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Abstract—A method for characterizing a current total step in the I–V characteristic of a Josephson junction
array is considered. In this method, an appropriately selected approximating curve is statistically fitted to the
experimentally found curve. A self-calibration algorithm for an array of junctions incorporated into program-
mable voltage standards is suggested. © 2002 MAIK “Nauka/Interperiodica”.
† INTRODUCTION

In recent years, interest has arisen in programmable
voltage standards based on Josephson junction arrays
[1]. With such standards, it becomes possible to pro-
duce a set of quantized reference voltages from 0 to
10 V and simplify the calibration of precision ADCs
and digital voltmeters. Accordingly, the calibration
scheme for these devices radically changes, and the cer-
tification speed and accuracy are greatly improved. To
produce a set of precision reference voltages, an array
of a large number m of series-connected nonhysteresis
Josephson junctions is used. One of the working algo-
rithms for programmable voltage standards uses the
quantized reference voltage across a junction array at
the first step with index n = ±1. The total voltage is then
VJ = (m1 – m2)f/KJ [2]. Here, m1 is the number of junc-
tions at the step n = 1, m2 is that at the step n = –1, f is
the frequency of an applied harmonic signal, and KJ =
483.5979 GHz/V is the Josephson constant. It should be
emphasized that this algorithm allows for the applica-
tion of Josephson junctions on high-temperature super-
conductors with a great (≈100%) spread in Josephson
critical currents δI = Ic, max/Ic, min, where Ic, max and Ic, min

are, respectively, the maximal and minimal critical cur-
rents of the junctions incorporated into the array [3, 4].
At f ≥ KJIc, maxRN (RN is the normal resistance of the
junctions), the microwave signal power can be selected
such that the amplitude of the first total current step ∆I1

is on the order of Ic, min. Actually, ∆I1 decreases because
of a spread in RN and the nonuniform distribution of the
microwave current along the array. A recent investiga-
tion of a Josephson programmable standard based on
niobium nonhysteresis junctions has shown that, after
each cooling of the junctions, a new distribution of the
microwave power along the array arises and the system
must be tuned to the optimal frequency of irradiation
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[5]. At low Ic, min and/or elevated temperatures (≈78 K),
thermal noise may additionally decrease ∆I1 and
accordingly increase the inaccuracy of the voltage stan-
dard [4, 6]. Because of this, the control of the slope and
other parameters of the current total step is of great
importance.

In this work, we suggest a possible way of charac-
terizing current total steps appearing in the I–V charac-
teristic of a Josephson junction array and discuss a self-
calibration algorithm for the array. The feasibility of the
method is demonstrated with the critical current of a
bicrystal Josephson junction made of a high-tempera-
ture semiconductor.

PRECISE METHOD FOR MEASURING
THE CURRENT STEP PARAMETERS

In the conventional technique for finding the current
step parameters (specifically, its slope), the voltage VJ

of the step is successively measured at several points
(i ≈ 10) the number of which depends on the constant
bias current passing through the array. To improve the
measurement accuracy, the voltage to be measured first
is shifted to the zero level by inserting a known voltage
of opposite polarity and second is measured N times at
each ith point [7]. The compensation of VJ allows one to
perform measurements with a minimal standard devia-
tion σ depending on the intrinsic noise of a nanovolt-
meter. In the best digital nanovoltmeters, σ ≈ 10 nV; in
analog devices, σ ≤ 1 nV. As the number of independent
measurements grows, the standard deviation of the
mean value decreases as σm = σ/(N – 1)–1/2. For the time
of single-point measurement τ = 100–1000 s, the value
of σm can be reduced to ≤0.1 nV [8]. However, small-
σm measurements at all i points take a considerable
amount time (about 10τ), during which the stability of
the thermoelectric voltage in the measuring circuit is
hard to maintain. In this case, the drift of the thermal
emf will make a major contribution to the total standard
002 MAIK “Nauka/Interperiodica”
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deviation of the measurements. There are a number of
methods taking into account the thermal emf drift [7].
However, their use is associated with a further increase
in the number of measurements and, hence, elongates
the measuring cycle.

The essence of our method is as follows. First, for a
time ≈τ, the I–V characteristic Vk = f(Ik) is recorded in
the range of a step of the current (or critical current)
being studied, where the subscript k runs from 1 to N.
Then, the data array obtained is approximated by the
mathematical expression V = f(I, p1, p2, p3, …), where
V is the voltage across the junction; I is the bias current;
and p1, p2, p3, … are parameters of the theoretical
model. The mean values of the parameters and their
standard deviations are found by the least squares
method. Thus, the problem is reduced to finding an
approximating curve that adequately fits experimental
data.

As a curve approximating the I–V characteristic of a
Josephson junction near a step of the current (or Ic), we
take the expression

(1)

Expression (1) involves six parameters. The param-
eter V0 specifies the position of the current step on the
voltage axis and tends toward VJ in the optimum case.
The factor r reflects the presence of parasitics in the
measuring circuit. The study of this factor can shed
light on the value and nature of the parasitics and help
in eliminating them or reducing to a reasonable level.
Approximating curve (1) has an inflection where the
current and the differential resistance equal, respec-
tively, i0 and rd. The parameter i0 defines the position of
the current step midpoint on the current axis. The
parameters i1 and i2 have the dimension of current and
specify the bend (smooth or sharp) of the I–V curve at
the edges of the steps.

When selecting the form of formula (1), we took
into consideration that junctions with the nonhysteresis
I–V curve may exhibit one-particle tunneling of mag-
netic quanta at the edges of Ic, causing the exponential
current dependence of the voltage, and that ranges
where this takes place are much smaller than the critical
current. From the theory of the Josephson effect [9], it
is known that the current–voltage characteristic near
the step has a similar form. However, in analyzing data
for current total steps, one should bear in mind that the
parameters i1 and i2 involved in the exponential depen-
dence depend largely on the spread in RN of the junc-
tions that are series-connected to form an array and on
the nonuniformity of the microwave field along the
array, rather than on the conduction mechanism. For-
mula (1) is a good fit to the characteristic only in the
vicinity of the voltage V0; at higher voltages, the I–V
curve describes resistive regions, where expression (1)
is invalid.
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RESULTS AND DISCUSSION

The statistical fit of the approximating curve to
experimental data implies the minimization of the total
standard deviation

(2)

where p is the number of desired parameters [10].
Let us consider sum (2) as a function of the number

N of points and the range of fit. By way of example, we
will look for the parameters of curve (1), which
describes the I–V characteristic of a Josephson junction
in the vicinity of the critical current.

We studied the I–V characteristic of a bicrystal
Josephson junction based on a high-temperature super-
conductor [3, 6]. The characteristic was recorded
according to the scheme shown in Fig. 1 with the pro-
gram developed in [11]. As a voltage amplifier, a nano-
voltmeter with an intrinsic noise of 1–2 nV and a gain
of 5 × 104 was used. Such nanovoltmeters are incorpo-
rated into industrial Josephson voltage standards [12].
Figure 2 shows the record of the critical current and its
approximation by function (1). The table summarizes
the fitting parameters and their standard deviations cor-
responding to a confidence interval of 2.8χ. The proba-
bility of falling outside this interval is no more than 1%.

The parameter χ vs. number of points N. It is known
that the minimizing procedure is aimed at finding the
absolute, rather than relative, minimum of sum (2). To
find the absolute minimum, one usually changes the

χ

Vk V Ik( )–( )2

k 1=

N

∑
N p–

-----------------------------------------,=

Computer

16 bit I/O board

DAC ADC

Current
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Voltage V

Fig. 1. Precision measurement of the current–voltage char-
acteristic of Josephson junctions.
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Fig. 2. I–V characteristic of a bicrystal Josephson junction near the critical current: s, data points; solid line, fitting curve.
initial conditions of the process and monitors the value
of χ and the parameters of the fitting curve. When the
final result becomes independent of the initial condi-
tions, it can be argued that the absolute minimum is
found [10]. To check this statement, we studied the
dependence of the approximation parameters and their
standard deviations on the number of points used for
the approximation. The number of points was varied
from N = 473 to N = 3786. Figures 3 and 4 show the val-
ues of the parameters and their standard deviations nor-
malized to the related means. As follows from Fig. 3,
the approximation parameters depend on N only
slightly. From Fig. 4, χ is seen to be independent of the
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Fig. 3. (j), (e), (d), and (n) are the normalized fitting
parameters V0, i0, i1, and i2 vs. number of points N taking
part in the approximation. Solid lines connect correspond-
ing symbols.
number of points, whereas the normalized standard
deviations of the parameters in expression (1) decrease
as N–1/2. These observations suggest that the absolute
minimum of sum (2) is reached and the parameter
means found provide the best fit to the experimental
curve. Moreover, it can be argued that N-related sys-
tematic errors, if present, play an insignificant role.

The effect of the approximation voltage range on χ.
Figure 5 shows the dependence of χ on the approxima-
tion voltage range. At voltages above 20–30 nV, the
total standard deviation χ grows rapidly. Figure 6 dem-
onstrates the differences Vk – V(Ik) between the I–V
curve recorded and the fitting curves with voltages of
±9, ±20, and ±160 nV, along with the experimental
dependence Vk(Ik). It is seen that at low voltages the
approximation gives Ic higher than the values mea-
sured; at high voltages, the differences are due to the
limited applicability domain of formula (1). Note also
that the standard deviations of all the approximation
parameters, except , grow near zero. From these

dependences, one can conclude that the optimal range
of approximation is from ±20 to ±30 nV in our case.

The contribution of the standard deviations of the
parameters to the standard deviation of the voltage.
The standard deviation of the voltage depends on the
bias current as

(3)
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The contributions of the standard deviations of the

parameters to (I) are different. Figure 7 shows the
logarithm of the contribution of the parameter standard

deviations to (I) vs. bias current for a voltage range
from –20 to 20 nV. From the curves in Fig. 7, it follows
that, at currents equal to or higher than Ic, the major

contribution to the total error is from (I) and (I) ≈

(I). Thus, in this current range, (I) ≈ (2 (I))1.2

and grows rapidly when the current exceeds Ic. The
standard deviation , as well as all other standard
deviations, decreases with increasing N. In our example
(Fig. 2), it became 50 to 100 times lower than the intrin-
sic noise of the nanovoltmeter, not exceeding  =
20 pV. The low mean value of the differential resistance
rd (see table) indicates the absence of the slope of criti-
cal current and demonstrates the potentialities of the
method as applied to measuring low parasitic resis-
tances.

SELF-CALIBRATION OF JUNCTION ARRAYS 
FOR A PROGRAMMABLE VOLTAGE STANDARD

The method suggested allows for the natural self-
calibration of an array of 2m junctions that is incorpo-
rated into a programmable voltage standard [2]. The
array is subdivided into (m + 1) sections (bits). The
number of junctions in the first m bits corresponds to
the binary code (1, 2, 4, 8…). The last, (m + 1), bit has
only one junction. During measurements, the total step
must be made coincident with the zero voltage level to
retain the desired accuracy. Therefore, the calibration
of the entire array is carried out in several stages. First,
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Fig. 4. Normalized standard deviations (h) , (r) ,

(s) σrd, (m) , (,)  and (×) normalized total standard

deviation χ vs. number of points N participating in the
approximation. The solid line represents the linear fit to the
parameter standard deviations vs. N dependence.
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the voltage of the step +1 of one junction is compared
with that of the step –1 of the second junction. Then,
these two junctions are connected in series and their
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Voltage, nV
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2.0

–150 –100 –50 0 50 100 150 200

Fig. 5. Total standard deviation χ vs. fitting voltage range
(d). The solid line connects data points.
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Fig. 6. Difference between the experimental I–V character-
istic (j) and fitting curves for voltages in the range from
(h) –9 to +9, (n) –20 to +20, and (s) –160 to +160 nV. For
convenience, the differences calculated for the ranges ±9
and ±160 nV are shifted by 50 and 100 nV relative to the
zero level.

Fitting parameters and their standard deviations

Parameters Units of
measure

Parameter
values

Standard
deviations

V0 nV 0.13 0.02

r Ω 2.9 × 10–7 2 × 10–8

i0 mA 0.08 0.05

rd Ω 7.6 × 10–21 8.5 × 10–21

i1 mA 0.04 0.002

i2 mA 0.05 0.002

χ nV 0.41



1412 BOROVITSKIŒ et al.
total voltage is compared with that of a section of two
junctions that have opposite polarity, etc. Having estab-
lished (with a high accuracy) the absence of the slope
on the first steps of individual contacts, one can estab-
lish the absence of parasitic slopes on total steps in all
the bits of the array. This algorithm allows one to auto-
mate the self-calibration of arrays of series-connected
junctions.

CONCLUSION

We suggest a method for processing a body of
experimental data for the I–V characteristics of Joseph-
son junctions that can estimate the accuracy of mea-
surements. For this purpose, it is necessary to select an
analytical expression for the I–V characteristic that
involves a small number of parameters. The choice can
be based on both a theoretical model and intuitive con-
cepts.

–20
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Current, mA
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–15

–10
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Fig. 7. Logarithmic contribution of the parameter standard
deviations vs. bias current for voltages in the range ±20 nV.

(s) , (h) , (e) , (.) ,
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The desired mean values of the parameters and their

standard deviations are found by the least squares
method. This method combines the advantage of reduc-
ing the problem to finding a function depending on a
small number of parameters and the advantages of a
large number of measurements. A small value of χ
found by fitting is the best corroboration of the potenti-
alities of the method. Another verification of the
method is the study of the dependence of the parame-
ters on the number of points and the dependence of the
results on the limitation of the approximation interval.
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