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Nonlinear structures in interchange mode turbulence
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Generation of linearly unstable streamers and nonlinearly saturated zonal flows have been investigated using
two-dimensional simulations of interchange mode turbulence. It has been shown that nonlinear diamagnetic
interactions tend to inhibit spectral cascades towards larger length scales and consequently suppress the non-
linear excitation of zonal flows. The latter has also been found to be in qualitative agreement with a theoretical
analysis based on the reductive perturbation method.
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I. INTRODUCTION

Long wavelength structures such as streamers~radially
extended, poloidally localized! and zonal flows~radially lo-
calized, poloidally extended! are widely considered to be im
portant for governing transport and turbulence in magn
cally confined toroidal plasmas. The implication of the
structures for the understanding of anomalous plasma tr
port has thus received considerable attention in recent ye
In the past, these structures have largely been pursued i
context of astrophysical, galactic plasmas@1–3# to under-
stand the generation of large-scale zonal magnetic fields.
emergence of such large-scale highly anisotropic turbu
flows could be a manifestation of an inverse cascade p
nomenon associated with the wave energy that gets tr
ferred towards the long wavelength region@4–6#. In particu-
lar, within the context of tokamak plasmas, understanding
the generation of large-scale zonal or streamer flows has
ten been based on drift wave instabilities with Boltzma
electrons@7–9#, and the flows have been attributed to Re
nolds stresses@10#, parametric and modulation instabilitie
of drift wave packets@11–14#, and other mechanisms. I
addition, other classes of drift wave instabilities, such as
temperature gradient~ITG! modes, resistive drift ballooning
modes, etc. have often been regarded as potential candi
for explaining the poloidal sheared flow in tokamaks and
formation of internal transport barriers~ITB! @15#. More re-
alistic models consisting of a complete set of plasma flu
equations~density, temperature, vorticity, etc.!, in the context
of ITG modes, have also been analyzed in order to un
stand the formation of zonal flow structures@16# that have
been previously reported in an earlier work@20#. Recently, a
globally self-consistent ITG plasma model has been stud
numerically to understand the poloidal zonal flows@18#. So-
phisticated computer simulations, based on gyrokinetic
gyrofluid models, have also been helpful to deepen the
derstanding of such flows amidst a turbulent background
small-scale fluctuations and their mutual interplay@19–21#.

In this paper, we examine the generation of low fr
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quency, large-scale streamers and zonal flows within
paradigm of flute-type interchange mode~IM ! turbulence,
wherein the ansatz of Boltzmann electrons has been repl
by the electron continuity equation. Additionally, ion tem
perature effects in the form of diamagnetic flows have be
incorporated in the ion continuity equation and the line
diamagnetic frequency has been treated as a fixed param
in the entire calculation. This is a reasonably simple mod
which can be useful to describe the tokamak edge reg
and, under suitable conditions, gives rise to the curvat
driven mode, known as the Rayleigh-Taylor~RT! instability
@22–24#. These instabilities~IM, RT, and their other mani-
festations! are not only invariably intrinsic to the tokama
plasmas confined by a strong magnetic field, but are als
importance in space plasmas. Moreover, the set of equat
describing IM turbulence are essentially different from t
drift wave models in terms of the nonlinear character. Unl
the latter, the nonlinear manifestations due to the simu
neous existence of convective (E3B) and diamagnetic non
linearities, and their interplay in the presence of an additio
polarization nonlinearity, seem rather subtle and are mor
less unexplored. These facts urge for a detailed explora
of the IM turbulence model and therefore form the prim
motivation of our present investigations. Thus in the pres
work, we primarily concentrate on nonlinear properties
the IM turbulence and seek to understand the dynamic
zonal flows amidst such complex nonlinear interactions. T
importance of diamagnetic nonlinearities in the generation
zonal flows has previously been reported in the context
ITG modes@9# where an increase of the Reynolds stress d
to diamagnetic nonlinearities was found. Our investigatio
indicate that for IM turbulence, nonlinearly generated zo
flows may be radically suppressed by nonlinear diamagn
interaction processes as a result of a reduction of turbu
wave energy cascades towards larger scales. The result
be explained in terms of the phase relations between den
and potential perturbations obtained for IM and ITG turb
lences; for ITG modes,n andf are in phase, resulting in a
increase of the Reynolds stress forces; for interchange m
on the other hand,n is out of phase withf for small en
resulting in a reduction of the effective Reynolds drive.

The rest of the paper is organized as follows. In Sec.
©2002 The American Physical Society08-1
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governing equations of the IM turbulence model and th
linear as well as nonlinear features have been presented.
tion III contains results from numerical simulations, whe
we demonstrate how diamagnetic effects can alter nonlin
excitation of the zonal flows and suppress them. The th
retical understanding of the suppression of zonal flows
been carried out in Sec. IV, and Sec. V contains the disc
sion.

II. BASIC EQUATIONS AND CONSERVATIONS

We consider two-dimensional electrostatic interchan
mode turbulence for a quasineutral, cold ion plasma
mersed in a curved magnetic field. The basic equations
readily be cast in terms of two scalar variables, namely, d

FIG. 1. Time evolution of total energy, i.e.,E5*@n2

1(“f)2#dx dy. Linear~up to t520) and nonlinear phases of evo
lution are distinguishable.
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]n

]t
1en

]n

]y
1~12en!

]f

]y
1 ẑ3“f•“n5D¹2n, ~1!

S ]

]t
2t

]

]yD¹2f1en~11t!
]n

]y
1 ẑ3“f•“¹2~f1tn!

5m¹4f. ~2!

Equation~1! is the electron continuity equation, while Eq
~2! represents the ion vorticity equation. The diamagnetic~or
FLR! terms are associated with the parametert5Ti /Te , the
ratio of ion to electron temperatures, and appears in linea
well as in nonlinear terms. The other dimensionless variab
and parameters, i.e., electrostatic potential, electron den
time, and spatial coordinates are, respectively,f

5ef̃Ln /Ters , n5ñLn /Nrs , t5 t̃ Ln /Cs , (x,y)
5( x̄,ȳ)/rs , en52Ln /R; wheree, Ln , rs , N, Cs , R, m, and
D are, respectively, electric charge, density gradient len
scale, ion Larmour radius, total density, sound speed, m
radius of tokamak, viscosity, and particle diffusivity. Th
variables represented by tilde are the un-normalized v
ables. Equations~1! and~2! fulfill the following conservation
law:

1

2

]

]t E @n21~ u“fu!2#dx dy1~11ent!E n
]f

]y
dx dy

52E @D~ u“nu!21m~¹2f!2#dx dy, ~3!

which shows that the rate of change of total ener
(pressure1kinetic) decays due to flux, diffusivity, and vis
cosity effects. The linear eigenfrequency from Eqs.~1! and
~2! reads as
s

FIG. 2. Time evolution of linearly unstable
streamers@~a! and ~b! correspond to density and
potential# and nonlinearly saturated zonal flow
@~c! and ~d!#, for the parameterst50, en50.8,
m5D50.1.
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vk5
ky

2
~en2t!1 i

ky

k'

Aen~12en!~11t!

3H k'
2 ~en1t!2

4en~12en!~11t!
21J 1/2

.

Here k'5Akx
21ky

2. It is worth noting that for positive rea
frequency~i.e., en.t), the modes propagate in the directio
of the electron diamagnetic drift, while in the opposite ca
~i.e.,en,t) they move along the ion diamagnetic drift dire
tion. The dispersion relation further indicates that no line

FIG. 3. Evolution of spectral averaged wave numbers define
^kQ&5A(SkkQ

2 ufku2)/(Skufku2), where Q5x or y. Initially the
spectrum is highly isotropic aŝkx&5^ky&. During the linear phase
of evolution, sufficient anisotropy is developed in the turbule
spectrum due to streamers, thereby leading to^ky&.^kx&. While
during the nonlinear phase, spectral transfer alters the turbu
spectrum leading tôky&,^kx& due to generation of zonal flows.
03640
e

r

instability is likely to occur for theky50 mode~essentially
the zonal flow mode!, while such a mode could possibly b
generated via inverse cascading processes that are inher
governed by the nonlinear interactions. On the other h
finite ky modes could give rise to linear instabilities in th
form of streamerlike structures (kx50), which can be fur-
ther reduced as a result of the linear diamagnetic term.

III. RESULTS OF NUMERICAL SIMULATIONS

Equations~1! and ~2! have been integrated numerical
using a fully dealiased pseudospectral method@24# in a two-

as

t

nt

FIG. 4. Evolution of energy. The solid line represents the rate
change of total energy, i.e.,12 ]/] t*@n21(u“fu)2#dx dy. Circles
represent combination of energy flux and dissipative energy,
*@(11ent)n]f/]y1D(u“nu)21m(“2f)2#dx dy. The figure
clearly demonstrates a quantitative balance of the energy relatio
given by Eq.~3!, and so validates our numerical results. A co
stancy of the total energy is also very apparent here.
d
FIG. 5. ~a! and ~b! are saturated density an
potential structures fort50.1. The effects due to
diamagnetic terms are distinguishable@compare
with Figs. 1~c! and 1~d!#. The diamagnetic effects
appear to damp out the zonal flow fort
(5Ti /Te)51.0, as can be seen in~c! and ~d!.
8-3
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dimensional box ofN2 Fourier modes, with doubly periodi
boundary conditions along thex and y directions. This
method uses discrete Fourier representation in which the
ear part of the equations is integrated exactly. The nonlin
terms, on the other hand, are evaluated in real space.
variables are then transformed from real to Fourier space
back, using fast Fourier transform~FFT! routines at each
time step. The time evolution is taken care of by a leap-f
predictor corrector scheme. The accuracy of the numer
simulation results has been ensured by continuously mon
ing the energy integrals@Eq. ~3!# at each time step. The ini
tial spectrum of perturbed density and potential is compri
of discrete Fourier modes that are highly uncorrelated
randomly phased, thereby ensuring a perfectly isotropic
bulent spectrum. We here basically concentrate on the n
linear evolution of such a spectrum under the influence
increasingly complex diamagnetic interactions ast increases
and investigate how they influence the nonlinear structu
In order to gain an appropriate understanding of the role
nonlinear diamagnetic interactions, simulations with a
without diamagnetic terms included were performed a
compared. The entire evolution consists of two distin
phases, the linearly unstable phase wherein the streamer
generated followed by the nonlinear saturation, which ev
tually leads to a steady-state nonlinear structure nam
zonal flows. In Fig. 1 the time evolution of Eqs.~1! and ~2!
with t50 is illustrated, which distinctively shows the linea
~until t520) as well as the nonlinear (t.20) behavior. Cor-
respondingly, Figs. 2~a! and 2~b! indeed display persistenc
of the linear streamers (kx.0) emerging out of isodensity
and potential contours untilt520 ~end of the linear phase o
evolution!. The nonlinear interactions are likely to becom
significant thereafter, and tend to hinder energy cascade
wards smallerkx . Simultaneously there appears to be su
stantial transfer of energy towards theky50 mode, leading
to the formation of zonal flow structures, as shown in Fi
2~c! and 2~d! ~respectively, fluid density and potential stru
tures!. It is worth noting here that the density and potent

FIG. 6. Time evolution of theFZF ~zonal flow! mode. The initial
excitation amplitude is observed to be strongly reduced for an
creasing value oft,en50.2.
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fluctuations tend to develop sufficiently anisotropic spec
during linear as well as nonlinear saturated states in spit
the fact that the choice of initial@highly isotropic to begin
with, i.e., ^kx&.^ky& at t50 and the wave numberskx ,ky
remain symmetric during the early phase of evolution, s
Fig. 3# as well as boundary conditions~periodic inx,y direc-
tions! did not impose any kind of anisotropy. Moreove
these results are independent of the size of computati
domain, number of Fourier modes, as well as the integra
time step. We have carefully confirmed the simulation resu
for different random initial conditions, computational bo
sizes (10p310p, 15p315p, and 20p320p), Fourier
modes (642, 1282, and 2562), and the integration time step
(131024, 531024, and 431023). A quantitative balance
of the rate of change of total energy from Eq.~3! verifies our
simulation results. A typical case shown in the Fig. 4 is b
sically run for 1282 Fourier modes in the two-dimensiona
box of size 10p in each direction, for the time ste
431023. The anisotropic zonal flows in our simulation hav
been defined as an average of the potential fluctuations
all the modes whenky.0.

We next investigate the effect of an increasing influen
of diamagnetic interactions on the dynamical evolution
zonal flows. Interestingly, even for moderately low values
t(,1), the nonlinear zonal flows are found to be strong
reduced. This can be seen in Figs. 5~a! and 5~b!. Moreover,
for appreciably large value oft(>1), the zonal flows are no
longer stable and smear off into several small scales st
tures@see Figs. 5~c! and 5~d!#. A more quantitative illustra-
tion of the suppression of zonal flows due to diamagne
effects can be seen in Fig. 6, which clearly exhibits how
initial excitation level of zonal flows~which begins aftert
520) strongly declines. It can also be seen here that foren
.t, the zonal flows persist~top curve in Fig. 6! due to the
increased Reynolds drive. On the other hand, whenen,t the
zonal flows are relatively suppressed~see the bottom curve
in Fig. 6!. The results can be explained in terms of t

- FIG. 7. Time evolution ofFZF , the zonal flow component for
en.t anden,t, represented, respectively, by the upper and low
curves.
8-4
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density-potential correlation, as follows. In the latter case
phase relation betweenn and f is modified, i.e., n
.(v* /v r)f, wherev r,0 for en,t resulting in a reduc-
tion in the effective Reynolds stress forces@see nonlinear
terms of Eq.~2!; ẑ3“f•“¹2(f1tn)]. The existence of
zonal flows subject to the conditionen.t can also be veri-
fied in our simulation by fixing the parametert and varying
en . This has been confirmed for two extreme cases ofen ,
and is shown in the Fig. 7. The top and bottom curves in
figure represent the casesen.t anden,t. It can be clearly
seen that zonal flows have been enhanced foren.t, while
they are suppressed in the opposite limit, which is consis
with our earlier observations. Furthermore, the spiky osci
tion in the temporal evolution of the zonal flow for finit
diamagnetic interactions is profound. Similar behavior w
also noticeable in the recent gyrokinetic simulation of IT
mode turbulence@25#. Moreover, the long time evolution in
our simulations indicates that the turbulence as well as
zonal flows reach a nonlinearity saturated state~see Figs. 1,
6, and 7!.

The suppression of zonal flow due to nonlinear diam
netic interactions is identified in our simulations as an in
bition of the turbulent energy cascading towards the sma
wave numbers in the poloidal direction, which is direc
proportional to the intensity of the nonlinear diamagne
interactions. Our investigations further confirm that the d
magnetic nonlinearity~i.e., t ẑ3“f•“¹2n) is primarily re-
sponsible for counteracting the conventional polarizat
nonlinearity in the ion vorticity equation. The latter is know
to cascade turbulent energy basically towards smaller w
numbers.

IV. THEORETICAL ANALYSIS

In order to understand the mechanism leading to the s
pression of nonlinearly saturated zonal flows, as observe
simulations, we provide a theoretical analysis by investig
ing the effect of the diamagnetic terms on the nonlinear zo
flow modes of zero frequency and withky50. A reductive
perturbation method@27# has been applied to the set of Eq
~1! and ~2!. Using this method, we deduce the saturated
tential of zero frequency, which is essentially a zonal flo
The variables can be expanded in spherical harmonics u
Q5Sa«aQ (a), with Q (a)5S,Q,

(a)(x,j,T)exp@i,(kyy
2vt)#, where Q corresponds to the dynamical density~n!
and potential~f! variables,« is the parameter characterizin
smallness of the amplitude of the variables,j5«(y2ut),
andT5«2t. The particle diffusivityD and viscositym order
as;(«2). The amplitudes are subject to the reality conditi

as Q,
(a)5Q2,

(a)* and Q,
(1)50 for ,561. We thus consider

the nonlinear modulation of a quasimonochromatic int
change mode. The first-order«1 equation then readily yields

iD ,~v,k!f,
~1!50,

which is the dispersion relation for,51. In arriving at the
above relation, we have assumed the sinusoidal depend
of the perturbed variables asf,

(1)5f̃,
(1)(j,T)sinkmx,

and n,
(1)5ñ,

(1)(j,T)sinkmx, where km5m(2p/L) (m
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51,2, . . . ) andL is the length of the system. For,51, it
leads toD150, asf l

(1)Þ0 which is the dispersion relation
for the interchange mode instability, as described earlier.
second-order«2 equations from Eqs.~1! and ~2! may be
written as

iD ,~v,k!f,
~2!1z,

]f,
~1!

]j
50,

where

z,5v,2ky12,2ky
22Du2t1en~11t!a

1F12
~en2u!ky

~2v1enky!G~12en!,

D5]2/]x22,2ky
252(km

2 1,2ky
2), a5(12en)ky /(v

2enky). SinceD1→0 for ,51, hencez150 as ]f1
(1)/]j

Þ0, which consequently leads to the expression for
group velocity (u5]v/]ky) of the interchange modes.

In the third-order («3), we obtain nonlinear equation a
follows:

]n,
~1!

]T
1~en2u!

]n,
~2!

]j
1~12en!

]f,
~2!

]j

1 i ,@~2v1enky!n,
~3!1~12en!kyf,

~3!#

5 i ,kyFf,
~1!

]n0
~2!

]x
2n,

~1!
]f0

~2!

]x G
1~a* 2a!

]

]x

]

]j
uf1

~1!u2, ~4!

L
]f l

~1!

]T
1 i ,$2L~v1tky!f,

~3!1en~11t!kyn,
~3!%

2 i ,@~v12uky!13tky#
]2f,

~1!

]j2

2$L~u1t!12,~,ky2v!%
]f,

~2!

]j
1en~11t!

]n,
~2!

]j

5 i ,kyH f,
~1!

]3

]x3 ~f0
~2!1tn0

~2!!2L~f,
~1!1tn,

~1!!
]f0

~2!

]x J
12ky

2@11t~a* 1a!#
]

]x

]

]j
uf1

~1!u2, ~5!

whereL5(]2/]x22ky
2,2) andQ,

(2);sinkmx. The terms as-
sociated with the particle diffusionD and viscositym do not
appear in the above equations as they are higher-order te
and as such are neglected. While arriving at Eqs.~4! and~5!,
the nonlinear interaction mechanism tends to generate a
more terms corresponding to the fluxes in electron den
and ion vorticity equations. These nonlinear fluxes are
pected to be balanced by the corresponding sources or s
8-5
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in the respective equations. From Eqs.~4! and ~5!, the zero
frequency component flow can readily be determined by p
ting ,50,

f0
~2!5

2ky
22enS a2a*

u2en
D2tH a2a*

u2en
en22ky

2~a1a* !J
4km

2 1enS a2a*

u2en
D1tH 4km

2 1enS a2a*

u2en
D J

3
]

]x
uf1

~1!u2. ~6!

The nonlinearly saturated component of the flow (f0
(2)), i.e.,

the zonal flow, is therefore generated by the pondermo
forces that are proportional to;uf1

(1)u2. The nonlinear mode
coupling is assumed to saturate the interchange mode in
bility and hence the turbulent fluctuations, in the satura
state, can be estimated as@26# f1.(g/vd)/(kmLn), where
vd is the magnetic drift frequency. Writing growth rate of th
interchange mode turbulence asg5Avvd, andLn;en for a
fixed R, where R is the major radius of the tokamak, th
turbulent saturation amplitude can be written asf1

;Av/vd/(kmen). Using this estimation in Eq.~6! within the
reasonable parameter range of (en ,t), the variation off0

(2) ,
essentially the zonal flow component, is shown in Fig.
This indeed shows the suppression of zonal flows when
diamagnetic effects become stronger~i.e., t.0); thus, dem-
onstrating qualitative agreement with our simulation resu
as described earlier. Moreover, the amplitude of the satur
zonal flow enhances with increasingen ~for finite t value! as
seen in the analytical treatment, and this qualitatively agr
with the simulation results.

We further point out that our theoretical analysis~i.e., Fig.
8! supports the arguments that have been made earlier in

FIG. 8. Zero-frequency component zonal flowF0 , as a function
of t,en , as obtained from theoretical analysis.
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I with regard to the suppression or enhancement of the zo
flows in the IM turbulence model. It is clear from Fig. 8 th
there could be strong excitation of the zonal flows whenen
.t, for whichn andf are in phase sincev r.0. Contrary to
this, in the regime whenen,t, there is remarkable suppres
sion of the saturated zonal flow component in Fig. 8 due
the fact that density and potential fluctuations are now ou
phase on account of the negative real frequency of the
modes, which possibly reduces the Reynolds drive.

V. CONCLUSION

It has been identified in the present work that diamagn
interactions can indeed alter the nonlinear cascading pro
ties of the turbulent energy towards larger length scales
interchange mode turbulence. This, in turn, leads to a str
degradation of the zero-frequency component zonal fl
While the polarization nonlinear term conventionally ca
cades energy towards larger scales, the diamagnetic no
earity is observed to reduce the energy cascades tow
larger length scales. It is to be noted that the linear diam
netic term in our local simulation does not change with t
radial distance.

In conclusion, the main emphasis here is to explore
effect of nonlinear diamagnetic effects on the generation
zonal flows. We discover that nonlinear diamagnetic effe
counteract the usual polarization nonlinear effects~respon-
sible for the Reynolds drive! resulting in the damping of the
zonal flows. The underlying mechanism of zonal flow su
pression observed here critically depends upon the phase
the density and potential fluctuations of the interchan
modes. The results indicate the importance of finite ion te
perature effects for interchange mode turbulence, even
situations whereTe@Ti . To draw more detailed conclusion
a more realistic description of the ion temperature fluct
tions, including effects of finiteh i ~essentially a ratio of
density and temperature gradient length scales!, is needed in
the simulation model. The present simulation is based o
local analysis where the profile parameters, including
diamagnetic drift terms, are held fixed in the simulation bo
A global simulation including a radial dependence of t
diamagnetic drift could potentially alter our local results. F
instance, earlier work shows that an inhomogeneous diam
netic frequency can introduce a radial inhomogeneity ass
ated with the radially propagating waves in the syste
which may reduce Reynolds stress forces and hence z
flows @17#. This is left for future investigations.
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