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Nonlinear structures in interchange mode turbulence
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Generation of linearly unstable streamers and nonlinearly saturated zonal flows have been investigated using
two-dimensional simulations of interchange mode turbulence. It has been shown that nonlinear diamagnetic
interactions tend to inhibit spectral cascades towards larger length scales and consequently suppress the non-
linear excitation of zonal flows. The latter has also been found to be in qualitative agreement with a theoretical
analysis based on the reductive perturbation method.
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[. INTRODUCTION quency, large-scale streamers and zonal flows within the
paradigm of flute-type interchange modi®1) turbulence,
Long wavelength structures such as streamemdially  wherein the ansatz of Boltzmann electrons has been replaced
extended, poloidally localizedand zonal flowdradially lo- by the electron continuity equation. Additionally, ion tem-
calized, poloidally extendgdre widely considered to be im- perature effects in the form of diamagnetic flows have been
portant for governing transport and turbulence in magnetiincorporated in the ion continuity equation and the linear
cally confined toroidal plasmas. The implication of thesediamagnetic frequency has been treated as a fixed parameter
structures for the understanding of anomalous plasma trang the entire calculation. This is a reasonably simple model,
port has thus received considerable attention in recent yearghich can be useful to describe the tokamak edge region,
In the past, these structures have largely been pursued in tla@d, under suitable conditions, gives rise to the curvature
context of astrophysical, galactic plasmids-3] to under- driven mode, known as the Rayleigh-Tayl&tT) instability
stand the generation of large-scale zonal magnetic fields. TH22—-24. These instabilitiegIM, RT, and their other mani-
emergence of such large-scale highly anisotropic turbulerfiestation$ are not only invariably intrinsic to the tokamak
flows could be a manifestation of an inverse cascade pheglasmas confined by a strong magnetic field, but are also of
nomenon associated with the wave energy that gets trangnportance in space plasmas. Moreover, the set of equations
ferred towards the long wavelength regi@h-6]. In particu-  describing IM turbulence are essentially different from the
lar, within the context of tokamak plasmas, understanding oflrift wave models in terms of the nonlinear character. Unlike
the generation of large-scale zonal or streamer flows has othe latter, the nonlinear manifestations due to the simulta-
ten been based on drift wave instabilities with Boltzmannneous existence of convective X B) and diamagnetic non-
electrong[7—9], and the flows have been attributed to Rey-linearities, and their interplay in the presence of an additional
nolds stressefl0], parametric and modulation instabilities polarization nonlinearity, seem rather subtle and are more or
of drift wave packetd11-14, and other mechanisms. In less unexplored. These facts urge for a detailed exploration
addition, other classes of drift wave instabilities, such as iorof the IM turbulence model and therefore form the prime
temperature gradierfiTG) modes, resistive drift ballooning motivation of our present investigations. Thus in the present
modes, etc. have often been regarded as potential candidateerk, we primarily concentrate on nonlinear properties of
for explaining the poloidal sheared flow in tokamaks and thehe IM turbulence and seek to understand the dynamics of
formation of internal transport barrie(sTB) [15]. More re-  zonal flows amidst such complex nonlinear interactions. The
alistic models consisting of a complete set of plasma fluidsmportance of diamagnetic nonlinearities in the generation of
equationddensity, temperature, vorticity, etcin the context  zonal flows has previously been reported in the context of
of ITG modes, have also been analyzed in order to undetTG modes[9] where an increase of the Reynolds stress due
stand the formation of zonal flow structurgks] that have to diamagnetic nonlinearities was found. Our investigations
been previously reported in an earlier wg&0]. Recently, a indicate that for IM turbulence, nonlinearly generated zonal
globally self-consistent ITG plasma model has been studieflows may be radically suppressed by nonlinear diamagnetic
numerically to understand the poloidal zonal floM$]. So- interaction processes as a result of a reduction of turbulent
phisticated computer simulations, based on gyrokinetic antvave energy cascades towards larger scales. The results can
gyrofluid models, have also been helpful to deepen the unbe explained in terms of the phase relations between density
derstanding of such flows amidst a turbulent background oénd potential perturbations obtained for IM and ITG turbu-
small-scale fluctuations and their mutual interpla@—21. lences; for ITG modes) and ¢ are in phase, resulting in an
In this paper, we examine the generation of low fre-increase of the Reynolds stress forces; for interchange modes
on the other handn is out of phase with¢ for small €,
resulting in a reduction of the effective Reynolds drive.
*Email address: dastgeer@elmagn.chalmers.se The rest of the paper is organized as follows. In Sec. I,
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10* , : : ; . sity and electrostatic potential;
o _ an+ an+ 1 a¢+‘><v Vn=DV? 1
o L ] ot en@ ( en)@ z ¢-Vn= n, (1
! _ A VZp+e,(1+ on +2XV¢-VV2(p+
o ] w Ty ¢+ enl T)@ ZXV ¢-VVi(p+mn)
8L i =,u,V4d). (2
10°F 3 Equation(1) is the electron continuity equation, while Eq.

(2) represents the ion vorticity equation. The diamagn@tic
FLR) terms are associated with the parametefT; /T, the

107k 3

10} 4 ratio of ion to electron temperatures, and appears in linear as
well as in nonlinear terms. The other dimensionless variables
0% 20 20 50 % 100 20 and parameters, i.e., electrostatic potential, electron density,
Time time, and spatial coordinates are, respectively,
FIG. 1. Time evolution of total energy, i.e.E=f[n? =epL,/Teps, n=mL,/Nps, t=1L,/Cs, (x,y)
+(V ¢)?]dx dy. Linear(up tot=20) and nonlinear phases of evo- =(X.Y)/ps, ex=2L,/R; wheree, L, ps, N, Cs, R, 1, and
lution are distinguishable. D are, respectively, electric charge, density gradient length

scale, ion Larmour radius, total density, sound speed, major
governing equations of the IM turbulence model and theirradius of tokamak, viscosity, and particle diffusivity. The
linear as well as nonlinear features have been presented. Segriables represented by tilde are the un-normalized vari-
tion I contains results from numerical simulations, whereaples. Equationél) and(2) fulfill the following conservation
we demonstrate how diamagnetic effects can alter nonlinegaw:
excitation of the zonal flows and suppress them. The theo-
retical understanding of the suppression of zonal flows has 1 ¢ 5 5 L)
been carried out in Sec. IV, and Sec. V contains the discus- 7 ﬁf [n*+(|Veo) ]dx dy+(1+ €n7)f n@dx dy
sion.

=—f [D(IVn])?+ u(VZ¢)?1dx dy, 3
IIl. BASIC EQUATIONS AND CONSERVATIONS

We consider two-dimensional electrostatic interchangevhich shows that the rate of change of total energy
mode turbulence for a quasineutral, cold ion plasma im{pressure-kinetic) decays due to flux, diffusivity, and vis-
mersed in a curved magnetic field. The basic equations cacosity effects. The linear eigenfrequency from E(s. and
readily be cast in terms of two scalar variables, namely, denf2) reads as

(a) Density t=20 (b) Potential t=20

FIG. 2. Time evolution of linearly unstable
streamerg(a) and (b) correspond to density and
potential and nonlinearly saturated zonal flows

5 () t=130 5 {d) =130 [(c) and (d)], for the parameters=0, €,=0.8,
u=D=0.1.
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FIG. 3. Evolution of spectral averaged wave numbers defined as FIG. 4. Evolution of energy. The solid line represents the rate of

(Ko)= V(5| Al (2l bl where Q=x or y. Initially the

spectrum is highly isotropic as,)=(k,). During the linear phase
of evolution, sufficient anisotropy is developed in the turbulent [(1+ e 7)ndp/dy+D(|Vn|)2+ u(V24)2ldx dy. The
clearly demonstrates a quantitative balance of the energy relation as

spectrum due to streamers,

thereby leadingkg) > (k). While

change of total energy, i.e3/d,J[n?+(|V ¢|)?]dx dy. Circles
represent combination of energy flux and dissipative energy, i.e.,

figure

during the nonlinear phase, spectral transfer alters the turbulegiven by Eq.(3), and so validates our numerical results. A con-

spectrum leading tgk,)<(k,) due to generation of zonal flows.

K o
o == (€,— 1) +i = en(1—e,)(1+7)
k2 (€n+7)2 vz

stancy of the total energy is also very apparent here.

k instability is likely to occur for thek,=0 mode(essentially

Nae(l-ey(its *

Herek, = Jk>+ kyz. It is worth noting that for positive real

frequency(i.e., ,>7), the

modes propagate in the direction

of the electron diamagnetic drift, while in the opposite case

(i.e., e,< 1) they move along the ion diamagnetic drift direc-

the zonal flow modg while such a mode could possibly be
generated via inverse cascading processes that are inherently
governed by the nonlinear interactions. On the other hand
finite k, modes could give rise to linear instabilities in the
form of streamerlike structurek{=0), which can be fur-

ther reduced as a result of the linear diamagnetic term.

Ill. RESULTS OF NUMERICAL SIMULATIONS

Equations(1) and (2) have been integrated numerically

tion. The dispersion relation further indicates that no linearusing a fully dealiased pseudospectral metf@4 in a two-
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FIG. 5. (a) and (b) are saturated density and
potential structures for=0.1. The effects due to
diamagnetic terms are distinguishaljtsmpare
with Figs. 1c) and Xd)]. The diamagnetic effects
appear to damp out the zonal flow for
(=T;/Ty)=1.0, as can be seen {n) and(d).
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FIG. 6. Time evolution of th& ¢ (zonal flow mode. The initial

excitation amplitude is observed to be strongly reduced for an in- FIG. 7. Time evolution ofbz, the.zonal flow component for
creasing value of,e,=0.2 e,> 1 and e < 7, represented, respectively, by the upper and lower
€,=0.2.

curves.

dimensional box ofN? Fourier modes, with doubly periodic

boundary conditions along th& and y directions. This fluctuations tend to develop sufficiently anisotropic spectra
method uses discrete Fourier representation in which the linduring linear as well as nonlinear saturated states in spite of
ear part of the equations is integrated exactly. The nonlinedhe fact that the choice of initighighly isotropic to begin
terms, on the other hand, are evaluated in real space. Theth, i.e., (k) =(k,) att=0 and the wave numbeis,k,
variables are then transformed from real to Fourier space angmain symmetric during the early phase of evolution, see
back, using fast Fourier transforgiFFT) routines at each Fig. 3] as well as boundary conditioriperiodic inx,y direc-
time step. The time evolution is taken care of by a leap-frodgions) did not impose any kind of anisotropy. Moreover,
predictor corrector scheme. The accuracy of the numericdhese results are independent of the size of computational
simulation results has been ensured by continuously monitodomain, number of Fourier modes, as well as the integration
ing the energy integralgEq. (3)] at each time step. The ini- time step. We have carefully confirmed the simulation results
tial spectrum of perturbed density and potential is comprisedor different random initial conditions, computational box
of discrete Fourier modes that are highly uncorrelated an@izes (10rX 10w, 157X 15w, and 2GrX20w), Fourier
randomly phased, thereby ensuring a perfectly isotropic turmodes (64, 12&, and 256), and the integration time steps
bulent spectrum. We here basically concentrate on the norfl X 10" 4, 5x 1074, and 4<10 3). A quantitative balance
linear evolution of such a spectrum under the influence obf the rate of change of total energy from E8) verifies our
increasingly complex diamagnetic interactionsrascreases simulation results. A typical case shown in the Fig. 4 is ba-
and investigate how they influence the nonlinear structuressically run for 128 Fourier modes in the two-dimensional
In order to gain an appropriate understanding of the role obox of size 16r in each direction, for the time step
nonlinear diamagnetic interactions, simulations with and4x 10 3. The anisotropic zonal flows in our simulation have
without diamagnetic terms included were performed andbeen defined as an average of the potential fluctuations over
compared. The entire evolution consists of two distinctall the modes whek,=0.

phases, the linearly unstable phase wherein the streamers areWe next investigate the effect of an increasing influence
generated followed by the nonlinear saturation, which evenef diamagnetic interactions on the dynamical evolution of
tually leads to a steady-state nonlinear structure namelygonal flows. Interestingly, even for moderately low values of
zonal flows. In Fig. 1 the time evolution of Eqd) and(2) 7(<1), the nonlinear zonal flows are found to be strongly
with 7=0 is illustrated, which distinctively shows the linear reduced. This can be seen in Figéa)5and 3b). Moreover,
(until t=20) as well as the nonlineat>20) behavior. Cor- for appreciably large value af(=1), the zonal flows are no
respondingly, Figs. @) and 2b) indeed display persistence longer stable and smear off into several small scales struc-
of the linear streamersk{=0) emerging out of isodensity tures[see Figs. &) and §d)]. A more quantitative illustra-
and potential contours untik= 20 (end of the linear phase of tion of the suppression of zonal flows due to diamagnetic
evolution. The nonlinear interactions are likely to become effects can be seen in Fig. 6, which clearly exhibits how the
significant thereafter, and tend to hinder energy cascades t@iitial excitation level of zonal flowgwhich begins aftett
wards smallek,. Simultaneously there appears to be sub-=20) strongly declines. It can also be seen here thagfor
stantial transfer of energy towards tkg=0 mode, leading >, the zonal flows persistop curve in Fig. 6 due to the

to the formation of zonal flow structures, as shown in Figs.increased Reynolds drive. On the other hand, whgnr the

2(c) and 2d) (respectively, fluid density and potential struc- zonal flows are relatively suppressézte the bottom curve
tures. It is worth noting here that the density and potentialin Fig. 6). The results can be explained in terms of the
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density-potential correlation, as follows. In the latter case the=12 ...) andL is the length of the system. Fdr=1, it

phase relation betweem and ¢ is modified, i.e., N jeaqs toD,=0, as4V+0 which is the dispersion relation
=(w, /o) $, wherew, <0 for e,<7 resulting in a reduc- ¢, the interchange mode instability, as described earlier. The
tion in the effective Reynolds stress forcesee nonlinear second-orders? equations from Eqs(1) and (2) may be
terms of Eq.(2); 2XV ¢-VV?(p+m)]. The existence of

i ! ' written as
zonal flows subject to the conditio#},> 7 can also be veri-
fied in our simulation by fixing the parameteiand varying I
€,. This has been confirmed for two extreme casegof iD(w,k) P+, ¢ =0,
and is shown in the Fig. 7. The top and bottom curves in the ’ 9
figure represent the cases>r ande,< 7. It can be clearly
seen that zonal flows have been enhancedsfor 7, while ~ Where
they are suppressed in the opposite limit, which is consistent
with our earlier observations. Furthermore, the spiky oscilla- L= 0Pk + 2025~ Au— T+ €y(1+ 7)a
tion in the temporal evolution of the zonal flow for finite
diamagnetic interactions is profound. Similar behavior was +l1— (en—Wky }(1_6 )
also noticeable in the recent gyrokinetic simulation of ITG (—w+enky) m
mode turbulencé25]. Moreover, the long time evolution in
our simulations indicates that the turbulence as well as thé = 9%/ dx?— €2kj= — (ki + €%k?), a=(l—en)k¥/(w
zonal flows reach a nonlinearity saturated state Figs. 1, —¢.k,). SinceD;—0 for =1, hence{;=0 asdgp{Mog
6, and 7. #0, which consequently leads to the expression for the

The suppression of zonal flow due to nonlinear diamaggroup velocity (= dwlok,) of the interchange modes.
netic interactions is identified in our simulations as an inhi- |n the third-order £%), we obtain nonlinear equation as
bition of the turbulent energy cascading towards the smallefollows:
wave numbers in the poloidal direction, which is directly
proportional to the intensity of the nonlinear diamagnetic an{H an? Ip?
interactions. Our investigations further confirm that the dia- +(en—U)——+(1—€,) —

magnetic nonlinearityi.e., 72X V ¢- VV?n) is primarily re- JT 9% 9
spor}5|ble_ fqr counteracting the cc_)nventlonal pc_)lar|zat|on +i€[(—w+enky)n((;3>+(1—en)ky¢}3)]
nonlinearity in the ion vorticity equation. The latter is known
to cascade turbulent energy basically towards smaller wave ' " ani? " Ip2
numbers. =itky| ¢ — N —
IV. THEORETICAL ANALYSIS Jd d
ar—a) oz @

In order to understand the mechanism leading to the sup- X 9§

pression of nonlinearly saturated zonal flows, as observed in

simulations, we provide a theoretical analysis by investigat- <9¢|(1) _ 3) 3)
ing the effect of the diamagnetic terms on the nonlinear zonalA 1 ! - Aotk e+ en(1+ 1)kyne™'}
flow modes of zero frequency and wiky=0. A reductive

perturbation methof27] has been applied to the set of Egs. _ PPV
(1) and(2). Using this method, we deduce the saturated po- —i€[(w+2uky)+37k] (952

tential of zero frequency, which is essentially a zonal flow.
The variables can be expanded in spherical harmonics using ap? on(?
®=2a8a®(a), with @(a)=2€®(€a)(x7g,-|—)exn:i€(kyy _{A(U+ T)+2€(€ky_a))}_(9§ +En(1+ T) (7§
—wt)], where ® corresponds to the dynamical density)

and potential ¢) variables e is the parameter characterizing

(2)
0

. 03
=itky} o5 (P + )= A(HM+mP)

smallness of the amplitude of the variablés; ¢(y—ut), LIENE IX
andT=¢2t. The particle diffusivityD and viscosityu order

~(g2 i i i iti J a
as~(&9). The*amphtu?es are subject to the reality con.d|t|on +2k§[1+ o +a)] — _|¢<11>|2’ (5)
as0{W=0)" and®M=0 for £==1. We thus consider ax 9§

the nonlinear modulation of a quasimonochromatic inter-
change mode. The first-ordef equation then readily yields whereA = (5%/9x?—k3¢?) and® {?)~sinkyx. The terms as-
sociated with the particle diffusioD and viscosityuw do not
iD (k)" =0, appear in the above equations as they are higher-order terms,
o ) ] ) o and as such are neglected. While arriving at Edsand(5),

which is the dispersion relation fdf=1. In arriving at the  {he nonlinear interaction mechanism tends to generate a few
above relation, we have assumed the sinusoidal dependenggyre terms corresponding to the fluxes in electron density
of the perturbed variables asp{™=3¢")(&T)sink,x,  and ion vorticity equations. These nonlinear fluxes are ex-
and nM=m1M(£T)sinkx, where k,=m(27/L) (m pected to be balanced by the corresponding sources or sinks
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| with regard to the suppression or enhancement of the zonal
flows in the IM turbulence model. It is clear from Fig. 8 that
there could be strong excitation of the zonal flows wlegn

> 7, for whichn and ¢ are in phase since,>0. Contrary to
this, in the regime wheia, <, there is remarkable suppres-
sion of the saturated zonal flow component in Fig. 8 due to
the fact that density and potential fluctuations are now out of
phase on account of the negative real frequency of the IM
modes, which possibly reduces the Reynolds drive.

V. CONCLUSION

It has been identified in the present work that diamagnetic
interactions can indeed alter the nonlinear cascading proper-
ties of the turbulent energy towards larger length scales in
interchange mode turbulence. This, in turn, leads to a strong

FIG. 8. Zero-frequency component zonal fldwy, as a function  degradation of the zero-frequency component zonal flow.
of 7,€,, as obtained from theoretical analysis. While the polarization nonlinear term conventionally cas-

cades energy towards larger scales, the diamagnetic nonlin-
in the respective equations. From E@). and (5), the zero  earity is observed to reduce the energy cascades towards
frequency component flow can readily be determined by puttarger length scales. It is to be noted that the linear diamag-
ting £=0, netic term in our local simulation does not change with the
radial distance.

_ Ak % . . . .
2 _|eTa ) Jerex 2 * In conclusion, the main emphasis here is to explore the
2ky €, T €, 2ky(a+a ) . . . .
2)_ u—e, Uu—ey effect of nonlinear diamagnetic effects on the generation of
b0 = ) a—a* 5 a—a* zonal flows. We discover that nonlinear diamagnetic effects
4kt €p — + 714K+ €| — counteract the usual polarization nonlinear effecespon-
n n

sible for the Reynolds driyeresulting in the damping of the

I\ w2 zonal flows. The underlying mechanism of zonal flow sup-
X& [p1I%. (6) pression observed here critically depends upon the phases of
the density and potential fluctuations of the interchange

The nonlinearly saturated component of the flap§¥), i.e., Modes. The results indicate the importance of finite ion tem-
the zonal flow, is therefore generated by the pondermotiv@erature effects for interchange mode turbulence, even in
forces that are proportional te|¢(11)|2, The nonlinear mode Situations wherd > T; . To draw more detailed conclusions,
coupling is assumed to saturate the interchange mode instd-mere realistic description of the ion temperature fluctua-
bility and hence the turbulent fluctuations, in the saturatedions, including effects of finite; (essentially a ratio of
state, can be estimated 6] ¢,~(y/wg)/(k,L,), where density and temperature gradient length soaleseeded in

w4 is the magnetic drift frequency. Writing growth rate of the the simulation model. The present simulation is based on a

interchange mode turbulence @s Jwawgy, andL,~ €, for a :;)_cal analg_/siz _\;\;fgere the prhofillotlaf_pa:jam?:]ers,_ in(i“f[.dingb the
fixed R, whereR is the major radius of the tokamak, the G'2mMagnetic dntt terms, aré neld fixed in (h€ simulation box.

turbulent saturation amplitude can be written as A global simulation including a radial dependence of the

~ Jolwog (kpe.). Using this estimation in Eq6) within the diamagnetic drift could potentially alter our local results. For

reason;ble rganra.metergrange of (7). the variation 0fp@ instance, earlier work shows that an inhomogeneous diamag-
1 [0 ]

allv th 1l i sh i Fi 8netic frequency can introduce a radial inhomogeneity associ-
essentially the zonal flow component, is shown In Fig. 8.5i04 with the radially propagating waves in the system,

di ic off b . thus. d fuhich may reduce Reynolds stress forces and hence zonal
lamagnetic effects become strongee., 7>0); thus, dem- 4,5 117] This is left for future investigations.

onstrating qualitative agreement with our simulation results
as described earlier. Moreover, the amplitude of the saturated

zonal .flow enhanc_es with increasieg (for finite 7V§|U© as ACKNOWLEDGMENT
seen in the analytical treatment, and this qualitatively agrees
with the simulation results. One of the authorgR.S) gratefully acknowledges the

We further point out that our theoretical analy&is., Fig.  kind support and hospitality of Chalmers University of Tech-
8) supports the arguments that have been made earlier in Sewlogy, Gdeborg, Sweden.
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