of the problem in
consideration and therefore we lack an appropriate avitdn stop optimization procedure
or to assess the exactness of the solution (the shakedod/imiokiplier o). However, if a
strictly lower bound is found at the same time with a stricthper bound, we will possess
a very useful tool to control the obtained results. Althotigbse strict bounds are hard to
find, in the following algorithm we will try to build some of &r approximations while
using Newton method to solve (5.20):

Algorithm:

1) Initialize displacement and strain rate vectgfsand €’ such that the normalized

condition is satisfied:
NG m

Y theh =1

i=1 k=1

Set all stress vectors to nulls:

0
Vg =0 . _ _
{B?ZO Vi=1, NG, k=1,2n

Set up initial values for penalty parameteaind fore. Set up convergence criteria.

2) Calculate incremental vectods|, de;;, of displacement, deformations af@+ «)
at the current values @f, e by solving the following system:

= /e + M, (—Gy + dB; + tda) — M, T,
STtk (e + dey) =1
1 k=1

dq=—-q+S 't + (a+da)S

dey
NG
by
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where:

NG m m
f, = Z BiTKZ—_l <Z € — Z y Z_/:Qk - CZ \/ €8s M, Dvezk>
=1

k=1 k=1
NG T 1 m .
f2 = ZBZ Kz Z\/ ikeik+82Mik tix
=1 k=1
~ m -1
K, = |+CZ L e 4 €2M
k=1

~ (ik + By + ati )€

Veler g | Ve D,
ik ik

fiw = en—/ehen + (v + B; + aty)

O = ik + Dok

hy = B, +ec (Z% - Bq)
k=1

3) Perform a line-search to fin, such that:
A, = min Fp (q + Adq, e+ Ade)

whereF'p is the penalty function:

4) Update the displacement and strain rate vectors as:

q = g+ \dq
€r = €+ A\ dey
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5) Calculate the incremental vectors of stress vecigr$3,:
dyi, = —cDydey — gy
k=1
Perform a line-search to finkl, such that:
5\3 = max A

sttt [(vik + B; + tir) + AMdvar + dB; + tipda) || < 1

Update stress vectorg;,, 3, and shakedown limitv (with a chosen parameter.

0<7<1):
Yik = Yix + TAsdV ik
Bi Bi + TA.dB;
a=a+ TAda

6) Check the convergence criteria: if they are all satisfreshtstop, otherwise repeat
steps 2-5.

Theoretically, the algorithm may fail due to some reasormh $bat unappreciated initial-

ization step, or failure in computing the matrix invers®n . Regardless of these possible
numerical obstacles, we can show that the algorithm coegetg a solution sefq, ex).
The proof will not be presented here due to the limited spaggeed to our calculating
experiences, a very satisfying convergence is always rodxdai

As noted before, limit analysis is a special case of shakedelen the structure is loaded
with only one monotonic load, i.€u0, 110] P, thus the above algorithm is also expected
to give accurate solution in limit analysis. Numerical exd@s hereafter shows that such
requirement is fairly satisfied.

6 Numerical applications

Some applications to extensive structures are reported/btse, see for instant [30],[27].
Special applications to cracked structures and to pipetstres are referred to [27], [32]
and [31], [33], [35]. In the present report, we present sonoblems in the LISA project.
Shakedown analysis with temperature dependent yieldsstiescerns some pipes and
pressure vessels. These premier results are discusseckta general guidance for de-
signers
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6.1 Plate with a centered hole under traction

Due to the symmetry (see Fig 6.1), only one quarter of thectitra is discretized with
quadratic finite elements. Both plane stress and planensitates are considered. The
limit load is represented by limit multiplier defined by (p:1

or

(6.1)

ayp =

Oy

Whereoy, is the limit tractiono,, is the yield limit of the material.

Itis seenin Table 6.1 that accurate solutions may be olitdogieising very coarse element
meshes. For example in comparison with exact solution,rttoe s of 3.6% by using only
2 elements. The error is already reduced to 0.6% with onlylé@ents. This show high
efficiency of the present method

Table 6.1: Limit load multiplier in the case of D/L=0.2, vonidés criterion
Number of elements 2 16 56 100 | Reference
Plane stress 0.829| 0.805 | 0.8025| 0.8022| 0.8*

Plane strain 0.935| 0.9309| 0.9256| 0.9277| 0.924 *
*1) The exact analytic solution of [9]
*2) Simple lower bound estimation a8:8 x (2//3)

1

oL
09 7\ZUpper bound -U 4

0.8 = .

Average of U-L

0.7 + e
0.6 | \ 1
05 L ’ !_owq bound-L o] - |
<+ —»>
0.4 1 ’ <« —> h
<« O —>
0.3} ry -, 1
4_
0.2 | - L — 1
|
0.1 —’ e
0 l L L L L L
0 10 20 30 40 50 n 60

Figure 6.1: The convergence of upper and lower bound linadi Ieolution; D/L=0.2; plane
stress (Newton-Raphson method)

In order to show the convergence of the solutions for botleuppund and lower bound by
the presented direct iteration method, we show evolutidh®ftesults (56 elements) with
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iteration in Fig. 6.1, where the average values of the uppand and lower bound and the
exact solution (0.8) are presented. It is clear that the uippend decreases monotonically
with iterationn. On the other hand, the lower bound increases, althoughittistrictly
monotonic, with iteratiom. The convergence is obtained with a finite iteration depamdi
on the chosen calculating precision (generally 20-50 tiana for a precision of 1%). If
we take the average value of the upper bound and lower bouagm@eximation of the
solution, we can obtain a good precision with less iteratiéor example, the average
solution has precision of 1% after only 4 iterations. Not thy this method, each iteration
is equivalent to a linear-elastic-like calculation. In erdo estimate the convergence of
the methods when using a refined element mesh, we have tegqutdablem with 3000
quadratic elements (9221 nodes, 18240 d.o.f) by the ditecttion method (section 3.1)
and Newton-penalty optimization method (section 3.2).

6.2 Limit pressure of a grooved cylinder

A complete description of the problem was reported in [27prassurized tube with a
circumferential defect. Axisymetrical quadratic elengeate used for discretization. We
present the results by both direct iteration method and bieysenalty method in Fig. 6.2.

PL :
0.23¢ Upper bound -direct-U ]
Upper bound -Newton method

0.22 ‘/‘/4 Average value of U-L

1

0.21 | |
i
P

0.2 I |
P
[}

0.19¢ L P 1
i —>
L e

0.18} BN ]
| — —
; ™ ) b=yRt

0.17} ' lal =t/3 1

0 5 10 15 20 25 5 30

Figure 6.2: Limit bending moment of a pipe under dead presand axial forceR,,, = 5t)
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It appears that Newton-penalty method shows high efficie@rly 3 iterations is needed
to give a converge solution. By the direct iteration methmath upper bound and lower
bound solution converge to an almost same value. If we takewterage value of lower
bound and upper bound as solution, we have a good precisithb affter 7 iterations.

6.3 Torispherical vessel head under internal pressure

Fig 6.3 gives geometry and elastic stress field with a simpi&efelement mesh. In the
present limit analysis, two different lengths of cylindes aalculated in order to investigate
their influence of the limit pressure. Four finite element hessare used for the numerical
comparison. The limit analysis results are summarized Di€l@. 2.

Table 6.2: Limit pressure of the vessel heagH100 MPa).

Length of cylinderL 0.1R 0.3R A b h luti
No. ofelements | 34 | 136 | 46 | 168 |’ PProx. by spheresolution
Limit pressure [MPa] 3.931| 3.929| 3.942| 3.905 4.0

Mises elastic stress
1.468

1.339
1.209
1.079
0.949
0.82
0.69
0.56

0.431

E=3.10" psi, v=0.3
0.171 Gp=3.104 pS|

0.301

p,=658.257 psi (value of reference)

Figure 6.3: Torispherical vessel head under internal presginite element meshing and
fictitious elastic stress field (noté& andr are mean radius)

Remarks

1) We have not got the exact analytic solution for this problélowever, we could give
an estimation. As the structure is constructed of three(pglihdrical shell, one part
of sphere and one par of spherical ring), limit pressure efthole structure should
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approach to the minimum of the limit pressure of the three sepgarately. In the
present case, it is the sphere that has the smallest lingsspre asP, = 4 MPa.

However, from the numerical results, it seems that the dedition of spherical ring
causes a bending effect in the part of sphere and conseyiueatlises a non-uniform
stress distribution. So the limit pressure of the spheredsiced a little (about 2%).

2) The length of cylinder don’t have obvious effect on thetipnessure of the structure,
because the cylinder is far from the initial collapse region

3) The choice of Gauss points is proved to have certain effethe limit load calcula-
tion. For example, using Gauss pointstas4 will increase a little the limit pressure
solution. However in our upper bound method, using Gausgpar2 x 2 is proved
to have a stable and better precision in most situations.

4) For 1% precision, the calculation by the direct iteratioathod takes about 8-15
iterations for the upper bound solution (but it needs abfutefation for the lower
bound). It takes a fewer iterations (about 5-10 iteratidmglusing the Newton-
penalty method.

6.4 Shakedown limit of straight pipe under internal
pressure and axial thermal load

Now we consider shakedown of structures involving therroatls. Particularly we will
take into account the effect of temperature-dependencieofield stress on shakedown
solution. As illustrative examples, the data of a kind of B steel will be used in the
following calculations. For the numerical convenience, wrge the yield stress in the
following explicit form by fitting the material data (see Fi§.4):

oy, = 230.65 — 0.5599T + 0.0009677 — 6 x 10~"T°(MPa) (6.2)

whereT denotes temperature. It should be pointed out that due todimeexity of curve

o, (T), the present method gives only an approximate estimatistead of strict upper
bound solutions (see discussion in section 1.3).

As shown in Fig 6.5, a cylindrical pipe with thicknesand mean radiu®g is subjected to a
constant (or variable) internal presswrand a uniformly distributed temperatufewhich
varies within[Ty, 7o + AT]. Its two ends are fixed but the radial extension is allowed.

Without considering the possible buckling failure, thelsddown limit can be presented as

follows [40].
p 2 T 2
3(=) +| =) =4 (6.3a)
i T
where h
Oy Oy
- v =L 6.3b
bi R l o E ( )
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Two kinds of finite elements (axisymmetric solid elementd pipe elements, Fig. 6.6),
are applied to take a comparison. Three elements are plémegl axial direction.
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Figure 6.6: Finite element meshes for a cylindrical pipe
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Figure 6.7: Shakedown limit curvé’¢ = p/p, ; T* = T/T)

(a) o, corresponding to the lowest, (b) o, corresponding to the highest

First we consider the yield limif’-independent. Numerical tests using both USL and
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SSL methods give almost same results that are in excelleaeagent with analytic one
(6.3a), as shown in Fig. 6.7. Same results are obtained wigeimternal pressure varies
betweerp(0,1). It is clear that incremental plasticity happens amhenpattains its maxi-
mum value. When considering the yield liMfitdependent, the results by USL method is
shown in Fig 6.7(a) and 6.7(b), which show the differencetdube different choice of the
constant yield stress of the material in the analytic calioh. It seems that when using
average yield stress corresponding to the mean temperatinetter agreement between
analytical and numerical solutions could be obtained. H@wéor safe consideration, the
lowest yield limit of material corresponding to the higheshperature is recommended to
be used in engineering practice.

6.5 A thick-walled sphere under radial thermal loading
and internal pressure

A thick-walled sphere subjected to radial thermal loadirend internal pressuge varying
independently. The distribution @f is described by (6.4). Owing to the central symmetry,
only one-fourth of the sphere is modelled by axisymmetriadratic finite elements.

b/r —1
E—1

wherek = b/a = 2.5(a, b are respectively the internal and external radii of the sphEhe
load domain may be described BYC (0, T},.4.) @ndp C (0, 1)pmaz OFp C (1, 1) Pz

The analytic solution of shakedown limit was reported in][IThe comparisons between
analytic and numerical results of shakedown are repredémtree diagram, Fig. 6.8-6.9.

e Incremental limit

po , To
=22 =1 6.5a
n 1 (6:52)
where
p = 20,Ink (6.5b)
6(1 —v)o E—1D(k*+k+1)nk
7}: ( )y2(2 )( 7 )2 (650)
B (R +k+1)32 = 3(k* + k)
e Alternating plasticity limit
P To_y (6.62)
py Ty
where A .
Ty
=41 -= :
pr=—3"1- ) (6.6b)
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41 —v)o, k* +k+1
OétE kf + 2]{32

Tf = (66C)
We begin shakedown analysis by considering the yield lifnihaterial temperature-inde-
pendent, and taking its minimum value at the highest tentiperaThe numerical results
are in excellent agreement with analytic solutions desgite very coarse FE mesh used.
Bree diagram of Fig. 6.8 is subdivided into some sub-regibascorrespond to the differ-
ent modes of deformation:

1) Completely elastic behaviour in regions A,

2) Shakedown happens in region B if internal pressure variegrarily or in (B+C)
if the pressure is constant. In this region, the structuastgled in initial loading
cycles will retune to elasticity. So the structure may besidered safe;

3) Alternating plasticity in region D (or D+C jf varies); Possibly the structure will fail
by fatigue crack in internal skin of sphere after finite timméaading cycles;

4) Incremental plasticity in region E. The structure failsafly due to excess radial
plastic deformation.

5) Beyond these regions, the structure will fail in a pogsibixed mode .

Now we consider the yield limit of material temperature-giegent. The results are repre-
sented by the solid points and the dashed line in Fig. 6.8 hAws, the present results are
higher than the previous ones obtained with constant yie&$s. This means that if we
take the lowest yield stress at the highest temperaturegliteened shakedown limits are
generally on the side of safety.

In order to give a better analytic prediction, we suggeshgishe mean yield stress of
material at a mean temperature. By this approximation, tmeparison between analytic
and numerical results is presented in Fig. 6.9. We see teahtimerical results (with
temperature dependent yield limit) agree well with the rfiedianalytic solution. The
difference in incremental limit calculation may be due te flact that the temperature
distribution is really non-linear along the thickness whilis taken simply as linear average
in the modification of analytic solution.

For practical application, we need still to discuss anogiteblem: which mean tempera-
ture should be taken in theoretical prediction? Let us aersihe following example of
temperature cycle: (denofe andT, as internal wall and external wall temperature of the
sphere, respectively).

Time 1:T; = 20°C, T, = 20°C, ATy = 0°C
Time 2:T; = 500°C, T, = 300°C, AT} = 200°C'

Consider separately the incremental plasticity and adtérg plasticity. For first one, the
failure behaves as uniform radial expansion resulting ftbeninteraction of pressure and
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temperature along the thickness. So generally we shouddttekmean temperature along
the thickness a$00°C'. By contrary, the plastic fatigue failure happens locatlynéernal
wall. Its load limit is determined uniquely by the stressmp@ at internal wall. So we
could theoretically take the mean temperatur@@sC. However, the practical situation
may be quite complex. There is also the effect of elastic gntyp(F«;) that needs to be
considered. It may be appreciate to take a conservativeeldi00°C. It appears that we
might always take the lowest yield limit at highest temperato give a safe prediction in
most cases.

6.6 Limit and shakedown analysis by new dual method

In this section, we present some new applications to shotv éiiiciency of the recently

developed dual method presented in section 5. Firstly wensder the example with

which limit analysis has been presented in section 6.1. T¥eepresent a 3D shakedown
analysis: a structure to compare with the results of othenpes.

6.6.1 Plate with a centered hole under traction

A square plate with central circular hole is subjected to wausp,andp, varying inde-
pendently. In the present analysis, the plate is modellegDiOyplane quadrilateral 8-node
elements as shown in Fig. 6.10. The analytical solutionroitlioad is known to be ex-
act forp; # 0, po = 0 with 0 < R/L < 0.204 since in this range the lower bound
and upper bound coincidey,, = (1 — R/L)o,. As example, the exact limit load in the
case ofR/L = 0.2is py;, = 0.80, (0, is the yield stress). Our corresponding numeri
cal values obtained in this case are 0.7982#r lower bound and 0.8003§ for upper
bound. Based on an elastic calculation, the alternativkesttavn limit can be estimated
as indicated section 1.4 while numerical results obtainethe dual algorithm in section
5 represent the minimum between alternative limit and imenetal limit. ForR/L = 0.2,

1 # 0, po = 0 alternative limit based on elastic analysis is 0.5394While present
method gives 0.59947 as lower bound and 0.59949as upper bound (Fig. 6.11)

Exact values of limit load are also known fpr = p, p2 = p,p # 0 in the range).483 <
R/L < 1 where analytical lower bound coincides with upper one:

o (o= 5) y>(1 = g Do)

Plim = NG o 6 R/L)?  2cos(a)

Numerical results for limit analysis and shakedown show»arekent precision and very
rapid convergence. In limit analysis, both numerical loaed upper bound tend to analyt-
ical lower bound. This fact suggests that analytical lonerrl is a better approximation.
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Table 6.3: Shakedown analysi§x || = ||p=||, varying independently)

R/L Alternative limit Lower bound| Upper bound
(From Elastic Analysis) (Numerical) | (Numerical)
0.1 0.49082 0.49082 0.49086
0.2 0.43384 0.43384 0.43390
0.3 0.36128 0.36128 0.36131
0.4 0.27635 0.27635 0.27638
0.5 0.19442 0.19442 0.19445
0.6 0.12360 0.12360 0.12364
0.7 0.06763 0.06763 0.06765
0.8 0.02903 0.02903 0.02905
0.9 0.00709 0.00709 0.00710
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In shakedown analysis, the results are really two time thstiel limits. This means here
the dominance of alternative plasticity mechanism: thacstire may fail due to a plastic
fatigue phenomenon. All tests are carried out Witk 2 Gauss points. The penalty and
other parameters are= 10%, 7 = 0.9, = 10~ 1°.

6.6.2 Pipe-junction under internal pressure

The problem has been examined by Staat & Heitzer (1997) [26]wsed 125 hexahedron
elements (27 nodes/element) for this pipe junction. Onetquaf the structure is modelled
because of its symmetries. In our analysis, the FEM meshesepted in Fig. 6.13a: it
contains 720 solid 20-node hexahedron elements. The steus subjected to internal
pressure varying within[0, po]. Numerical integrations are realized withx 2 x 2 Gauss
points. The penalty and other parameterscaze10®, 7 = 0.9, ¢ = 10~ 1°.
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Figure 6.13: FE mesh and numerical results

Numerical analysis leads to a collapse pressure of 0.14A4@®per bound) and

0.1442%, (lower bound) compared with lower bound of 0.134obtained by Staat &
Heitzer [26]. Shakedown analysis gives 0.11844upper bound) and 0.10983 (lower
bound) compared with lower bound of 0.0952y Staat & Heitzer. The alternative shake-
down calculated based on elastic solution gives 0.1698y the present FE mesh. Note
that in this test, the structure fails due to alternativekedawn, therefore shakedown load
factor can be evaluated more precisely if we use a s8tx»f3 x 3 Gauss points in nu-
merical integration: shakedown analysis in this case giv&803b, (upper bound) and
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0.099388, (lower bound) while alternative shakedown calculated #aseelastic solu-
tion leads to 0.099388. The results depicted in Fig. 6.13b are obtained for shakado
with 3 x 3 x 3 Gauss points and for limit analysis withx 2 x 2 Gauss points. The con-
vergence by the present dual method is rapidly attainedwniterations (note that each
iteration is approximately equivalent to a linear-eladite calculation)

7 General remarks and conclusions

In this report, a general kinematical limit and shakedowmifalation is presented. The
advantages of the developed methods may be summarizedassfol

The methods allow us to use any displacement-based finiteeels. In fact, only some
principal data from finite element solution such that thaistmatrix, elemental informa-
tion ... are needed for the present limit and shakedown fatiom. So any existing finite
element code may be used to implement the present methods.

The non-linear programming procedure is transformed inderges of linear-elastic-like
calculations. So there is not a practical calculating-in@ation if a commercial finite
element code is used for the implementation.

Several different limit and shakedown computational méghare available in calculating
code ELSA developed at ULg. This provides alternative datoug means. A numerical
comparison is easy to be performed.

In most situations, upper bound and lower bound solutioasgaren in pair at every it-

eration step of calculation and they converge to same li8piecially the lower bound is
obtained as a by-product of the upper bound calculation ktitl calculating effort. The

numerical tests show a satisfactory precision, and theulzing efficiency is much higher
than the usual elastic plastic calculation.

Two inadaptation factors may be separately identified, Wwisovery meaningful in engi-
neering practice. Specially, the incremental plasticitglgsis has been transformed into
an equivalent limit analysis.

The temperature dependence of the yield limit of the mdterimcluded numerically in
shakedown formulation. Its influence is evaluated for somg@ke numerical examples.

The developed dual shakedown analysis shows speciallfficeacy. This method is very
promoting for further development.

The developed methods are implemented principally in aepeddent finite element code
ELSA at ULg. Although the methods are already well verifieddepchmark tests, it is
strongly expected to implement them into a commercial FEedodmprove the applying
efficiency.

We note also that some other developments at ULg concerhmd [SA project, such
that a special pipe finite element, limit and shakedown amalyy equilibrium analysis of
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backstress field (also known as Zarka’s method) are not pieden the present report.
They are referred, respectively, to [31] and [34].
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Limit analysis by the Norton-Hoff-Friad regularizing rhet

1 Introduction

The aim of the limit analysis is the determination of the agbitile loading of a mechanical
structure, the geometry of which being fixed, constitutednagerials satisfying a strength
criterion, for instance a yield stress. We consider the cdssmbinations of any dead
(constant) load and another parametrized by the loadingrfathe maximum value of
which we are seeking. The objectives of this study are toigeo& F.E.M. tool to assess
the safety of mechanical components with respect to theofipkastic collapse, and to get
some parameter needed in simplified fracture mechanicsougtlike R6. Moreover, the
limit analysis is an useful tool for the geomechanical strces design.

After a review of the theoretical formulation and a brief suary of the proposed nu-
merical methods in the literature, we present the kinerabtegularized approach (upper
bound method) we have chosen, applied to von Mises yieldrmit, by the Norton-Hoff-
Frémond-Friad method, and implemented in@uele AsteiR) software. It leads to mixed
finite continuous elements. The advantage of this reg@dfiarmulation is to provide con-
vergence theorems, leading to safe upper bounds assomatedestimated lower bound.
This formulation has been implemented into the general grefinite element software
CodeAster, by introducing a specific constitutive relation adtpprocessing of the solu-
tion. We present the calculation of the numerical solutiointhis non linear problem and
the post-processing giving estimations of the limit logdiactor.

We give some numerical applications on 2D and 3D structana&jng some comments on
the advantages and drawbacks. We observed that in 2D plraiestuation, this algorithm
is not very efficient without adaptive meshing, because tikagse mode present shear
bands, hard to represent with continuous velocities fields/ertheless, the same method
seems to be very efficient in 2D-axisymmetric and 3D situeid-inally, we have made a
comparison with a direct analysis of an industrial compa2D-axisymmetric), using an
elastoplastic finite strain simulation, to assess if ardthral of failure mode (plastic snap-
through) can occur. Indeed, the results are corroboratetlit@ppears that the efficiency
of both simulations are quite similar.
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2 Theoretical formulation of the limit analysis

2.1 Definition of the limit load

We consider a body occupying the bounded domdisubmitted to surface loadg + pg

on the boundary';, and body forceaf +f; on V. A distinction is made between the load-
ing (p, f), parametrized by the positive scatarand the dead or constant loadifig, f;).
The homogeneous Dirichlet boundary conditions or perfeohections are applied on the
complementary boundaty, of V. Any non zero prescribed displacement nor inelastic
initial strain — thermal, plastic...— have no effect on tldengssible loading domain. We
can refer to [23] for several other useful properties.

The constitutive material is characterized by a strengitieraon, expressed by a scalar
function of the stresses, negative for any admissible strésr perfectly plastic material,
with von Mises threshold, the criterion reads:

9(0) = J(0)—0,= /207 0P 0,

V2
= 7.\/(0’1—0'2)2+(O'2—0'3)2+(0'1—0'3)2—O'y (21)
oP is the deviatoric stress tensor,
oy is the strength for uniaxial tensile condition (as a yielgss), eventually
depending on the localization in the considered solid,
o; being the principal stresses of the tensor

This strength criterion being chosen, we are seeking tautakthe limit value oty, called
the limit load factor or yield-point load;;,,, such as the solid can carry the surface tractions
aumP + po and the body forcey;,,.f + f;.

Strictly speaking, they;,,, value is the limit of the potentially supportable loadingt bor
materials satisfying the Maximal Plastic Work Principlastvalue is the true value of the
supported loading.

Two approaches are at our disposition for the yield desighlemit analysis: the static
approach (expressed in stress variables) and the kinexhapproach (expressed in ve-
locities variables). Both can be related to a mixed formafgtand lead, after numerical
discretization, to bounds of the limit load: a lower boundty statical approach, an upper
bound by the kinematical approach. When both values areame sthe obtained limit
load is exact.
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2.2 Mixed approach of the limit load

For the given loadp, f), we define the kinematically admissible and normalizedaités
space:

V= {v admissibley=0 ondV,, £(v) = / f.vdV +/ p-vds = 1} (2.2)
\% ovp

This normalization corresponds to a unit work rate valuéheflbad(p, f). The dead load
(po, fo) work rate is denoted byZ,(v). From the strength criterion(o ), we define:

o the set of admissible stress tensarg;) = {o(x), g(o(x)) < 0}
(G is convex, as well ag)

0 if O'(X) € G(X)

400 If U(X) Qé G(X)
e the support functionr(¢) = sup [o: & — V(o))
occlRS

We callX the space of the stress fieldon V' — whose regularity is such as we can define
the internal work rate for any field froi,. For the sake of simplicity, we do not treat in the
following the internal discontinuities surfaces of veles, lying in the body/. Assume
the Lagrangiars,,(v, ) (¢(v) is the velocity strain tensor associatedvtp expressing
the equilibrium equations and the belonging to the critetibvia the indicator function
Uq(T), playing the role of a potential:

e the indicator functionVq(o(x)) = {

Sp(v,7) = /V(T L e(v)) — Ua(r) dV — Lo(v) (2.3)

The extreme load corresponds to the saddle-point of thisdragan (because the maxi-
mization in« is included):

Qi = inf sup S, (v, 7) = sup inf S, (v, T) (2.4)
veV} rex rex vevl

2.3 Statical approach of the limit load (lower bound)
The lower bound approach uses the stress fields defined ipaice:s

¥ = {T e, W(v,T) = /VT L e(v)dV = aLl(v) =a,Vv € V;} : (2.5)
The extreme load factor is given by:

aum  sup  Si(7),whereS;(7) = inf S,,(v,7) =« —/ Vo (TP) dV (2.6)
v

TELANG veyl

150



F. Voldoire

2.4 Kinematical limit load approach (upper bound)

Thesup in the support functiom(¢) can be reached only i is chosen irG ), such that:
o = \eé” 4 pI (this ensures that||¢”). The optimum corresponds ¢6) = 0 = \ =

oy\/2/3 (7 -€P) "2 Then the support function is given by

n(é(v)) = oy \/ ) + sup(pdiv v).

peR

It is interpreted as the density of dissipation work ratetigh the¢(v) at the material
point. We can observe that th€e) function is not differentiable a@. We do not treat
in the CodeAsterthe support function associated to the internal discontesusurfaces,
lying in theV body [22]: the interfaces are disregarded.

D
GzA

> (&)

G
5 >
\yal 0 | &

Figure 2.1: Optimuna and graph of the support functiarie) in 1D situations

The kinematical approach is defined by the convex functishé&), which is positively
homogeneous of degree one, for ang V!, in the whole domain:

S.(v) =sup S, (v, T) = / mw(e(v))dV — Ly(v) (2.7)
TEN 1%

This functional is the integral on the body of the supporthion 7 of the convexG ), cal-

culated for thet(v) strain rate, and can be interpreted as the maximal dissipatrk rate

in the velocities fieldv (the contribution of the interface strength vanishing)e Bapport

functionr being positively homogeneous of degree one, consequéetiahctionalS, (v)

is too. With the von Mises criterion, the dissipation worteréunctionalS, (v) reads:

Se(v) = /v[ \/7\/7+Sup qdiv v)

dV — Lo(v) (2.8)
qgeR

We can observe that only thefields belonging to the subspace
C={veV,dvv=0inV}
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give finite values of5.(v). Thev fields have to satisfy the isochoric condition:
divv =tré(v) =0.

It is why we need incompressible finite elements to perforendalculation of limit load
factor with the von Mises criterion. The (quite general) hoet used to deal with the
incompressibility consists in mixed finite elements (véies, mean pressure), ensuring
by dualization the isochoric condition in a weak form. Theéements have to verify
the so-called LBB condition, to avoid spurious solution®r Fstance, see [27] for the
formulation adopted b odeAster.

The limit load factorqy;,,, given by the kinematical approach is the solution of thig-opt
mization problem:

cun = B S = _inf G = i (S3) ~a(£) - 1)

When the optimum is reached, we get a solutioand the limit load factory;;,, there is
no uniqueness of the field buty;,, is unique. Any loading combinatiofiy(v) + aL(v)
with 0 < a < oy, IS Supportable. Beyond,;,,, the equilibrium problem violates the
strength criterion.

Remark 2.4.1:

There exist some situations where, evefijfv) is not supportable alone, the
combinationly(v) + aL(v), with oy < a < an, becomes supportable over a
certain interval, and not only with two parallel loading.

Remark 2.4.2:

The limit load factor calculated for a two-dimensional geoh, with the plane
strain condition, is necessarily higher than those obthiioe this problem
idealized with the plane stress condition. This result gi@eipper bound. If
we want to treat the problem with plane stress, we have tohgskibhematical
approach on a three-dimensional idealization.

3 Review of numerical techniques

The implementation of the lower and upper bound methodspted above leads to diffi-
culties. The first one requires the construction of stdyicdmissible stress fields, which
is delicate (excepted certain 2D cases), on which one meskdhe not exceeding of the
criterion. The second one frequently provides interestesgllts only to the condition of
choosing of discontinuous velocities fields, which are cliiifi to introduce into the finite

elements. It however requires the minimization of a noffiedéintiable functional (close to
that of elastoplastic damage mechanics).
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One finds very few “industrial” versions of computationafte@res dealing with limit
analysis. This is due primarily to the low number of appli@as under consideration com-
pared to the practice in calculation of the structures (asttity or elastoplasticity for
example). However, the general balance-sheet of the metiested by various authors
makes it possible the choice of algorithms. Those presentigt literature can be classi-

fied according to three groups:

Lower bound method

Upper bound method

Mixed method

1 Criterion and nonlinea
programming on discon
tinuous stresses

2 Criterion and nonlinea
programming with a basis
reduction technique of th
stress space

3 Linearization of the cri{
terion and linear program
ming
4 Criterion and iterative
weak admissible elastiq

r 1 Heuristic minimization
- with discontinuous veloci
ties
r 2 Linearization of the cri-
-terion and linear program
eming with discontinuous
velocities
3 Patrtition and partial reg
- ularization with discontin-
uous velocities
4 Norton-Hoff regulariza
-tion, with continuous ve-

1 Linearization of the cri-
terion and linear program

ming, with continuous vet

locities and discontinuou
- stresses
2 Bingham regularizatior
by projection with continu-
- ous velocities and collocg
tion for the stresses
3 Norton-Hoff regulariza-
tion, continuous stresse
and velocities.

?S

rigid stress fields by FEM.| locities.
Table 3.1: Main algorithms characteristics.

3.1 Lower bound numerical methods of the limit load

The principal characteristics of the lower bound method #re construction of statically
admissible stress fields; the resolution of the problem adingpation with checking of

the criterion everywhere. Historically, Hodge and Belyitsz [13], [14] were among the
first to treat the 2D plane cases and plates. The selecterktiistion also consists of
finite elements with stresses d.o.f. (derived from an Aifyisction). The conditions of
connection on the elements edges are exploited to elimiratethe d.o.f. Discontinuities
can be considered only between two elements. A nonlinearanoming algorithm of

minimization is used.

Casciaro et al. [3], [4] underline the cost of the checkinghef criterion on each element,
caused by the choice of a quadratic discretization of tresstrThey propose on the con-
trary a linear discretization, which makes it possible mitithe checking of the criterion
on the nodes of the mesh. A linearization of the criteriongdeces makes it possible to use
algorithms employed in linear programming, which are vdfgative. For the von Mises
case, one would need 32 linear inequalities to approachtithess than 5%. Christiansen
made this choice too to avoid very expensive problem of agttion [5].
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This strategy was also used by Pastor et al. [18] in a casdetiap the axisymmetric
problems. They used P1 stress finite elements, where 2 liekdions of continuity be-
tween the common edges are taken into account. In the Coldarabe, the criterion is
linearized per pieces, the cone being replaced by a polghe®@f course, the found limit
loads will be only upper limits for the real problem with theterion of non associated
Coulomb. Once linearized, the criterion is calculated atrtbdes, where the extrema are
reached.

More recently, Heitzer and Staat [21], [12] have proposeds® a basis-reduction tech-
nique of the residual stress space (the elastic solutiorgliosen to equilibrate the exter-
nal loading) so that the cost of the nonlinear programmirgpb&es not excessive.

Another way was proposed by Ponter: the use of elastic fileteents to build by an iter-
ative procedure a sequence of equilibrated stress fieldsWi@ak sense), by a progressive
smoothing of zones where the criterion is reached.

3.2 Mixed approach numerical methods of the limit load

This method introduce multipliers, according to the KuhueRer's theorem. The potential
risk lies in a bad conditioning: some people prefer to devotthe direct problem. The
mixed methods (leading to a saddle-point problem) have darstage of revealing at the
same time the stress field and the velocities field in the pslaand producing directly a
bounding of the limit load factor.

Casciaro et al. proposed an association of linear element&focities as for the stresses,
with discontinuities between elements, and withagsriori incompressibility of the veloc-
ities fields, or imposed with a dual form. Discretization @fgrangian resulted in checking
the balance and the law of flow to the weak direction only; @ndther hand, it is required
that the criterion be never violated, nor kinematic adrbiisy. Christiansen proposed a
little different method, with constant stress elements.cAwvergence theorem was estab-
lished [5].

Other works proposed not to linearize the criterion, likeiZio et al. [26], but a Newton-
like algorithm, replacing the Hessian by a positive definiatrix, directly on the condi-
tions of optimality of the Lagrangian.

3.3 Upper bound numerical methods of the limit load

Due to the difficulty lying in the not-differentiable chatac of the potential defining the
strength criterion of material, many authors proposeceeidhmethod of regularization, to
replace this potential (or its dualized form) by anotherahkhs differentiable, “ adjustable ”
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by a parameter, of which the limiting value led to convergetowards the preceding po-
tential, or a heuristic minimization, without the need df tHessian.

The method of heuristic minimization of the functiéh(v;), (used for instance by Mag-
hous [16], with constant or linear continuous fieldg although very simple to implement
and general, seems expensive and sensitive to the choibe stadrting point. Its users
associate it with a partitioning according to zones of tmacstire non concerned by the
collapse flow (given roughly by some iterations of nonlingagramming).

The linearization of the criterion makes it possible to usefast methods of linear opti-
mization, but it can provide however results further awayrfithe exact extreme loads (see
for instance [19] with P1 elements .. .).

The incompressibility is sometimes treated in a way apgreddy penalisation, while
adding to Lagrangian term in (dix)?, affected of a great coefficient. If not, it is treated by
Lagrange’s multipliers and an Uzawa'’s algorithm on the gwablem.

A first regularization of theS.(v;) functional, basic approach if one can say, consists in
adding in the expression of the function of support of congerstant term making it
derivable at 0, see for instance Clément [6], Gaudrat [1Q], Of course, the problem
of minimization of the functionatS.(v) thus obtained is very badly conditioned when
tends towards O (the gradient and the Hessian are difficatilulate numerically).

One can classify the method suggested by Yan [25] in thigyoage he used a regular-
ization by a fictitious perfectly plastic viscous flow potahtwhere the Young’s modulus
plays the role of parameter; the incompressibility is #dah the same manner, by penali-
sation.

Another approach uses laws of viscous behaviour, whereatameter of regularization is
interpreted like a viscosity. A method by projection on thiéecion G/ was proposed by
Mercier [17]. He chooses a law of the Bingham-Perzyna tygesre the flow takes place
only with the crossing of the threshold; the potential wirieplaces the indicator function
V(o) of convex having the form¥ 57 (7(x)) = Lﬂ“r(x) — g(T(x))||*

The Mercier’s regularized functional derived frasp(v) reads:
S =80+ [ Bllewl v 3.)
1%

Instead of regularizing the functional to be optimized, dines also algorithms which
exploit the presence of the rigid zones in the optimal sohgiby a “ partition ”, while being

reduced to the optimization of a differentiable functiorlahfortunately, these algorithms
do not cross to a stage of regularization, to deal with thepteta problem. One can
wonder, if the use of a method of adaptive meshing, couplegd thie methods above,
could not be even more effective.

Finally, it seems interesting to use the method of reguddion by the Norton-Hoff’s vis-
cous law (with a coefficient of “ viscosity » > 0), both on the upper bound method or
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on the mixed approach. Historically, it seems that it is i@ pinecursory work of Casciaro
in 1971, that one finds a first application of this regular@at Associated with a mixed
method, it led to a computational software “ LIMAN ”, see [3h 1982, these authors
proposed this regularization to the mixed approach [4]sTegularization was studied in
detail by Friad [9] in 1979. The indicator functioi; () is regularized in the following

way, g > 1 (expressed with the gauge functipfr) of the convexG ) ):

M (rx) = TGO (3:2)
Casciaro proposed also to choose the following expresditheaegularized potential:
1 1/q
\Pqu(T) = (m / (g(7) + 0y)? o, dV) (3.3)
14

Figure 3.1 allows to compare in the one-dimensional cagechvex is represented by the
segment — o, 0,,[) these potentials with the original non differentiable it

'y %o NORTON

BINGHAM

>

0 Sy T

Figure 3.1: Comparison of regularized potentials in 1D case

The form of the coercive Norton-Hoff potential leads to @atself in functional spaces
in duality of the typeL?, p > 1, and L? where the sump~! + ¢~' = 1. We get good
properties on the solutions : they become regular, angd fer; = 2 that leads to a problem
of linear viscosity. And the solution of the initial collagpproblem corresponds to the limit
of the normalized sequel of the solutions,, o), for ¢ — oo ; by post-processing, we get
decreasing values of the limit load factor. Its initialipatrests on a linear calculation. A
same technique was used for instance by Guennouni [11] entlgdoy Berak [2].

3.4 Choice of a numerical method of the limit load

One can summaries the advantages and the disadvantagesafittus methods suggested
in the literature as follows. The lower bound methods, inrttexact” version are limited
to the 2D or plate-bending cases, and their cost is notieedfdbeems that linearizing the
criterion leads to poor results. In their “weak” (in the sems verifying the equilibrium
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equations) version, with reduction technique, they app#eient, but needs a special im-
plementation in usual finite element codes. For the treatwiethe upper bound method,
it appears that the regularization is a good way, with a gpp@wention to the Norton-Hoff
one, because of its convergence properties. That is why weedecided to implement the
upper bound approach, with the Norton-Hoff-Fréemond-&mnaethod into a general pur-
pose nonlinear mechanical software uses displacementfated finite elements, namely
CodeAster: we only need to implement the Norton-Hoff constitatielation.

4 Norton-Hoff regularization of the upper
bound method

4.1 Theoretical formulation

We regularize the non-differentiable function®l(v) by the Norton-Hoff method. We
replace the support function(¢) by the regularized and differentiable support function
7VH (€). Itis adjustable by a regularization parametér < n < +oo), which limit value
n — oo gives the convergence to support functigig):

) nkjfl/n
NH( )

&) =1, e (4.1)

In the CodeAster, we choose the constakt = o7 /3y, in order to recover the elastic
incompressible problem, when= 1 (2 being the second Lamé’s coefficient).

We denote the space of the admissible velocities, adaptid taiscous flow, through the
Norton-Hoff constitutive relation of orden:

Vil = {v e L"(V),é(v) € L"(V),v=0o0nT,, L(v) = 1}. (4.2)

™

We define on this space the regularized functiiglv):

nk=tn

SH(v) = /V p— m(&(v)) AV — Lo(v) (4.3)

The minimization problem ir\1}f [SI(v)] is well-posed thanks to the properties of the
veypl

spaces.” (V) (due to the Holder inequality) and has a unique solutignfor which the
reached value of thanf is: «,. We show that this problem can also be written as the
seeking of the saddle-poift,,, u,, p,,) of the following Lagrangian:

(14n)/n
max inf sup / A(n) ( g(v): é(v)) dv +
a€lR vEV, qger2(V) Jv

/ gdivvdV — Lo(v) — a(L(v) = 1) (4.4)
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with: (14m)2
n 2 n n
A _ (n—1)/n 3 1/n | 2 )
(n) = o B (
In practice, we take the sequence:
n 1 10 100 1000 ... oo
2
A(n) 2pu o on/3

We observe thatl(n) is decreasing (iZ > o,) from 2. to ay\/g keeping homogeneous
to a stress, and remaining bounded.
This Lagrangian (4.4) allows to force directly in the operahe isochoric condition as well
the normalization ta of the work rate of loading. Then we build a decreasing secgieh
«,, values and the limit load factar;,,,, is the limit of this sequence when— oo:

i = lim ( inf [Sg(v)]) = lim (S8} (u,)). (4.5)

n—oo vgvgl n—oo

We can refer to [22] and [24] to see the proof. We show alsodheviing property of the
solutions of (4.4). If we amplify the loading — (£, whenZL, = 0, the solutions depend
on ( by the following relationships:

w,(8) = f7u,(1)
pa(B) = B pa(1)
UD(un(ﬁ)) = ﬁ_l/naD(un(l))

S (ua(B)) = ﬁi(Hn)/nS?(un(l))

One of the advantages of this regularizing method lies irethbedding property of the
spacesL”(V), that leads to an interesting property of thg sequence, see section 4.3.
So we get the proof of the following properties [24], for a hded bodyl’, denoting
V| = [, dV and||V|, = [, A(n)dV: Foranyl < nandl < r < s and any fieldu
belonging toV?, we have:

r—1
r

/‘/A(n)mdv < VIl (/‘/A(”)\/mdv)i

< W1 ([ Ay Ewrar) e

(n+1)/n T
[2 . 2
/o—y S€(w) s &(wdv < V] (/ ggl“)/“( € :é(u)) dV)Vu
|4 14

(4.7)
These properties are interesting because they remainarieterogeneous materials, and
we can consider the yield stress either as measure (as dicpe&ss) or as belonging to
the strain energy.
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4.2 Numerical aspects of the limit load calculation

To calculate withCodeAstera limit load factor with the regularizing Norton-Hoff-Faa
method, with the von Mises criterion, we need to:

¢ define a 2D-idealization (plane or axisymmetric) or 3D with incompressible finite
elements,

o define the material characteristics (Young’'s modulis> o,, Poisson’s ratia/
near to0.5 to precise the quasi-incompressibility of the mixed finitengents in
the CodeAster[27], the strength parametet, and Norton-Hoff coefficient), the
shear modulus being deductéyg: = 2F/3. Notice that the limit load is independent
of £ andv,

¢ define the dead loading and theparametrized one,
o define the normalization of the work rate of the parametrinading,

e make a non linear calculation with the Norton-Hoff congtite relation with the
Newton-Raphson type algorithm,

e post-process the calculation to obtain the limit load facto
The weak form of the optimization problem reads as following
The coefficient: given, find(«a,,, u,, p,) € IR x V, x L*(V) such that:

1—n

/ {A(n) é(u,) : e(u,) " &(uy) : €(v) + p,div V} av
1%
—a, L(v) = Lo(v) Vve,
/ qdivu,dV = 0Vqe L*(V)
1%
L(u,) =1 (4.8)

This problem admits an unique solution for amy> 1 (see [22]). Fom = 1 the problem
is of linear incompressible elasticity type. We get an eation of the limit load factor by
an upper bound, tha,, field giving an idea of a collapse mode. For the incomprekssibi
treatment, we refer to the document [27] to the weak mixechidation:

/ gdivu dV +/ iy =0 vge L2(V),
%4 14 g
the penalisation ternj,, ‘£dV avoiding some difficulties with a LDLT-like linear algebra

solvet and corresponding to a Poisson’s ratio like- 0.4999 . . . (¢ — oo whenv — 0.5).
Then the solutions are only quasi-incompressible.

1Bunck-Kaufman method witlh. D™ decomposition wheré is a unit lower triangular matrix an® is
block diagonal.
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The variational formulation (4.8) is solved by the populandinear iterative Newton-
Raphson algorithm b ode Aster (including other ingredients like line-search, continua-
tion. .. presented in [28]), with mixed 2D and 3D finite elensgfTaylor-Hood), defined by
degrees of freedom vectoU, P), on the space¥, andQ of discretized functions.

The principle of the non linear Newton-Raphson algorithn€Cofle Asteris presented in
[28]. We get the incremental following problem:

Find (Aa, Au, Ap) € IR x Vy x Q such that:

/ o(u+ Au): é(v)dV + B(v,p+ Ap)
14
—(Oé + Aa)ﬁl(v) = (EO + AEQ)(V) Vv € VO
B(u+ Au,q) = D+ AD Vqe Q
El (V) = 1
e B s alinear operator containing the Dirichlet homogeneausidary conditions, as
well the incompressibility condition,

e D corresponds to the prescribed data (Dirichlet homogenieousdary conditions,
incompressibility),

e [yisthe dead load second member @&hdhe a-parametrized load second member,

e V), and Q are the spaces of discretized functions on the finite elesneefined by
the degrees of freedoms (DOFs) vectd(R).

The stress tenser(u) satisfies the Norton-Hoff constitutive relation. The démi stress
associated to the strain rate is:

_1l+n
n

(1-n)/
D(u) A(n) ( eP(u) : éD(u)) eP(u). (4.9)
The nonlinear problem is solved by the Newton method, afiedirect implicit discretiza-
tion of the constitutive relations, see [29].

The prediction step consists to solve the following systiom the initial statg(u, p) to
obtain the first iteration solution(Auy, Apy).
d
/ T e(Awg) vV + B(v, Ap) ~ AaLa(v) = ALy(v) ¥(v) €V
|4 e(u)

B(Auy,q) = AD VgeQ
Li(u+Auy) = 1

The tangent operato%]e(u) comes from the tangent stiffness, applied to any deviatoric
tensore:
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Then we continue with the correction step, for tki# iteration:

[
L dé
= (Lo+ ALy (V) — {/v o(u+ Aw;) : é(v)dV +B(v,p)| ¥v e,

B(Au;i1,q9) = D+AD—B(u,q) Vg€ Q
Li(u+Auy) = 1

cE€(Auy — Awy)  €(V)AV + B(v, Apiyq) — (o + Aa) L4(v)
e(u+Auy)

The second member(u + Au;) : €(v)dV is updated, through the computation of the
stress field from the constitutive relation. The tangentaioe ‘jl—g }€(H+Au_) is also updated
on request, at certain iteration®nly, to avoid an expensive assembling of the stiffness

matrix.

In our case, the solution can be achieved without time-disgation, but it is interesting
to update the tangent stiffness from time to time to speethagonvergence. We use a
LDLT type solver; the normalization equation, coupling adé DOFs being reported at
the bottom of the equations system. We can prefer to makeak lmethe calculation, or
restart from any previous solutidm, p), even obtained from another parameterthis
enables computing time reduction. In any case, it is recongi®e to begin a calculation
with a coarse mesh to evaluate the effect of the parameterthea,, values.

4.3 Post-processing and calculation of the limit load facto

The solution(a,, u,, p,) being calculated, for a givem, we have to use the, sequence
to build the approximation of the limit load factor. We makef of the properties (4.5),
(4.6), the fact thatl(n) is decreasing, and the property coming from the minimizefo4)
(see [24]). From these two last properties, witkl » < s, we conclude that fon, andu,
respectively solutions (satisfying also the incomprabsitand normalization conditions)
of (4.4) forn = r andn = s:

( /V A(r)\/ (e(u,) : é(ur))rdv) < ( /V A(s)\/(é(us)  é(uy))* dV) (4.11)

Associated to the property (4.5), we have fo€ r < s:

N——
3=

[ anvemrgaar < wiET ([ aoyew) e av

T [ et sy av
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We denote byy,, the terms of the sequence, that we calculate in practice ftygrocessing
from u,, (the loading work rate being equal to 1):

G = V]2 (/V A(n)\/(é(un) cé(u,)) dv) e Lo(u,,) (4.13)

This sequencé,, is decreasing fon — +oo and we show [24] that it converges 4q,,;

that enables a good control. As we can make a minoration (kigpthatA(+co) = 0,4/ 2)
of the first term of (4.12):

Qi < /Vay\/gé(un) c€(u,)dV — Lo(u,) < &, (4.14)

we calculate then the decreasing sequengctr n — +oo converging also toy;,,:

Qi < Oy = / ay\/gé(un) €(u,)dV — Lo(u,) < ay. (4.15)
1%

The precision of the approximation of the limit load factgy,, is determined by compar-
ison of the different values af,, that converge tey;,, from above (at: — +oc0). These
terms are calculated by numerical integration at the Gangsoints of the finite elements.
Another interpretation of the interest of making profit okteequence lies in the fact that
it uses directly the expression of the support function ef $ktrength convex, that is the
dissipation work rate in the potential collapse modes, iagpo the incompressible and
normalized solutions,,.

If the dead loading vanisheg, = 0, we can post-process the stress field (quasi statically
admissible) coming from the solutian, and get an estimated value of the limit load factor,
which would be a lower bound if the equilibrium equations evexactly fulfilled (see
[22]). We calculate then the sequengg which has not —unfortunately— any property of
monotony:

SoD(u,) : 0P (u,) -

a, = /VAmN(é(un):é(un»“*"’/”dv sup V < an

xeV Oy

(4.16)
This maximization (of the gauge function of the strengthwex) is calculated only at the
Gaussian points of the finite elements. So the obtained yv&dueachn, lower thana,,
[22], can only be considered as an indication.
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5 Validation test

5.1 Reference problem

We consider a rectangular plate or a hexahedron or an axisymeal cylinder. The
strength property of the constitutive homogeneous matsaigsfies the von Mises crite-
rion (with the threshold, ). The body is subjected to pressures on the horizontal boynda
—@f and on the vertical boundary(1 — ¢) f with ¢ > 0.5. With this very simple sample
problem, an analytical calculation enables to get the eladt load factor in the load-
ing direction, as well the estimations by the regularizatieethod. For more details we
refer to [22] and [23]. That validation example correspotmshe test SSNV124 [30]
of CodeAster The geometry is characterized by: inner radius- 1mm, outer radius

b = 2mm, thicknes® — a = 1mm, height: H = 4mm.

zZory

1 D C
H_._

rorx

5.2 Plane case

The solid is submitted to pressures on the horizontal baynday f and vertical one:
—(1 — o) f, with: ¢ > 1/2, and thez-displacement is zero. We consider two ways to
control the loading:

e casel: both pressures (horizontal and vertical) are paraect by,

e case2: the horizontal pressure is parametrized byhile the vertical pressure re-
mains constant-(1 — o) f, with fo = o f.

5.2.1 Limit analysis solution

The solution is homogeneous (biaxial stresseso,, = ¢f,0,, = (1 — ¢)f, 04 = 0,
plane strairx). We get [22] the limit load factor for these loading direcsofor von Mises
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criterion, in plane strain, with the threshatg:

2v/3
casel:ay, f = ﬂ (5.1)
32¢ — 1
2v/3 1—
case2: i, f = V3o, SOozo f (5.2)
3|l [
We observe that if we take, = «y;,, in the case2, we recover the casel.
5.2.2 Regqularized limit analysis solution
The solution is homogeneous. The plane strains are of thie: kin
1 0 0
eu)=~| 0 -1 0 Ve) :e(u) = |y[v2 (5.3)
0 0 O
Through the Norton-Hoff constitutive relation, we get thevidtoric stresses:
(1=n)/n 1 0 0
o? = Am)v2 [y L0 —1 0
0O 0 O
(1-n)/n n
107 loar = A(n)V2 SIRE (5.4)
The loading normalization leads to:
1
casel:yf = 5.5
= B —ay@e = 1) (53)
1
case2:vf = ———— 5.6
The sequence ternds, of limit load factor estimation for both parametrisatiorisaading
are: /3
2v/ 30
casel:q,f=—"2 V 5.7
2v/3 1-—
case2:a, f — Vioy (1-¢ f v (5.8)
3| ]

The invariance im which can be observed here (this is a particular case) comesthe
fact that the equilibrated stress field is unique. For theTtawe can also compute the

sequencey,,:
2n\/§ay

3(14+n)|2¢ — 1]

The we get the exact limit load factey;,,, whenn — oc.

caselia,f =

(5.9)
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5.3 Axisymmetrical case

For the 2D axisymmetrical case, we consider the same gegnheirthe solid, the axial
displacement of which vanishing, is submitted to the onspure on the inner wally f
parametrized byx.

5.3.1 Limit analysis solution

We get [23] the limit load factor for this loading directidoy the von Mises criterion, with
axisymmetrical and zero axial strain condition, with thelglistressr,:

2v3 b
OélZ'mQOf = Taylna (510)

5.3.2 Regqularized limit analysis solution

The solution is homogeneous. The displacement being ratialisochoric strains are,
where~ is a parameter:

o O O

0
0], Ve) :é(u) = @\/5 (5.11)
1 T

5 0
0

Through the Norton-Hoff constitutive relation, we get thexidtoric stresses:

—1 0 0
ol = A(n)ﬂ(l_n)/n|v|(1_”)/"7r_Q/” 0 00
0O 0 1
o2l = AV 23 (5.12)

The axial and radial equilibrium equations give the meagsstr

tro(r) = 3A()V2" "y |0 21— ) 4 37 (5.13)

wherer is a constant, calculated from the zero pressure boundagitcan on the outer
wall. Then we get the stresses:

o (r) = B(bd/n_"ﬁz/%

(1-n)/n
1 A(n)ny/2
D22y with B = (n)nv/2

n (pfH)Y"
2

oee(r) = 5(@*2/"—”%

o.(r) = BB —(

(5.14)

T72/n>
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The loading normalization gives:fy = +.

The limit load factor sequence terms are :

2/3 b 2v3 b
dncpf:T\/_ayH/ |:—2|rdr:T\/_ayln— Vn (5.15)

a

Those of the sequence, are:

2\/§n b -1 o \/§n2 b—2/n . a—2/n
- (=2n=2)/n,. 1 —2/n _ Y
Qn%@f 3(1 + n) Uy/a r rar (I(I;ja’bii (r )) 3(n + 1) a72/n

(5.16)

Forn — oo, that gives:

2v/3 b

arpf = T%'”a,

that is the same valug, andaoy;,,,.

5.4 Three-dimensional case

In 3D we consider the same geometry, but the solid, of urgktiess, is free in the antiplane
z direction. The solid is submitted to pressures applied erhtirizontal boundary:-¢ f
and vertical one=(1 — ¢) f, with: ¢ > 1/2. Both pressures are parametrizedoby

5.4.1 Limit analysis solution

The solution is homogeneous (biaxial stresses o,, = ¢f,0,, = (1 — ¢)f, 04y =
0,0.. = 0, strainsz). We get the limit load factor in this loading direction [28)r the von
Mises criterion, with the yield value,:

% (5.17)

Aqim ] =
tm V3p2—=3p+1

5.4.2 Regqularized limit analysis solution

The solution is homogeneous. The isochoric strains are:
10 0
g(uy=~ 0 ¢ 0 ve):é(u) = |y|v2(1+0+0%) (5.18)
0 0

—1-9
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Through the Norton-Hoff constitutive relation, we get thevidtoric stresses:
1 0 0
oP=p|0 ¢ 0

00 —1-9

16| loar = 18]v/3(1 + 0 + 62)

(5.19)

with 8 = 2(1+5+52)(17")”\7\(1*")/”7. We deduce fronv,., = 0 : tro =

—308(1+

A(n)

9). And the stresses:

3p —2

The equilibrium conditions give,. (1 — ¢) = o,,¢. We get the parameteér= 71— 35

The loading normalization gives:

1
H(b—a)(p+0(1—¢p))

The limit load factor terms,, for this loading condition are:

2\/§0y
3 p+i(l—-v)

v =

(5.20)

2(1+06+0%) o,

VB3P —3p+1

Regul. limit analysis solution sequence

2\/§Uy
3|2¢ — 1|
2n\/§ay
30+ )20 — 1]

2\/_O'y
oz a,f = +
g o T =3

Axisymmetrical case

anf =

(5.21)

Limit analysis
plane case 1

2\/§Uy
3|20 — 1]

anf = Vn

a,f=

alimf =

Vn

plane case 2
2
V3, | 1
3[]

\f

Qim [ = Ofof vn.

|90|

anpf = \/_Uyln— Vn

—1/n

alzm(pf Uyln_

n ay\/_b In _

a,of = 3(1+n)

71/11

Axisymmetrical case

g
alimf = Y

V392 —3p +1

anf =

Oy

V302 —3p+1

Vn

Table 5.1: Direct and regularized limit analysis results
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5.5 Torispherical vessel head under internal

This benchmark test concerns a vessel-head under pressuliguwe 5.1.

A

A e

— l—:_—r:\:[‘,i}_‘i-{

z

Figure 5.1: Torispherical vessel head under internal pressdeformed mesh (right) : 34
Q8 elements, 141 nodes.

The algorithm appears to be very efficient. We can observéderigure 5.2 the conver-
gence of the upper an approximated lower bound in terms aktipdarization parameter.
For a parameten = 71,0, and 19 equivalent elastic calculations, we get the results
Puster_sup=3.9404 MPa, an® 4 .,_i,s=3.8372 MPa.

pressurised vessel

85

8 4 ——F_sup
< 3 (MPa)
©

o 2 —m—F_inf
2 1 (MPa)
£ o

- ~ < ©

Parameter n

Figure 5.2: Torispherical vessel head under internal pressoad factors vs. parameter
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5.6 Comparison with a finite strain calculation

We considered an elastoplastic pressurized structure avitaw on the outer wall (see
fig.5.3. With theCodeAsterregularized limit analysis algorithm, we get, after 39 equi
alent elastic iterations:(= 8, 25) the following bounding of the limit pressure : 1.353-
1.916MPa, for a normalized, = 10.0M Pa. Moreover, we wanted to assess the predicted
collapse mode by a finite strain simulation : indeed, we capsct that a snap-through
can occur, that limit analysis can not idealize. With tbedeAster elastoplastic finite
strain incremental simulation (using the Simo-Miehe [20fegian formulation, which is
incrementally objective), assuming isotropic hardennogtthe experimental strain-stress
curve, we get the maximum pressure near from 48.5 MPa, whilelimit analysis, we
get: 35.1 MPa (if we take thB.-stress value on the strain-stress curve) or 93 MPa (taking
the R,, stress value). The failure modes are quite similar (see. 8.5

We have remarked on this kind of structure (high differenicgtiffness between the parts
of the structure) that the computing time, for the same meshuaite similar between limit
analysis and elastoplastic finite strain incremental sathoh. We can conclude that it can
be safer and not too difficult to use in parallel elastoptasticulations and limit analysis.
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Figure 5.3: Comparison between the predicted collapsesiime&D-axis, 583 Q8 ele-
ments, 1946 nodes
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6 Conclusions

The limit analysis numerical method presented here hasotteing characteristics:

e We get an upper bound, with a monotone decreasing with respie regularization
parameter, and convergence to the true limit load ;

¢ the regularized dissipation power involved in the upperabdoes not include any
elastic term;

e Wwe get an estimation of the lower bound by post-processitiggodbtained numerical
stress field, with convergence to the limit load, in the cagbout dead load. The
increasing of the sequence of these lower bounds can nobliegyrbut is observed
on the benchmark tests. This estimation is of practical@stefor the applications.

For the 2D-plane strain situation, we have observed thatrthim difficulty (of conver-
gence) is not the heterogeneous aspect, but the locahzatithe collapse mode (shear
bands appear). Adaptive meshing is necessary to provider besults for the bounding.
For the 2D-axis and 3D cases, the convergence is good andltheations are not expen-
sive (especially in 2D-axis) and the results that are be¢airodd are very close to some
available analytical simplified lower bound, and other ntios results. These tests have
led to improvements of the method, as well to a better knogéedf its behaviour.

Finally, we can conclude that the proposed numerical metbady to be implemented
into any FEM nonlinear software, leads to efficient (90% twaged) and sufficient accu-
rate bounding of limit loads with respect to incremental lmoefs or analytical available
solutions.
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1 Introduction

This present contribution concerns particularly the sdcsubject that is the shakedown
analysis through a benchmark. One of the aims of this bendhiedo find the elastic
shakedown domain in a structure subjected to a cyclic theamé mechanical loading.
Two calculations have been carried out to obtain this doniBme first one uses an incre-
mental simulation with an elastoplastic constitutive [&jdnd the second one is realized
with a simplified method. In this work, the question is to abe simplified method gives
the same results as the incremental calculation and thealitbtiiis method in the elastic
shakedown case. We recall that a structure is said to shake iflat behaves elastically
after some initial cycles with plastic strain.

The considered structure is an axisymmetrical test-tulble wariable thickness made of
guenched 316L stainless steel. This tube is subjected tera#h cyclic loading and to an
internal cyclic pressure.

For the incremental elastoplastic simulations, we havel asmodel developed by EDF

[9] and implemented in the FEMode Astersoftware. This model allows to describe the
ratchetting in nonsymmetrical load-controlled test, thesgéc and plastic shakedown in

a symmetrical and nonsymmetrical loading and the cyclidéaing and softening after

overloading. Its particularity is to introduce a ratchegtstress and a discrete variable.

Concerning the simplified ZAC method proposed by Zarka arsleC§10], it is based on
the linear kinematic hardening and obeys the von Misesrmite The material parameters
are supposed constant with the temperature. This methotecased from a free stress
or pre-stressed state and gives the limit state in a striatder cyclic thermo-mechanical
loading.

In the first section, we present the ZAC method. Then, we desthe EDF model. The
last section is dedicated to the presentation of the stigiiedimen (geometrical properties,
loading and boundary conditions) and to obtained results.

All the simulations has been performed with the EO&de Astersoftware.

2 Description of the ZAC method

Depending on the magnitude of loading, a structure can shewstructural responses
symbolized in the Bree interaction diagram. In additiorm@plastic collapse, the structure
can fail plastically with time-variant loads through:

e incremental collapse by accumulation of plastic strairer @ubsequent load cycles
(also termed ratchetting, progressive plasticity or ©ycteep),

e plastic fatigue by alternating plasticity in few load cyxl@lso termed Low Cycle
Fatigue (LCF) or plastic shakedown).
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The structure does not fail plastically, if finally all plasstrain rates vanish and if the dissi-
pated energy remains finite. One says that the structuresaidegbe load or it shakes down
elastically. After few initially plastic cycles no diffenee to the purely elastic behavior can
be observed in structural mechanics quantities.

First the theoretical framework of the ZAC methods has todfendd, i.e. the assumptions
for its application:

Quasi static evolution

Linear theory (small strains)

Temperature independent material parameters

Periodic loading (e.g. thermal load, body forced, surface forcep, and given
displacements®)

The elastic domain is defined with the von Mises yield craeri
Flo—7] <o, or llop — 7| < oy (2.1)

with the stress tensar, its deviatoric pariop, the initial yield stress,, the von
Mises yield functionF’ and the back-stress tensegiven by

7= Ce’, (2.2)

wheree? is the plastic strain tensor ad the material parameter defining the kine-
matic function.

Within this framework and the above assumptions, Melanaketlown theorem shows,
that under periodic loading any solution of an evolutionigbeon tends to a periodic solu-
tion in terms of stress and strain corresponding to the lgtate. If the local amplitude
of the plastic straire? vanishes at all points of the structure the structhakes down
elastically, otherwise itshakes down plastically.

The ZAC method is based on transformed internal variableasdumes the linear kine-
matic hardening and gives an approximation of the limitssrand strain. Its main ad-
vantage over the direct shakedown analysis is that is giwessamation of plastic strain
amplitudes from some elastic calculations. The qualitystineates on steady cyclic be-
haviour by Zarka’s method is critically discussed in [6]alfassumption given above are
fulfilled for a structurel/, it can be summarized as follows:

The actual tensay and its deviatoric paiwd , can be written as :
_ B _ _E
oc=0c"+p and op=0p,+Pp (2.3)

with the elastic stress tensef’ and the residual stress tengoand its deviatoric parts X
andp,,. The idea of the method is to perform uncoupled computatdresch point. The
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use of the modified parameterallows to build an approximation of the limit state of the
structure at each point, independently from the other point

Y=7m—-pp with the yield criteria lloh - Y| <o, (2.4)

Y is the modified variable, such that in the deviatoric strgs&s, the yield surface repre-
sents a sphere of centef;, and of radiusy,.

The key point of the ZAC method [10] is the way to calculate tadified variableY at
the limit state at each point. The knowledge of the transémwvariableyY at the limit state
will allow to solve the elastic problem with an initial streC~1Y verified by the residual
stressp and then to obtain the limit stress and strain.

2.1 Condition of elastic shakedown

At each point of the structure, one defines the quantitfgx)Fon one cycle, such that

Y=m—-pp with the yield criteria ~ ||o}, — Y|| < o, (2.5)

FF(x) = maX|o®(z,t1) — 0"(x, o) || = ||o e (2) = T (@), (2.6)
wheret,; andt, correspond to the extrema of the load cycle. The global dyaRt’ is the
maximumF ¥ (z) for all z.

The comparison between the quantit§ and the initial yield stress, allows to decide if
there is elastic or plastic shakedown

{ F¥ < 20, elastic shakedown 2.7)
F¥ > 20, plastic shakedown '
From a geometrical point of view, if the intersectiof (see 2.1) of two spheres of center
ob . anda’. and of radius the yield stress is not empty, there is elastic shakedown,
otherwise there is plastic shakedown. One shows that at @@ioh of a structure in an
elastic shakedown situation, there is a limit fact@r, fixed in time so that this modified
parametet;;,, at the limit state belongs to the intersecti@dp of these two spheres. In the
case of elastic shakedown, the estimate of the limit vagial), is obtained in the ZAC
method, through the local projection of the initial variabf, on this intersectior’;, of
these two spheres, according to the rules presented on figure
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Figure 2.1: The three ways to asségs, as a function ot

2.2 Equations verified by the actual, elastic and residual
stresses

The following conditions are fulfilled for the stresses. Hi@stoplastic problem verifies:

—dive = finV

on = p,ondv,
u = u’ondV,
1
e = 3 (Vu+ V')
o = E:(e—¢e?—¢™) (2.8)

The elastic problem solution is given by:

—dive? = f)inV
an = p,ondv,
u? = u’onav,
1
el = 3 (Vu” 4+ VTu”)
o = E:(e¥ — &™) (2.9)

Calculating the difference between the sets of equatio3 éhd (2.9), one finds the self
equilibrated following problem witlp = o — o, e® = ¢ — ¥ andu’ = u — u®:
—divp = 0inV
pn = 0o0ondV,

u?® = oondV,
1
eft = §(VuR+VTuR)
el = E':p+Cli(p,+Y) (2.10)
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Then, the knowledge of the transformed variable at the latateY;;,, will allow to solve
the elastic problem (2.10) with an initial strait,,,/C) verified by the residual stregs
and then to obtain the limit stress and the limit plasticistra

Remark

The initial variableY,, can be chosen zero or nonzero. In this last case, several
loading cyclic can be performed with a linear kinematic mdsore applying
the ZAC method.

3 Elastoplastic cyclic constitutive law

The Visc-Taheri model [9] has been developed by EDF in ordetescribe simultane-
ously the ratcheting, the elastic and plastic shakedowyrmsetrical and nonsymmetrical
stress-controlled tests and the cyclic hardening andrsafijeafter overloading in strain-
controlled tests. More generally, this model uses a naogalinsotropic and kinematic
hardening law and the evolution of internal variables isuded from yield surfaces, from
the assumption of normality and consistency conditionsefBr the different features of
this model consists in the introduction of a ratchetingssty®f a discrete variabk rep-
resenting the plastic strain at last unloading and of a pgeksr” which, in the uni-axial
case, is the maximum stress undergone during the histooading. The introduction of a
ratcheting stress is derived from some experimental etests, which show that at room
temperature the ratcheting phenomena occurs when the maxstress reaches a stress
threshold, independently of the amplitude of the loading.

There are four internal variables? plastic strain, peak stress”, the cumulated plastic
strainp and the plastic strain at last unloadiaf). The significant variable is? — &2,
which measures the plastic strain amplitude. The modeddiices a regularization of the
temporal discontinuity o#?. The law is described by three yield surfaces in the deviator
space: a spherical loading surface F which governs the goolaf plastic strain, a spheri-
cal maximal surface G centered at the origin, containinddhding surface F and relative
to the evolution of the peak stress; the third is a fixed ulterspherical surface centered at
the origin and containing the other surfaces (see [9] fod#tails of the model).

The constitutive law is described by the following equasion

F=(@—-m),—R<0 loading surface (3.2)
G=mey+R—-0"<0 maximal loading surface (3.2
o =2u(e — &) + Ktr(e — ™)1 e = (T — TrN1 (3.3)

2\ “ »
R=D {RO + (g) Al(e? — eg):q} D =1—me P1=o"/9) (3.4)
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7w = C[Se? — oPe?] C = Cy + CreP1="/9) (3.5)
el = §pi plastic law (normal) (3.6)

eP = ((e? —eP) evolution law (3.7)

whereR is the isotropic hardening function,the back-stress tensaf” the thermal strain,
K, i the bulk and shear modulus, and7"¢/ the thermal expansion coefficient and the
reference temperature adtf, a, A, b, C, andC; the other material properties used to
define the hardening functions.

The consistency conditions are given by:

F<0 p>0 Fp=0 (3.8)
G <0 &P >0 Go? =0 (3.9)
F <0 (>0 F(=0 (3.10)

In this model, four kinds of evolutions are possible:

real unloading (=0, p=0 pseudo unloading ¢ >0, p=0  (3.11)
real loading (=0, p>0, 6 =0 pseudo loading (=0, p >0, ¢ >0
(3.12)

4 Presentation of the benchmark

4.1 Specimen test

In Fig. 4.1, the geometry and the loading of the consideredisgen are represented [3].
The structure is subjected to a cyclic internal presstyend a cyclic thermal loading
(heating process by Joule effect until a given temperatinen cooling). The duration
of the heating is of 18s and the duration of cooling by natacaivection is about 1480s
to come back to the room temperature (equala”). The advantage of the considered
316L material is that it suits with the ZAC method becausédeéhsile curves are practically
bilinear. The identification has been realized from threesite tests at the temperatures
20°C', 250°C and 450C and the resulting values are given in Tab 4.1.

Remark

In a previous study about the same structure [2], [1] a firstgarison was per-
formed in the plastic shakedown case between differentagdlsstic models,
the ZAC method and the experiment. This study allowed to sbdbe most
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satisfactory constitutive models for the description d€inatting. Therefore,
one considers here one of these constitutive laws and wésiglose that
the used elastoplastic model represents well the real bmiranf considered

material.

Coefficient 200C 250C 450°C
Young’s modulus (GPa) 192.5 168.3 160.2
Poisson’s ratio 0.3 0.3 0.3
Thermal expansion coefficienk(*!) 16.410°% 17.5107¢ 18.2107
Yield stress (MPa) 210.9 118.4 101.2
Ultimate stress (MPa) 571 433 423
Hardening modulus (MPa) 6590 3022 2870

Table 4.1: Temperature dependent material data

4.2 Incremental calculations with the cyclic elastoplast
constitutive law

For the incremental calculation, all material parametegschosen temperature dependent
(the structure is made of 316L stainless steel). 4.2 sunzemthe different simulations

to evaluate the elastic shakedown domain. The maximal teathpeT’,,, obtained in the
structure, the minimal temperatufe,;, (at the same point where the specimen reaches
Tmaz), the internal pressure , the number of simulated loadintesythe duration of each
calculation (on an ORIGIN 2000 computer) and the increméctumulated plastic strain
Ap at the last cycle at the most loaded point are presented.

To detect the elastic shakedown or plastic shakedown, we ¢tedeulated the increment of
cumulated plastic strain per cyclep as a function of the number of the cycle, that is:

Ap = ppa1so0 — P(n—1)x1500 (4.1)

wherep is the maximal cumulated plastic strain reached in the gtra@and n the number

of the cycle. When the incremet¥p vanishes, there is elastic shakedown and when the
increment tends to an asymptote, there is plastic shakedstnintly speaking, the consid-
ered structure does not reach the stabilized state. Thierdifced values are chosen, which
define the plastic shakedown and the elastic shakedowneMaéses are

I

Ap 1072% plastic shakedown (4.2)
Ap = 107%% elastic shakedown (4.3)

Between these two values, the interpretation remainsatelicThe choice of these values
has been suggested by the form of the curves representimgteenent ofAp as a function
of the number of the cycle.
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Figure 4.1: Geometry and loading

4.3 Simulation with the ZAC method

We have chosen to apply the method for the constitutive laamaters defined at the max-
imal temperaturé’,,,, reached in the structure and from a pre-stressed state. Welen
carried out a first incremental elastoplastic simulatiame(and half cycle) with the linear
kinematic hardening model, then applied the simplified roétiThe two elastic problems
are solved at time corresponding to maximal loading (15&8d)at time corresponding to
minimal loading (1500s). In the table 4.2, we report the genied calculations and the
results. Concerning the duration of one simulation, it is/\&hort, about 300s. The used
material for the specimen is considered with a good casedly dpe ZAC method because
the tensile curves are practically bilinear.

Remark

The used material for the specimen is considered with a gasel i apply the
ZAC method because the tensile curves are practicallydaitin
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Traz(°C)  Tpin(°C)  Py(MPa) Result
221 58 0 plastic shakedown
183 56 0 elastic shakedown
183 56 2.25 plastic shakedown
154 55 2.25 elastic shakedown
154 55 4.5 plastic shakedown
106 53 6.75 elastic shakedown
106 53 9 plastic shakedown
84 52 9 elastic shakedown
84 52 11.25 plastic shakedown
53 50 13.5 elastic shakedown
53 50 15.75 plastic shakedown

Table 4.2: Simulations with the ZAC method and results
4.4 Comparison of the two elastic shakedown domains

In the figure 4.2, we report the results of the two simulationthe diagram: variation of
the temperaturd\7T = T,,.. — T,.in (at the same point) as a function of internal pressure
Py. The points represent the results obtained by the elastiptaodel (incremental sim-
ulation) and the squares are the results obtained by the ZéiGod. The red color stands
for the elastic shakedown case, the black color for theiplasakedown and the blue color
for a ambiguous situation in the incremental simulatiorsecalVe have reported also the
lower bound of elastic shakedown domain for the ZAC methadl fan the elastoplastic
model. One remarks on this diagram that the elastic shakedomain found by the in-
cremental calculation and by the simplified method are viryec(the lower bound for the
elastoplastic model is a little smaller than the one obtalmethe ZAC method).

5 Conclusion

This study has allowed to assess the ZAC method numericalllga elastic shakedown
case. If we consider that the cyclic elastoplastic modelsgnts well the actual behaviour
of the material 316L, we find with the ZAC method the same &lastakedown domain as
the one obtained by the EDF model. Despite the assumptidhe sfimplified method, this
result is very interesting for future applications. Oneatkcthat these assumptions are:

¢ linear kinematic hardening. Itis true that the materiall3gj6enched with a bilinear
curve is a good case to study the ZAC method. The choice ofdtdehing modulus
is easier and then one eliminates the problem of constiugiw choice.

¢ the method applies when the material characteristics arpgeature-independent.
¢ the method gives only an approximation of the limit state.
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AT=Tmax-Tmin (*C)
163
® plastic shakedown Ap = 10-205
® ambiguous situationdp = 10-30%

E @ elastic shakedown Ap = 10-404

ZAC Method (Zarka & Casier)
[ ] = plastic shakedown

127 |:

[ ] = elastic shakedown

= Lower bound
of the elastic shakedown domain

o m Internal pressure PO (MPa)

225 45 6.75 9 11.25 135 1575
Figure 4.2: Elastic shakedown domain with the ZAC and thesimental method

Acknowledgement

The research has been funded by the European Commissiomtad tfee Brite—_EuRam
Il project LISA: FEM—-Based Limit and Shakedown Analysig foesign and Integrity

Assessment in European Industry (Projeét BE 97-4547, Contract N BRPR-CT97—-
0595).

Bibliography

[1] J. Angles, S. TaheriLa méthode simplige ZAC, appligge au benchmark Cothaa
48me colloque national en calcul des structures, Gien, Franes;, M99.

[2] M.T. Cabrillat et. al., Benchmark on a thermal ratchregtiest, comparison of different
constitutive models, SMIRT 14, France, Vol. L (1997) pp.235.

[3] M.T. Cabrillat: Benchmark COTHAA, ¢€gifications Note technique CEA
SERA/LDCS 95/6051, (1995).

183



Simplified shakedown analysis with the ZAC method

[4]

[5]

[6]

[7]

[8]

[9]

[10]

V. Cano, S. Taheri: Elastic shakedown domain in an axisgtnical structure sub-
jected to a cyclic thermal and mechanical loading — comparlsetween an incre-
mental model and a simplified method. ECCOMAS 2000, CD-Rooté&dings,
Barcelona (2000).

J.A. Konig: Shakedown of Elastic—Plastic Structutelsevier Amsterdam and PWN
Warsaw (1987).

G. Maier, C. Comi, A. Corigliano, U. Perego, H. Hubel: Bals and Estimates on
Inelastic Deformations: A Study of their Practical Usekgs. European Commission
Report EUR 16555EN, Brussels (1995).

A.R.S. Ponter, K.F. Carter. Shakedown state simulateminiques based on linear
elastic solutions. Computer Methods in Applied Mechaniod &ngineering. 140
(1997), pp.259-279.

M. Save, G. de Saxcé, A. Borkowski: Computations of sutkvn loads feasibility
study. European Commission Report EUR 13618 EN, Brussalgmbourg (1991).

S. Taheri, E. Lorentz: An elastic-plastic constitutiaes for the description of uniaxial
and multiaxial ratcheting, International Journal of Atast 15 (1999) pp.1159-1180.

J. Zarka, C. Casier: Elastic plastic response of a &irado cyclic loading: practical
rules, Mechanics today, vol.6 ed. Nemat-Nasser, Pergamess P1979).

184



Part VI

Shakedown analysis of plane stress
problems via SOCP

Athanasios Makrodimopoulos, Christos Bisbos

Institute of Steel Structures, Civil Engineering Department
Aristotle University, GR-54006 Thessaloniki, Greece

E-mail: cbisbos@civil.auth.gr



Shakedown analysis of plane stress problems via SOCP

Nomenclature

2D, 3D
APSC
DOFs
CNLP
CP
CQO
IPM
LISA
LP
MOSEK
MP
QCLP
SDP
SIP
SOCP
SQP
s.p.d.
E

f F,®
V, 0V
Oy

Bi

g

™

Two-dimensional, three-dimensiona
Alternating Plasticity

Degrees of Freedom

Convex Nonlinear Programming

Conic Programming

Conic Quadratic Optimization
Interior Point Method

Limit and shakedown analysis, acronym of the project
Linear Programming

Optimization software by MOSEK ApS, Copenhagen
Mathematical Programming

Quadratically Constrained Linear Programming
Semidefinite Programming

Semi-infinite Programming

Second Order Cone Programming

Sequential Quadratic Programming
semipositive definite (matrix)

modulus of elasticity

yield function

structure and its boundarg{ = 0Vp U 0Vy)
thermal expansion coefficient

Numerical integration weight factor &th Gauss point
actual strain

Back-stress

residual stress

actual stress

ultimate tensile strength
yield stress

Number of free DOFs in the structure

Number of finite elements in the structure

Total number of Gauss points

Number of vertices of the load domain

Index setZ ={1,..., NG}

Index set.7 = {1,..., NV}
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1 Basic formulations

1.1 Introduction

All engineering structures are subjected to variable logdiln several cases the exact
loading path is unknown, or it has a prominently cyclic cleéga Fortunately the limits of
the variation of the actual loads can be usually prescribiéiu sufficient accuracy.

Shakedown analysis offers the possibility to estimate tas Icarrying capacity of an
elastoplastic structure subjected to variable loads.dsssis formed by the work of Melan
([33], [34]) and Kaoiter ([25]): they formulated the statiadkinematic shakedown theo-
rems by means of which, we can determine criteria as to whatk&ucture, subjected to
loads varying inside a given load domain, will shake downair Based on their work, a
plethora of researchers has intensively studied shakedowrformed it as a very active
independent research topic. If the loading domain shriaks point, then the shakedown
analysis problem becomes the limit analysis one. Theoegnsions and applications
of limit and shakedown analysis have been extensively stlittie last thirty years. Both
problem types lead to extremum (optimization) problems thedpresence of computers,
the finite Element Method (FEM), and Mathematical Prograngr(MP) techniques has
definitely influenced their development. (see e.g. the mapdtws [48]-[20], and the spe-
cialized conference proceedings [10]-[60]).

The shakedown theory has been extended to cover severatasptardening and non-
associative flow rules have been studied e.g. by Maier [3]),[83], Weichert et al. [57],
Stein et al. [51], [52], Heitzer et al. [19], and Polizzottb el. [39]. Studies on the
shakedown problem under geometric nonlinearity can bedanri31, 56, 58, 41, 53].
Shakedown has been extended also to composites [59], ddmaagecracked structures
[4, 14, 17, 58], and poroplasticity [9]. Another importarase concerns the effects of
temperature on the yield surface [6, 24, 16, 62]. The shakedi®sign of frames has been
treated by Giambanco et al. [15] and Spiliopoulos [49].

Shakedown analysis can be cast in an abstract functiongjt@ansetting. Its computa-
tional implementation consists in the combination of sor&&IFdiscretization and an op-
timization technique selected from MP. Since virtually BEM codes are based on the
displacement method, the control points are usually thes&paints of the FEM mesh. A
second crucial discretization step concerns the loadingadw it is assumed usually to be
a convex polyhedron, although this assumption is not ireduglven in the basic theorems
of Melan and Koiter. Without this assumption the optimiaatproblem renders to be a
rather difficult Semi-Infinite Programming (SIP) problenf (€.9. [46]).

Even in the simplest case of the classical von Mises yieldlitmm with classical bound-

ary conditions and excluding geometric nonlinearity éfethe computational shakedown
analysis is not a trivial task for engineering applicatiddse to the fact that the yield con-
dition is nonlinear, the final MP problem, resulting from .etge lower bound approach,
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is a Convex Nonlinear Programming (CNLP) problem with a éangimber of variables

and nonlinear constraints and consequently effectiverdéiigos and implementations are
needed. The focus of the present work essentially conckimaspect. A discretized for-
mulation is worked out, leading to a Second Order Cone Pnogniag (SOCP) problem,

for which efficient algorithms and implementations exist.

1.2 The computational optimization framework

1.2.1 Motivation of the present work

In the first period of the application of MP techniques to thalkedown analysis, pioneered
by G. Maier and documented e.g. in [10], the involved yieldazes have been linearized
and the resulting MP formulation was a LP problem. Consetyéine MP method of
choice was the famous Simplex algorithm in its various farms

If the von Mises yield surfaces are kept as nonlinear funstithe mathematical formula-
tion of the discretized shakedown problem - using the stgijsroach - leads to a CNLP
problem. This general embedding is not in all cases comiputty advantageous, since
the number of unknowns is large and the specific form and tbeliae characteristics of the
problem are not exploited. One effective way is to develagegjally tailored algorithms
and to incorporate them in the FEM code. Stein and Zhang [B1GBo3-Weege [16] and
Heitzer and Staat [50, 18] have developed special SQP metteskd on a reduced basis
technique, exploiting the inherent characteristics ofs@kedown problem.

The present approach follows another way. A formulation esk&d out, which allows
for the application of available specific software, alreddyeloped by the MP community
within the framework of Interior Point Methods (IPMs), whiconstitute one of the most
active and fruitful research directions concerning CNLRPirythe last fifteen years. In
this case a well-defined and clearly coded program intetfabseen the FEM and the MP
codes is needed. This approach has its own advantages auVatisages. Depending
on the availability of the MP code, communication can be eadd perhaps only through
specific data files. This is not considered to be a very sedmawsback for the today’s com-
puters. For the geometrically linear shakedown probleodiatl only one activation of the
IPM software is needed. Perhaps the most important diséalyarconsists in the fact that
not all the peculiarities of the shakedown problem are yeatploited. On the other side
the number of available IPM techniques grows very rapidigsjpte their efficiency, IPMs
are difficult to code and a clearly defined interface allowsifialependent developments
on the FEM as on MP side as well. Parallelization e.g., whigkd$ias a computationally
attractive aspect, can be achieved independently on theétkiv the MP side.
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1.2.2 The IPM framework

After the publication of the Karmarkar’s algorithm in 1984j@eat number of IPMs have

been developed for LP problems with extraordinary succéleir name reflects the fact

that the points generated by the algorithms lie in the iotest the feasible region. This

is in contrast to the simplex method e.g., which is an actterethod, moving along the

boundary of the feasible region. IPMs perform essentiawbdn steps for large but sparse
systems. The success of IPMs for LP problems has encouragedrchers to apply them
to nonlinear problems as well (see e.g. [12]). Today the IRMELNLPs are considered

as really competitive to other computational techniques.

A key concept within the IPMs for CNLP is the Conic Programgn{€P) problem, i.e.
the solution of a minimization problem with linear objee&tifunction and feasible region
defined by some cone ([38, 47, 5]). CP encompasses as impsp@cial cases not only
LP but the (Semi-definte Programming) SDP and the SOCP caseslla A recent bench-
marking of available SDP and SOCP software has been unéertakMittelmann ([35]).

In its simplest form the SDP problem consists in the minirmdaa(maximization) of a
linear function ofx with x € IR" subjected to the constraint that a matrix, which is a linear
function ofx, must be semipositive definite (s.p.d.). The problem dagl® arec € IR"

and then + 1 constant symmetric matricdsy, F, . .., F,, defining the matrix function
F(x) =Fo+ 1F; + 22Fy + ... + 2, F,,. Then the SDP problem is formulated as:

min c’'x
s.t. z'F(x)z > 0

There are many equivalent representations of SDP. In daheory the s.p.d. constraint
is termed a Linear Matrix Inequality (LMI). Let us note thaetsubspace of the s.p.d. ma-
trices form a cone. The SDP problem is a CNLP problem with ailid& region having a
piecewise smooth boundary. More specifically the boundbittyeofeasible region consists
of pieces corresponding to algebraic surfaces. Anothgrgrtg of SDP is that - provided
that the problem is feasible - an optimal point lies alwaysteboundary. Although the
SDP problem seems quite specialized, it has attracted nttefitian by the researchers,
since e.qg. it includes many important optimization proldeams special cases (cf. e.g. the
expository papers [55, 54] and the handbook [61]). Anotkason, perhaps the most im-
portant one, is the fact that SDP problems can be theorgtgtaldied and algorithmically
solved efficiently. Despite its efficiency, SDP is more gahéran required for the LISA
purposes.

1.2.3 The SOCP problem

In a SOCP problem, closely related to SDP but less generahiwenize a linear function
over the intersection of an affine set (a system of linear tiopus) with the Cartesian prod-
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uct of a finite number of second-order cones. In this sectieriollow the expositions of
[13, 29, 7].

Recall that a sek C IR is a cone if the following condition holds:

xeK = MxeK VA>0 (1.1)
The conek™* C IRP, dual toK is defined by:
K ={scIR’ : s"x>0 VxeK} (1.2)

If K = K*the cone is self-dual. The standard or unit second-ordex obdimensioni;
is defined by:
K; = {xI' = (z;0,x}) € IR x IR%™" . 10— ||xa| >0} K; C IR (1.3)

where|| - || denotes the usual Euclidean norm. (1.3) can be written algeei form:
d;
K; = {x; € IR% : %2,1 > inj, xip1 > 0}
j=2

This cone, which is self-dual, is called also the ice-crearharenz cone. The general
form of a second-order cone of dimensi@nfor the variablex € IR" is defined by the
inequality constraint:

K;={x; € IR" : |Px+pi < giTx+ ri} (1.4)

with dataP; € IR x IR", p; € IR, g; € IR", r; € IR. With appropriate selection of the
data the standard conic constraint (1.3) is recovered) Yietds a linear equation system
as special case, whep = 0 andr; = 0. If further p, = 0 the condition is recovered, that
x must lie in the null space d?;.

Now a representative standard second-order cone prograrthédollowing partitioned
form:

k
: T
min g C; X
i=1

s.t. XZGKM Zzl,,]{}
k
> Ax;=b (1.5)
=1
wherex; € IR% i = 1, ...,k are the unknown variable%; are unit second-order cones

of dimensiond; respectively and the other data &rec IR™, A; € IR™*% andc; € IR%.
The dual of problem (1.5) is:

max bly
st s € K, i=1... .k
Aly+si=c¢;, i=1,...,k (1.6)
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If some unknowrx;, present in the the linear system, is not subjected to a @amstraint,
the respective dual variabde is zero, since the dual of the whalR? is the singleton set,
containing the origin. Defining:

D = di+...+d

K = Ky x...x Ky

A (Ap:Ay:. . Ay) € IR™P
c' = (cl,....c¢l)eIR”

x!' = (xI,...,x})) € IRP

s’ = (sI,...,s{) € IRP

the primal problem (1.5) can be compactly written as:
Xopt = Arg [mine’x | Ax =b, x € K | (1.7)

and respectively the dual (1.6) as:

(¥,8)opt = Arg [maxb’y | ATy +s=c, s € K*] (1.8)
If we write the dual as a primal problem in the minimizationfo

(¥,8)opt = Arg [min —b’y | ATy + Is=c, s € K*]
its dual is simply:
(Z,t)opt = Arg[maxc’z|Az= —b, Iz+t =0, t € K|

Comparing (1.7) with the last problem we see:

Xopt = to;ot = —Zopt

So far we have considered only unit second-order cones dbthe (1.3). Considering
the general second-order conic constraint form (1.4) léadise following general SOCP
problem:

min c'x

s.t. IPx+pi| <glx+r,i=1,...,N (1.9)

Sometimes SOCP is named Conic Quadratic Optimization (C@@)is referred to the
standard second-order conic constraint form (1.3). Algio8OCP is in theory a more
specialized form of CP in comparison with SDP, it has a plafitgpplications in various
engineering topics (cf. eg. [29]). Usually the reformwatiof a problem as a SOCP one
is performed by using auxiliary unknowns. Let us considgr ¢he following quadratic
constraint {; positive) :

lyill <riy yi € R%
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This constraint is transformed to a second-order conictcansx; € K; C IR% by
introducing an auxilliary unknowm,, with x!’" = (2,0, y7) and adding the equatian, =

r; to the linear equations. This way Quadratically Constmibmear Problem (QCLP),
closely related to LISA arises naturally from SOCP with whimgg;. Another problem
which can be cast as SOCP, is the problem of minimizing a sunohs, used in [8] for
the limit analysis of plane stress and plate problems. Lebuasider e.g. the unconstrained
problem:

k
min ) |[Pix + pil| (1.10)
=1

It can be expressed as an SOCP problem by introducing thiayiinknownsty, . . ., t:

k
min Zti
=1
s.t. t; >0, i=1,...,k
Poxc+pill* <, i=1,...k (1.11)

Other second-order conic constraints can be easily incatpd, as e.g. linear equalities
or inequalities. It is noteworthy that although the objeetiunction of a sum-of-norms
problem can be nondifferentiable (e.g. at the origin), ihisot the case with (1.11), where
a zero gradient condition occurs in place of the aforemaetimondifferentiability.

Now let us write (1.9) in a form similar to the partitioned ofie5) as follows:

T

min c'xX
s.t. |w |l < ¢, i=1,...,N
ui:Pix+pi, 1= ,...,N
ti=glx+r, i=1,...,N (1.12)
The dual of (1.9) reads (cf. e.g. [29]):
N
max —Z (pZTzZ +7’le)
i=1
s.t |zi|| < w;, i=1,...,N
N
N (Plzi+guw) =c (1.13)

with optimization variableg; € IR%~! andw € IR".
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1.2.4 Duality in some specific forms of SOCP

Now let us consider the following problem:

max CgXO
s.t. x|l <1 i=1,...,N
N
Agxo + > Axi=b (1.14)

i=1

with optimization variable, € IR™, x; € IR™ and dataA, € IR™ x IR™, A; €
IR™ x IR™ andcy, € IR™,b € IR™. Its dual is the following problem with variables
t € IR™, w € IRVN:

N
min (b7t + Z w;)
i=1

s.t. w; > |[|[ATE)| i=1,...,N
ATt = ¢ (1.15)

Proof: The duality can be proven by standard enlargement. Let us set

- [e . 0 . a o
=) mela ] A= [E R

wheree, 4, € IR"N. The vectore has all entries equal to one aaghas all entries equal
to zero except the-th entry which is equal to one. Setting = —cgy, Xo = Xg, X; =
(2iz,%;) € IR andm = m + N transforms the norm constraints of (1.14) to standard
conic ones and the problem (1.14) becomes a specific casénfl(et us consider its dual
(1.6) with optimization variableg € IR™. Partitioningy asy = (y.,ys), setting new
variablesw = —y, andt = —y, we transform (1.6) after some simple algebra to (1.15).

If the system of equations in (1.14) is homogeneous, i.=f 0, then the dual (1.15) be-
comes a problem of minimizing a sum of norms with additiomsddr equality constraints.
Let us now consider further this homogeneous case with tbiiadal assumption that a

large part of the linear equation system does not contaimtkeownsx;,: = 1,..., N,
le:
_ Ay Ay .
AO_[A02:|7 AZ [ 0 ) 2_17 7N
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More analytically let us consider the primal problem:

max clxo
s.t. IIx;]] <1 i=1,...,N

N
A01X0 + ZAiXi =0
=1

A02X0 =0 (116)

The dual of (1.16) is obviously:

N
min Z w;
i=1
Agltl + A.thQ = Cp (117)

Finally let us consider a further specialization. Nametyug assume that only one com-
ponent ofx, enters the linear objective function and that the respediries ofA , are

Zero.
. A . 1 . A01 . ay D
o lpfoem e fo ] as ] =18

I.e. let us consider the following primal problem with védnies )\, r, x;:
max A

s.t. x| <1 i=1,...,N

N
aA + Dr + ) Aix; =0
=1

Cr=0 (1.18)

The dual problem with variables, z, u becomes now:

N
min Zwi
i=1
s.t. w; > HAzTZH 1=1,...,N
alz=1

DTz = CTu (1.19)

where we have set= t; andu = t,. As we shall see, the static approach to the shakedown
analysis problem, based on Melans theorem, leads exacgyotdem (1.18), where the
kinematic approach leads to its dual (1.19).
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1.3 The von Mises elastoplastic continuum problem

1.3.1 Starting relations

Let us consider a continuum boéfywith boundanV’ = oV;;UoVe. OnoVy kinematical
boundary conditions hold and @i/, (with outer normaln) surface loadg are applied.
V' is subjected also to body forcés In this work we restrict ourselves to geometrically
linear phenomena where the small strain-displacemeriioeleeads:

1 8’111@ 8uj
N 5(599;]- + (’3@)

The sef of all strain fields satisfying (1.20) and the boundary ctinds imposed oWV},

is termed the set of kinematically admissible strain fields.

Within the framework of geometric linearity (small dispdaments and strains) the follow-
ing additive decomposition of the strains holds:

e=e"+e"+¢€f (1.21)

wheree® e, e are the initial, the elastic and plastic strains respelstive
The actual stresses satisfy the equilibrium relations:

dive =—-f inV and on=p ondVp (1.22)

and the se8 of all stress fields satisfying these equilibrium condisidar given p, f) is
termed the set of statically admissible stresses for thengvading.
The actual stresses can be considered as the sum of two components, the etelstind
the residual stressgs

oc=0cf+p (1.23)

The elastic stresses are the stresses which would haverizkered in the case of infinitely
linearly elastic material:
ol = Eijuct) (1.24)

ij

The residual stresses are due to the plastic strains. $iacctual and the elastic stresses
satisfy the equilibrium conditions for the same loading tksidual stresses satisfy the
homogeneous equilibrium conditions:

divoe =0inV and on=0 on dVp (1.25)
i.e. they are self-equilibrated (eigen-stresses). TheSsedf all stress fields satisfying

the homogeneous equilibrium conditions is termed the sstatically admissible residual
stresses.
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" : : . p :
gnder plane stress conditions the equivalent strgss, and plastic straia,,,;, are given
y:

Ocquiv = U%x + U;y — OzaO0yy + 37—12y = @(0’)
P — 2 P2 P2 P P 1 P2 1.26
gequiv - ﬁ (8$$) + (gyy) _'_gxxgyy + Z(gxg) ( . )
(o) can be written also as:
1 —0.5 0
d(o)=0'Mo, M=|-05 1 0 (1.27)
0 0 3

Let us consider the classical von Mises plastic yield fuorcti
F(0) = Oequin = /(o) (1.28)
and the corresponding yield criterion:
flo) = Oequiv —0y = F(o) —0, <0 (1.29)
with associative plastic flow rule, i.e. plastic deformatrate normal to the yield function:

o= 95

= o (1.30)
obeying the well-known complementarity relations:
A>0, fle)<0, Af(o)=0 (1.31)
Then the equivalent plastic strain rate is equal to:
el =\ (1.32)
and the plastic dissipation function is given by:
dpl€P(x,1)] = max o : &¥(x,t) = oy(x) €L iy = 0y () A, t) (1.33)

f(e)<0

1.3.2 The shakedown theorems
Consider now that” is subjected to variable loads which may assume any valigeias

bounded load domaid. Let P(t) € £ be some load path, where the paramettpresses
the evolution of the phenomenon and is not the natural timertfa terms neglected).
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According to Melan’s static theorem the maximum factor fdrieth the structure shakes
down elastically in the load domaifsp = aspLl, i.e. the shakedown factor, can be
calculated as the solution of the optimization problem:

max a
sit. flaoP(z,t)+p(x)] <0 Ve eV, VP(Et)eL
pES (1.34)

with optimization variableg and the time-independent residual stress field

Let us now assume that the load domain is a convex hyperpaidghevith NV vertices
and let us define the index sgt= {1, ..., NV}. If the load-domain is also box-shaped,
I.e. if the loading hasV L independently varying components:

NL

P(t)=> )P, 1y < pult) < it (1.35)
k=1

then the number of load domain vertices\$” = 2V, This quite specialized form is the
most commonly used in the design of structures.

Under the assumption thatis a convex hyperpolyhedron, the time variable can be elimi-
nated (see e.g. [24]) and (1.34) is reduced to the form:

max a
st. flaog®(z,j)+px)] <0 YeeV, VjeJ
peS, (1.36)

wherea?(z, j) is the elastic stress at pointdue to thej-th vertex of the load domain. In
other words, the yield condition is checked only for the icexd of L.

According Koiter’s kinematic theorem an elastic perfegiigstic structureloes not shake-

downif and only if there exists a history of plastic strain ratddiand a time moment,
such that

to to
/ / oE(w 1) : &%, )dVdt > / / A& (z, £)]dV dt
0 1% 0 Vv
to
with  e?(z,t,) :/ eP(x,t)dt, el(x,t,) € € (1.37)
0

under the assumption that the initial velocities defineddh are zero. IfL is a convex
hyperpolyhedron (see [23, 21, 22, 6]) the time variable carlbminated again. In this
case shakedown does not occur, if there exists a plastio §igld e?(z, j) for everyj-th
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vertex of £ such that:
NV NV
Z/ oF(z, ) : (. )dV > Z/ 4, (e (x, §)|dV
=17V =17V
NV
with > e(x,j) €€ (1.38)
7=1

Then for alla exceedingysp there exist the aforementioned plastic strain fieéls:, j)
with:

NV
D e(x, )€€ (1.39)
j=1
such that the following condition is satisfied:
NV NV
ay’ / o (x,j) : €”(x,§)dV > ) / d,[e?(z, §)]dV (1.40)
=17V =17V

or:

NV
3 / dyle? (@, )V
> I=

NV
Z/‘/O'E(x,j) ceP(x,j)dV

a (1.41)

Normalizing:
NV
Z/ a¥(x,5) : eP(x,7)dV =1 (1.42)
j=1"V

yieldsagp as the solution of the following optimization problem:

NV
min  «a = ;/‘/dp[s (x,7)]dV
NV
s.t. Z[/UE(x,j) :eP(x,j)dV =1
v
Y er)ee (1.43)
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1.3.3 A vectorial representation of stresses and strains

Considering the cartesian component representationedsster in vector formo € IR3
we can use another (skew) basis to represent it:

y = Qo, oc=Q 'y (1.44)

with y € IR? andQ € IR? x IR? an invertible matrix. For the plane stress case considered,
we select as matrig) the Cholecky factor of the matrixl, appearing in (1.27):

1 —05 0
M = QTQ, Q=10 05V3 0 (1.45)
0 0 3
Setting:
q=Qo” r=Qp (1.46)

the static theorem (1.36) can be written obviously as:

max «
s.t. ly(z, )| < oy(2) VeeV, VjeJd
aq(z,j)+r(z) —y(z,j)=0 VeeV, VjeJ
r(z) — Qp(x) =0 VeeV
peSs, (1.47)

We can use a similar vectorial representation of the plastain and of the plastic strain
rate.We select the following one:

el(x,t) = Q'z(a,t), z(x,t) € IR? (1.48)
which yields the following relation for the equivalent piiasstrain rate:

" o = Iz (1.49)

gequiv
as can be immediately verified. The plastic dissipation powe becomes:
dp[e" (2, 1)] = 0y () ||z(z, 1)]] (1.50)

199



Shakedown analysis of plane stress problems via SOCP

Using this representation and (1.46) yields the followingri of the kinematic theorem
(1.43):

NV
min a:Z/Vay(x) 2z, 8)]| dV
=1

s.t. Z/v [a” (2, ) z(z,j)] dV =1

j=1
e’(r,j) = Q'z(x,j) VzeV, j=1,.. NV
Y P ee (1.51)

j=1

The yield stress can be incorporated locally in the stredssémain transformations. This
will be down in the next section.

1.4 The discretized problems

1.4.1 FEM discretization

Let us assume that the structiras discretized through a displacement FEM method. Let
be :

NF Number of free DOFs in the structure (restrained ones odjitte
d Dimension of local stress vector (d=3)

NE  Number of finite elements

NEG Number of element Gauss points

NG Number of total Gauss points (NG = NE x NEG)

with the assumption that all elements have the same numb&aags points. We de-
fine the index sef = {1,2,..., NG}.
The local strain vector is obtained from the nodal displaseiwectoru through :

e(x) =Bg(x)u z€ Vi, ke{l,...,NE} (1.52)

The principle of virtual work yields the following relatidor some loading and stresses
o statically compatible with it:

NE
pTu:Z/ elodV, (1.53)
k=1""Vk
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Combining the last two relations:

NE
p=>_ / B odV, (1.54)
k=1"Vk

Performing the numerical integration yields the discediequivalent to (1.22):
NG NG
=1 =1

Collecting:
ol = [of,... 084

C — [Cl,...,CN(;]

we write (1.55) finally as:
p = Co (1.56)

and the FEM approximation of a residual stress field satisffiesiomogeneous equation
system:

NG
0=Cp =) Cp, (1.57)
=1

I.e. the setS, is the null space of the matrik.

1.4.2 The static approach

Let us now introduce local transformation matri€@sdefined by:
ay,iQi = Q <A (158)

and let us apply at eaghth Gauss point and for eaghth load domain vertex the transfor-
mations (1.44) and (1.46):

@ =Qi (0", yl=Qoal V(i jeIxT (1.59)
and corresponding:

r=Qp; 1€ (1.60)
Then the static theorem (1.47) has the discretized form:
max «
s.t. vl <1 V(i,j)ETxT

afl + -y =0 V(i,j) eI xT

NG
> Cip, =0 (1.61)
i=1
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Since the matriXQ is invertible under plane stress conditions, setting:
C,=0,,CQ"' i€l (1.62)

and eliminatingp by use of (1.60) leads to the problem:

max «
s.t. vl <1 V(i,j)ETxT
afl + -y =0 V(i,j) eI xT
NG
> Citi =0 (1.63)
=1

Problems (1.61) and (1.63) have exactly the SOCP form (Jah8)their duals could be
obtained directly in the form (1.19). In the next section wkdw a more traditional me-
chanical approach.

1.4.3 The kinematic approach

Let us now consider the discretized form of problem (1.5Xhwi

(e =QTz]  V(i,j)eIxJT (1.64)

The plastic dissipation, i.e. the objective function nokeathe form:

NG NV

a=> " o] (1.65)

i=1 j=1
and the plastic work normalization condition reads:
NG NV o
>o> By (@) =1 (1.66)

i=1 j=1

Finally the condition of kinematic admissibility can be egpsed in terms of the variables
z; as follows:

NV ' NV ‘
Y (E") =) Q' =Bu Viel (1.67)
j=1 j=1
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Consequently (1.51) leads to the following discretizeanfor

NG NV ‘
min a:ZZﬁiayingH V(i,7) eI xJ
i=1 j=1
NG NV ’ '
s.t. Z Zﬁz‘%.i @)zl =1
i=1 j=1
W
> Q"z] =B VieTl (1.68)
j=1

Let us introduce the scaled variables:

7 = Bio, .z (1.69)

7

and use (1.62) to transform the kinematic problem (1.68}Herplane stress case to the
following form:

NG NV
min a= z] V(i,7) eI xJ
i=1 j=1
NG NV '
st Y Y @)z =
i=1 j=1
NV
» % =Clu Viel (1.70)
7=1

which is a sum-of-norms problem with additional equalitystaints.
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2 Extensions, implementation and examples

2.1 Extension to limited kinematic hardening

Let us consider the two-surface model of [51, 52] descriltheglimited kinematic hard-
ening behaviour of the structure. Then the following coodi replace the yield criterion
constraints:

(o —7) <o, d(m) < (0, — 0y)? (2.1)
wherer is a back-stress field. The shakedown factor can be caldwaaethe static ap-
proach by the solution of the following optimization proivle

st ®lac”(z,t) + p(x) — w(x)] < o) Ve eV, VP(t)eL
P[m ()] < (04 — 0y)? Ve eV
peSs, 2.2)

Considering again a convex polyhedral load domain and thé &iEcretized structure, the
static problem (2.2) takes the form:

max oY
st.  Placl(j)+p; — ) <oy, V(i,j) €I xJ
Olm;] < (0ui — 0y4)? Viel
Cp=0 2.3)

Setting:

a =Qof(j), 2z =Qm, yl=ad +Qp;—z (2.4)

yields the following QCLP problem:

max a
s.t. Iyil* < oz, Vi, j) €T x J
1212 < (00 — 0y.0)? Viel
aq +Qp, —z;—yl =0 V(i,j) €T x T
Qm;—2z;,=0 Viel
Cp=0 (2.5)

which can be easily transformed to an equivalent SOCP bytamelard enlargement tech-
nigues discussed previously in Section 1.2. This way its)@drdual can be also obtained.
A mechanical interpretation can be given to this dual, legdo a kinematic theorem for
the FEM discretized problem. This topic will be discussexbeihere.
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2.2 Alternating plasticity

The plastic strains can result to a zero sum over a load cymdalthe fact that the sign
of plastic strains increment changes. This phenomenoriledgalastic shakedown and is
related with the local failure due tdternating plasticit APSC).

The safety factor in APSQCy,p, according to Polizzotto’s theorem in [40], (see also [64])
can be calculated as follows:

aap=Arg [ maxa | flao®(z,t)+0%(x)] <0 VeV, Vt | (2.6)
Let us consider the corresponding local problem:
ofo(z) = Arg | maxa | flao®(z,t)+0o%(x)] <0 VYt | (2.7)

Since there is no other requirement for the stress &¢ld:), the local problems are decou-
pled and consequently:

aap=Arg| min o$%(x) | x€V ] (2.8)

I.e. a minimax problem with obvious discretized countetrpar

Let us consider a box-shaped load domain with independently varying components
andNV = 2V vertices. Then the loading has the form (1.35):

NL

P(t) =Y )P,y < pilt) < py

Pycko and Mrb6z [44] proved that the safety factor can beutated as
Ty

min % (2.9)
SN

Ap =

whereT” are the elastic stresses induced in the symmetric load doffaiefined as

PO =S P )] < Mt (2.10)
k=1 ’ B 2 .

In fact a4 p is the elastic factor corresponding to teload domain. By elastic factary;
of a load domainC we mean

ap =max{a | f(ag®(x,t)) <0, Yz eV, VP € L}

of arp= min S (2.11)

zeV,jeT \/PloE(x, )]

Since there is no global requirement for the stress #e€ld:), the safety factor in APSC is
an upper bound for the (elastic) shakedown factor and okiyou

ap < agsp < agp (2.12)
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2.3 The 3D case

So far all derivations concern primal the 2D plane stress,¢as a case with bounded yield
surface. The main idea was to use a variable transformasigh.44) in order to make the
ellipsoidal yield surface a spheric one, most appropriatétfe SOCP algorithms.

The same basic idea can be used also in cases with cylingraldl surfaces as under
axisymmetric or 3D conditions. Then the von Mises yield acefis a bounded ellipsoid
in the deviatoric space and an appropriate transformatonneake the ellipsoid again a
sphere.

Let us consider the 3D case and the following vector forrar @ IR° (in a skew basis):

' = (h,y")Y, helR, yec IR (2.13)
given by the linear transformation:

[ h ] T 1/V3 1/V3 1/V3

0 0 0 o,
B 0.5 -1 05 0 0 0 oy
h U —05v3 0 05/3 0 0 0 .
—| = = (2.14)
{ y } Ys 0 0 0 V3 0 0 Tay
Y4 0 0 0 0 V3 0 Ty
| U5 L0 0 0 0 0 V3] | T |
or:
h=Po, y=Qo (2.15)

with obvious entries of the transformation matrid@ss IR x IR%, Q € IR® x IRS. Note
that the columns of the matri®”| Q| form a vector basis fot?°. Note thatP”’P = 1
andP7Q = 0, i.e. this transformation induces a direct decomposititie stress vector

in the volumetric and deviatoric part. In fagtcan be considered as a representation of the
five independent components of the deviatgr. The yield function and the yield criterion
can be written as:

(o) =y'y (2.16)

flo) =1lyll <oy (2.17)

Then the formulation of the static theorem (1.61) remairgl\as it stays and (1.61) is
slightly changed, since the volumetric parts of the redidtrasses appear also in the null
space condition (and only in it).

A kinematic interpretation can be given to the respectivenfd duals, which are obtained
as described in Section 1.2. Alternatively, a direct foratioh - at least for the discretized
problem - can be elaborated through a respective decongosftthe strains in volumetric
and deviatoric parts.
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2.4 Implementation issues

It is noteworthy that the arising SOCP problems are all l&giesparse i.e. most of the ma-
trices elements are zero and exactly the exploitation efdbpect is the basis of the success
of all the IPM algorithms. As we have explained in Section, W2 have decided to use
already available specific SOCP software developed by thedt®munity. An effective
algorithm for SOCP problems is e.g. described in [1]. We Hanadly decided to use the
package MOSEK [13]), which implements the algorithm présénn [2]. This package
contains also a general IPM solver for CNLP problems, deedrin [3]. Our decision has
been influenced also by the benchmark tests for SDP and SQ@®?sspresented in [35],
where MOSEK outperforms its competitors. We have used ttial seersion of MOSEK
and not the parallelized one.

The input to MOSEK consists in ASCII files in the MPS format,IM@own in the MP
community. Consequently we have implemented the solutigdhevarising SOCP prob-
lems in the following way:

1) The FEM code writes on binary disk files all necessary imfation, i.e.

¢ the restraint codes of the DOFs of the structure (in ordegriorie the restrained
DOFs during the assembly of the structural equilibrium mar).

e element connectivity information and the element equilitor matrices.
¢ the elastic solution stresses.
2) A preprocessor
e reads a directives file, prepared by the user, containingiaddl information
aso,, o, etc.

e reads the binary files generated by the FEM code, performsdbessary ma-
trix operations in order to make the yield surfaces sphemit prepares the
ASCII input files in MPS format needed by MOSEK.

e prepares a directives file for the postprocessor
3) Arun of MOSEK is made.

4) A postprocessor reads and evaluates the ASCII outputiéldigg the final results
asa, p eftc.

At this development stage the scheme is operational foe@tness and axisymmetric con-
ditions. An exploitation of the characteristics of the f8lb case is under development.
The sparsity effect has been clearly demonstrated. In theerinal examples the problem
resulting from the static formulation has been solved fastéhough in the kinematic for-
mulation there exist fewer constraints. The problems basetie static formulation have
been also successfully solved (but not with the same spgetiebmore general IPM opti-
mizer, incorporated in MOSEK. This fact was to be expectadesa general IPM optimizer
does not exploit the specific characteristics of the SOCBIenas.
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2.5 Examples

2.5.1 Square disk with a central hole

The first example concerns a disk with a central circular iatle constant modulus of elas-
ticity and thickness under independently varying preskadsp, andp, as in Fig. 2.1(a).
The relationship between the hole diameteand the disk side lengthis D = 0.2L. The
yield criterion is the classical von Mises one. This exanhmgle been solved in many papers
both for the nonlinear von Mises criterion [50],[18], [1843], [7], [52] and for the lin-
earized one [11]. The disk is discretized in 600 4-node ismpatric plane stress elements
with 2 x 2 Gauss integration, resulting in 7200 residual stress unkso The shakedown
analysis has been performed for the following cases of ayped load domains:

1) Biaxial tension:

0<pi<pjo,, 0<pf<1

0<p<pyo,, 0<py <1
2) Tension and compression:

0<p1 <puioy, 0<uf <1

0< —pp<pzo,, 0<py <1

The number of conic constraints is 9600 for each case. Thésese shown in Fig. 2.1(c).
The curve 1 and the two axis is the domain where the loads agnirvany way so that
no yielding will occur. Every point of curve 2 represents thgper right corner of the
shakedown domain. It is not necessary that the whole elegegion will be included in a
shakedown domain. In all cases the shakedown factor is the sa the safety factor in
alternating plasticity (APSC). This means that APSC is titecal failure mode.

It is noteworthy that although in the second case the elaagiion is reduced, the shake-
down results are the same. We also notice that in the first(bésdal tension) the limit
analysis results differ a lot from the shakedown curve.

2.5.2 Restrained block under thermomechanical loading

In this example the two dimensional plane stress structuveys in Fig. 2.2(a) is consid-
ered. We examine the load domains consisted of two indepélgdarying load cases:

- pressurd) < p < pfo,, 0<puf <1

- temperature variation < AT < pdT,, 0 < pug < 1 whereT, = g—y (Fis
Qg
Young’s modulusg; the thermal expansion coefficient)

208



A. Makrodimopoulos, C. Bisbos

pl| Q Ip

- D _—
P
1 L |
(a) Notation (b) Discretization
p./0,
1: elastic region
104 2: shakedown results
’ 3: limit analysis results
3
10 P/
-1.07
(c) Results

Figure 2.1: Square disk with a central hole under biaxiatguee
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|y AT/T, . .
m A 1: elastic region
_ 2: perfectly plastic
3: limited kinematic hardening
I P 2.0 4: unlimited kinematic hardening
AT
b—] —q —q
1 L | " p/oo
(a) Notation (b) Results

Figure 2.2: Laterally restrained disk

The cases of material considered are
- 0, = o, (perfectly plastic material).
- o, = L.5oy
- 0, = oo (unlimited kinematic hardening).

The structure has been discretized (using the vertical stnynin 5000 4-node isopara-
metric plane stress elements, integratef in 2 Gauss points each of them. We used this
relatively large number of finite elements in order to shoeveéfficiency of the algorithm.

In case thap:|, u5 # 0i.e. NV = 4 we have to solve an optimization problem con-
taining 80000 cone constraints. In the case of static foatan the SOCP problems were
solved (in average) in less 170-180 seconds. The solutitmegiroblems obtained by the
kinematic formulation took 750-1000 seconds. The problems solved in a PC system
containing CPU Pentium 11l 733Mhz, RAM 512 Mb, in Windows 98veéonment. Note
that in the cases that the load domain contains only pressusmperature changes then
NV = 2 and the optimization problem contains 40000 less conictcaings.

The results for the various load domains are shown in Figb2.2Ve notice that:

- inthe absence of temperature loading, in the case of girfgastic material, we do
not gain any advantage of the plastic material since theegtmin curve is very close
to the elastic region. The presence of hardening helps isdfety of the structure.

- reducing the range of the applied pressure, the margimsleetthe elastic region and
the shakedown curve become all the more distant. We alsoentttat APSC tends
to become the critical failure mode thus the hardening &ffeand to be eliminated.

A case of MOSEK optimization progress is also shown in Fi§. 2.
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The next table contains numerical results obtained foousrioad domain conditions.

,LLIr u; [6%5)] OéSD(O'u = O'y) OéSD(O'u = 1.50'y) CYSD(O'y = OO)
1.00| 0.00| 1.156 1.197 1.796 2.312
1.00| 0.25| 1.087 1.180 1.763 2.174
1.00| 0.50| 0.926 1.142 1.681 1.852
1.00| 0.75| 0.785 1.088 1.565 1.570
1.00| 1.00| 0.673 1.023 1.345 1.345
0.75| 1.00| 0.746 1.243 1.493 1.493
0.50| 1.00| 0.828 1.531 1.657 1.657
0.25| 1.00| 0.915 1.825 1.829 1.829
0.00| 1.00| 1.000 2.000 2.000 2.000
Table 2.1: Results for various load domains

1, B0E-+HI0O
1 B0E+HIO
1 40E+H1D +

()

! 1,20E+H10 +

S 1 00E+00 1

B 800501 4

o 6 D0E-01 —e— perfectly plastic

—#&— |imited kinematic hardening

4 00E-01
2 O0E-01

0, 00E-+10

0

iterations 10

15

Figure 2.3: Optimization progress foi = 1, 5 = 0.5, (static formulation)
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Probabilistic Limit and Shakedown Problems

Nomenclature

a
C

E

F

f, F

f, fo
F,F,
oOF,0F,
g9,G

L

L

M

n,n;

P

T

T
= T
()

T3

Tt WnH
®

~ *
c-
o

EQ:.

2D, 3D
ASME
CDF
DOFs
FEM
FORM
LCF
LISA
MCS
PDF
PERMAS
RSM
SORM

normal to limit state function  V, 0V structure and its boundary
system dependent matrix W, external power of loading
expectation Win internally dissipated energy
yield function X basic variable

distribution function, CFD a limit load factor

body force a normal vector tq;, G

failure region 3 reliability index

limit state hyper-surface €, actual strain

limit state function A\ Lagrangian multipliers
load domain Ly fhis 1 mean value, expectation
Lagrangian function P; Pij correlation, coefficient
strength mismatch ratio p residual stress

outer normal vector 0,0 standard deviation
probability measure Yij, 2 covariance, matrix

failure probability 0,0 actual stress, stress tensor
surface tractions o? fictitious elastic stress
resistance of flow stress

correlation matrix oy yield strength R.;, or Ry2
loading ) Gaussian distribution function
allowable design stress w random event

limit load parameter foF’ 0% space of random events
standard normal basic variable v gradient-operator

design point
velocity, given velocity
dissipated plastic strain power

two-dimensional, three-dimensional
American Society of Mechanical Engineers
Cumulative Distribution Function

Degrees of Freedoms

Finite Element Method

First Order Reliability Method

Low Cycle Fatigue

Limit and Shakedown Analysis, acronym of the projeatl &s software
Monte-Carlo Simulation

Probability Density Function

FEM software by INTES, Stuttgart, Germany
Response Surface Method

Second Order Reliability Method
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1 Introduction

Design and assessment of engineering structures implgidaenaking under uncertainty
of the actual load carrying capacity of a structure. Undetyanay originate from random
fluctuations of significant physical properties, from liedtinformation and from model
idealizations of unknown credibility. Structural relifityi analysis deals with all these un-
certainties in a rational way. Reliability assessment afcitires requires on the one hand
mechanical models and analysis procedures that are capfahlzdeling limit states accu-
rately. On the other hand, full coverage of the present randariables is also necessary
for a meaningful reliability assessment. The mechanicdlsaachastic model depends on
the definition of the limit state. For instance, if the limiate of the structure is defined
with respect to plastic collapse, then Young’s modulusgéaing modulus and secondary
stress need not be modeled as random variables, becausd! theyot influence the limit
load. Conversely, elastic buckling is governed by Young&oius, secondary stress, and
geometry imperfections.

In the most general case the structural response, i.e.atistgtal properties results from
both the statistical properties of the loading as well asstla¢istical information on the
structural geometry and material. The processing of tlagssical information requires
considerably more computational efforts than traditipdaterministic structural analysis.
Hence high computational efficiency is within the focus aénest in Stochastic Structural
Mechanics and Reliability.

Present structural reliability analysis is typically basa the limit state of initial or local
failure. This may be defined by first yield or by some membeufaiif the structure can be
designed on an element basis. However, this gives quitenpiesis reliability estimates,
because virtually all structures are redundant or st@yicaldetermined. Progressive mem-
ber failures of such systems reduce redundancy until finbh#ystatically determined sys-
tem fails. This system approach is not defined in an obvioysfaaa finite element (FE)
representation of a structure.

Low cycle fatigue (LCF), ratchetting and collapse as dédférpossible failure modes are
difficult to use in a mathematical expression of the limitetanction separating failure
from safe structure. Until today First and Second Orderd®dity Methods (FORM/SORM)
could not be used with standard incremental plastic arelyscause non-linear sensitiv-
ity analysis would be necessary for computing the gradiérnthe limit state function.
Therefore, one was restricted to simple but ineffective ddeBarlo Simulation (MCS) and
mostly local failure definitions.

All these problems are overcome by direct limit and shakedaewalyses, because they
compute directly the load carrying capacity or the safetygimma Therefore, they may
be used to combine finite element methods (FEM) with FORM f&finihg the failure.
Moreover, the solution of the resulting optimization peil provides the sensitivities with
no extra costs. In comparison with MCS a typical speed up ofes@00 and 1000 is
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achieved with limit and shakedown analysis, respectiv&he direct approach computes
safety without going through the different evolution of déd¢ailures for all possible load
histories. Therefore, limit and shakedown analysis is avicals choice for reliability
analysis of structural problems with uncertain data.

Glrerm / Gy

o
=]
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=)
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2
I € .
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~
~
~
~
pure ~
elastic S e
behaviour
0 .
1 Opeen / Oy

Figure 1.1: Bree-Diagram of pressurized thin wall tube urtdermal loading [43][45]

Damage accumulation in LCF or plastic strain accumulatioraichetting are evolution
problems which can be modeled as stochastic process. Sivakedeorems yield much
simpler time independent problems. In principle the pdsesstructural responses, which
are presented as icons in the Bree-Diagram (see Figure d.[bRmmay be reproduced in
a detailed incremental plastic analysis. However, thismags that the details of the load
history (including any residual stress) and of the constéLequations are known.

It is most important for the analysis under uncertainty tait and shakedown analyses
are based on a minimum of information concerning the carsté equations and the load
history. This reduces the costs of the collection of staattlata and the need to introduce
stochastic models to compensate the lack of data. Due t@tbalked tail sensitivity prob-
lem there is generally insufficient data to analyze streswof high reliability which are
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e.g. employed in nuclear reactor technology. Probalilisnit and shakedown analyses
were pioneered in ltaly [1]. Further work seemed to remastrieted to stochastic limit
analysis of frames based on linear programming [25], [52], [R7]. The present con-
tribution extends plastic reliability analysis towardshonear programming, shakedown,
and a general purpose large-scale FEM approach using laweditheorems of limit and
shakedown load to define a limit state function for reliapianalysis by FORM. The re-
sulting large-scale optimization problem is transferied telatively small one by the basis
reduction method.

2 Introduction to probability theory

2.1 Random variables

A function X : 2 — X of a spac«? into the space is calledvariable A real variable
X = z(w), which is a mapping of a spa€eof random events of an experiment ontdR,
is calledrandom variablée.

x:Q — IR. (2.1)

Generally, every random procedure is denoted as an expatitikee manufacturing pro-
cess of material or structures. Therefore, the yield swéasmaterial or e.g. the diameter
of a pipe are random variables. The elements of the imageé ef z(w) are calledreal-
izationsof X and denoted by. The space of event3 is characterized by probability
measure

P:P(Q) —[0,1], (2.2)
of the power setP(2) of all subsets of2, which satisfies the properties of a normed,
non-negativeg-additive measure

1) 0 < P(A) <1,
2) P(Q) =1, P) =0,
3) P(AUB) = P(A)+ P(B)if AnB =.
A family {X;}; of random variables witX; : 2 — 3 is calledstochastically independent

or independentor short, if for every choice of a subsdt C ¥ the eventdX; € A;}; are
independent of each other.

F(X) denotes theumulative distribution functio(CDF) of the random variable X. With
the probability measurg it holds:

F(z)=P(X < z). (2.3)

1Stochastic variables are generally denoted by capitarietind their realizations by small letters. This
is often confusing in applied texts, because ergandX. have distinct, different meanings. Therefore, we
will also denote stochastic variables bw) wherew represents the random event.
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This means, that the value 6fatz is the probability of the event, that the random variable
X has a realization lower than. A random variable is characterized by its CDF. We
summarize the most important characteristics of distiwoufunctions:

1) F(z)is non-decreasing and continuous on the left,
2) lim F(z) =1, lim F(z)=0, Pla<X<b)=F(b)—F(a).

These characteristics hold for discrete and continuoudorarnvariables. A random vari-
able X is calleccontinuousif the distribution function® has the form

m@:/j@m. (2.4)

The functionf is calledprobability density functiofPDF) of the distribution odensity
for short. From the properties @f one derives forf:

1) Pla <X <b) = /f(t)dt, 3) / f(t)dt = 1.

2) P(X =a) =0,

The appendix summarizes the most important distributioietions, densities and further
details. The following distributions play a special rolestnuctural reliability analysis:

Normal distribution andstandard normal distribution (o = 1, u = 0) with densities

fla) = \/% @ =p)?20°  and  f(a) = J% 052 (o5

Theexpected valu#'(X) of the random variable X with the densifyis defined by
EX) = /xf(x)dx, (2.6)
if the integral converges. The following simple rules foe #xpectation hold:
1) E(a) =a, a € IR.
2) EX4+Y)=EX)+ EY), E\X)=MEX), A€ IR.
3) EX-Y)=EX)-E(Y),ifand only if X andY are independent.

Let X be a random variable with continuous densitgnd letg be a continuous function,
then the expectatioR(¢(X)) exists if and only if[ |g(x)| f (z)dz is bounded, with

E(9(X)) = / o(@) f(a)dz. 2.7)



M. Staat, M. Heitzer

ThevarianceVar(X) of a random variable X is defined by
Var(X) = BE((X — E(X))?) = BE(X?) — (B(X))% (2.8)

The variance reflects the expected deviation of a realizatifrom the expected value
E(X). Thestandard deviatiotis defined byr (X) = /Var(X).

A set ofn random variables may be collected in a random vegtaer which has a joint
probability density function
fx 1 IR" — IR, (2.9)

that must satisfy certain conditions similar to those gif@nthe above one-dimensional
PDF. The multi-dimensional CDF (x) is defined as

F(X):P(X1<$1,,Xn<l'n): / fx(tl,,tn)dtldtn (210)

—00 —00

Two variablesy;, x; (¢ # j) are independent if and only if
Jeix; = Joifa;- (2.11)

Additionally to the concept of independence of random \deigthecovarianceCov(X;, X;)
of random variables (written as random vector componexitgnd X is defined by

Cov(X;, Xj) = By = BE((Xi — E(X))(X; — E(X)))) = E(XiX;) — E(X)E(X)). (2.12)
Thecorrelation coefficienp;; is defined as

Yy _ i (2.13)

Pij = )
’ V22 0i0j

where the standard deviatien = /; is the ith diagonal element of theovariance
matrixXx = (X;). Itis symmetric semi-definite and it holdsl < p;; < +1.

The random variables; and X; are uncorrelated if Cov(X;,X;) = 0 (or p;; = 0)
holds. Therefore, independent random variables are uglated but not vice versa. In
the appendix the expectations and variances of the mostriargalistribution functions
for structural reliability analysis are listed.

2.2 Random fields

The notion of a random variable may be extended to that of daranprocess in time or
of arandom fieldin space. By use of limit and shakedown analysis a time inoleget
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reliability problem is obtained. Therefore, no random gsxhas to be considered and the
reliability problem is considerably simplified. It remaittsconsider random fields which
are derived in replacing the image spdBeby a real function space ovemadimensional
subspacé’/ (the volume occupied by the considered structureJ/df,n = 1,2,3. We
considerhomogeneous random fielttgat are characterized by a generic PP&nd by a
spatial correlation functiop meeting the properties

1) f(x1) = f(x2) Vx1,x €V,

2) p(x1,%2) = p(x1 —X2) Vx9,%x0 € V.
Random fields may be collected in a random vector field likeloam variables can be
collected in a random vector. The correlation function meas the spatial variability of
a random field. Theorrelation lengthl. = (I.., Iy, l..) iS used as normalizing parameter
in the quantification of material imperfections. Agotropic stochastic fielts obtained for
leg = loy = l.. =: I.. The following isotropic correlation functions are commypoked in
structural mechanics:

1) Triangular correlation:

p(x1,X2) = max {0, 1— M} , (2.14)

2) Exponential correlation;

T, — T
p(X1,Xg) = exp (_Hlliﬂ‘) ) (2.15)

3) Gaussian correlation:

T — Tl
p(X1,Xg) = exp (‘HllngH> ; (2.16)

For theseergodic random fieldthe correlation functions decay from one (complete corre-
lation) to zero (uncorrelated) as the distajjeg — .|| between two points increases. The
triangular correlation is zero fdpx; — 2| > 1.

The correlations of the ergodic random fields show that a ¢et@porrelation f(x;, xs) =

1) is obtained if all components of the correlation lenfjtlyo to infinity. In this case the
stochastic field can be represented by single stochastiablar Otherwise the random
field can be discretized in two ways:

1) Therandom field is transformed into a finite number of sastic variables by a finite
series expansion into linearly independent, determmisinctions with stochastic
coefficients. This method is not considered here, becausedstricted to Gaussian
random fields.
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2) The random field is discretized by stochastic elementghvitiust contain at least
one finite element. They may contain several finite elemémsause they need to
represent the fluctuations of material data instead of écgsssingularities. Inside
a random elementthe field is assumed constant so that it is represented by a sin
gle stochastic variabl®;. If the field is discretized withV,, elements it may be
represented by the collectid® = (B, ..., B,.)! of stochastic variables.

Usually the representative stochastic variable is chasene of the two ways:

1) Point methods:
Either the geometric center of the stochastic element ¢cguint method) or the
arithmetic mean of all of its nodal points (nodal point methis chosen as the rep-
resentative point. Then the representative stochastiablaris identified by the
distribution of the stochastic field at this point. This naths preferred, because it
is simple and it overestimates the spatial variance of théom field.

2) Volumetric average methods:
The volumetric mean value of the random field over a stooha#timent is used as
representative stochastic variable. Similarly the catreh coefficient is obtained
also as a volume integral over a stochastic element. Thifiodes not recom-
mended, because it is more difficult to use and it underegtsrthe spatial variance
of the random field.

A comparison of these two and other discretization methegsdsented in [26]

3 Reliability analysis

The behavior of a structure is influenced by various typycaficertain parameters (load-
ing type, loading magnitude, dimensions, or material datg, Data with random fluctua-
tions in time and space is adequately described by stoct@sitesses and fields. Typical
examples of engineering interest are earthquake grountbmatea waves, wind turbu-
lence, imperfections. The probabilistic characteristtshe processes are known from
various available measurements and investigation in tBe ga engineering mechanics,
the available probabilistic characteristics of randommgti@s affecting the loading of the
mechanical system often cannot be utilized directly to antéor the randomness of the
structural response due to its complexity. In structurapomse calculations a distinction
is made between the involved structural model propertiestware either considered as
being deterministic or stochastic.

The numerical effort of stochastic analysis becomes lafgeEM discretization leads to
high dimensional problems and if a high reliability of theusture is required. In both
cases it is a necessary requirement of application in theneagng practice to achieve
very effective analysis methods.
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All probabilistic characteristics in this setup are ddsed by random variables collected
in the vector of basic-variables = (X, X5, ...). We will restrict ourselves to those basic
variablesX; for which the joint densityfx(x1,...,z,) exists and the joint distribution
function F'(x) is given by equation (2.10). The deterministic safety nrafgi- S is based
on the comparison of a structural resistance (thresh®ldhd loadingS (which is usually
an invariant measure of local stress at a hot spot or in ageptative cross-section). With
R, S function of X the structure fails for any realization with non-positiveit state
functiong(X) = R(X) — S(X), i.e.

<0 for failure
g(X)=R(X)-5(X)¢ =0 for limit state (3.1)
>0 for safe structure

Different definitions of limit state functions for variouailure modes are suggested in
Table 3.1. The limit statg(x) = 0 defines the limit state hyper-surfa@& which separates
the failure regionF = {x|g(x) < 0} from safe region. Figure 3.1 shows the densities of
two random variables?, S, which are generally unknown or difficult to establish. The
failure probabilityP; = P(g(X) < 0) is the probability thay(X) is non-positive, i.e.

P = P(9(X) < 0) = [ fx(x)ix. (3.2)

Loading S
f(R)

«(S)

Resistance R

R,S
Figure 3.1: Basid? — S problem infg, fs presentation on one axis

Usually, it is not possible to calculatg; analytically. Direct Monte Carlo Simulation
becomes increasingly expensive with the increase of thetsiial reliability. Acceptable
failure probabilities might be in the range tf—* to 10~°. They are even lower in nuclear
reactor technology. For a validation that the failure ploliy Py is less than an accepted
limit P., the sample size required for direct MCS must be at |éast0 leading to a
minimum sample size in the range 1 to 107. Such a large number exceeds particularly
for complex FE-models, available resources by far. The migaleeffort can be reduced by
variance reduction methods like Importance Sampling anRdsponse Surface Methods
(RSM) considerably. However, the most effective analysibased on First and Second
Order Reliability Methods (FORM/SORM) if gradient infortian is available [13].
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Table 3.1: Different limit state functions [10]

Analysis Resistanc& LoadingS Limit state function
Elastic strength  yield stress, equivalent stress g=0,—0
Serviceability displ. threshold, displacement: g=1uy—u
Fatigue critical damag®... accum. damage® g=D., —D
Elastic stability  buckling load’,, applied loadP g=P,—P
Elastic vibration eigen frequency harm. excitatior2 g=wy—
Brittle fracture fract. toughneds;- stressintesity factok; ¢ = K;c — K;
Limit load limit load applied load

P, = a,F P =oyF, g =0y — g
Shakedown shakedown domain applied domain

Lsp = aspLly L, = a,Lo g = Qgp — Qg

3.1 Monte-Carlo-Simulation

Monte Carlo Simulation (MCS) is a well known method for thelexation of the failure
probability P,;. For use with the simulation methods there are less strigtirements on
the analytical properties of the limit state function anddtions of the algorithmic type
(like "black box”) can be used. The straight forward (or @udCS become generally
costly for small probabilities. The computational effoftasude MCS increases quickly
with reliability [2] but not with the number of basic varias (contrary to FORM/SORM).
Importance Sampling or other variance reduction techrig®uld be used to reduce the
computational effort [3]. MSC is an approximate solutioriteé exact stochastic problem.

3.2 First/Second Order Reliability Method

First and Second Order Reliability Methods (FORM/SORM) amalytical probability in-
tegration methods. Therefore, the defined problem has tdl the necessary analytical
requirements (e.g. FORM/SORM apply to problems, where ¢hefsbasic variables are
continuous). Because of the large computational effort &fSvlue to small failure prob-
abilities (10~* to 10~®), any effective analysis is based on FORM/SORM [23]. Thifai
probability is computed in three steps.

e Transformation of basic variabl®¥ into the standard normal vectbr,
e ApproximationF, of the failure regionf in the U—space,

e Computation of the failure probability due to the approxiima F,
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3.2.1 Transformation

The basic variableX are transformed into standard normal varialdle§;, = 0,0 = 1).
Such a transformation is always possible for continuoudoanvariables. If the variables
X; are mutually independent, with distribution functiofig,, each variable can be trans-
formed separately by the Gaussian normal distribuftoimto U; = ®~![Fx,(x;)]. For
dependent random variables analogous transformationbearsed [23]. The function
G(u) = g(x) is the corresponding limit state function W-space. The dimension of the
U-space depends on the dependencies of the random varkapéesl is not necessarily
equal to the dimension of th€—space. However, the transformationtie-space is exact
and not an approximation [3].

A

constant probability

/ Q
\//
<
%\
S Q\
[¢}]
(8]
c
g
0
8 N
safe region failure region
9En>9 g(sn) <0
ﬁ
load s
)
constant probability E.’f safe region
o G(RR,S)>0

\
/f-ﬁ S =W (r,s)

& e G(R,S)=0
=

B
W
tange\n} \\\\\\\\
\\\\\\ failure region
\\\\\\ G(R,S)<0

Figure 3.2: Transformation into normally distributed randvariables
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3.2.2 Approximation

In FORM a linear approximatioft, of the failure regionF is generated. The failure region
F is approximated at a poini, € 0F with the normala = V,,G(uy)

Fo={u|VIG(up)u+ay <0} = {ula’u + ay < 0} (3.3)
The limit state hyper-surface?, is represented in the normal form
afa:{u’aTu+a0:0}:{u}aTu+ﬁ:0}, (3.4)

with a = a/|a| and = ay/|al, such thaia| = 1. The vectora is proportional to the
sensitivitiesV,G(u,). The failure evenfu € F,} is equivalent to the everfia’u <
—(3}, such that an approximation of the failure probabilityis given by

-3
P;=P(a’U< -8)=d(-08) = \/%7 / e 05z, (3.5)

because the random varialelé U is normally distributed. The failure probability depends
only on 3, such that it is calledeliability index If it is possible to derives analytically
from the input data, the probabilit§; is calculated directly from the functiob.

If the limit state function is nonlinear in U-space a quaidrapproximation of the failure
region F gives closer predictions af;. These second order methods (SORM) may be
based on a correction of a FORM analysis. FORM/SORM give #aetesolution to an
approximate problem. The numerical effort depends on timeau of stochastic variables
but not onP (contrary to MCS).

3.2.3 Computation

To apply FORM/SORM one or several likely failure points oa timit state surface itJ—
space must be identified. These points are defined by haviecaily minimum distance
to the origin. Therefore, a nonlinear constrained optitmzeproblem must be solved [2]

B8 =minu’u such that{u | G(u) < 0}, (3.6)

which usually needs the gradient@fu).

The design pointi* € 0.F, is the point, which is the solution of problem (3.6), i. e. alhni
is closest to the origin. The limit state functiGi{U) is approximated by its linear Taylor
series in pointyy, € OF

G(u) =~ G(ug) + V,G(up)(u —up) (3.7)
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in order to generate the tangent hyper-plane in paintLetu, be an approximation of the
design poinu*. If V,G(u) # 0 holds, the following iterative procedure is defined

VUG(uk)

Ut = T Gl 2 [uf V.G(u) — G(uy)] (3.8)

as a simple search algorithm for the design paint
The derivatives are determined by

V.G(u) = Vug(x) = Vag(x)Vex. (3.9)

If the deterministic structural problem is solved by a sbgpstep iterative FEM analysis
this gradient information is obtained from a sensitivityabsis, which consumes much
computing time. Extension of this type of reliability ansily to plastic structural failure
faces several problems which are not present in linearielastlysis: Local stress has
no direct relevance to plastic failure and structural berdsecomes load-path dependent.
Therefore, no straight-forwarg X) is obtained from standard incremental analysis if fail-
ure is assumed by plastic collapse, by ratchetting or byradteng plasticity (LCF). It is
even more difficult to obtain the gradient @fX). Therefore, as an additional draw-back
MCS (improved by importance sampling or by some other me&narance reduction)
is used in connection with incremental nonlinear relidgyp@inalyses with very few excep-
tions.

3.3 Response Surface Methods

Repeated FEM analyses are the most time consuming partinMaS and FORM/SORM.
Therefore, the limit state function is replaced by a simpiection, which is obtained as
the approximation to the function values resulting fromydelv FEM analyses. Usually a
linear or quadratic polynomial of the basic variables is Ey@d. Starting from some val-
ues of the limit state function a fit is generated. Adopting shmpler response functions
allows more efficient simulation or parameter studies. Hassical, statistical methods
Response Surface Methods (RSM) are well-known technigljes [

3.4 Systems reliability

Linear elastic material models do not allow to define a lint@tes function such that it
can describe e.g. collapse or buckling, because the yieddsst, or the ultimate stress
o, is a fictitious parameter in these models. Exceedipgr o, at any location can be
associated with collapse only for statically determindtacsures. Most real structures
are statically indeterminate. They are thus safer, beceadiendancy allows some load
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carrying capacity beyond partial collapse of a structurahrher (or section). A local
threshold concept would have to define a composite limiggtatction in terms of stresses
at different locations such as the plastic hinges in a frametare. If these locations
are known a-priori, the definition of the limit state functiof a series system would be
possible. Failure occurs if a sufficient number of hinges IDANAND ... have developed.

Different sequences of hinge development may lead to éiftecollapse mechanisms. For
example a plane portal frame may fail in beam OR in sway OR mlined mode. These
modes establish a parallel system in fault-tree representaReliability analysis of such
parallel series systems may be based on the failure modesaagbp(event-tree representa-
tion) or on the survival modes approach (failure-graphesentation). Analysis is possible
with MCS and with FORM/SORM but it causes additional comgticns. The analyst is
required to identify the complete system representatidgothms for automatic genera-
tion of the significant failure modes work properly for trissgictures [34]. However, more
complex structures may not be considered as consistingmitafiumber of members with
lumped parameters (e.g. beams). In a FEM discretizatiomi@ssef finite elements may
be formed which must all fail in order to define a possibleayade mechanism. The defini-
tion of such series systems is neither straight forward nayue. Moreover, the resulting
system may be large and complex.

These difficulties are avoided by the direct limit and shakeaudapproach, which formu-
lates the limit state function as the solution of an math&ahoptimization problem. It
remains to define a parallel system in the typical situatiah inore than one failure mode
is possible. According to the Bree-diagram Fig. 1.1 the thbe may fail locally by LCF
at low mechanical stress when crossing the shakedown lkhitigher mechanical stress
it may fail globally by ratchetting. Using different stargj points in a FORM/SORM anal-
ysisn different design points! may be obtained and collected in the veaityleading to
different;-factors and failure probabilitie8;; = ®(—;) for the respective failure modes.
For linearized limit state functions a matd = (p;;) of correlations coefficients fou*
and 3, may be obtained. TheR; may be estimated from the-dimensional standard
multi-normal distribution®, (—3; R). With little numerical effort also first-order series
bounds for the cases of fully dependent and fully indepenidg@nre modes may be used
max{Py} < Py < 1-[(1 - Pp). (3.10)
=1
Different methods have been proposed to find all significaifiife modes or at least the
most dominant ones [32].

4 Limit and shakedown analysis

An objective measure of the loss of stability may be basedhetass of stable equilibrium
[6]. A system is said to be in a critical state of neutral eipuilim or collapse if the second-
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order energy dissipation vanishes,

/é:mW:O, (4.1)
1%

for at least one kinematically admissible strain-rate féeld

In a FEM discretization using a varying (symmetric part af)ttiffness matri¥< or an
appropriate update of it for nonlinear analysis this occifirs

uKu = 0 (4.2)

holds, for at least one admissible nodal velocity vecioT his is equivalent with the limit
state functiory(X) =detK = 0. A sufficient condition is, that the smallest eigenvalu&of
vanishes. Both limit state functions are numerically exgpamand suffer from hard numer-
ical problems (round-off and truncation error, non-umficdlependence on basic variables
and possibly non-smoothness). A limiting structural ses may be used (e.g. half the
elastic stiffness matrik in the sense of the Double Elastic Slope Method of ASME Code,
Sect. Ill, NB-3213.25)) on the basis of an appropriate matorm

9(X) = KX = 0.5[|Ko(X)][- (4.3)

Such complications do not occur if plastic collapse modesi@entified by limit analy-
sis. Moreover, the Double Elastic Slope Method ntroducesethstic properties into the
plastic collapse problem, which is mechanically questidmaHowever, the stiffness ap-
proach may be employed for failure modes like buckling, Whicturn fall outside of limit
analysis.

Static limit load theorems are formulated in terms of steesddefine safe structural states
giving an optimization problem for safe loads. The maximwafedoad is the limit load
avoiding collapse. Alternatively, kinematic theorems farenulated in terms of kinematic
guantities and define unsafe structural states yieldingah@ptimization problem for the
minimum of limit loads. Any admissible solution to the statir kinematic theorem is a
true lower or upper bound to the safe load, respectively.hBain be made as close as
desired to the exact solution. If upper and lower bound ¢d@che true solution has been
found. The limit load factor is defined in (4.4) ®; = «.P,, whereP;, = (f;,p.)
andP, = (fy, po) are the plastic limit load and the chosen reference loagectively.
Here we have supposed that all loatib@dy forces angh surface loads) are applied in a
monotone and proportional way. The theorems are statewbelo

4.1 Static or lower bound limit load analysis

Find the maximum load factat; for which the structure is safe. The structure is safe
against plastic collapse if there exists a stress #eklich that the equilibrium equations
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are satisfied and the yield condition is nowhere violatede Maximum problem is given
by:

max  «
s.t. F(o)< o, inQ
dive = —afy inV (4.4)

on= ap, ondV,

for the structurd/, traction boundary)V, (with outer normal), yield functionF’, body
forcesaf, and surface tractionspy.

The FEM discretization of the lower bound problem reads [48p

Maximize o
s.t. f(s)—r<o,
Cs—as;p=0. (4.5)

The inequality constraints of th& G Gaussian points were collected to the vectfrs
andr. The unknowns are the limit load factor and the stresses

4.2 Static or lower bound shakedown analysis

The shakedown analysis starts from Melan’s lower boundrém@31]. In the shakedown
analysis the equilibrium conditions and the yield critaraf the actual stresses have to be
fulfilled at every instant of the load history.

Find the maximum load factatsp for which the structure is safe. The structure is safe
against LCF or ratchetting if there exists a stress ftelt) such that the equilibrium equa-
tions are satisfied and the yield condition is nowhere andoainstantt violated. The
maximum problem is given by:

max  «g
s.t. F(o(t) <o, inV
dive(t) = —afo(t) inV (4.6)

o(t)n = a,py(t) ondV,

for the structurd/, traction boundary)V, (with outer normal), yield functionF’, body
forcesa,fy(t) and surface loads;py(t) for all f,(¢),po(t) in a given initial load domain
Ly.

The maximum problems (4.4) and (4.6) are solved by splittiegstresses ando (t) into
fictitious elastic stresses”, o (¢) and time invariant residual stressesvhich fulfill the
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homogeneous equilibrium conditions. This leads in the cAshakedown analysis to the
mathematical optimization problem

max o 4.7)
s.t. Flac®(t)+p] <ol iV
divp =0 inV
pn =0 ondV,

The resulting problem is transferred to a relatively smaé by the basis reduction method
and it is solved by means of Sequential Quadratic Progragntechniques [14].

4.3 Kinematic or upper bound analysis

Find the minimum load factotvs, for which the structure fails. The structure fails by
plastic collapse if there exists a (kinematically admikgibelocity u field such that the

power IV, of the external loads is higher than the powgy, which can be dissipated
within the structure:

min Qay,

= Wi = / eog 0, dV
\%
s.t. 1=W, = /bOTudV+ / piudsS > 0,
1% AV
1 .
€= 5(% +(Va)') inVv,
u(t) =u’(t) on 9V, (4.8)
for the structurd’, boundarypV' = 9dV,, U 9V, (with outer normah).
The FEM discretization of the upper bound limit load problexads (see [45])
Minimize elr (= o)
s.t. a'p=1. (4.9)
The objective functiony, is non-smooth at the boundary of the plastic region. Then the
optimization problem resulting from a FEM discretizatianalso non-smooth. It may
be solved with a bundle method [52]. As a practical alteueatdifferent regularization

methods are used as smoothing tools in the LISA project [88], The regularized min-

imization problem is solved in [53] by a reduced-gradiegoaithm in conjunction with a
guasi-Newton algorithm [35].
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5 Plastic failure and reliability analysis

Following table 3.1 resistancg and loadingS can be defined by the limit or shakedown
load factora,, and the applied load facter,, respectively to obtain the limit state function
9(X) = a, — ap.

The limit or shakedown ranges obtained from problems (44)) are linear functions
of the failure stress, if a homogeneous material distribution is assumed. Ottserthe
random field concept has to be employed. If the structure Hetexogeneous material
distribution we obtain in different Gaussian poirteventually different failure stresses
oyi- Then the limit load is no more a linear function of the fadgtresses. It also ceases
to be a linear function if the loading is non-proportionad).en the presence of dead loads.
In this case the derivatives of the limit state function may Ime computed directly from
the linear function of the failure stresses. The Lagrangdiptiers of the optimization
problem (4.4) yield the gradient information @fX) without any extra computation. This
is derived from a variation of, ; as the right hand side of problem (4.4) (see [11]).

5.1 Sensitivity and mathematical programming

A constraint maximization problef in the most general case is defined as

max  f(x)
st gi(x) <0,Viel. (5.1)

Suppose thaf, g; : IR" — IR are twice continuously differentiable and [Etbe some
index set. In many applications (e.g. shakedown analytkis)pbjective functiorf as well

as the constraint functiorgg may depend also on other parameters. Consider the following
perturbatiorP(g) of the original problenP(0)

max  f(x,€)
st. gi(x,e)<0VieZI eclIRi,qeIN (5.2)

A perturbatiore can be interpreted in two ways: asamdomerror, or as &pecificchange
in the parameters defining the problem functions. The optsolationx*(e) of problem

P(e) with the Lagrangian multiplieras™ fulfills the following first order Karush-Kuhn-
Tucker conditions:

Agi(x*,e) = 0,VieZ
> 0VieT
V.L(x* A"e) = 0 (5.3)
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with the Lagrangian function

L(x, X e) = f(x,8) = > Nigi(x,€). (5.4)

i€l

If the system of equations is nonsingular, the implicit fume theorem implies the ex-
istence of a unique differentiable local solutigx*(e), A"(e)) of P(e). The restricted

Lagrangian is defined with only the active constraigits= 0,7 € Z, for second order

Karush-Kuhn-Tucker conditions. The second order sufftatemditions state that a point
(x*,e*) is a strict local maximum oP(e) if (5.3) is satisfied a{x*, ) and if the Hes-

sianV2L(x*, X\*, €) of the restricted Lagrangian is negative definite on theaahgpace

{€1€"V,0:(x*) = 0,4 € Ty : \f > 0}. Lete = 0, then the conditions are fulfilled in a
local solutionx* of P(0). The associated theorem is given in [8], [9].

Corollary [8]:

At a local solutionx* of problemP(0), assume that the linear independence condition, the
second order sufficiency condition and the strict complearéy condition\!¢;(x*, €) =

0 are satisfied for all € Z, and that the functions definirg(e) are twice continuously
differentiable with respect toax( €) in a neighbourhood of(*, 0). It follows that ate, = 0

d (x(0))_
and d 9f(x(0),0) 09:(x(0),0)
_ 9f/(x(0),0) §~,.94i(x(0),0)
S [(x(0),0) = =—— X;A - (5.6)
where
AN VT 0
Qo _ 1 :xgl g1 ) (5.7)
AVEgn 0 Im
and 5
3 [V.L7]
A V.
Vi = 186_[ a1 (5.8)
A [V ]

All quantities are evaluated at (0), A*(0), gy with m = |Z|.
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5.2 Sensitivity in limit and shakedown analysis

We restrict ourselves to the following perturbatiBe) of the original static shakedown
problem (4.7) with the unknowns = («, p,, ... py¢) @andg; = Flao () + p;| — o2

max (6%
st.  Flaol,(e)+p]—0, <0, i=1,...,.NG,j=1,...,NV. (5.9)

The problem fulfills the assumptions of the corollary, sucht we obtain the derivatives
at the solutiomy* of the original problenP(0) with the original fictitious elastic stresses
o®(0) by:

d%f(xm),o) -y lx(0).0)

de < ! Oe
i active o
2 . 0 dol(e)
= —« - Al P [F(aaf(e) + pi)] 9% (5.10)
i active ¢ o

This problem is solved by the basis reduction method in arsagel manner by means
of Sequential Quadratic Programming techniques. The sloake factora, as well as
the Lagrange multipliers; obtained during the optimization stépconverge to the true
solutiona* and\* [14]. Therefore, in equation (5.10) all values except

E

9o, (e) (5.11)

66 e=0
are given by the limit and shakedown analysis. This meaias,iththe case of limit and
shakedown analysis the sensitivity analysis of the plastiectural behaviour is reducible
to the sensitivity analysis of the elastic structural resay which is a significant reduction
of computational effort. Similar techniques can be usedstanctural optimization with
respect to limit and shakedown constraints [15], [16]. Témesgivity analysis of the elastic
response is performed by a finite-difference method for dlsmaenber of parameters, see
[24] for alternative techniques.

5.2.1 Sensitivity of yield stress

In the FORM optimization problem described above the pad@sivatives of the limit
state functiory are needed. In principle the limit load and shakedown amsalysve the
following form with G as vector of all inequality restrictions, the failure stresses =

(021,...,0. ng) and the variableg = (a, p,, . .., pe)
max  f(§)
s.t. G <r (5.12)
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The influence of the failure stressgs; on the load factot is dominated by the derivatives
Oda/0oy,; or by 0f(€)/06. These derivatives could be generated by the corollary show
above. For the limit and shakedown analysis it follows

oo _ Oa

)
0oy q Jdoy NG

such that the influences of the failure stresses on the lindtshakedown load factar
could be obtained by the solution of the problems (4.4),)(4.Vhe FORM-Algorithm
developed in [41] has been adapted to plastic reliabiliglysis.

deterministic stochastic
FEM-data model, data, variables x

FEM - based Limit
and Shakedown Analysis

N B

aay / 0x 60(0/6X 0x/0u

A

Limit state function
g(x) = a, — o,

; Y Y

FORM-algorithm
dg/du = 0g/dx 0x/0u

failure probability

failure

Figure 5.1: Flowchart of the probabilistic limit load ansily
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The flowchart in Figure 5.1 contains the logical connectiohthe main analysis steps as
they have been implemented in the Finite Element SoftwafRNPAS Version 4 [36] in
the LISA project.

6 Stochastic programming

In Operations Research two main approaches to optimizgtrmgramming) under uncer-
tainty have been developed. The most important ones fosidacmaking under uncer-
tainty are the two-stage and multistage stochastic progjxaith recourse problems. Struc-
tural reliability problems in plasticity context lead mamaturally to the so-calledhance
constrained stochastic programming

Stochastic programming is not used in this sense in reiigliterature such as [25], [30],
[51] and has not been planned in the LISA project. Chancetrined stochastic pro-
gramming will be described here as an alternative designoagpp following [42]. The
limit load is computed for a fixed reliability instead for adik safety margin as in de-
terministic design. This is easily extended to stochastigctural optimization. A similar
exposition was given for limit analysis with linear prognaung (for Tresca material) with-
out duality in [40]. The application of a two-stage stociastear program with complete
fixed recourse is described in [29].

6.1 Static approach to chance constrained programming

Starting from the static theorem of limit analysis the deii@istic program (4.5 becomes

mgx{as|f(s) —r<0,Cs— asp=0}. (6.1)

For stochastic strength(w) a stochastic formulation is obtained by assuming that the in
equality constraints are satisfied at least by a chgnce

masc{,|P(f(s) — 7(w) < 0) > ,Cs —a,p = 0} (6.2)

For continuous distributions no probability can be assigieean equality. Therefore, the
problem must be reformulated in case of stochastic lgad®With v = (71,...,vve)
this is an individual chance constrained program. Altewed a joint chance constrained
program can be formulated [42].

Itis assumed that(w) = (r;(w), ..., rs(w)) follows a multivariate Gaussian (normal) dis-
tribution with mean vectop, and covariance matrix,.. Otherwise is may be transformed
to such a distribution. A standard normally distributedteec(w) is obtained by
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Then the inequalityf (s) — r(w) < 0 is element-wise

fi(8) <y =705 + i, (6.4)
so that .
fi(8) == (fi(s) — i) Joi < T (6.5)
and the probabilistic inequality becomes
P(fi(s) < ri(w)) = P(fis) < F:(w)) = 7. (6.6)

If the CDF of the standard normal distribution is denotede may useb(—z) = 1 — ®(x)
to write

P(7(w) 2 fi(s)) =1 = P(F(w) < fi(s)) =1 = ®(fi(s)) = ®(~fi(s)) 2 3. (6.7)
Introducing the abbreviation; := ®~!(;) so thaty; = ®(x;) yields

O(—fils)) = ®(k:). (6.8)
® is monotonic or order preserving. Therefore,
wi < —fi(8) = (s — fi(8)) /o (6.9)
or rearranging
Wi — Kkio; > fi(s). (6.10)
Introducingo . = diagy, = (o1, ..., 0n¢) this may be written in matrix form
p, — Ko, > f(s) (6.11)

to obtain thedeterministic equivalerdf the stochastic program (6.2)

max{a,|f(s) — (u, — k' o,) <0,Cs — a,p = 0}. (6.12)

This nonlinear program shows that the optimum limit loaddae., decreases if the stan-
dard deviatiorns; or the required reliabilityy; and thuss; = ®~!(~;) increase for theth
strength variable;.

6.2 Kinematic approach to chance constrained program-
ming

Starting from the kinematic theorem of limit analysis theéedministic program (4.9) be-
comes
m}i\n{}\Tr|qu =1}. (6.13)
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with A = ¢&., > 0.

For uncertain strength(w) the objective functiol\” r(w) becomes also a stochastic vari-
able. First the minimum of an stochastic objective functimmst be explained. In decision
theory it is common to minimize the expectatiBiA”r) = u,r, = A’ p, of the cost
function (e.g. minimizing a possible loss). If the risk hade minimized simultaneously,

X', — koyr, (6.14)

may be used as objective function with some arbitrary weight> 0. If a normal distri-
bution is assumed again fofw), the objective function can be written as

X, — kA ATZ (6.15)

This objective function may be obtained from a chance caimstd stochastic program.
Consider the probability that the minimum of (6.13) is natwased

Py, >2)=1-PA'pu, <z2) <. (6.16)

Herev € [0, 1] is the maximum risk that the yet undetermined level z is nbtex@d. This
can be written as

Mup — — Uy
O)\Ty O\T
where .
A — T
A Hr = BT (6.18)
O\Ty

is a standardized stochastic variable. For the normaliloligton

PN, > 2) =1 ® (U—“) <4 (6.19)
ATy
so that
—k =01 —7) < TN (6.20)
O\T
or
T, — KOyT, < 2. (6.21)

The joint chance constrained stochastic program

mAin{ATr\PWuT > 2) <7, 4'p=1}, (6.22)

has the deterministic equivalent
min{z|pyr, — koyr, < 2z, p =1}

= m}i\n{)\Tp,r — koyr, i’ p =1}, (6.23)
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For normally distributed(w) this assumes the form
m/\in{)\Tur — /AT A a p =1}, (6.24)

The Chebychev inequality

T
— 1
P (NTr < ATp, — koyr,) < P (M > —n) <= (6.25)
O\T K
says that the true value’ r is less thar\” u, — ko r, with probability (1 — 1/x2) - 100%
for k > 1. The value ofx = —®~1(1 — v) has to be determined from the riskin eqn.
(6.16).

The model may be critizised, because it measures risk synualét i.e. over- and under-
estimations of the optimum are assessed in the same way. yamastric risk measure
may be more plausible.

6.3 Duality in chance constrained programming

The deterministic minimum and maximum problems resultira the static and kine-
matic theorems for the discretized structures are Lagrdngés [28]. We will show that
the same holds true for the deterministic equivalents ofctience constraint stochastic
programs for normally distributeelw).

Let the deterministic equivalent of the joint chance caiegd lower bound problem be
theprimal program

Maximize o
s.t.  f(s)—p, +ro, <0,
Cs—as;p=0. (6.26)

The inequality constraints of th€G Gaussian points were collected to the vectfrs, p, .,
and r. The unknowns are the limit load factor, and the stresses. The minimum
problem with restrictions is transformed into an unregédcproblem by thé.agrangian
L(as, s,u, A), such that the optimality conditions for unrestricted peois hold (see [11],
[28]). With the Lagrange factord > 0 and it holds

L(as, s,u,A) = ay+u"(Cs—a,p) — X' (f(s) — p, + ko). (6.27)

In the minimum the Lagrangiah (s, s, w, A) has asaddle pointsuch that the optimal
value is the solution of

min max L(ag, 8, %, A). (6.28)
U\ Vs; S
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The necessary optimality conditions of the maximum are

Oa

a_L —_— u [
os os

= 0. (6.30)

Equation (6.29) means a normalization of the external paf&ading\,, = u”p =
of the discretized structure. By substituting this in theldoabjective function (4, A)
max L(as, s,u, X) we derive the Euler differential equation

S

I

= f(s). (6.31)
With eq. (6.29) it follows withA > 0

l(u,A) = max L(ag, s, w, A)
= a,+u"'Cs—a,— X' (f(s) — u, + ko)

L, 1r9f(s) _\T .
= A 5e X (f(s)—p, + ko)

= X(u, — ko). (6.32)

Equation (6.28) is derived by eq. (6.29), (6.30) and (6.8agh that thelual programis
defined by

Minimize A (p, — ko)

s.t. A>0,
w'p=1,
CTu— )\Tg =0. (6.33)
0s

Because of the normalizatidi,, = 4”p = 1 it holdsay, = [(A) = Wi, (£eq).-
The Lagrange factors of the primal problem are the unknoviriseodual problem. The
dual problem is formulated in the kinematic ter@gnd\. With

& = AT—agi‘s) (6.34)

eq. (6.30) could be reformulated for the associated flow anlge? = é in the collapse
state

CTu—eée=0, (6.35)
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which is automatically satisfied in a displacement FEM diszation.A may be replaced
by the collection of effective strain ratés, and always\ = €., > 0. Then the dual
problem reduces to

Minimize a3
with.  ay, =€l (p, — ko)
s.t. u'p=1. (6.36)

This is the deterministic equivalent (6.23) of (6.22).

The saddle point properties of the Lagrangian shows, tleatidximum problem is concave
and the minimum problem in convex such that both problem tia@same optimal value

maxu, = a = Minay,. (6.37)

Because of the convexity of the problem, the obtained loptihum is a global one (see
[11]) such that the limit load factor is unique.

7 Examples

The plastic reliability problem can be solved analyticaflyhe limit load is known and
R and S are both normally or log-normally distributed. Simple misdare used to test
correctness and numerical error.

7.1 Limit load analysis

In case of a square plate of lendttwith a hole of diameteD (see Figure 7.1) anf) /L =
0.2 subjected to uniaxial tension the exact limit load is givgnH) = (1 — D/L)o, with
the yield stress, (see [12], [44]).

Thus the resistancB = P, depends linearly of the realizatior of the yield stress basic
variable X. The load> = P is a homogeneous uniaxial tension on one side of the plate.
The magnitude of the tension is the second basic variableh¥. limit load P, of each
realizationz of X is

P,(y)=(1—D/L) x. (7.1)
The limit state function is defined by
g(z,y)=R—-S=P,—P=(1-D/L)z—y. (7.2)

The normally distributed random variablEsandY with meansu,, i and standard devi-
ationso?, o2 respectively, yield with

T =0 Uy + Uy and Y = 0 Us + g (7.3)
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DI 1]

L

Figure 7.1: Finite element mesh of plate with a hole

the transformed limit state function
G(up,us) = (1= D/L)p, — ps) + (1 — D/L)oyu, — osus. (7.4)

With realizationsu = (u,, u,)” of the new random variab® it may be written

((1_D/L)0r7_05) u (l_D/L)MT_,us

G(u) = , 7.5
W= A Dt T T DIt t o (75)

such that the reliability index (with D/L = 0.2) is
5= (1-D/L)puy — s 0.8, — g (7.6)

VA =DJ/L2o2+02 /0.6402 + 02

Remark

For normally distributed variables X and Y one can calculléfailure proba-
bility directly from the joint distribution. Let Z be the rdom variable defined
by

Z=(1-D/L)X-Y=08X-Y (7.7)

thenZ ~ N (0.8, — p,0.64072 + o) holds with the density

1 (2= (0.8uz —py))>
e 2(02+0.6402) ) (78)

I

Ww(o—; +0.6402)
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The failure probability is given by

(2= (0-8ux —py))?

P(g < 0) = / fz dZ - / 200.6403+03) ]
\/27r 0.6402 + 0—2)

_ —052 o

In Figure 7.4 the failure probabilitid3; = ®(—/) are shown versus, /... The numerical
P, of the limit analyses are compared with the analytic val@ssilting from the exact
solution. Both variables are normally distributed withngtard deviations, = 0.1, and
os = 0.1ps.

Similar simple models are used to test correctness and meaherror (see the Fig. Al
and Tab. Al in the appendix). The lower bound theorem geee@illapse loads which
are safe. But they are 1 to 2 % below the analytical limit loaglshe termination error of
the iteration. This error is amplified in the probabilistitadysis. The errors of the FORM
calculations and of the numerical limit analyses are inetlish the results (see Figure 7.4
and Table 7.3). The errors are acceptable for highly rediabinponents, because the tail
sensitivity problem is much more severe. The calculatddraprobabilities correspond
very well with the analytical probabilities if the analydidimit loads are reduced by 2%
to obtainP; (anal.-2%). This shows that the main part of the observeat®results from
the deterministic limit analyses. SORM would give no imgrdvesults with a linear limit
state functiorG(w). Linearity may be lost, if X or Y are not normally distributed

Much more severe deviations of the computed failure prdibiaisihave to be expected if
other limit state functions were used such as the extendighastic zone or of the half
the elastic stiffness approach (4.3). Moreover, such lataites give the wrong impression
that the stochastic plastic collapse load is sensitivedd#sic variable Young’s modulus.
Therefore some non-linear distributions are tested. ,|Feadtulations with log-normally
distributed loads X and failure stresses Y are made [20]. déwesity of non-negative,
log-normally distributed random variables x with the paea@nsm andJ is given by [7]

fla) = \/+_5 ¢~ [log(@/m)*/20° \yithm > 0,2 > 0. (7.10)
V212

The log-normal distribution has the expectatioand the variance?
2 2 2
u= E(X) —m e® /2, o? = Var(X) = m? & (65 —1). (7.11)

For the comparison of the different random distributions $ame expectation, , and
varianceo? , must be chosen, such that the values.0f ando, , have to be transformed
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to the parameters., , andd,,

2 0’2
Moy = flog e O0ny/2 —  Hwy and Oy = \/log < e 1).
0926 Yy T,y
G+ )
/’l‘:l?,y
(7.12)
If X and Y are log-normally distributed the random variables log (X) andY = log (Y)

are normally distributed with means , = log(m,,) and deviations, , = J,,, such that
the following transformations hold

log(z) = u.0, + fiz = u.d, + log(m,), (7.13)
log(y) = wu,o, + iy, = u,d, + log(m,). (7.14)

The transformation from X-space to U-space is nonlineae fBilure domainF is given
by

F = {(X,Y) '% < 1} ={(X,Y) |log(1 — D/L) +log (X) —log (Y) < 0}
(7.15)
with the limit state function
9(X,Y) =log(1 — D/L) + log (X) — log (Y). (7.16)
With the transformation we derive
9(X,Y) = u,0, — uyd, +log(l — D/L) + log(m,) — log(m,,), (7.17)
such that3 is given by
5 109((L = D/Ljm,) ~log(m,) 7.18)

7.2 Shakedown analysis

In the shakedown analysis a convex load domaiis analyzed [19], [18]. The tension
p cycles between zero and a maximal magnitudg.oOnly the amplitudes but not the
uncertain full load history enters the solution

0< p< alp, 0<A<1. (7.19)

In the first simple reliability analysis the maximal maguiéyp is a random variable, but
the minimum magnitude zero is held constant. The resultt®@FORM calculation are
compared with an analytical approximation of the shakedimad in Table 7.3.
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Table 7.1: Numerical and analytical results éor, = 0.2y, , (Log-normal distributions)

Limit load analysisr, = 0.2u,., 0, = 0.2
P; (num.) Py (anal.) Py (anal.-3%)

fhs/

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
15

1.337E-13
6.786E-07
4.601E-03
9.443E-03
5.864E-02
1.816E-01
3.601E-01
5.458E-01
7.046E-01
8.213E-01
8.959E-01
9.414E-01
9.674E-01
9.828E-01
9.907E-01

5.655E-14
3.715E-07
2.308E-04
6.664E-03
4.665E-02
1.521E-01
3.167E-01
5.000E-01
6.629E-01
7.871E-01
8.722E-01
9.261E-01
9.584E-01
9.771E-01
9.875E-01

1.278E-13
6.459E-07
3.453E-04
8.987E-03
5.827E-02
1.792E-01
3.564E-01
5.433E-01
7.017E-01
8.173E-01
8.935E-01
9.402E-01
9.672E-01
9.824E-01
9.906E-01

Limit load analysisr, = 0.1u,., 05 = 0.1
P; (num.) Py (anal.) Py (anal.-3%)

MS/NT

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
11
1.2
1.3
1.4
15

9.593E-12
1.409E-06
1.009E-03
3.485E-02
2.409E-01
5.936E-01
8.575E-01
9.648E-01
9.935E-01
9.990E-01
9.998E-01
9.999E-01
9.999E-01

1.790E-12
4.473E-07
4.315E-04
2.071E-02
1.719E-01
5.000E-01
7.981E-01
9.431E-01
9.880E-01
9.979E-01
9.997E-01
9.999E-01
9.999E-01

8.091E-12
1.316E-06
9.172E-04
3.412E-02
2.324E-01
5.854E-01
8.533E-01
9.638E-01
9.933E-01
9.989E-01
9.998E-01
9.999E-01
9.999E-01
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Table 7.2: Numerical and analytical results for different (Log-normal distributions)

Limit load analysisr, = 0.2u,., 0, = 0.1
P; (num.) Py (anal.) Py (anal.-3%)

fhs/

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
11
1.2
1.3
1.4
15

2.403E-20
8.296E-10
1.303E-05
1.807E-03
2.848E-02
1.407E-01
3.518E-01
5.860E-01
7.744E-01
8.884E-01
9.509E-01
9.796E-01
9.918E-01
9.969E-01
9.988E-01

1.800E-21
1.327E-10
3.574E-06
7.067E-04
1.442E-02
8.638E-02
2.520E-01
4.736E-01
6.790E-01
8.264E-01
9.146E-01
9.610E-01
9.831E-01
9.930E-01
9.971E-01

6.621E-21
3.197E-10
6.749E-06
1.127E-03
2.027E-02
1.101E-01
2.977E-01
5.284E-01
7.265E-01
8.594E-01
9.341E-01
9.712E-01
9.881E-01
9.952E-01
9.981E-01

Limit load analysisr, = 0.1y, 0, = 0.2
P; (num.) Py (anal.) Py (anal.-3%)

fhs/

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
15

4.802E-15
3.566E-10
6.861E-06
1.168E-03
2.114E-02
1.115E-01
2.981E-01
5.338E-01
7.337E-01
8.635E-01
9.353E-01
9.715E-01
9.884E-01
9.954E-01
9.982E-01

6.295E-21
3.090E-10
6.586E-06
1.107E-03
2.000E-02
1.090E-01
2.959E-01
5.263E-01
7.248E-01
8.582E-01
9.334E-01
9.709E-01
9.879E-01
9.951E-01
9.981E-01

2.273E-20
7.315E-10
1.222E-05
1.736E-03
2.766E-02
1.369E-01
3.450E-01
5.805E-01
7.686E-01
8.867E-01
9.494E-01
9.789E-01
9.916E-01
9.968E-01
9.988E-01
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Table 7.3: Comparison of numerical and analytical resdtssf = 0.1u,., o5 = 0.1u;
(Normal distributions)

Limit load analysis

Shakedown analysis

ps/iy  Pp(num.) Py (anal.) Py (anal.-2%) pus/p  Pr(num.) Py (anal.)

0.2 2.643E-13 1.718E-13  2.640E-13 0.2 1.943E-10 1.943E-10
0.3 3.843E-09 2.426E-09 4.063E-09 0.3 5.964E-06 5.963E-06
0.4 6.112E-06 3.872E-06 6.416E-06 0.4 3.877E-03 3.877E-03
0.5 1.093E-03 7.364E-04 1.128E-03 0.5 1.227E-01 1.229E-01
0.6 3.049E-02 2.275E-02  3.118E-02 0.55 3.108E-01 3.1ME-0

0.7 2.067E-01 1.734E-01 2.112E-01 0.59 5.000E-01 5.0QDE-O

0.8 5.550E-01 5.000E-01 5.567E-01 0.6 5.485E-01 5.485E-01
0.9 8.305E-01 7.969E-01  8.344E-01 0.65 7.538E-01 7.53BE-0

1.0 9.544E-01 9.408E-01 9.554E-01 0.7 8.858E-01 8.858E-01
1.1 9.900E-01 9.863E-01  9.903E-01 0.8 9.828E-01 9.828E-01
1.2 9.981E-01 9.972E-01  9.981E-01 0.9 9.980E-01 9.980E-01
1.3 9.996E-01 9.995E-01  9.996E-01 1.0 9.997E-01 9.997E-01
1.4 9.999E-01 9.999E-01  9.999E-01 1.1 9.999E-01 9.999E-01

Because of the local failure of the plate in the ligament tsoaf the hole, the shakedown
factor agp corresponding to the initial yield loag, is equal to 2 (see [14], [50]). There-
fore, from the yield loagh, = 0.29490, resulting from the deterministic FEM-computation
follows that the FEM—approximation of the shakedown loadi897¢,. The implemented
shakedown analysis with the basis reduction techniquesg®gy good results for the relia-
bility analysis of the plate (listed in Table 7.3), becausedeterministic shakedown factor
2 is reached in 3 to 5 steps nearly identically.

Additionally, the shakedown reliability analysis needssleomputing time than the limit
load reliability analysis. The results of the shakedowralslity analysis show a decrease
in reliability in comparison with the limit load reliabijtresults. For a load level ¢f, =
0.4, the reliability decrease by 3 orders of magnitude. This mehat the reliability of
the structure depends very strongly on the loading conditieuch that the assessment of
the load carrying capacity has to be done very carefully.

7.3 Pipe-junction subjected to internal pressure

The pipe-junction [43] under internal pressures taken from the collection of PERMAS
test examples. It is discretized with 125 solid 27-node hegeaon elements (HEXEC27).
The FE-mesh and the essential dimensions of the pipe-pmetie represented in Fig.
7.5. The internal pressure at first yield in the symmetry @lahthe inner nozzle corner
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is calculated tQ;qs:c ~ 0.04760,. For comparison [43] the limit pressure resulting from

the German design rules AD-Merkblatt B9 is calculategi;; = 2.85pciastic- With the
safety factor 1.5 the design pressur@isig, = 1.9peiastic = 0.09040,.
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Figure 7.5: FE-mesh and dimension of a pipe-junction

Numerical limit analysis leads to a collapse pressufeif4o,. In shakedown analysis the
system is subjected to an internal pressure which may vawees zero and a maximum
magnitude. The analysis becomes stationary after only&its steps with the shakedown
pressurepsp = 0.09520,. The shakedown pressure is twice the elastic pressure ith goo
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correspondence with an analytic solution [14], [21].

Thus the limit and the shakedown load are linearly depenolettite realizatiorv,, of the
yield stress, which is the basis variable X. The second hasiable Y is the increasing
inner pressuré”’. The limit load P, of every realizatiorr of X is

P,(y) = 0.134x. (7.20)

Obviously, P, takes the role of a resistan¢eand P is the loading variable&. The limit
state function is defined by

g(x,y) = P, — P =0.134z — y. (7.21)

The normally distributed random variablEsandY with means.,, i, and standard devia-
tionso,, 0, respectively, yield withe = o, u, + 1, andy = o, u, + 1, the transformation

G(z,y) = (0.134p, — py) + 0.1340,u, — oyuy,. (7.22)

With the new random variabl® with realizationsu = (u,, u,)”, it holds:

(0.1340,, —0y) 0.134 11, — 1ty

u + )
\/0.134%02 + o \/0.134%02 + o

such that the reliability index of the random variabl&J is

G(u) =

0.134u, — py  0.134p, — iy
V0138202 + 02 /0.01802 + o2

3= (7.24)

In Figure 7.6 the numerical results of the shakedown arabt& compared with the ana-
lytic values resulting from the exact solution. The resatessnormalized to the mean values
1 andy, of the corresponding distributions. Both variables arewaily distributed with
standard deviations, = 0.1y, ando, = 0.1y,,.

The results correspond well with the analytic results andalestrate that reliability anal-
ysis can be performed for realistic model sizes at very lommating times compared to
incremental analyses. Note, that the latter cannot be useadquantitative comparison
because incremental nonlinear analysis fails to give gpsidadence for plastic failure.

7.4 Plate with mismatched weld and a crack

A plate with a strength mismatched weld and a centered cnad&niension is investigated.
One half of the plate with strength mis-matched weld hasghgthL. = 40mm, the width
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1 L™ = Sl R R
+
09 analytic limitload —— )
analytic shakedown - - - +
08 numerical limit load X K
numerical shakedown =+ '

207 ,
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0.2

0.1 +

0 = %7’ N 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Normalized applied loadP loy

Figure 7.6: Comparison of numerical with analytical reséitr o, = 0.1y, 0, = 0.14,

Limit analysis Shakedown analysis

P/o, P; (numer.) Py (anal.) Py (numer.) Py (anal.)

0.03 1.8653E-14 1.8135E-14 3.4294E-11 3.2430E-11
0.04 1.1458E-11 8.9725E-12 4.7844E-08 4.5052E-08
0.05 2.2948E-09 2.1383E-09 1.3919E-05 1.3145E-05
0.06 2.5188E-07 2.3252E-07 9.2428E-04 8.7985E-04
0.07 1.2282E-05 1.1513E-05 1.7126E-02 1.6478E-02
0.08 2.7486E-04 2.6997E-04 1.1388E-01 1.1078E-01
0.09 3.3817E-03 3.2069E-03 3.5179E-01 3.4571E-01
0.0952 9.6429E-03 9.1261E-03 5.0654E-01 5.0000E-01
0.1 2.2190E-02 2.1001E-02 6.4212E-01 6.3594E-01
0.11 8.3328E-02 8.3125E-02 8.4933E-01 8.4550E-01
0.12 2.2510E-01 2.1819E-01 9.4897E-01 9.4728E-01
0.13 4.2411E-01 4.1517E-01 9.8519E-01 9.8460E-01
0.134 5.0892E-01 5.0000E-01 9.9113E-01 9.9087E-01
0.14 6.3079E-01 6.2157E-01 9.9610E-01 9.9592E-01
0.15 7.8917E-01 7.8683E-01 9.9902E-01 9.9898E-01
0.16 9.0053E-01 8.9358E-01 9.9976E-01 9.9974E-01

Table 7.4: Comparison of numerical and analytical resoitsf = 0.1, 0, = 0.1,

254



M. Staat, M. Heitzer

W = 4mm, the crack lengtRa = 4mm, the thicknes$3 and the weld heightt = 1.2mm,

so thata/W = 0.5, h/W = 0.3 holds (see Fig. 7.7). The different material data of the
base material and the weld material are idealized by peptasticity with different yield
stresseSrf andaZV , respectively. The main parameter here is the strength atdmatio

M = o,V /o] of yield stress values of base and weld material. A refereabee of the
yield stress isr] = 100MPa. The example was proposed by the EU-project SINTAP [49]
as a benchmark, see [46] for a detailed description.

3 S

wW

Figure 7.7: FE mesh of a plate with cracked mis-matched weld

There is a well known exact plane stress limit Idgg for the situationV/ = 0," /o = 1.
Estimation of the corresponding plane strain limit loaddsehe values

4 B
EB(W —a)o,

Approximations for limit loadF,,,, are known [38] for plain stress and strain state. The
plane strain results of the direct lower bound FEM approasing triangular elements)
are given in table 7.5.

plain stress F,, = 2B(W — a)af plain strain: Fj;, = (7.25)

Plate with a centered crack in a mismatched weld under tensio
M = o—g"/o—f 050 0.75 1.00 1.25 1.50
analytic solution [38] 32.33 4792 57.74 65.82 73.33
lower bound FEM  33.16 49.74 60.38 68.21 75.55

Table 7.5: Comparison of plane strain limit analysis result

There is an exact plane stress solution for the collapse 2dad’ F,;, for the matched
situation (M = 0," /o] = 1):

a
F = (1 - W) P (7.26)
so that for the given data,;, = 50MPa. For the mis-matched situation plane stress and
plane strain approximations for limit loa#,,, are given in [38]. With the abbreviation
Y = (W — a)/h it holds for plane stress:
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Undermatched (M < 1):

Fym M for0 < v < 1.43
F—yb = min{F(l),1_(1—M)%} for¢y > 1.43 (7.27)
FO | (223 148
V3 V3 (0
Overmatched (M > 1):
Fym o W
Fp m'”{F W —a (7.28)
@) M for ¢ < vy
F® = & o4(M -1
%% + L2 fory >y

with ¢ = [1+0.43e>M=D] e=(M=D/5  With the dimensions of the model (i.e) =
(W —a)/h = 5/3) and some numerical calculus the piecewise linear relatoa obtained:

Undermatched (M < 1):

Fym [ 1.022M if 0 < M < 0866 (7.29)
F, | 0.142+0.858M if 0.866 < M < 1 '
Overmatched (M > 1):
Fym [ M(0.04+0.5764;) + 0.04 — 0.576¢;, if 1 <M <3.628 (7.30)
Fyp |2 if 3.628 < M. '

The resistance? and the loadS are respectively given by the limit loafl, and by the
increasing uniaxial tensiof’. We define the normally distributed basis variablésas
variable for the tensiof’, M as variable of the mismatch ratio and the variable for thielyie
stress of the base material. Their realizations are denotedF, m = o,¥ /o), r = o}
such that the limit load, (m, r) is a function ofm andr.

The limit state functiory is defined by
g(m,z,r) = F,(m,r) — F = F,(m,r) — z. (7.31)

The numerical results are normalized to the mean valyesdy.,,, /11, of the correspond-
ing distributions. All variables are normally distributedth standard deviations = 0.1 .
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In addition a comparison of the failure probabilities forecand two material variables in
the matched casé/{ = 1) is performed (see Fig. 7.9). Case 1 (one variable) reptesen
a homogeneous material distribution. Case 2 (two paras)aterepresented by two inde-
pendent identically distributed variables for the weld #melbase material. The analytical
limit load is given for this example b¥'/ F,, = 1, such that the analytical failure probability
is Py = 0.5 for any two symmetric distributions, which fits very well Wwithe numerical
results.

For case 1 the limit load, (r) = F,;(r) of every realization- of the yield stress of the
base material is

Fyp(r) = 0.5r. (7.32)

The limit state function is defined by

g(x,r) = Fp(r) — F = Fy(r) — . (7.33)

The normally distributed random variablEsandR with means:,, i, and standard devia-
tionso,, 0., respectively, yield withx = o, u, + p, andr = o, u,. + i, the transformation

G(ug,u,) = (0.50, — pg) + 0.50,u, — o u,. (7.34)

With the new random variabl® with realizationsu = (u,, u,)?, andG,(u) = aTu +
with || = 1, it holds:

(0.50,, —0,) 0.50, — pg
u + ,
\/0.2502 + o2 \/0.2502 + o2

such that the reliability index of the random variabl®J is

G(u) =

= _05p, — pa with P, = &(—p) (7.36)

\/0.2502% + o2
The design point is calculated with standard deviatiors0.1x by:

0 = fo— 0.5u, — p  (0.50,, —0y)
v/0.2502 + 02 /0.2502 + o2

0.50, — pig
050 + 122 (t12, —0.5415). (7.38)

(7.37)

10

In the X-space the equivalent valueds = (r*,z*) with z* = o, u} + p, andr* =
o, ur + p.. For example the means= 100 MPa and., = 25MPa (i.e. F'/F,;, = 0.5)
yields

25 (5,-2.5)

= , o= ———=-, U =(—4,2) and z* = (60, 30) M Pa. 7.39
b V31.25 V31.25 ( ) ( ) ( )
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F/Fyb

P;Casel P;Case?2

analytical

0.5
0.6
0.7
0.8
0.9
1.0
11
1.2
1.3
1.4
15

2.8817E-05
4.5558E-04
1.9351E-02
5.0113E-02
0.1678
0.5184
0.8058
0.9489
0.9872
0.9973
0.9995

7.5016E-06
5.7639E-04
1.0271E-02
6.2066E-02

0.2826
0.5076
0.8286
0.9726
0.9957
0.9993
0.9999

3.8721E-06
3.0182E-04
6.9915E-03
5.9174E-02
0.2286
0.5000
0.7494
0.8997
0.9663
0.9899
0.9972

Table 7.6: Comparison of case 1, case 2 and the analyticdl@ol

Therefore, collapse will occur most probably with a redl@ma aroundF’ = 30MPa and
af = 60MPa leading to a failure probability d?; = 3.8721 - 10~°. The numerical results
converge to these values depending on the starting values.

Typical structural components demonstrate that religbdnalysis can be performed for
realistic model sizes at very low computing times compaoaddremental analyses. Note,
that the latter cannot be used in a quantitative comparisgause incremental nonlinear
analysis fails to give a sharp evidence for plastic failure.

1+
0.9+

robability
o o o
A

o 05—+

— m=05

— m=1.25
—— m=15

0.4+
© 0.3+
0.2+

ilure

F

0.1+

0 0.2

0.4 0.6

0.8 1

1.2 14 1.6

Normalized load to base yield stress

Figure 7.8: Reliability analysis for different valuesiof= o," /o]

The static theorem generates bounds for collapse load$wvanécsafe. But they are 1 to
2 % below the analytical limit loads by the termination erodrthe iteration. This error
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is amplified in the probabilistic analysis. The errors of BH@RM calculations and of the
numerical limit analyses are included in the results. THeutated failure probabilities
correspond very well with the analytical probabilities.

14
0.9+

0.8
>
o
= 074
QO
061 | —— Twovariables M =1
g_ o5+ | TT77C One variable M =1
Qo4+t
=
T 03+
L
0.2+
0.1+
0 : . . n . : : :
0 02 04 06 08 1 12 14 16

Normalized load to base yield stress

Figure 7.9: Comparison between results for one and two mahtariables for the same
value of the means of}” ando’, M =1

8 Conclusions

Traditional structural analysis treats the inherent utadeties intuitively and subjectively.
The current status of computational facilities, howevégwes a more rational treatment
of these uncertainties by stochastic procedures. Limitsdnatkedown theorems of plastic
structural failure provide unique definitions of limit stdunctions. In combination with
FEM and with FORM, failure probabilities of passive compoiseare obtained with suf-
ficient precision at very low computational efforts compghte incremental analyses with
MCS. The advantage of the approach suggested here is thtbdathe discretization pro-
cedures can be directly utilized. In this approach sertés/need no extra FEM analysis.
The remaining numerical error may be estimated or reducettidopdditional use of up-
per bound theorems. It is most important for the analysisundcertainty that limit and
shakedown analyses are based on a minimum of informatiocecoimg the constitutive
equations and the load history. In fact the shakedown pnoidenade time invariant. This
reduces the costs of the collection of statistical data hecheed to introduce stochastic
models to compensate the lack of data. Further researcbasdtiressed to more realistic
material modeling including non-linear kinematic haraenand continuum damage.
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Appendix

Al Distribution functions and densities

Normal distribution
L (- p?*/20°
r) = —F/——e )
f(z) o
EX) = p, Var(X) =0
Standard normal distribution (o = 1, u = 0)
L _0.522
r) = —e ,
E(X) = 0, Var(X) =1

A e_)‘x for >0 .
= = , With A > 0,
f(@) { 0 for <0
E(X) = 1/A Var(X)=1/)\°

Weibull distribution

p—1
px —(x/b)P i
flz) = { v (@0 for == 0 , With b, p > 0,

0 for <0

o < 0r (45 - (57) ()

Log-normal distribution
! —[log(a/m)]*/(26%) i
flz) = ——=e [log ,withm > 0,z > 0.
V2?62

2 2 2
EX) = med /2 varx) =m? 0 (0 — 1)
In the following we summarize the characteristics of joiistidbutions.

1) LetX andY be independent random variables with the densifiés) and f(y),
then the density;(z) of the random variablé = X + Y is given by convolution:

fa(z) = /fl(z —u) fo(u) du. (A1)
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If X andY are independent and normally distributed, &g~ N (11, 07) andY ~
N (uz,03), then the random variable= X+Y N(u, o?) is normally distributed with
p = py % pp ando? = 0% +02. ThusitholdsE(Z) = u; + pp and VaKZ) = 0% + 3.

2) LetX andY be independent random variables with> 0 and the densitieg; (x)
and f>(y), then the density;(z) of the random variablg = X/Y is given by

[e.9]

falz) = / v 2(y) f1(y2) d=. (A2)

0

The expectatioiii(Z) of the random variabl& is given for independent variablés
andY by (see [33]):

[e.9]

B(Z) = / / L) foly) da dy (A3)

—00 —00

3) For log-normally distributed random variabl&sandY with expectationg., and
1, and variances, and o the random variables 1¢%) and lodY) are normal
distributed. The corresponding expectatignsndji, and variances? and&j are

2 2

fiy = logu, — 0.50,
o, =0, (A4)

Y

iz = logu, — 0.50

~2
0,=0

N K

The random variableg(Z) with
log(Z) = log(X) — log(Y) = log(X/Y) (A5)

as difference of the normally distributed variablesXognd logy is normally dis-
tributed with the expectatiofn, and the variancé?:

fi. = ﬂx—ﬂyzlog%—w(aiw;) (A6)
Yy
6: = 0.+0, =040, (A7)

Therefore,Z = X/Y is a log-normally distributed random variable with the expe
tation. and the variance?

Lo
My = — (A8)
Hy
O'z = Ui +O’§ (A9)
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A2 Reliability analyses for the plate with a hole

1 T 1 T
‘anxlyl.dat’ — 'anx5yl10.dat’ —

08 1 0.8
06 1 06
04 0.4
02 1 0.2

0 1 1 1 1 0 1 1 1 1 1 1

0 0.2 0.4 0.6 0.8 1 12 14 0 0.2 0.4 0.6 0.8 1 12 14
o, = 0.01p1,, o5 = 0.01 14 o, = 0.1p,, o5 = 0.05
1 1 T
‘anx20y20-dat’ —

09 — 0.9
08 1 0.8
0.7 1 0.7
06 1 06
0.5 — 05
0.4 1 04
0.3 1 03
0.2 1 0.2
0.1 4 o1}

0 1 1 1 1 1 0 1 1 1 1 1 1

0 0.2 0.4 0.6 0.8 1 12 14 0 0.2 0.4 0.6 0.8 1 12 14
or =0.2p, 05 =0.1p, or =0.2u,, 05 = 0.20,

Figure Al: Distribution functions for fixed mean value anéfetent standard deviations
for normally distributed variables
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pr/ps  Pp (numerical) Py (analytical) abs. error  rel. error
0.1 6.455E-06 6.313E-06 1.867E-07 1.910E-07
0.2 1.085E-04 9.919E-05 9.299E-06 1.017E-05
0.3 1.205E-03 1.065E-03 1.403E-04 1.587E-04
0.4 8.763E-03 7.646E-03 1.117E-03 1.280E-03
0.5 4.163E-02 3.675E-02 4.873E-03 5.519E-03
0.6 1.361E-01 1.209E-01 1.519E-02 1.709E-02
0.7 3.103E-01 2.835E-01 2.683E-02 2.936E-02
0.8 5.319E-01 5.000E-01 3.189E-02 3.392E-02
0.9 7.397E-01 7.070E-01 3.271E-02 3.422E-02
1.0 8.765E-01 8.554E-01 2.105E-02 2.156E-02
1.1 9.499E-01 9.388E-01 1.105E-02 1.118E-02
1.2 9.821E-01 9.772E-01 4.873E-03 4.897E-03
1.3 9.943E-01 9.925E-01 1.961E-03 1.964E-03
14 9.983E-01 9.976E-01 6.443E-04 6.447E-04
15 9.995E-01 9.993E-01 2.090E-04 2.090E-04
1.6 9.999E-01 9.998E-01 6.920E-05 6.920E-05
Table Al:0, = 0.2u,, 05 = 0.1,
wr/ps Py (numerical) Py (analytical) abs. error  rel. error
0.1 7.271E-06 7.085E-06 2.152E-07 2.208E-07
0.2 1.514E-04 1.374E-04 1.404E-05 1.547E-05
0.3 1.948E-03 1.717E-03 2.311E-04 2.621E-04
0.4 1.437E-02 1.267E-02 1.698E-03 1.925E-03
0.5 6.271E-02 5.590E-02 6.788E-03 7.614E-03
0.6 1.742E-01 1.587E-01 1.557E-02 1.709E-02
0.7 3.427E-01 3.190E-01 2.366E-02 2.541E-02
0.8 5.256E-01 5.000E-01 2.558E-02 2.688E-02
0.9 6.843E-01 6.610E-01 2.332E-02 2.414E-02
1.0 8.021E-01 7.826E-01 1.957E-02 2.005E-02
1.1 8.775E-01 8.649E-01 1.254E-02 1.272E-02
1.2 9.258E-01 9.172E-01 8.537E-03 8.617E-03
1.3 9.550E-01 9.493E-01 5.700E-03 5.734E-03
14 9.729E-01 9.686E-01 4.259E-03 4.278E-03
15 9.823E-01 9.802E-01 2.079E-03 2.083E-03
1.6 9.882E-01 9.873E-01 8.666E-04 8.673E-04

Table A2:0, = 0.2u,, 05 = 0.2,
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Limit analysis of frames - Application to structural reliy

1 Introduction

The safety level of a structure is a function of the mechdrind ‘strength’ properties of

the material and of loads depending on environmental paeameAll these data are never
known exactly, inducing the random character of all thedaments of the problem. The
whole of these random variables means that the structuredvas a non-zero probability
of failure.

The present report describes a methodology, based on thaiatysis method, to appraise
the probability of plastic failure of a frame structure sedijto extreme environmental
conditions.

Limit analysis yield the limit loads of the most general stures, without further approx-
imations than these involved in the finite element modabrat Otherwise it enables to
directly obtain a simple series representation of the sire¢c with a simply linear limit
state function associated with each component of the sgysem. In this way it permits
to reduce the whole structure to a set of hyperplanes in theespf the random force and
resistance variables.

2 General formulation

We consider a frame structure loaded by actions represégtadsector-. According to
limit analysis theory, collapse is identified with the demhent of plastic hinge in such a
number and location to allow a movement of the whole or of agighe structure without
requiring deformation of the zones with stresses below iblel yimit.

The load conditions at the limit of collapse are determinethe basis of the two theorems:

Static theorenproves that collapse does not occur if there exist a strddsriiequilibrium
with the applied loads and not violating the strength indiguat any point of the structure.

Kinematic theorenproves that collapse occurs if there exist a displacemddt tempati-
ble with the collapse mechanism, such that the work done égpiplied load§ is larger
than the corresponding internal plastic work.

Static and kinematic theorems can be expressed as the mndalual formulation of an
optimization problem. They give respectively a lower andugper bound of the load
conditionsFy that correspond to the threshold of collapse.

Our approach is based on the static formulation of limit gsial which gives a lower
bound ofF; and consequently goes in the sense of safety.

Let F be the applied load vector arféithe vector of generalized internal forces in the
relevant sections of the structure. The condition of equuim betweers andF is:

AS=F (1)
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whereA is the rectangular force matrix.
The condition of admissibility of the internal force vectmrresponding to each critical
section can be expressed by simple inequalities:

»® S R)—e® <0 k=1,...,NS 2)
With:

NS the number of critical sections.

q)(k)(S’ R) = C(k)(R)S(k)

C(’“)(R) a matrix depending on the strength vediband thek-th critical section
S®) the vector of internal forces corresponding to khth critical section

e® =(1,...,1)7T

These inequalities correspond to a piecewise ligedd conditionin each critical section,
which can be written in the generalized form:

d(S,R)—e <0, (3)

Example:

If we consider the axial forc&/ *) and bending momernit/ *) we could specify the follow-
ing conditions as first approximation:

o) 1)
—1<0and —— —

1 1<0
Ny My <

with R = (Np, Mp) the generalized internal yield forces.
These relations can be expressed in a matrix formulation:

1/Np 0 1 0

—1/Np 0 N 1 0
— <

0 1/Mp M®*) 1|=1o0

0 —1/Np 1 0

But if we consider that the axial force reduces the yield maime use relations combining
these two internal forces, like the following one:

}N(’“)] ’M(k)’

Np +1.18Mp_1 s 0
[ M®)|
o, s
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we have:

1/Np  1/(1.18Mp) 1 0
—1/Np  1/(1.18Mp) 1 0
—1/Np —1/(1.18Mp) < N® ) Lo
1/Np  —1/(1.18Mp) M®*) 1= o0
0 1/Mp 1 0
0 —1/Mp 1 0

Considering a factotr applied to the load', and according to (1) and (3), the static ap-
proach can be formulated as a maximum problem:

max{a|AS = oF,®(S,R) — e < 0}. 4)

This is the expression of a linear programming problem thatle solved by the simplex
method, giving the maximum load factef, and the internal force distributidghproducing
the collapse mechanism.

Notice that in the past decade primal-dual algorithms hawverged [8], which, in addition
to a good complexity, have the advantage of solving the pramd dual forms of the
problem, i.e. the static (internal force distribution) aheé kinematic (displacement and
plastic strains) form of the limit analysis problem.

3 Application to structural reliability

We will consider nowN P nodal loadsy,, F™ with F™ a vector associated with the node
n andy, the realization of a random variable.

Let
y1F(1)

F(yi,...,ynp) =
ynpFNT)
be the generalized load vector, and
RW

R = e
RWS)
be the generalized yield strength vector. ElementR @iill be also considered as random
variables.

According to the realization of the random variab(&, Y') the frame structure can be
subject to an important number of collapse mechanisms. Weagsociate a limit state
function with each mechanism:
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3.1 Limit state function

Starting from a realization of the random variab|®s Y ), the solution of the correspond-
ing optimization problem (4) gives a realization of the mia force distributiorSs corre-
sponding to a collapse mechanism.

Notice, that when the index corresponds to a plastic hinge we have from the yield condi-
tion (2):

m

cr,s®—1=3%"¢, ;8" —1=0 forarowi, of the matrixC** 1)
j=1
CLs® —1 <0 forthe others. 2)

Consequently it is possible, from the result of the statio@ation, to retrieve the location
of the plastic hinges constituting the collapse mechanism.

Once the mechanism is identified we can write the equalitwéen the virtual works
corresponding to the collapse mechanism:

NS NP
oW = STe—F5=> SHTel N "y 750
k=1 n=1

NS m NP »p
_ (k) (k) (n) s(n) _
S ICIEIED B S LLEET ®
k=1 j=1 n=1 i=1
With
6™ vector of general virtual displacement of nadecompatible with mechanism
e®  vector of virtual strains in critical sectiagn compatible with mechanism
y,F™  forces at node.
S® internal forces at sectioh

As the collapse corresponds to a rigid body mechanism theabistrain element5§k) are
non-zero uniquely for the indicgsfulfilling (1). Consequently we have:

DM S =R ?
k=ki,...kn jeT (k)

where{k, ..., ky} are the indices of the plastic hinges afidk) the family of indices;
appearing in (1) for the hinge. Notice that{%, ..., ky} defines the considered collapse
mechanisnim).

1To simplify notations’;, ; will be used instead 0®‘§57)j(R)
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3.1.1 Simple case

Firstly we will consider the following elementary conditi® of admissibility:
S®

@—1§0 ji=1,...,m (5)

J

1 1
Cc® =diag | —,....,— | .
RF T RY

MoreoverYk € {ki,...,kn} we have7 (k) = {jx} andS](.f) = Rg.’,j) Consequently:

which consist in taking:

ow= > RPY_F5=0. (6)
k=k1,....kN
We can write:
€j1
(Rjr,-. - Rjy)§ - ¢ =R'D"e (7)
Ein
with D™ a square and diagonal matrix such tha”’ = 1 & j € {ji,- .., jin}

In addition we have the condition of compatibility betwebe vectors of the generalized
virtual strains and virtual displacements:

e =A"S. (8)

Finally from (7) and (8) we have:
T T
SW = (AD<m>R> 5 —FT§ = (AD(’”)R . F) 5=0. 9)

Notice, that for every virtual displacemehtompatible with the collapse mechanigm),
we have:d = ;8™ wherey is a scalar and™ is a basis vector corresponding(te).

The j-th column of the matribxA D™ is equal to the j-th column oA if j €
{Jkss-- -, Jry }» it iS equal to zero otherwise.

Consider now the following function:
T
Gy (R, F) = (AD(m)R - F) 5m (10)

with 6™ the displacement vector associated with the mechatisin Ase = A7§™
we have:

g (R, F) <0< RTDMATS™ —FT§™ <0< RTDM™e — FT6™ < 0. (11)
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Thus if g,y (R, F) < 0 there exist a displacement fiedd™, compatible with the collapse
mechanisn(m), such that the work done by the applied lodts larger than the corre-
sponding internal plastic work. We deduce from the kineodtteorem that the collapse
occurs in this case. Reciprocallygf,, (R, F) > 0 the kinematic theorem proves that the
structure is safe.

We conclude thay,)(R, F) defines a limit state function associated with the collapse
mechanism resulting from the solution of (4).

3.1.2 Generalization
The previous result can be extended to the general case dihaay yield condition. Let

us recall the Hill principle (1950) specifying that the \&ron vector of plastic strains is
oriented along the external normal to the boundary of thetieldomain.

Figure 1: Normality rule

As the boundary of the elastic domain is defineddsy = {S|C],S" — 1 = 0,k €
{k1,...,kn}}, we have:
5.k) C.
5= —C-%-] Vi # Ji 12)
6]-]: UesJ

wherej; is some index of the family/ (k).
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Consequently:
3 oS — % Dy S(k Coi (13)
ki,....kn k1,...kN L J#3% Zk ik
- 3 st Z 1S
K1,k Civii J#3;;

And from the definition oD& we deduce:

Y G S =1-Ci S5, (14)
i#5;
Thus:
e
Y, SWTeh = (15)
ki,... kN k1,...kn U,
Finally we obtain:
e®
W= > 2 -F'5=x(R)"e—Fs (16)
k=kp, ok ORI
where:
1
xW(R) W _ 1
) Xi, = ork € {ky,....k
x"™(R) = - with t o Gy thy v}
xV9)(R) X§ '=0 otherwise

We have:e = A”§ andé = ;8", therefore:sW = (Ax™(R) —F)" 6(™. And as
previously, we prove from the kinematic theorem that:

T
9omy(R,F) = (Ax™(R) — F) 5™

defines a limit state function.
Remark: In the simple case previously treated we hg® (R) = D™ R.

3.2 Failure probability of each collapse mechanism

In this way we can associate a linear limit state functiorhveiach collapse mechanism
(m), dividing the probability space into a safe $&tV = {(R, S)|g(m(R,F) > 0} and a
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failure setZ(™ = {(R, S)|g(m) (R, F) < 0}. The corresponding probability of survival is
then calculated as:
P™ = P(g(m)(R,F) > 0). (17)

S

As an alternative td®™ a reliability index3(™ is often defined as:

Bm = q)fl(Ps(m)) _ —(I)fl(P]Em)) (18)
whereP}m) =1-pP™ = P(gim)(R,F) < 0) is the failure probability, an@ the Gaus-
sian normal distribution function. In general the aboveregpions cannot be computed
analytically, except when the basic variab{&s Y') are jointly normally distributed where
the failure probability is:

P = (- (19)

with 3™ the Hasofer and Lind reliability index equal to the minimuistdnce from the
origin to a point on the failure surface.

In the general case it is always possible to transform thie basiablesX = (R,Y) into
uncorrelated and standard normal varialiles- T'(R,Y).

The simplest definition of the transformati@happears when the basic variables are mu-
tually independent. Then each variable can be transforrpdrately with the following
transformation:

Ui =T(X;) = o7 (Fx,(X)))) (20)

whereF, is the distribution function corresponding to the variakle

When the basic variables are not mutually independenRtteenblattransformation [7]
gives analogous results.

The functionG,,,)(U) = gy (T~'(U)) is the corresponding limit state function in thie
space. As it defines a failure surface which is not a hypeeptdnhelU-space the relation
given by (18) provides an approximation Bﬁm) which correspond to a linearization of
the failure surface at a design polit. The design points are defined as the local solutions
of the following optimization problem:

B0 = min][U]| |Gy (U) < 0}. (21)

The tangent hyperplane to the failure surface at the design pas the equation:

oG,
> i (U (U 1) =0. 22)

i

This equation can also be written into the following form:

*

VG (U)
VG imy (UY)

VG (U7)

— U =3" 4 a™TU =0 (23)
[V Gm (U]
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where .

VG (UY)
is the unit vector normal to the failure surface at the depigint and

B — _qmT

(81

the Hasofer and Lind reliability index.

A reliability method based on this procedure is cafiest order reliability methodFORM),
and3(™ is thefirst order reliability index

Numerous general iterative algorithms are available teesibie optimization problem (20).
The following iteration method is very simple and has proteedvork well for practical
problems:

Gim Uk
kD) _ (ch)Ta(k)) " ( ) o) (24)
VG (U)]
with:
VUG(m) (U) = VUg(m) (X) = ng(m) (X) VUX. (25)
In our case:
Vugm) (X) = Vrgmm) (R, F)) VuR 4+ Vigm) (R, F) VyFVyY (26)
i.e.:

dgem) (R, F) 3 9g(m) (R, F) O; 3 dgm) (R, F) <Z 0L, 0Yi ) 27)
l

aU; - OR;  OU; & dF, Y, dU;
We have:
Gy (R, F) = x (W7 AT _ FTg0m — 3™ (0 (Az;k&m)) -5 Re™. (29)
k1,...kN k
Consequently:
99(m) (R, F) Oxi, (R) 7 Ixi, (R)
Zm) V") A (AT sm)) A ATY 29
OR, 2. R, ( “ir0 ) 2 or, o @9
k1, kN k1. kN
d9m) (R, F) (m)
= -4 30
1
uF 0 — (] —
And asF = we have:% = { £y whenk'_ (I=1p+q
yr pFOP) ! 0 otherwise
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3.3 Reliability of series systems

We saw previously that a frame structure exposed to randare find resistance variables
can be subject to an important number of collapse mechani$ifih each mechanism

we associate a linear limit state function, dividing thelgability space into a safe set
and a failure set. The structure collapses if at least on# §itate function is negative.

Consequently it is possible to express the structure asetiesssystem of all the different

mechanisms.

Boolean state variables for each failure modg are defined by:

Am =0 if g(m)(R, S) <0
B,=1—A4,,, m=1,...,NM with NM the number of failure modes.

DenotingAs and Bs the Boolean state variables for the system we have:
Ag = A1Ay. .. Anu. (31)
From this last expression we deduce [6] :
Bs =By +A1By+ A1AyBs + - -+ A1As - - - Ayv—1 By (32)

Since the variabled,,, and B,,, can only take the values 0 and 1 we deduce:

NM
max {B,,} < Bs < Z B,,. (33)

m=1
Consequently we obtain some general bounds on the failotpility:

NM
max { P (gom (R, F) <0)} < Pr < ) P (g (R,F) <0). (34)

Closer bounds were given by Ditlevsen:

NM

NM m—1 NM
Py + ) max (Pm — " P, 0) <P<y Py max P, (35)
m=1 n=1 m=1 m=2

with:
P, =P (g9, (R, F) <0)

and

Pon =P ({gomy R, F) <0} N {9 (R,F) <0}) =P (S"™ NnS™).
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In a first order analysisP,, and P,,,,, are approximated by linearization of the limit state
functions expressed in tlié-space. Hencé,, is calculated by the formula (19) while,,,,

is obtained by approximating the joint failure s&t” N S by the set bounded by the
tangent hyperplanes at the design points for the two farhwdes.

We saw previously that the tangent hyperplanes are chaweddy the linear safety mar-
gins:
M — g0 4 omTU andM® = 50 4 o™TU.

As M) and M ™ are standardized normally distributed, we have:
Py =@ (_ﬁ(m)a _ﬁ(n); pmn) . (36)

Where® is the probability density function for a bivariate normaictor with zero mean
values, unit variance, and correlation coefficignl, = a7 a™.

3.4 Identification of the significant collapse mechanisms

In practice, even if the considered frame is small, the ifieation of all the possible mech-
anisms is cumbersome. But generally only the mechanismigbfdnobability (with a low
value of reliability index) are sufficient to obtain a goodpagximation of the probabil-
ity of collapse. Furthermore, it is worth mentioning thatnpamechanisms are mutually
highly correlated (mechanisms having common bars in yigldi Consequently even a
mechanism with a low value of the reliability index may notitmportant in the sense that
it contributes significantly to the failure probabilitynsie most of the failure set of that
mechanisms already may have been accounted for by anotbbhy(borrelated) mecha-
nism.

Locci [5] suggests a simple algorithm to compute the priakipechanisms needed to ap-
proach the structural reliability: resolution of optimiwan problem (4), formulated with
the mean values of strengths and forces, yields the lowadtfaxtor associated with those
values. If a new solution is searched after one of the canssraf the basic solution is
suppressed, a new mechanism will be found with a necess$egiher load factor. A large
number of mechanisms can therefore be found with incredsatyfactors by suppressing
in turn each rupture component of each previously computechamism and reordering
the set of mechanism by ascending load factors at each ste t8ere is an obvious cor-
relation between ascending load factors computed on méaes/and ascending reliability
indices, a truncated series system will be satisfactoryactice.
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4 Conclusion

The use of the limit analysis in reliability carries out somgortant improvements in
comparison with classical methods. It allows to easily m#te the failure mode deter-
mination, from components available in any finite elemerttecoOtherwise it allows to
associate a linear limit state function with each collapselenand so easily estimate the
failure probability of the considered frame.

Notice to conclude some possible improvements:
e The use of sophisticated methods to approach the failufacgur

e The study of more realistic failure criteria, leading to amprovement of the limit
state functions.

e The development of efficient algorithms to select the sigaift failure modes.
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