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Coherent scattering function in the reptation model: Analysis beyond asymptotic limits
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We calculate the coherent dynamical scattering functionSc(q,t;N) of a flexible chain of lengthN, diffusing
through an ordered background of topological obstacles. As an instructive generalization, we also calculate the
scattering functionSc(q,t;M ,N) for the central piece of lengthM<N of the chain. Using the full reptation
model, we treat global creep, tube length fluctuations, and internal relaxation within a consistent and unified
approach. Our theory concentrates on the universal aspects of reptational motion, and our results in all details
show excellent agreement with our simulations of the Evans-Edwards model, provided we allow for a phe-
nomenological prefactor which accounts for nonuniversal effects of the microstructure of the Monte Carlo
chain, present for short times. Previous approaches to the coherent structure function can be analyzed as special
limits of our theory. First, the effects of internal relaxation can be isolated by studying the limitN→`, M
fixed. The results do not support the model of a ‘‘Rouse chain in a tube.’’ We trace this back to the nonequi-
librium initial conditions of the latter model. Second, in the limit of long chains (M5N→`) and times large
compared to the internal relaxation time (t/N2→`), our theory reproduces the results of the primitive chain
model. This limiting form applies only to extremely long chains, and for chain lengths accessible in practice,
effects of, e.g., tube length fluctuations are not negligible.

DOI: 10.1103/PhysRevE.65.061505 PACS number~s!: 82.35.Lr, 05.40.2a
m
ai
s

no
e
o

ic
a
hl
e
ic
c
n
e

s
a

on

on
et

o
e
h

ch

on
ci
r

di
in

on
del
In
e
at

ake
ly
ver
u-

of
n-
s of
rt

ube
cles

he
he
hat
to
ber

ent
oil
ula-

to
la-

stic
rst
ory.
nts
oke
I. INTRODUCTION

The equilibrium dynamics of a dense polymer syste
i.e., a melt, a solution of high concentration, or a free ch
moving through a gel, is an important topic of polymer phy
ics. It has been investigated for many years, but is still
fully understood. The problem is quite complex, even if w
concentrate on the motion of a single chain. Clearly, its m
tion is strongly hindered by the surrounding chains, wh
the chain considered cannot cross. This has led to the ide@1#
that the motion of the chain is confined to a tube roug
defined by its instantaneous configuration. Thus the tub
assumed to have a random walk configuration, wh
changes only by the motion of the chain ends. The ends
retract into the tube which thus is effectively shortened, a
they can creep out of the original tube, thus creating a n
tube segment in some random direction. The interior part
the tube are assumed to be fixed in space until they
reached by the diffusive motion of the chain ends. This c
cept of a tube is one basic ingredient of the ‘‘reptation’’@1,2#
scenario, which certainly is valid provided the obstacles c
fining the chain motion form a rigid, time independent n
work. In a realistic system the surrounding chains are m
bile, which sheds some doubt on the postulated existenc
a well defined tube. Indeed, there exist other approac
@3,4#, more in line with standard many body theory, whi
are not based on the tube concept.

Most work on the reptation model concentrates
asymptotic results expected to hold for long chains in spe
time regions~see Sec. II A!. In comparison to experiments o
simulations, these results often fail at a quantitative level@5#,
and partly other theories seem to be more satisfactory@3,4#.
Thus some work@6# has been invested to incorporate ad
tional physical effects such as relaxation of the surround
1063-651X/2002/65~6!/061505~30!/$20.00 65 0615
,
n
-
t

-
h

y
is
h
an
d
w
of
re
-

-
-
-
of
es

al

-
g

or specific interaction effects into asymptotic reptati
theory. However, the evaluation of the pure reptation mo
outside asymptotic limits has found only little attention.
recent work@7,8#, we presented such a calculation for th
motion of individual segments of the chain. We found th
asymptotic results, which for the quantities considered t
the form of specific power laws, apply only to surprising
long chains. Large time intervals are covered by crosso
regions. Our crossover functions compare very well to sim
lations@9# of the pure reptation model, i.e., to the motion
a flexible chain through a fixed regular lattice of impe
etrable obstacles. Furthermore, also results of simulation
melts look quite similar to our analytical results for sho
chains. This is consistent with the observation that the t
diameter, i.e., the average distance among effective obsta
extracted from the simulations, is fairly large. Since in t
pure reptation model, the tube width is of the order of t
effective segment size of the reptating chain, this implies t
to map melt dynamics on the reptation model, we have
consider a coarse grained chain of effective segment num
N/Ne . HereN is the chain length~polymerization index! of
the physical macromolecule, whereas the ‘‘entanglem
length’’ Ne is the length of a subchain that shows a c
radius of the order of the obstacle spacing. In recent sim
tions@10# of melts, a valueN/Ne'14 was reached, far below
the value N/Ne*50 needed according to our theory
clearly identify asymptotic power laws. Other recent simu
tions @11# reach a valueN/Ne'300, but for this chain length
they cover only times short compared to the characteri
time scales of the reptation model. Still, the onset of a fi
power law regime is seen, again consistent with our the
Thus, concerning the motion of individual chain segme
within a melt, there at present seems to be no need to inv
other mechanisms than pure reptation.
©2002 The American Physical Society05-1
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The motion of specific segments is easily accessible o
to computer experiments. Physical experiments often m
sure dynamic scattering functions. Asymptotic results of
reptation model for the coherent scattering function ha
been worked out previously@12,13,2#, but our analysis of
segment motion suggests that an evaluation of the scatte
function outside asymptotic limits is needed. This is the to
of the present work. We use the same analytical repta
model as in our previous analysis@8#. We also measured th
coherent structure function in Monte Carlo simulation
again using the same implementation of the model as pr
ously @9#. This allows for a comparison among theory a
data, where all parameters are fixed by our previous w
Some results of the simulations will be presented here, b
detailed comparison of our simulation results to the pres
and previous theories will be presented in a separate,
technical paper@14#.

In the following section, we briefly review the basic fe
tures of the reptation model and recall previous results
the coherent structure function. In Sec. III, we introduce o
analytical model and outline the structure of our approach
Sec. IV, we consider those contributions to the coher
structure function in which the initial tube is not yet com
pletely destroyed by the stochastic motion. A rigorous ana
sis is possible as long as end effects can be neglected. T
end effects, known as ‘‘tube renewal’’ and ‘‘tube length flu
tuations,’’ can be treated only in some approximation. W
here generalize an approach that in our previous work g
good results for the segment motion. In Sec. V, we comp
our rigorous results for the motion within the initial tube
those of the model of a ‘‘Rouse chain in a coiled tube’’@12#.
Pronounced differences are found and their origin is cl
fied. In Sec. VI, we derive an integral equation which tak
complete tube destruction into account. For long chains
times large compared to the internal relaxation time of
chain, we recover the results of the ‘‘primitive chain’’ mod
@13,2#, as shown in Sec. VII. Typical numerical results of o
theory are discussed in Sec. VIII. It is found that tube len
fluctuations, which have been neglected in previous calc
tions of the coherent scattering function, in fact determ
the scattering up to times larger than the Rouse time. In S
VIII, we also present some results of our simulations, wh
compare favorably with our theory. Finally, Sec. IX contai
a summary and conclusions. The full evaluation of the r
tation model leads to quite involved expressions, and so
part of the analysis is summarized in Appendixes.

II. REVIEW OF THE REPTATION SCENARIO AND OF
PREVIOUS RESULTS FOR THE COHERENT

STRUCTURE FUNCTION

A. Basic dynamics and time scales

As mentioned in the Introduction, the reptation model
sumes the existence of a tube defined by the instantan
configuration of the chain together with the surrounding o
stacles. The chain cannot leave the tube sideways sin
would have to fold into a double-stranded conformatio
which costs too much entropy. Those parts of the ch
which lie stretched in the tube, essentially cannot move
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the interior of the tube only little wiggles of ‘‘spared length
are mobile, as illustrated in Fig. 1 for the special case o
lattice model. These wiggles carry out Brownian moti
along the chain. If a wiggle reaches a chain end, it may de
and prolong the tube by its spared length. Chain ends
may produce new wiggles that then diffuse into the inter
of the tube. This shortens the tube by the spared length o
newly created wiggle. In the long run, this random motion
the chain ends leads to a complete destruction of the in
tube.

This very simple dynamical model involves several tim
scales. It needs a microscopic timeT0 until the segment mo-
tion feels the existence of the constraints.T0 generally is
identified with the Rouse time of a chain of length equal
the entanglement lengthNe ,

T0;Ne
2 . ~2.1!

T0 is relevant for the short-time dynamics of melts, whe
the tube diameter typically is found to be quite large@10,11#,
Ne;10240. For reptation,T0 defines the elementary tim
step, since this theory does not deal with the unconstrai
motion on scale of the tube diameter. A second scaleT2 is
the time a wiggle needs to diffuse over the whole cha
Since in the coarse grained description, the wiggle has
diffuse a distance ofN/Ne steps, one finds

T2;T0S N

Ne
D 2

;N2. ~2.2!

T2 thus is of the order of the Rouse time of the whole cha
Finally, the reptation timeT3 is needed to destruct the initia
tube completely. Reptation theory@1# predicts

T3;T0S N

Ne
D 3

~2.3!

FIG. 1. A realization of reptational dynamics in the Evan
Edwards lattice model~two-dimensional illustration!. The crosses
denote impenetrable obstacles which allow only for ‘‘hairpin
moves as shown by the sequence of pictures. The hairpins repr
the wiggles of spared length.
5-2
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COHERENT SCATTERING FUNCTION IN THE . . . PHYSICAL REVIEW E 65 061505
as limiting result for long chains. Asymptotically, power law
as function oft andN are predicted to hold for the segme
motion or the motion of the center of mass in the time w
dowsT0!t!T2 , T2!t!T3, andT3!t. As a typical result
we quote the mean squared spatial displacement of s
bead of the chain,

^@r j~ t !2r j~0!#2&;H t1/4 for T0!t!T2

~ t/N!1/2 for T2!t!T3

t/N2 for T3!t.

Here r j (t) gives the spatial position of beadj at time t. The
bar indicates the~dynamic! average over the stochastic m
tion and the angular brackets denote the~static! average over
all tube configurations.

B. Previous results for the coherent structure function

We consider a chain ofN11 beads (N segments!, labeled
by j 50,1, . . . ,N. The coherent structure function is define
as

Sc~q,t,N!5 (
j ,k50

N

^eiq•[ r j (t)2rk(0)]&. ~2.4!

By definition, Sc(q,t,N) refers to a single chain. It can b
measured by appropriately labeling a few chains in the s
tem. Reptation results forSc(q,t,N) previously have been
derived by Doi and Edwards@13# and by de Gennes@12#.

Doi and Edwards have evaluated a simplified version
the reptation model, where the internal motion of the chai
neglected. The physical chain is replaced by a ‘‘primiti
chain,’’ which only can slide along the tube so that all se
ments experience the same curvilinear displacementDj(t).
This model therefore reduces the dynamics to diffusive m
tion of the single stochastic variableDj. For the coherent
structure function, it yields the result~see Ref.@2#, Chap.
6.3.4!

Sc~q,t,N!

Sc~q,0,N!
5S̄DES q2Rg

2 ,
t

td
D , ~2.5!

S̄DE~Q,t!5
Q

D~Q! (
p51

`
sin2ape2(4/p2)ap

2t

ap
2~Q2/41Q/21ap

2!
, ~2.6!

whereRg
2 is the radius of gyration andtd;T3;N3. D(Q) is

the Debye function,

D~Q!5
2

Q2
~e2Q211Q!. ~2.7!

The ap5ap(Q) are the positive solutions of

ap tanap5
Q

2
. ~2.8!

Neglecting all internal motions, the result can be appl
only for t@T2, i.e., in a time regime where the internal d
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grees of freedom are equilibrated. In the limit of large wa
numbersQ5q2Rg

2@1, the result reduces to

S̄DE~Q,t!5
8

p2 (
p51

`

~2p21!22 exp@2~2p21!2t#.

~2.9!

This is the scattering from that part of the primitive cha
which at timet still resides in the initial tube@1,12#.

The limit q2Rg
2@1 has also been considered by

Gennes. Taking the internal relaxation of the chain into
count, his result@12# for the normalized coherent scatterin
function is a sum of two terms,

S̄dG~q,t,N!5@12BdG~q!#S̄( l )~q,t !1BdG~q!S̄(c)~ t,N!,
~2.10!

BdG~q!512
Ne

6N
q2Rg

2 . ~2.11!

The ‘‘creep term’’S̄(c)(t,N) is given by Eq.~2.9! and thus
describes the large time behaviort@T2. It tends to 1 for
t/T3→0. The ‘‘local term’’ S̄( l )(q,t) is taken from an ap-
proximate evaluation of the internal relaxation of an in
nitely long one-dimensional Rouse chain, folded into t
three-dimensional random walk configuration of a tube
N/Ne segments. The result reads

S̄( l )~q,t !5et1 erfcAt1, ~2.12!

where

t15
3

p2

N

Ne
~q2Rg

2!2
t

td
5

t

Tq
. ~2.13!

This introduces an additionalq-dependent time scale

Tq5
p2

3

Ne

N

td

~q2Rg
2!2

, ~2.14!

which in view ofRg
2;N, andtd;N3 is independent ofN. Tq

governs the relaxation of segment density fluctuations
scaleq21. In view of q2Rg

2@1, Tq is much smaller thantd ,

and for timest&Tq , the creep term is constant,S̄(c)(t,N)
'S̄(c)(0,N)51. On top of this plateau,S̄( l )(q,t) yields a
peak rapidly decreasing in time. Note thatS̄( l )(q,t) for t1

@1 behaves asS̄( l )(q,t)5(pt1)21/2. The amplitude of the
peak is determined byBdG , which only depends onq2 and
Ne .

Both these approaches neglect end effects such as
length fluctuations, which are governed by the time scaleT2.
The approximations involved greatly simplify the analys
but are no essential part of the reptation model. In the seq
we present an analysis of the full model, accounting for
internal degrees of freedom and the finite chain length. Si
all the dynamics is driven by the diffusion of the spar
length as the only stochastic process, this yields a uni
5-3
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description of local relaxation, global creep, and tube len
fluctuations. We will find that tube length fluctuations,
particular, have an important influence for intermediate tim
and chain lengths. Internal relaxation, however, is of mu
less influence than the results referred to above suggest

III. FORMULATION OF THE FULL REPTATION MODEL

A. Microscopic dynamics

We here recall the essential features of our model. A m
detailed discussion can be found in Ref.@8#. The chain is
modeled as a random walk ofN steps of fixed lengthur j
2r j 21u5 l 0 , j 51, . . . ,N. The motion is due to the diffusion
of wiggles of spared lengthl s . These are represented b
particles hopping along the chain from bead to bead, w
hopping probabilityp per time step. The particles do no
interact, and a given particle sees the others just as a pa
the chain. If a particle passes a beadj, it tracks it along by a
distance of the spared lengthl s , which is taken to be the
same for all particles. The end beadsj 50,N of the chain are
coupled to large reservoirs that absorb and emit particle
such a rate that the equilibrium densityr0 of particles on the
chain is maintained on average. Keeping track of the cha
of the particle number in these reservoirs, we control
motion of the chain ends: creation or decay of a wiggle a
chain end implies emission or absorption of the correspo
ing particle by the reservoir.

For the motion of beads in the interior of the tube, t
essential stochastic variable of the model is the num
n( j ,t) of particles which passed over beadj within time
interval @0,t#:

n~ j ,t !5n1~ j ,t !2n2~ j ,t !. ~3.1!

Heren6( j ,t) is the number of particles that came from t
‘‘left’’ ( j 8, j ) or from the ‘‘right’’ ( j 8. j ), respectively.
Consider, for instance, the motion of segmentj for a time
interval in which it stays in the original tube. Its displac
ment in the tube is given byl sn( j ,t), and since the tube ha
a random walk configuration, its spatial displacement
given by

^@r j~ t !2r j~0!#2&5 l sl 0un~ j ,t !u. ~3.2!

Since the underlying stochastic process is single part
hopping, the distribution function ofn( j ,t) is easily calcu-
lated, with the result@Ref. @8#, Eq. ~3.22!#

P1~n; j ,t !5dn,n( j ,t)5e2n2( j ,t)I n@n2~ j ,t !#, ~3.3!

whereI n(z) is the modified Bessel function of the first kind
The second momentn2( j ,t) is found as@see Ref.@8#, Eqs.
~3.24!,~3.12!,~3.9!#

n2~ j ,t !52r0A1~ j ,t !, ~3.4!
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A1~ j ,t !5
pt

N
1

1

2N (
k51

N21

~12ak
t !

cos2Fpk

N S j 1
1

2D G
sin2S pk

2ND ,

~3.5!

ak5124p sin2
pk

2N
. ~3.6!

Some useful properties ofA1( j ,t) are collected in Ref.@8#,
Appendix A. We also will need the first momentun( j ,t)u,
which from Ref.@8#, Eqs.~3.26!, ~3.27!, is found as

un~ j ,t !u5
2

Ap
@r0A1~ j ,t !#1/2$12F1@4r0A1~ j ,t !#%,

~3.7!

F1~z!5
1

2Ap
E

0

z

dxx23/2e2xF S 12
x

zD
21/2

21G
2

1

2Ap
GS 2

1

2
,zD , ~3.8!

whereG(y,z) is the incompleteG function.
Except for microscopic timest&2/p, ak

t can be approxi-
mated as

ak
t 'expF24pt sin2

pk

2NG , ~3.9!

so that the theory involves time only in the combination

t̂5pt. ~3.10!

In evaluating the theory, we will uset̂ as time variable. For
n2( j ,t)*100, which forN*100 implies t̂*104, P1(n; j ,t)
is well represented by a simple Gaussian

P1~n; j ,t !'@2pn2~ j ,t !#21/2expS 2
n2

2n2~ j ,t !
D .

~3.11!

Knowledge ofP1(n; j ,t) is sufficient as long as we con
sider motion inside the initial tube. End effects introduce
more complicated quantity. Within time interval@0,t#, the
tube from the endj 50 is destructed up to beadj , , where
j , is defined as

j ,5 l̄ snmax~0,t !, ~3.12!

nmax~0,t !5 max
sP[0,t]

@2n~0,s!#. ~3.13!

Here

n~0,s!5m0~s!2m0~0!,
5-4
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wherem0(s) is the occupation number at times of the res-
ervoir at chain end 0. Thusnmax(0,t) is the maximal negative
fluctuation of the occupation number of reservoirj 50 in the
time interval@0,t#. In Eq. ~3.12! we also introduced

l̄ s5 l s / l 0 , ~3.14!

measuring all lengths in units of the segment sizel 0. Simi-
larly, from the other end tube destruction within timet pro-
ceeds to bead

j .5N2 l̄ snmax~N,t !, ~3.15!

with nmax(N,t) being the maximal negative fluctuation of th
occupation numbermN(s) of the reservoir at chain endN.
The stochastic processesm0(s) or mN(s) are not Markovian,
since a particle emitted by a reservoir can be reabsorbe
the same reservoir later. This induces a correlation that
out only if the particle has time to reach the other reserv
i.e., on time scaleT2. For such a correlated process, t
distribution and the moments ofnmax cannot be calculated
rigorously, even though arbitrary moments ofn(0,s), involv-
ing any number of time variabless, can be evaluated~see
Ref. @8#, Sec. III!. As soon as tube renewal comes into pla
we therefore have to resort to some approximation.

Some important quantity entering our theory is the av
agenmax(0,t). It, for instance, yields the motion of the en
segment via the relation@Ref. @8#, Eq. ~2.12!#

^@r0~ t !2r0~0!#2&52 l̄ Sl 0
2nmax~0,t !.

We use the expression@Ref. @8#, Eq. ~5.1!#

nmax~0,t !5(
s51

t un~0,s!u
2s

, ~3.16!

which is correct for a Markov process. Using in Eq.~3.16!
the exact momentsun(0,s)u @Eq. ~3.7!#, we in essence ap
proximate the correlated process by a sequence of Ma
processes which for each time steps yield the correct instan-
taneous value ofun(0,s)u. This ‘‘mean hopping rate’’ ap-
proximation, which was discussed in more detail in Ref.@8#,
gives good results for larger times. For microscopic times
underestimatesnmax(0,t) by about a factor of 2, but with
increasing time it approaches the full result fornmax as found
in simulations. Fort'T2, the deviation for the motion of the
end segment, which is most sensitive to our approximat
is of the order of 10% only~see Fig. 9 of Ref.@9#!.

B. Outline of our calculation of the coherent structure function

The basic quantity to be considered is the scattering fr
a pair of beads

S~q,t; j ,k,N!5^eiq•[ r j (t)2rk(0)]&, ~3.17!

which must be summed over the beads to find the cohe
structure functionSc(q,t;N). To get some information on th
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contribution of the different parts of the chain, we conside
slight generalization in which we sum only over theM11
central beads

Sc~q,t;M ,N!5 (
j ,k5(N2M )/2

(N1M )/2

S~q,t; j ,k,N!. ~3.18!

Clearly, the coherent structure function of the full chain is

Sc~q,t;N!5Sc~q,t;N,N!. ~3.19!

To calculateS(q,t; j ,k,N), we first consider the contribu
tion S(T)(q,t; j ,k,N), which results from those stochast
motions for which a part of the initial tube still exists at tim
t. @The upper index~T! stands for ‘‘tube.’’# We then can set
up an integral equation forS(q,t; j ,k,N), in which
S(T)(q,t; j ,k,N) shows up as inhomogeneity~see Sec. VI!.
Furthermore, fort!T3, contributions where the tube is de
stroyed completely, are negligible, andS(T) coincides withS.

S(T)(q,t; j ,k,N) incorporates the effects of internal rela
ation and tube length fluctuations, and its calculation is
most tedious part of our analysis. We here need to simu
neously control the motion of segmentj and of the chain
ends. More specifically, we will need the distribution fun
tion

P max,j
(T) ~nm ,nj ;t !5Q~ j ,2 j .!dnm ,nmax(0,t)dnj ,n( j ,t),

~3.20!

i.e., the simultaneous distribution ofn( j ,t) andnmax(0,t) un-
der the constraint that a part of the initial tube still exis
Again the correlated nature of the stochastic motion of
chain ends prevents a rigorous evaluation ofP max,j

(T) , and we
use random walk theory to construct an approximate fu
tional form. The result depends onnm , nj , and t only
through the rescaled variablesnm /nm(t) and nj /@nj

2(t)#1/2,
and in the spirit of our mean hopping rate approximation,
in these variables replace the normalizing factorsnm(t) and
@nj

2(t)#1/2 of the random walk by their counterparts for th
proper correlated process. In essence, this again amoun
replacing the correlated stochastic motion of the chain e
by a whole sequence of uncorrelated random walks, par
etrized by an effective hopping ratep8. This hopping rate is
adjusted such that the random walk that replaces the co
lated process for final timet, at that timeyields the correct
momentsnm(t)5nmax(0,t) and nj

2(t)5@n( j ,t)#2. @It in fact
yields the correct Gaussian distribution of the single varia
n( j ,t).# As discussed in Ref.@8#, Sec. V B,p8 changes from
a valuer0p at microscopic times tor0p/N for t@T2. Since
r0p governs the short time motion of a segment wher
r0p/N is the mobility of the primitive chain, the mean hop
ping rate approximation smoothly interpolates between th
more rigorously accessible limits. This will be discuss
again in Sec. IV C, after we present the details of our
proach.

Our theory involves three important time~and segment
index! dependent parameter functions,
5-5
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c5c~ t !5Ap

2
l̄ snmax~0,t ! ~3.21!

measures the extent of tube destruction and thus accoun
tube length fluctuations. Fornmax(0,t), we use the approxi-
mation ~3.16!. It turns out that the time dependence ofc(t),
which very slowly tends to its asymptotic limitc(t)

→
t→`

const t1/2 @cf. Eq. ~7.2!#, is responsible for the wel
known crossover behavior of the reptation time:T3;Nzeff,
where zeff slowly approaches its asymptotic valuezeff→3
from above.~A detailed discussion of the reptation time w
be given in a separate paper.!

A second function,a( j ,t), measures the coupling of th
motion of an interior segmentj to the motion of a chain end
Initially, this coupling vanishes, but it increases with tim
due to particles created at a chain end and traveling o
segmentj. If this coupling is fully developed, all segmen
approximately have moved the same distance in the tube
the primitive chain model results. The precise definition
a( j ,t) is given in Eq.~4.17!.

Finally, it should be noted that the effective mobility of
segment fort!T2 depends on its position in the chain, a
effect already present for free Rouse type motion. This
taken into account by the functionb( j ,t), which is defined in
Eq. ~4.36!.

Having described the main ideas of our approach, we n
turn to the details. We first construct and analyze the t
conserving contributionSc

(T)(q,t;M ,N) to the structure func-
tion.

IV. TUBE CONSERVING CONTRIBUTION
TO THE STRUCTURE FUNCTION

In this and the following section, we consider the cont
bution of those stochastic processes, which do not des
the initial tube completely, i.e., we insist on the inequality

j .2 j ,>0, ~4.1!

since due to the definitions~3.12!,~3.15!, the tube has been
destroyed up to segmentj , from chain end 0 orj . from
chain endN, respectively. We first construct a formally exa
expression for the corresponding contributi
S(T)(q,t; j ,k,N). Its summation over indicesj and k as in
Eqs. ~3.18! and ~3.19! yields the tube conserving contribu
tion to the coherent structure function.

A. Exact expression forS„T…
„q,t; j ,k,N…

Depending on the relation amongj, k, j , , and j . , we
have to distinguish several cases. We use the notation

j ~ t !5 j 1 l̄ sn~ j ,t !, ~4.2!

and we illustrate the analysis with two typical cases shown
Fig. 2. Figure 2 a gives a schematic sketch of a situation
which the inequalities

j ~ t !<k, j ,<k, j .> j ~ t !,
06150
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hold. That means that tube renewal from chain end 0 has
passed over the original position of segmentk, and segment
j at time t is not found in the part of the new tube creat
from chain endN. Furthermore, the new position of segme
j, if measured along the tube, is closer to the new position
chain end zero than the original position of segmentk. The
relative ordering ofk and j . , or of j (t) and j , is unimpor-
tant. As is clear from Fig. 2~a!, the path connectingj (t) and
k has k2 j (t) steps, and since the chain configuration is
random walk, we find

^eiq•[ r j (t)2rk(0)]&5e2q̄2[k2 j (t)] , ~4.3!

where

q̄25
q2l 0

2

6
. ~4.4!

As a result, the contribution of such configurations
S(T)(q,t; j ,k,N) reads

Q„k2 j ~ t !…Q~k2 j ,!Q„j .2 j ~ t !…Q~ j .2 j ,!e2q̄2[k2 j (t)] ,

where the discreteQ function is defined as

Q~n!5H 1, n[0,1,2, . . .

0, n521,22, . . . .

Now consider a typical case of other type, shown in F
2~b!. It is defined by the inequalities

j ~ t !<k, j ,.k,

and differs from the previous one in that tube renewal fro
chain end 0 has passed over the original position of segm

FIG. 2. Schematic drawings of the cases discussed in the
The full line represents the unfolded initial tube. Broken lines re
resent the new end pieces of the unfolded tube created up to timt.
5-6
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k. The thus created part of the new tube necessarily cont
the new position of segmentj, and the random walk connec
ing j (t) to k has (j ,2k)1( j ,2 j (t)) steps. We thus find
the contribution

Q„k2 j ~ t !…Q~ j ,2k21!Q~ j .2 j ,!e2q̄2[2 j ,2k2 j (t)] .

The other cases compatible withj .> j , are given by the
relations @ j (t)<k, j ., j (t)#, @ j (t).k, j ,< j (t), j .>k#,
@ j (t).k, j ,. j (t)#, and @ j (t).k, j .,k#. Proceeding as
above, after some manipulations with theQ functions, we
arrive at the result

S(T)~q,t; j ,k,N!5S1~q,t; j ,k,N!1S2~q,t; j ,k,N!

1S3~q,t; j ,k,N!, ~4.5!
t

io
-

ic
ox
ar
u
a
e

su
th

op
n

e

te

06150
nswhere

S1~q,t; j ,k,N!5e2q̄2uk2 j (t)u ~4.6!

is the contribution ignoringj , , j . , thus ignoring all end
effects.S2 correctsS1 for the constraintj .> j , ,

S2~q,t; j ,k,N!5@Q~ j .2 j ,!21#e2q̄2uk2 j (t)u, ~4.7!

andS3 takes the newly created parts of the tube into acco
S3~q,t; j ,k,N!5Q„k2 j ~ t !…Q~ j ,2k21!Q~ j .2 j ,!@e2q̄2[2 j ,2k2 j (t)]2e2q̄2[k2 j (t)] #

1Q„j ~ t !2k21…Q„j ,2 j ~ t !21…Q~ j .2 j ,!@e2q̄2[2 j ,2k2 j (t)]2e2q̄2[ j (t)2k] #

1Q„k2 j ~ t !…Q„j ~ t !2 j .21…Q~ j .2 j ,!@e2q̄2[k1 j (t)22 j .]2e2q̄2[k2 j (t)] #

1Q„j ~ t !2k21…Q~k2 j .21!Q~ j .2 j ,!@e2q̄2[k1 j (t)22 j .]2e2q̄2[ j (t)2k] #. ~4.8!
or
t

re-
These expressions are formally exact, but, as pointed ou
the preceding section, to evaluateS2 and S3, we have to
construct an approximation for the simultaneous distribut
of n( j ,t), j , , and j . . S1 could be evaluated with the ex
actly known distribution ofn( j ,t) @Eq. ~3.3!#. However, be-
ing interested in the universal features of the model, wh
only show up for larger times, we use the Gaussian appr
mation ~3.11! and ignore the discreteness of the element
hopping process. We also will take the chain as continuo
in the evaluation replacing segment summations by integr
A priori these simplifications might influence the short tim
behavior, but in practice they are found to have no mea
able effects. For a check, we numerically have compared
continuous model to a fully discrete evaluation. For the pr
erly normalized coherent structure functio
Sc(q,t;M ,N)/Sc(q,0;M ,N), the difference for all times, in-
cluding the microscopic range, is found to be of the ord
1023 and thus negligible.

B. The contribution S1„q,t; j ,k,N…

Combining Eqs.~4.2! and~4.6! with the definition~3.3! of
P1, we find

S1~q,t; j ,k,N!5 (
n52`

1`

e2q̄2uk2 j 2 l̄ snuP1~n; j ,t !. ~4.9!

With the Gaussian approximation~3.11! for P1(n, j ,t) and
with n taken continuous, this expression is easily evalua
to yield
in

n

h
i-
y
s,
ls.

r-
e
-

r

d

S1~q,t; j ,k,N!5
1

2
eQ2

@e2DQerfc~Q1D!

1e22DQerfc~Q2D!#, ~4.10!

where

Q5q̄2 l̄ sAr0A1~ j ,t !,

D5
k2 j

2 l̄ sAr0A1~ j ,t !
. ~4.11!

Note that Eqs.~3.2! and ~3.7! imply

Ar0A1~ j ,t !;^@r j~ t !2r j~0!#2&,

so that in the result~4.10!, q andk2 j are measured relative
to the mean displacement of segmentj. Even though the
Gaussian approximation from its derivation holds only f
r0A1@1, it for r0A1→0, i.e., t→0, reproduces the exac
static behavior of our model,

S1~q,0;j ,k,N!5e2q̄2uk2 j u. ~4.12!

As will be discussed in Sec. V E, this is an important requi
ment for any theory of the dynamic scattering functions.

C. Distribution function for S3„q,t; j ,k,N…

In view of the symmetry of the chain under reflectionj
→N2 j , the last two terms in Eq.~4.8! for S3, when summed
5-7
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over j and k, yield contributions identical to the first two
terms. We therefore can restrict the analysis to the first ter
which involve the distribution function referred to in Se
III B @Eq. ~3.20!# :

P max,j
(T) ~nm ,nj ;t !5Q~ j .2 j ,!dnm ,nmax(0,t)dnj ,n( j ,t).

For instance, in terms of this distribution function, the co
tribution to the coherent scattering functionSc(q,t,N) of the
first term in Eq.~4.8! reads

(
j ,k

(
nm ,nj

Q~k2 j 2 l̄ snj !Q~ l̄ snm2k21!P max,j
(T) ~nm ,nj ;t !

3@e2q̄2(2 l̄ snm2k2 j 2 l̄ snj )2e2q̄2(k2 j 2 l̄ snj )#.

We now construct an approximate expression forP max,j
(T) ,

based on random walk theory. We first present the esse
steps of our approach and discuss the approximations
volved thereafter. Some details of the calculations are gi
in Appendix A.

We introduce the auxiliary variablen052n(0,t) and
write

P max,j
(T) ~nm ,nj ;t !

5 (
n052`

1`

Q~ j .2 j ,!dnm ,nmax(0,t)dnj ,n( j ,t)dn0 ,2n(0,t)

5 (
n052`

1`

P max,0,j
(T) ~nm ,n0 ,nj ;t !. ~4.13!

Recall thatn(0,t) is the change in the occupation of reserv
0 within time t. We then factorize according to

P max,0,j
(T) ~nm ,n0 ,nj ;t !→

P max,0
(T) ~nm ,n0 ;t !P2~n0 ,nj ;0,j ,t !

P1~n0 ;0,t !
.

~4.14!

Here P max,0
(T) (nm ,n0 ;t) is the simultaneous distribution o

nmax(0,t) and2n(0,t), with the constraintj .> j , taken into
account.P2(n0 ,nj ;0,j ,t) is the simultaneous distribution o
2n(0,t) and n( j ,t), so thatP2(n0 ,nj ;0,j ,t)/P1(n0 ;0,t) is
the conditional probability to findnj5n( j ,t), once n0
52n(0,t) is given. A rigorous expression forP2 was given
in Ref. @8#, Sec. III. Here we again use the Gaussian appro
mation @Ref. @8#, Appendix C, Eq.~C7!#. Using also the
Gaussian approximation~3.11! for P1(n0 ;0,t), we find

P2~n0 ,nj ;0,j ,t !

P1~n0 ;0,t !

5@2pn2~ j ,t !#21/2~12a2!21/2

3expF2
1

2~12a2!
~a2z0

21zj
222az0zj !G , ~4.15!
06150
s,

-

ial
n-
n

i-

where

zj5
nj

An2~ j ,t !
, z05

n0

An2~0,t !
, ~4.16!

a5a~ j ,t !5
Ã3~ j ,t !

@A1~0,t !A1~ j ,t !#1/2
, ~4.17!

with @cf. Ref. @8#, Eq. ~A12!#

Ã3~ j ,t !5
pt

N
1

N

3
2

1

2
1

1

6N
1

j 2

2N
2S 12

1

2ND j

2
1

2N (
k51

N21 cosS pk

2ND cosFpk

N S j 1
1

2D G
sin2S pk

2ND ak
t .

~4.18!

A1 andak are given in Eqs.~3.5! and ~3.6!, respectively.
This introduces the parameter functiona5a( j ,t). It mea-

sures the coupling of the motion of beadj to the motion of
chain end 0. If it vanishes, the conditional probability~4.15!
reduces toP1(nj ; j ,t). This happens forpt! j 2 @see Ref.@8#,
Eq. ~A16!#. The maximal value ofa is 1, which is ap-
proached forj→0 and all t, or for t@T2 and all j. In the
latter limit, Eq. ~4.15! yields zj5z0, and the motion of all
segments is rigidly coupled to the motion of the end s
ment. In this limit, we thus recover the basic assumption
the primitive chain model.

To find an acceptable functional form fo
P max,0

(T) (nm ,n0 ;t), we replace the correlated stochastic pr
cessn(0,s) by a random walkn8(s) on the integer numbers
with hopping ratep8. We have to consider walks that start
n8(0)50, end atn8(t)5n0, and attain the maximal value
nm>n0 for somesP@0,t#. To take care of the constraint

1

l̄ s

~ j .2 j ,!5N82nmax~N,t !2nmax~0,t !>0, ~4.19!

we restrict the walkn8(t) to the interval@nm2N811,nm#,
whereN8 is the greatest integer less thanN/ l̄ s , and we use
absorbing boundary conditions. This amounts to the assu
tion that a particle entering the chain from the reservoir
chain endN is transfered immediately to the reservoir
chain end 0. This assumption is in the spirit of the primiti
chain model.

With these simplifications,P max,0
(T) can be calculated a

sketched in Appendix A. Our result reads
5-8
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P max,0
(T) ~nm ,n0 ;t !

5QS nm2
un0u1n0

2 DQS N82nm2
un0u2n0

2 D 1

App8t

3 (
n52`

1` H ~n11!S nN8

Ap8t
1

nm

Ap8t
2

n0

2Ap8t
D

3expF2S nN8

Ap8t
1

nm

Ap8t
2

n0

2Ap8t
D 2G2nS nN8

Ap8t

1
n0

2Ap8t
D expF2S nN8

Ap8t
1

n0

2Ap8t
D 2G J . ~4.20!

It is valid for p8t@1 and N8@1, which is the region of
interest here. We now note that forp8t@1, the relations

n82~ t !52p8t,

n̄m5 max
sP[0,t]

n8~s!52Ap8t

p
~4.21!

hold, and we use these relations to eliminate the fac
Ap8t,

n0

Ap8t
5A2

n0

An0
2~ t !

5A2z0 ,

nm

Ap8t
5A2A2

p

nm

n̄m

5A2y,

N8

Ap8t
5A2A2

p

N

l̄ sn̄m

5A2N̂.

In the last line, we usedn̄m , sinceN8 is introduced via the
constraint~4.19!. Furthermore, we write the prefactor in E
~4.20! as

1

App8t
5

2

Ap
@n82~ t !#21/2SAp

2
n̄mD 21

,

and we again treatz0 and y as continuous variables, whic
06150
rs

for p8t@1 is a valid approximation consistent with our de
vation. With these substitutions, Eq.~4.20! reads

dn0dnmP max,0
(T) ~nm ,n0 ;t !

5QS y2
uz0u1z0

2 DQS N̂2y2
uz0u2z0

2 D
3A2

p
dz0dy (

n52`

1` H ~n11!~2nN̂12y2z0!

3expF2
~2nN̂12y2z0!2

2
G2n~2nN̂1z0!

3expF2
~2nN̂1z0!2

2
G J . ~4.22!

We use this result that has been derived for a random w
also for the correlated processn(0,s) by reinterpreting the
variables.z0 is given by Eq.~4.16!, and

y5A2

p

nmax~0,t !

nmax~0!
, ~4.23!

N̂5N/c, ~4.24!

with

c5c~ t !5Ap

2
l̄ snmax~0,t !. ~4.25!

For nmax(0,t), the approximation~3.16! is used. Up to the
factor Ap/2, the parameterc gives the distance up to whic
the tube has been destroyed on average. We now use ex
sions~4.22!, ~4.15!, and~4.14! to evaluate Eq.~4.13!, where
the sum overn0 has to be replaced by the integral overz0.
Some exercise in Gaussian integrals yields our final resu

dnjdnmP max,j
(T) ~nm ,nj ;t !5

dzjdy

A2p
Q~y!Q~N̂2y!

3 (
n52`

1`

P max,j
(n) ~y,zj ,a!,

~4.26!
5-9
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P max,j
(n) ~y,z,a!5~n11!expF2

~2anN̂12ay2z!2

2
G H a~2anN̂12ay2z!FerfcS az2y1a2y1a2nN̂

Aa2
D

2erfcS az2y1a2y1a2nN̂1N̂

Aa2
D G1Aa2

p
FexpS 2

~az2y1a2y1a2nN̂!2

a2
D

2expS 2
~az2y1a2y1a2nN̂1N̂!2

a2
D G J 2n expF2

~2anN̂2z!2

2
G H a~2anN̂2z!FerfcS az2y1a2nN̂

Aa2
D

2erfcS az2y1a2nN̂1N̂

Aa2
D G1Aa2

p
FexpS 2

~az2y1a2nN̂!2

a2
D 2expS 2

~az2y1a2nN̂1N̂!2

a2
D G J ,

~4.27!
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with the notationa252(12a2).
Clearly, the approximations inherent in our constructi

of P max,j
(T) need some justification. Steps like the replacem

of discrete by continuous variables are well justified, sin
we need the result only in a time and chain-length regi
where a continuous chain model is valid. The problema
steps are the factorization~4.14! of P max,0,j

(T) and the calcula-
tion of the functional form ofP max,0

(T) by random walk theory.
Technically, the factorization~4.14! serves to reduce th

problem to the treatment of the single stochastic proc
n(0,s). It clearly is justified for large times,t@T2, where
n( j ,t) is firmly bound ton(0,t), and whereP max,j

(T) becomes
equivalent toP max,0

(T) . For shorter timest&T2, it assumes tha
2n(0,t) is a good measure ofnmax(0,t), which is certainly
incorrect, in particular fort!T2. However, for t!T2, end
effects influence only a small part of the chain. As can
seen from Eqs.~3.16! and ~3.7!, and has been explicitly
worked out in Ref.@8#, Eq. ~5.28!, nmax(0,t) for t!T2 be-
haves asnmax(0,t);(pt)1/4;N1/2(t/T2)1/4!N. Since the co-
herent scattering function sums over all segments, it for s
times is dominated by the motion of interior segments
influenced by end effects and governed by the distribut
functionP1(n; j ,t). It is easily verified that in the appropriat

limit N̂5N/c(t)→`, the distribution function~4.26!, when
integrated overnm , reduces to the Gaussian approximati
for P1(n; j ,t). @Note that in this limit only a part of then
50 contribution to the sum in Eq.~4.26! survives.#

We now turn to our construction ofP max,0
(T) (nm ,n0). Our

treatment of the constraint~4.19! should be adequate, sinc
this constraint is relevant only for times of the order of t
reptation time,t'T3, where the internal degrees of freedo
of the chain are irrelevant. Furthermore,P max,0

(T) by construc-
tion obeys the constraintn0<nm . Also, taking N̂@1 and
integrating overn0, we find a distribution with the desire
first momentnm5nmax(0,t). Integrating overnm , we find the
correct~Gaussian! distribution ofn0. With these three impor-
tant features guaranteed, we may hope that we have fou
good approximation for the distribution function of the fu
correlated process.
06150
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To summarize, our construction interpolates among t
limits where the full dynamics reduces to that of a sing
stochastic variable. Fort!T2, the motion of individual seg-
ments governed byn( j ,t) is essential. Fort@T2, the param-
eter functiona tends to 1 and the internal motion becom
irrelevant. Furthermore, the correlations of the stocha
processn(0,s) have died out. We thus are concerned with
single uncorrelated processn(0,s), as in the primitive chain
model. Smoothly interpolating among these limits, we m
hope to have found a good approximation also in the cro
over regiont'T2. Indeed, as shown in Figs. 10 and 11
Ref. @9#, a simplified version of our theory almost quantit
tively fits with Monte Carlo data for the motion of individua
segments. Furthermore, as will be illustrated in Sec. VIII a
in more detail in Ref.@14#, our theory quantitatively account
for data for the coherent scattering functionSc(q,t;M ,N).
The agreement is equally good for the total chain (M5N)
where tube length fluctuations are very important, and for
interior piece (M,N) where tube length fluctuations are i
relevant.

D. Distribution function for S2„q,t; j ,k,N…

To evaluateS2(q,t; j ,k,N) @Eq. ~4.7!#, we need the distri-
bution function

P j
(T)~nj ;t !5@Q~ j .2 j ,!21#dnj ,n( j ,t)

5 (
nm50

`

P max,j
(T) ~nm ,nj ;t !2P1~nj ; j ,t !.

~4.28!

The first part can be determined by integratingP max,j
(T) @Eq.

~4.26!# over nm . Equations~4.26!–~4.28! thus yield

dnjP j
(T)~nj ;t !5

dzj

A2p
(

n52`

1`

P j
(n)~zj ,a!, ~4.29!

P j
(n)~zj ,a!5E

0

N̂
dyP max,j

(n) ~y,zj ,a!2dn,0 exp~2zj
2/2!.

~4.30!
5-10
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They integral can be evaluated analytically and we quote
result, which is useful for the numerical evaluation ofS2, in
Appendix B.

E. Result for the tube conserving contribution to the coherent
structure function Sc

„T…
„q,t;M ,N…

We consider the scattering from theM11 central beads
@Eq. ~3.18!# and write

Sc
(T)~q,t;M ,N!5S1~q,t;M ,N!1S2~q,t;M ,N!

1S3~q,t;M ,N!, ~4.31!

where the Si(q,t;M ,N), i 51,2,3, are the contribution
Si(q,t; j ,k,N) @Eq. ~4.5!#, summed overj andk. The super-
script ~T! again recalls the constraint~4.1!, j .2 j ,>0.

Due to this constraint the relation

Sc~q,t;M ,N!5Sc
(T)~q,t;M ,N! ~4.32!

in general holds only fort!T3. However, for largeq such
that q2Rg

2@1, contributions in which the tube has been d
stroyed, contribute negligibly toSc(q,t;M ,N), so that Eq.
~4.32! in this limit holds for all times.

Consider now the first contribution.

S1~q,t;M ,N!5E
(N2M )/2

(N1M )/2

d jdkS1~q,t; j ,k,N!.

Using Eqs.~4.10! and ~4.11!, we can carry out the integra
over k to find

S1~q,t;M ,N!5
1

2q̄2E(N2M )/2

(N1M )/2

d j@e2D1Q1Q2
erfc~Q1D1!

2e22D1Q1Q2
erfc~Q2D1!

2e2D2Q1Q2
erfc~Q1D2!

1e22D2Q1Q2
erfc~Q2D2!

12 erfcD222 erfcD1#, ~4.33!

where

Q5q̄2 l̄ sAr0A1~ j ,t !,

D15
1

2 l̄ s
S N1M

2
2 j D @r0A1~ j ,t !#21/2,

D25
1

2 l̄ s
S N2M

2
2 j D @r0A1~ j ,t !#21/2. ~4.34!

The remaining integration in general must be done num
cally, due to thej dependence ofA1( j ,t).

The integral overk can be carried out also inS2 ,S3. We
introduce the notation

q̂5q̄2c, ĵ 5 j /c, M̂5M /c, ~4.35!
06150
e

-

i-

b5
l̄ s

c Fn2S N2M

2
1 j ,t D G1/2

, ~4.36!

where the parameterc has been defined in Eq.~4.25!. With
due regard of theQ functions, a straightforward calculatio
yields

S2~q,t;M ,N!5
c2

q̂
E

0

M̂
d ĵ~S 2

(1)1S 2
(2)!, ~4.37!

S 2
(1)5

1

b
~12e2q̂M̂ !E

0

`

dze2q̂z
1

A2p
(

n
FP j

(n)S 2
z1 ĵ

b
,aD

1P j
(n)S z2 ĵ 1N̂

b
,aD G , ~4.38!

S 2
(2)5

1

bE0

M̂
dz@22e2q̂z2e2q̂(M̂2z)#

1

A2p

3(
n

P j
(n)S z2 ĵ

b
,aD , ~4.39!

S3~q,t;M ,N!5
2c2

q̂
E

0

M̂
d ĵ~S 3

(1)1S 3
(2)1S 3

(3)1S 3
(4)!,

~4.40!

S 3
(1)5

1

bE0

(N̂1M̂ )/2
dyyE

0

1

dz@2e2q̂y(12z)221e2q̂yz

2e2q̂y(22z)#
1

A2p
(

n
Pmax,j

(n) S y1
N̂2M̂

2
,
y

b
z2

ĵ

b
,aD ,

~4.41!

S 3
(2)52

1

bE0

(N̂1M̂ )/2
dyE

0

`

dze2q̂z~12e2q̂y!2
1

A2p

3(
n

Pmax,j
(n) S y1

N̂2M̂

2
,2

z1 ĵ

b
,aD , ~4.42!

S 3
(3)52

1

bE0

(N̂2M̂ )/2
dyyE

0

1

dz@2e2q̂y(12z)221e2q̂yz

2e2q̂y(22z)#
1

A2p
(

n
Pmax,j

(n)

3S y1
N̂1M̂

2
,
y

b
z1

M̂2 ĵ

b
,aD , ~4.43!
5-11
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S 3
(4)5

1

bE0

(N̂2M̂ )/2
dyE

0

`

dze2q̂z~12e2q̂y!2
1

A2p

3(
n

Pmax,j
(n) S y1

N̂1M̂

2
,2

z

b
1

M̂2 ĵ

b
,aD .

~4.44!

The prefactor of 2 in Eq.~4.40! accounts for the last two
contributions in Eq.~4.8!. We note that these results depe
on time via the parametersa, c, and b. From its definition
~4.36!, the parameter functionb5b( j ,t) measures the mo
tion of an arbitrary segment relative to the motion of the e
segment. It is weakly dependent onj and tends to 1 fort
@T2.

In S2 andS3, one more integration could be done analy
cally, which, however, only blows up the number of term
without leading to any simplification. Due to the dependen
on the segment indexj implicit in a5a( j ,t) andb5b( j ,t),
an analytical evaluation of all integrals is possible only in t
limit t@T2 wherea→1 andb→1. In general, we have to
resort to numerical evaluation. In this context, we may n
that the summations overn for t&T3 converge rapidly, so
that in the range whereSc

(T)(t5” 0)/Sc(0) exceeds 1023, we
never need to go beyondunu<4.

V. DYNAMICS WITHIN THE INITIAL TUBE

In a time region where end effects are unimportant,
results of the preceding section can be simplified. In prec
terms, the neglect of end effects amounts to considerin
subchain of lengthM, in the center of an infinitely long
chain. We here concentrate on this particular limit and co
pare our results to those derived for a Rouse chain in a co
tube.

A. Results of the reptation model

In the limit N→`, with j̃ 5 j 2N/2 andk̃5k2N/2 fixed,
only the contributionS1 to S(T)(q,t; j ,k,N) @Eq. ~4.5!# sur-
vives. Furthermore,A1( j ,t) ~3.5! simplifies to@see Ref.@8#,
Eq. ~4.11!#

A1~ j ,t !5
t̂1/2

p E
0

4 t̂ dz

Az
A12

z

4 t̂
e2z

→
t̂@1A t̂

p
, ~5.1!

independent of j. ~Recall the definition t̂5pt.!
S1(q,t; j ,k,N) @Eq. ~4.10!# takes the form

S1~q,t; j̃ ,k̃!5
1

2
eQ̂2

@e2D̂Q̂ erfc~Q̂1D̂ !

1e22D̂Q̂ erfc~Q̂2D̂ !#, ~5.2!

where now
06150
d

e

e

e
e
a

-
d

Q̂5q̄2A l̄ s
2r0S t̂

p
D 1/4

,

D̂5
k̃2 j̃

2A l̄ s
2r0

S t̂

p
D 21/4

. ~5.3!

Integrating overj̃ andk̃, we find for the normalized dynamic
structure function

S̄c~q,t;M ,`!5
Sc~q,t;M ,`!

M2D~ q̄2M !

512
1

q̄2MD~ q̄2M !
H 2 erfcF S T̂4

t̂
D 1/4G

1
2

Ap
S t̂

T̂4
D 1/2

~12e2(T̂4 / t̂ )1/2
!J

1
1

~ q̄2M !2D~ q̄2M !
H 222e2q̄2M

1eQ̂2H eq̄2M erfcF Q̂1S T̂4

t̂
D 1/4G

1e2q̄2M erfcF Q̂2S T̂4

t̂
D 1/4G22 erfc~Q̂!J J .

~5.4!

We recall thatD(x)5(2/x2)(e2x211x) is the Debye func-
tion, and note thatq̄2M can also be written as

q̄2M5q2Rg
2~M !, ~5.5!

whereRg(M ) is the radius of gyration of the subchain. I
Eq. ~5.4!, we introduced a new time scale

T̂45
p

16
~ l̄ s

2r0!22M4, ~5.6!

which is of the order of the time the subchain needs to le
its original part of the tube. This interpretation is obvio
from the results on segment motion quoted at the end of S
II, ^@r j (T̂4)2r j (0)#2&;T̂4

1/4;M for T̂4!T̂2. Also the vari-

ableQ̂ can be expressed in terms of a time scale,

Q̂5S t̂

T̂q
D 1/4

, ~5.7!

T̂q5p~ l̄ s
2r0!22~ q̄2!245

16T̂4

@q2Rg
2~M !#4

. ~5.8!

It needs the timeT̂q before the distance diffused by the su
chain, can be resolved by scattering of wave vectorq. For
comparison with previous work, we concentrate
5-12
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q2Rg
2(M )@1, so thatT̂q!T̂4 and D(x)'2/x. We then find

the following limiting behavior in the various time regime

Sc~q,t;M ,`!

M2
2D@q2Rg

2~M !#

'5 22
12e2q2Rg

2(M )

@q2Rg
2~M !#2 S t̂

T̂q
D 1/2

for t̂!T̂q

2
2

Apq2Rg
2~M !

S t̂

T̂4
D 1/4

for T̂q! t̂!T̂4 ,

~5.9!

Sc~q,t;M ,`!

M2
'

6

Apq2Rg
2~M !

S T̂4

t̂
D 1/4

for T̂4! t̂ .

~5.10!

Note that our results depend only on macroscopic parame
q2Rg

2(M ) and t̂ /T̂4, which absorb any reference to the m
croscopic structure.

B. Comparison with de Gennes’ results for Rouse motion
in a tube

In Sec. II B, we recalled de Gennes’ results@12#, derived
for one-dimensional Rouse-type motion in a coiled tube.
the derivation, the relationq2Rg

2@1@q2l 2 was assumed
with l being the average segment size of a Gaussian ch
Of interest here is the ‘‘local’’ termS̄( l )(q,t) @Eq. ~2.12!#. A
glance at the derivation shows that it implicitly exploits t
limit considered here: a subchain~of length M ) in an infi-
nitely long chain. Combining Eqs.~2.10! to Eq. ~2.14! we
thus find

SdG~q,t;M ,`!

M2D~ q̄2M !
512Neq̄

2@12et/Tq erfc~At/Tq!#,

~5.11!

Tq5
const

~ q̄2!2
. ~5.12!

Clearly this expression differs strongly from our result~5.4!.
It leads to very different asymptotics,

SdG~q,t;M ,`!

M2
2D@q2Rg

2~M !#

5
2Ne

M 5 2
2

Ap
S t

Tq
D 1/2

for t!Tq

211S Tq

pt D
1/2

for t@Tq .

~5.13!

Furthermore the scaling withq2, M, andt is quite different.
06150
rs

n

in.

C. Closer inspection of Rouse motion in a tube

The derivation of Eq.~5.11! in Ref. @12# involves some
approximations, which greatly simplify the analysis but a
not really necessary. For a general test of the validity of
model, we therefore have repeated the analysis without th
simplifications. The analysis is sketched in Appendix C. F
further discussion, we here quote the result for the scatte
from a given pair of beads@Eqs.~C16!–~C18!#,

SRT~q,t; j̃ ,k̃!5
1

2
eQ̃2

$e2D̂Q̃ erfc~Q̃1D̃ !

1e22D̂Q̃ erfc~Q̃2D̃ !%, ~5.14!

Q̃5q2l 2ANe

6 F u j̃ 2 k̃u1A2
g0

l 2
tgS u j̃ 2 k̃u

A2
g0

l 2 tD G
1/2

,

D̃5A 6

Ne

u j̃ 2 k̃u

2 F u j̃ 2 k̃u1A2
g0

l 2
tgS u j̃ 2 k̃u

A2
g0

l 2 tD G
21/2

,

~5.15!

g~z!5
1

Ap
e2z2

2z erfcz. ~5.16!

Here g0 is the segment mobility of the one-dimension
Rouse model.

Clearly the structure ofSRT @Eq. ~5.14!# is identical to that
of our resultS1 @Eq. ~5.2!#. The difference is in the quantitie
Q̃,D̃ @Eq. ~5.15!#, compared toQ̂,D̂ @Eq. ~5.3!#. We note,
however, that the relation

2Q̃D̃5q2l 2u j̃ 2 k̃u5q2
l 0
2

6
u j̃ 2 k̃u52Q̂D̂

holds. Recall that the mean segment sizel of a Gaussian
chain, which is asymptotically equivalent to a chain wi
fixed segment lengthl 0, obeys l 25 l 0

2/6 ~in three dimen-
sions!.

To analyze the difference among the two models, we fi
consider the static limit,t50. S1 reduces to~recall the defi-
nition q̄25q2l 0

2/6[q2l 2)

S1~q,0; j̃ ,k̃!5e2q2l 2u j̃ 2 k̃u, ~5.17!

which is the exact result. The result forSRT can be written as
5-13
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SRT~q,0; j̃ ,k̃!5expF2q2l 2u j̃ 2 k̃uS 12q2l 2
Ne

6 D G
3H 12

1

2
erfcFA 6

Ne
u j̃ 2 k̃uS 1

2
2q2l 2

Ne

6 D G J
1

1

2
expFq2l 2U j̃ 2 k̃US 11q2l 2

Ne

6 D G
3erfcFA 6

Ne
u j̃ 2 k̃uS 1

2
1q2l 2

Ne

6 D G . ~5.18!

Even if we ignore the termsq2l 2Ne/6!1, taking them to be
irrelevant microstructure effects, this result doesnot reduce
to the exact form~5.17!. To recover this form, we rathe
consistently have to take the limitq2l 2→0 with q2l 2( j̃ 2 k̃)
fixed, i.e.,u j̃ 2 k̃u[u j 2ku→`. This just demonstrates that
one-dimensional Gaussian chain, folded into the thr
dimensional random walk configuration of the tube, does
yield the exact distribution of a three-dimensional Gauss
chain. In other words, the model of a Rouse chain in a t
violates the equilibrium initial conditions by microstructu
terms on scaleu j̃ 2 k̃u;Ne .

For the dynamics, this discussion implies that the mo
gives a wrong estimate for the number of wiggles in t
initial configuration. To eliminate this effect of unphysic
initial conditions, we have to take the same limitq2l 2→0
with q2l 2( j̃ 2 k̃) fixed, also in the full time dependent expre
sion ~5.14!. To facilitate the discussion, we rewrite Eq
~5.15! in a form that exhibits the fixed combination of var
ablesq2l 2u j̃ 2 k̃u:

Q̃5qlANe

6 F q2l 2u j̃ 2 k̃u

1q2l 2A2
g0

l 2 tgS q2l 2u j̃ 2 k̃u

q2l 2A2
g0

l 2 tD G
1/2

,

D̃5
1

2ql
A 6

Ne
q2l 2u j̃ 2 k̃uF q2l 2u j̃ 2 k̃u

1q2l 2A2
g0

l 2 tgS q2l 2u j̃ 2 k̃u

q2l 2A2
g0

l 2 tD G
21/2

.

~5.19!

The functiong(z) obeys the relations
06150
-
t
n
e

l

g~0!5
1

Ap
,

g~z!;e2z2
, z→`.

Now the limiting result forSRT sensitively depends on th
way we scale the time. We first consider times such thatq2At
stays finite upon taking the limitq2l 2→0,

q2l 2A2
g0

l 2
t;qa, a>0.

We then find

Q̃→0, D̃→`

and recover the static limit~5.17!. Indeed, for such times the
scattering cannot resolve the internal motion,

q2^@r j~ t !2r j~0!#&;q2t1/4;q11a/2→0.

Effects of internal dynamics can be seen only for times s
that q2At diverge,

q2l 2A2
g0

l 2
t;q2a, a.0.

Then the contribution proportional tog dominates the squar
brackets in Eqs.~5.19!, and furthermore the argument ofg
tends to zero. Thus

Q̃→q2l 2ANe

6 S 2

p

g0

l 2
t D 1/4

,

D̃→ 1

2
A 6

Ne
u j̃ 2 k̃uS 2

p

g0

l 2
t D 21/4

, ~5.20!

which is the same functional dependence ont and u j̃ 2 k̃u as
that of Q̂ or D̂ @Eq. ~5.3!#. The limiting expression for
SRT(q,t; j̃ ,k̃) becomes identical to our resultS1(q,t; j̃ ,k̃) if
we identify

q2l 25q̄25q2
l 0
2

6
, ~5.21!

Ne
2

18

g0

l 2
t5~ l̄ s

2r0!2 t̂ . ~5.22!

In summary, we have found that the model of a Rouse ch
in a tube is equivalent to the reptation model only in the lim
q2l 2→0 with q2l 2( j 2k) fixed. Outside this limit, it exhibits
an unphysical relaxation of nonequilibrium initial condition
5-14
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D. Relation among the microscopic parameters
of the different models

As a byproduct of our analysis, we with Eq.~5.22! have
found a relation among the microscopic parameters of
model and those used in more standard Rouse type mod
of chain dynamics. Analyzing in Sec. VII the relation of o
model with the primitive chain model, we will find as a
additional result,

Ne

6

g0

l 2
t5 l̄ s

2r0 t̂ . ~5.23!

Combining Eqs.~5.22! and ~5.23!, we find

Ne53 l̄ s
2r0 , ~5.24!

g0

2l 2
t5 t̂ . ~5.25!

We now can give a quantitative definition of the equilibrati
time T2, which we identify with the Rouse time of a fre
chain ofN segments,

T25
2

p2
~N11!2

l 2

g0
.

With Eq. ~5.25!, we find

T̂25pT25
~N11!2

p2
. ~5.26!

E. Implications for the coherent structure function

The artifact of the model of a Rouse chain in a tube c
cerns only small parts of the chain of the order of the tu
diameter and thus might be thought to be negligible. In
static structure function, the error sums up to a term of or
N, small compared toSc(q,0;N)5N2D(q̄2N). Since, how-
ever, fort&T2 the time dependence ofSc is weak, even such
a small effect is relevant. Indeed, it can greatly change
picture. To illustrate this, we in Fig. 3 compare our res
~5.4! for the normalized coherent structure functio
Sc(q,t;M ,`) to the result found by integratingSRT(q,t; j̃ ,k̃)
@Eq. ~5.14!# over 2M /2< j̃ <M /2 and2M /2< k̃<M /2. To
relate the models, we used relations~5.21!, ~5.24!, and
~5.25!. To include also de Gennes’ approximate form~5.11!,
we used the large valueq2Rg

2(M )550. We note that de
Gennes enforced the correctt50 behavior by artificially
subtracting his result forSRT . We furthermore note that re
peating his calculation in our notation, we foundt/Tq5q̄4 t̂ .
The remaining parameterl̄ s

2r051.23 has been taken from
our previous work@9#.

Figure 3 shows that the effect of the artificial initial co
ditions can be quite large and dies out only slowly. It exten
up to the Rouse time of the subchain considered. This re
is generic. For longer chains, the amplitude of the eff
decreases for the normalized structure function, as expe
06150
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for a microstructure effect, but the range stays of ord
T2(M ). This is obvious since a nonequilibrium initial cond
tion generically will relax only on time scaleT2. As a side
issue, we note that de Gennes’ approximation~5.11! agrees
quite well with the shifted form ofSRT .

To close this section, a general remark on microstruct
corrections for the dynamics may be appropriate. Our re
shows no such corrections, which would give rise to an
ditional 1/M dependence in Eq.~5.4!, which is not in the
form of the scaling variablesq̄2M and t̂ /T̂4. Thus our model
succeeded in singling out the universal aspects of repta
dynamics. This, however, does not imply that~nonuniversal!
terms yielding some additional 1/M dependence could no
show up for a microscopically realistic model, which tak
the details of the microscopic motion into account. But w
want to stress that any model first of all has to yield t
correct static structure function. Otherwise some unphys
relaxation will influence the dynamics. Such results c
safely be trusted only in a range whereSc(q,0;N)
2Sc(q,t;N) exceeds the error inSc(q,0;N).

We finally note that here we have been concerned ex
sively with the reptation aspect of the dynamics, modeled
one-dimensional Rouse motion in a tube. This is to be clea
distinguished fromthree-dimensional Rouse motion amon
fixed entanglement points, as treated by Des Cloizeaux@15#,
for instance. The latter model is concerned with motion
melts for ‘‘microscopic’’ times,t&T0.

VI. ANALYSIS OF COMPLETE TUBE DESTRUCTION

In this section, we derive an integral equation extend
Sc(q,t;M ,N) to arbitrarily large times~Sec. VI A!. Basically
it is an equation forS(q,t; j ,k,N), which incorporates
S(T)(q,t; j ,0,N) as inhomogeneity. To calculateSc , we need
to sum this inhomogeneity overj. We construct this function
in Sec. VI B, following the approach of Sec. IV. The kern
of the integral equation involves some distribution functi
which is calculated in Sec. VI C with the help of the me
hopping rate approximation. Quantities like the probabil

FIG. 3. Coherent normalized structure functionS̄c(q,t;M ,`) of
the central piece of an infinitely long chain forq2Rg

2(M )550,M
5200. Thick line, reptation result@Eq. ~5.4!#; long dashes and shor
dashes, Rouse chain in a coiled tube. For the latter curve, a con

has been subtracted such thatS̄c(q,0;M ,`)51. Medium size
dashes, de Gennes’ approximation@Eq. ~5.11!#. The arrow points to

T̂2(M5200).
5-15
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density of tube destruction at timet, which can be derived
from this distribution function, are discussed in Sec. VI
The numerical evaluation of our results forSc(q,t;M ,N) is
deferred to Sec. VIII, after we have shown that our theory
the appropriate limit yields the results of the primitive cha
model.

A. Derivation of an integral equation
for the structure function

Up to now, we only considered stochastic processes
which some part of the initial tube still exists at timet. To get
rid of this constraint, we have to deal with situations
shown in Fig. 4: at timet0 ,0,t0,t, the chain leaves the
original tube, which means that the remainder of the origi
tube is the single pointr j 0

(0). This point is occupied by a
chain end. The rest of the chain has found a completely n
configuration.

Let P* ( j 0 ,t0u0) or P* ( j 0 ,t0uN) be the probability that
the tube is finally destroyed at timet0, the last pointr j 0

(0)

being occupied by chain end 0 orN, respectively. We assum
that P* does not depend on the initial configuration, whi
should be satisfied except for rare extreme cases.

We then can write the full time dependent scatter
~3.17! from a pair of beadsj ,k as

S~q,t; j ,k,N!5S(T)~q,t; j ,k,N!

1 (
t051

t21

(
j 050

N

@P* ~ j 0 ,t0u0!S~q,t, j ,ku j 0 ,t0,0!

1P* ~ j 0 ,t0uN!S~q,t, j ,ku j 0 ,t0 ,N!#, ~6.1!

whereS(q,t, j ,ku j 0 ,t0 ,m) with m50,N denotes the scatter
ing with tube destruction specified byj 0 , t0, andm. We now
factorizeS(q,t, j ,ku j 0 ,t0 ,m) according to

FIG. 4. Initial (0) and final~t! configuration of the chain~thick
lines!, together with the configuration at timet0 ~thin line!. At time
t0, the chain leaves the last piece of the initial tube, with one ch
end at the position of beadj 0 in the initial tube.
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.

n

or
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l

w

S~q,t, j ,ku j 0 ,t0 ,m!

5^eiq•[ r j (t)2rk(0)]&u j 0 ,t0 ,m

5^eiq•[ r j (t)2rm(t0)]eiq•[ r j 0
(0)2rk(0)]&u j 0 ,t0 ,m

'^eiq•[ r j (t)2rm(t0)]&^eiq•[ r j 0
(0)2rk(0)]&, m50,N,

~6.2!

where the second factor in the last line is a purely sta
average. We have exploitedr m(t0)5r j 0

(0). This factoriza-

tion should be well justified, since the chain at timet0 has
attained a completely new internal configuration. Now t
first factor in the last line of Eq.~6.2! equals S(q,t
2t0 ; j ,m,N), whereas the second factor is the static struct
function exp@2q̄2uj02ku#. Combining Eqs.~6.1! and~6.2! we
thus find

S~q,t; j ,k,N!5S(T)~q,t; j ,k,N!

1 (
t051

t21

(
j 0

@P* ~ j 0 ,t0u0!e2q̄2u j 02ku

3S~q,t2t0 ; j ,0,N!1P* ~ j 0 ,t0uN!e2q̄2u j 02ku

3S~q,t2t0 ; j ,N,N!#.

Reflection symmetry along the chain implies

P* ~ j 0 ,t0uN!5P* ~N2 j 0 ,t0u0!,

S~q,t; j ,N,N!5S~q,t;N2 j ,0,N!,

so that our result takes the form

S~q,t; j ,k,N!5S(T)~q,t; j ,k,N!1 (
t051

t21

(
j 0

P* ~ j 0 ,t0u0!

3@e2q̄2u j 02kuS~q,t2t0 ; j ,0,N!

1e2q̄2uN2 j 02kuS~q,t2t0 ;N2 j ,0,N!#.

~6.3!

We now sumj and k over the central piece of the chain t
find

Sc~q,t;M ,N!

5Sc
(T)~q,t;M ,N!

12 (
t051

t21 H (
j 050

N

(
k5(N2M )/2

(N1M )/2

P* ~ j 0 ,t0u0!e2q̄2u j 02kuJ
3SE~q,t2t0 ;M ,N!, ~6.4!

where

SE~q,t;M ,N!5 (
j 5(N2M )/2

(N1M )/2

S~q,t; j ,0,n!. ~6.5!

in
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For SE , Eq. ~6.3! yields

SE~q,t;M ,N!5SE
(T)~q,t;M ,N!1 (

t051

t21 H (
j 050

N

P* ~ j 0 ,t0u0!

3~e2q̄2 j 01e2q̄2(N2 j 0)!J SE~q,t2t0;M ,N!.

~6.6!

With time ~and segment index! taken continuous, this is th
basic integral equation of our approach. We note that it is
Volterra type and therefore has a unique solution.

B. Expression for SE
„T…

„q,t;M ,N…

The tube conserving contribution toSE(q,t;M ,N) is eas-
ily found from the results of Sec. IV. Following Eq.~4.31!,
we write

SE
(T)~q,t;M ,N!5SE,1~q,t;M ,N!1SE,2~q,t;M ,N!

1SE,3~q,t;M ,N!, ~6.7!

SE,1~q,t;M ,N!5E
(N2M )/2

(N1M )/2

d jS1~q,t; j ,0,N!, ~6.8!

SE,2~q,t;M ,N!5cE
(N̂2M̂ )/2

(N̂1M̂ )/2
d ĵE

0

`

dz
e2q̂z

b

1

A2p

3(
n

FP j
(n)S z2 ĵ

b
,aD 1P j

(n)S 2z2 ĵ

b
,aD G ,

~6.9!

SE,3~q,t;M ,N!5cE
(N̂2M̂ )/2

(N̂1M̂ )/2
d ĵ

1

bE0

N̂
dyH E

0

`

dz@e2q̂(2y1z)

2e2q̂z#
1

A2p
(

n
Pmax,j

(n) S y,2
z1 ĵ

b
,aD

1E
0

1

zy@e2q̂y(22z)2e2q̂yz#
1

A2p

3(
n

Pmax,j
(n) S y,

yz2 ĵ

b
,aD J . ~6.10!

The notation is the same as in Sec. IV~see, in particular, Eqs
~4.27!, ~4.35!, and~4.36!!.

C. Expression forP* „ j 0 ,t0z0…

To construct an expression forP* ( j 0 ,t0u0), we again use
random walk theory, closely following the derivation o
Pmax,0

(T) in Sec. IV C. The calculation is sketched in Append
A. It yields the result
06150
f

dt0P* ~ j 0 ,t0u0!5
dt0

t021
@pp8~ t021!#21/2

3 (
n52`

1`

nF12
2~nN1 j 0/2!2

l̄ s
2p8~ t021!

G
3expF2

~nN1 j 0/2!2

l̄ s
2p8~ t021!

G . ~6.11!

We again expresst021't0 in terms of the maximal excur
sion n̄m @Eq. ~4.21!# and identify n̄m with nmax(0,t0). This
yields the replacement

l̄ sAp8~ t021!→
Ap

2
l̄ snmax~0,t0!5

c

A2
,

resulting in

N

l̄ sAp8~ t021!
→A2N̂5A2

N

c
,

j 0

l̄ sAp8~ t021!
→A2 ĵ 05A2

j 0

c
,

dt0
t021

→2
dc

c
,

d j0

l̄ sApp8~ t021!
→A2

p
d ĵ0 .

With these replacements, we find

d j0dt0P* ~ j 0 ,t0u0!→2A2

p

dc

c
d ĵ0 (

n52`

1`

n@124~nN̂

1 ĵ 0/2!2#exp@22~nN̂1 ĵ 0/2!2#.

~6.12!

To construct the kernels for the integral equations~6.4! and
~6.6!, we basically need

dt0E
0

X

d j0P* ~ j 0 ,t0u0!e2q̄2 j 052
dc

c
P̃* ~ q̂,X̂,N̂!,

~6.13!

whereX̂5X/c, and whereP̃* (q̂,X̂,N̂) is given by
5-17
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P̃* ~ q̂,X̂,N̂!5A2

p (
n52`

1`

nE
0

X̂
d ĵ0@124~nN̂1 ĵ 0/2!2#

3exp@22~nN̂1 ĵ 0/2!22q̂ ĵ 0#

5 (
n52`

1`

nH q̂2e2nq̂N̂1q̂/2FerfcS 2nN̂1X̂1q̂

A2
D

2erfcS 2nN̂1q̂

A2
D G2A2

p
2nN̂e22n2N̂2

1A2

p
~2nN̂1X̂2q̂!

3expF2
~2nN̂1X̂!2

2
2q̂X̂G J . ~6.14!

In terms of P̃* (q̂,X̂,N̂), the kernel of Eq.~6.6! takes the
form

2
dc

c
KE~ q̂,N̂!5dt0E

0

N

d j0P* ~ j 0 ,t0u0!~e2q̄2 j 01e2q̄2(N2 j 0)!

52
dc

c
@P̃* ~ q̂,N̂,N̂!1e2q̂N̂P̃* ~2q̂,N̂,N̂!#.

~6.15!

The kernel of Eq.~6.4! can be written as

2
dc

q̂
Kc~ q̂,N̂,M̂ !

5dt0E
0

N

d j0E
(N2M )/2

(N1M )/2

dkP* ~ j 0 ,t0u0!e2q̄2u j 02ku

52
dc

q̂
H 2P̃* S 0,

N̂1M̂

2
,N̂D 22P̃* S 0,

N̂2M̂

2
,N̂D

2eq̂(N̂2M̂ )/2F P̃* ~ q̂,N̂,N̂!2P̃* S q̂,
N̂2M̂

2
,N̂D G

1e2q̂(N̂2M̂ )/2P̃* S 2q̂,
N̂2M̂

2
,N̂D

1eq̂(N̂1M̂ )/2F P̃* ~ q̂,N̂,N̂!2P̃* S q̂,
N̂1M̂

2
,N̂D G

2e2q̂(N̂1M̂ )/2P̃* S 2q̂,
N̂1M̂

2
,N̂D J . ~6.16!

D. Discussion of the probability density of tube destruction

Comparing the present results with those of Sec. IV C,
can verify the internal consistency of our random walk a
06150
e
-

proximation. FromPmax,j
(T) (nm ,nj ,t) @Eq. ~3.20!#, we can de-

rive the probability that a part of the initial tube still exists
time t,

P (T)~ t !5 (
nj 52`

2`

(
nm50

N

Pmax,j
(T) ~nm ,nj ,t !. ~6.17!

A straightforward calculation starting from Eqs.~4.26! and
~4.27! yields

P (T)~ t !5114(
n51

`

~21!nn erfcS n

A2
N̂D 5P̃(T)S N

c D .

~6.18!

The probability that the tube is destroyed within time interv
dt0, corresponding to

dc5c~ t01dt0!2c~ t0!,

can be calculated as2dc(]/]c)P (T) :

2dt0
]

]t0
P (T)52dc

]

]c
P̃(T)S N

c D
524

dc

c
A2

p
N̂(

n51

`

~21!nn2e2(1/2)n2N̂2
.

~6.19!

On the other hand, we can calculate this probability also

2dt0 (
j 050

N

P* ~ j 0 ,t0u0!54
dc

c
P̃* ~0,N̂,N̂!, ~6.20!

where the factor of 2 takes the two chain ends into acco
It is easily verified that these two expressions are identi
Thus the following relation holds:

2
]

]t
P (T)~ t !52 (

j 050

N

P* ~ j 0 ,t0u0!. ~6.21!

This identity guarantees the validity of the normalization

SE~q50,M ,N![ (
j 5(M2N)/2

(M2N)/2

15M11 ~6.22!

for all times. From the definition ofSE
(T) , we have

SE
(T)~0,t;M ,N!5 (

j 5(N2M )/2

(N1M )/2

Q~ j .2 j ,!5~M11!P (T)~ t !.

~6.23!

Substituting Eqs.~6.21! and~6.23! into the integral equation
~6.6!, we find

SE~0,t;M ,N!5~M11!P (T)~ t !2E
0

t

dt0S ]

]t0
P (T)~ t0! D

3SE~0,t2t0 ;M ,N!. ~6.24!
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Partial integration together with

SE~0,0;M ,N!5M11, P (T)~0!51 ~6.25!

yields

0[E
0

t

dt0P (T)~ t0!
]

]t0
SE~0,t2t0 ;M ,N!, ~6.26!

with only the trivial solution

]

]t0
SE~0,t2t0 ;M ,N![0. ~6.27!

Together with Eq.~6.25!, this proves Eq.~6.22!. The corre-
sponding analysis can be applied to Eq.~6.4!, yielding the
correct normalization

Sc~0,t;M ,N![~M11!2. ~6.28!

To get an impression of the time dependence of comp
tube destruction, we in Fig. 5~a! show N̂2P̃* (0,N̂,N̂)
;2(]/]t)P (T)(t) @cf. Eqs.~6.20! and ~6.21!# as a function
of 2/N̂252(c/N)25p@ l̄ snmax(0,t)/N#2. This choice of the
variable is motivated by the relationN̂22;t/T3, cf. Eq.
~7.3!. As we see, noticeable tube destruction starts at 2N̂2

'0.1 and is essentially completed at 2/N̂2'3.5. The varia-
tion of N̂2P̃* as shown here, dominates the time depende

FIG. 5. Distribution functions for complete tube destruction.~a!
Probability density of complete tube destruction as a function

2/N̂2;t/T3. Normalization,*0
`d(2/N̂2)N̂2P̃* (0,N̂,N̂)51. ~b! Prob-

ability density of complete tube destruction as a function of
position j 0 /N of the final segment of the original tube

d(2/N̂2)P( j 0 /N)5dt0P* ( j 0 ,t0u0). The chain leaves the tube wit

end 0. The values of 2/N̂2 chosen are indicated by arrows in~a!.
06150
te

ce

of the kernels~6.15!,~6.16!. It allows us to solve the integra
equation~6.6! for finite time t by a finite number of itera-
tions, the result being exact within the numerical accuracy
our calculation.

To close this section, we evaluate the probability that
initial tube finally is destroyed at the position of segmentj 0,
with chain end 0 being the last part residing in the init
tube@Eq. ~6.12!#. Figure 5~b! shows the dependence onj 0 /N
for several values ofN̂. As expected, for shorter time
2/N̂2,1, chain end 0 leaves the tube close to the other
( j 0 /N'1). With increasing time the most probable point
final destruction slowly shifts to the center of the tube, b
for times where the rate of the tube destruction is maxim
@corresponding to the maximum in Fig. 5~a!#, the shape of
P* ( j 0 ,t0u0) is still quite unsymmetric.

Obviously, the distribution functions considered here a
closely related to the right-hand side of Eq.~2.9!, which is
determined by the part of the original tube that is still occ
pied at timet ~see Refs.@1,12#!. In this context, it is inter-
esting to note that Des Cloizeaux@16# modified the expres-
sion ~2.9! by replacingt5t/td in the exponent by some
more complicated time dependence, meant to take the l
motion near an entanglement point into account. This mo
fication is quite similar to our introduction of the quantityN̂2

replacing t/td . We note, however, thatN̂5N/c via the
crossover behavior ofc5c(t,N) takes end effects such a
tube length fluctuations into account rather than internal m
tion.

VII. THE LIMIT OF LARGE TIME AND THE PRIMITIVE
CHAIN MODEL

A. Special cases

If the time is large compared to the equilibration timeT2
of the chain, our results simplify since the parametersa and
b can be replaced by their limiting values

a515b for t@T2 . ~7.1!

This implies that all segments experience the same curv
ear shift, which is the basic assumption of the primitive ch
model. Furthermore,A1( j ,t)→ t̂ /N for t@T2 @cf. Eq. ~3.5!#,
and the parameterc @Eq. ~4.25!# reduces to

c5Ap

2
l̄ snmax~0,t !→S l̄ s

2r0

2
D 1/2

(
s51

t
1

s
A1

1/2~0,s!

5S 2
l̄ s

2r0

N
D 1/2

t̂1/2. ~7.2!

Thus

N̂215
c

N
→S t̂

2T̂3
D 1/2

~7.3!

becomes a direct measure oft̂ /T̂3, where for brevity we in-
troduced

f

e

5-19
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pT35T̂35
N3

4 l̄ s
2r0

~7.4!

as measure of the reptation time. With relations~7.1!, all the
integrals in Eqs.~4.37!–~4.44! can be evaluated analytically
resulting in a fairly lengthy expression forSc

(T)(q,t;M ,N) as
a sum of terms involving error functions and Gaussians.
here quote the result in those limits, in whichSc

(T) becomes
identical to the full scattering functionSc , which is the case
for either short time,t/T3!1, or large wave vectors,q2Rg

2

@1.

1. Limit t ÕT3\0 with fixed QÄq2Rg
2

We find

Sc~q,t;N,N!

N2
5D~Q!2

t

2T3
~12e2Q!1OS t

T3
D 3/2

.

~7.5!

Recall thatD(Q) denotes the Debye function. Of course, th
limit can be attained only for an extremely long chain, sin
relation~7.1! impliesT2 /T3→0, i.e.,N→`. The result~7.5!
shows that for such a chain relaxation becomes observ
only for t@T2. Furthermore, with increasingQ, the time
variation ofSc becomes rapidly insensitive to the scatteri
vector.

2. Limit QÄq2Rg
2\` with fixed q̄2 and tÕT3

In this limit, our result reads

Sc~q,t;N,N!

N2D~Q!
512A2

p

2

N̂
14(

n51

`

~21!nFn erfc
nN̂

A2

2A2

p

1

N̂
e2 ~n2/2!N̂2G , ~7.6!

which is the Poisson transform of

Sc~q,t;N,N!

N2D~Q!
5

8

p2 (
p51

`

~2p21!22 expF2~2p21!2
p2

2N̂2G .

~7.7!

We thus recover the result of Refs.@12,13#, Eq. ~2.9!, pro-
vided we identify

t

td
5

p2

2N̂2
5

p2

4

t̂

T̂3

,

leading to

ptd5
N3

p2 l̄ s
2r0

. ~7.8!

From Ref.@2#, Eq. ~6.19!, we can take the relation oftd to
the parameters of the underlying Rouse model, which in
notation reads
06150
e

e

le

r

td5
N3l 0

2

p2g0Ne

.

@Replacement z→1/g0 , b→ l 0 , a2→ l 0
2Ne , kBT51 in

Ref. @2#, Eq. ~6.19!.# Thus

pl0
2

g0Ne
5~ l̄ s

2r0!21,

and Eq.~5.23! results.

B. Proof of asymptotic equivalence to the primitive
chain model

Having recovered the results of Doi and Edwards
q2Rg

2@1,t@T2, we clearly may ask whether fort@T2, the
two approaches yield identical results irrespective ofq2Rg

2 .
This is not obvious since formally the approaches are q
different. Doi and Edwards@13,2# start from a diffusion
equation forS(q,t; j ,k,N). With the relation among mode
parameters established in Sec. V D, this equation takes
form

F N

p l̄ s
2r0

]

]t
2

]2

] j 2GS~q,t; j ,k,N!50. ~7.9!

This is amended by the initial condition

S~q,0;j ,k,N!5exp~2q̄2u j 2ku! ~7.10!

and boundary conditions

lim
j→0

]

] j
S~q,t; j ,k,N!5q̄2S~q,t;0,k,N!,

lim
j→N

]

] j
S~q,t; j ,k,N!52q̄2S~q,t;N,k,N!. ~7.11!

On the other hand, according to our theory,S(q,t; j ,k,N)
obeys Eq.~6.3!, written in the continuous chain model as

S~q,t; j ,k,N!5S(T)~q,t; j ,k,N!1E
0

t

dt0E
0

N

d j0P* ~ j 0 ,t0u0!

3$e2q̄2u j 02kuS~q,t2t0 ; j ,0,N!

1e2q̄2uN2 j 02kuS~q,t2t0 ;N2 j ,0,N!%.

~7.12!

The inhomogeneity takes the form

S(T)~q,t; j ,k,N!5E
0

N

dyE
y2N

y

dz(
n

P̂n~y,z!F~y,z; j ,k!,

~7.13!

where
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P̂n~y,z!5
1

A2pc2
lim
a→1

Pmax,j
(n) S y

c
,
z

c
,aD

5A2

p

1

c3
@~n11!~2nN12y2z!

3e2(1/2c2)(2nN12y2z)2

2n~2nN2z!e2(1/2c2)(2nN2z)2
#. ~7.14!

The rescaling of the variablesy and z serves to isolate the
time dependence which now is contained inc only @cf. Eq.
~7.2!#. The functionF collects all contributions contained i
S1 ,S2 ,S3 @Eq. ~4.5!#, and is found to be

F~y,z; j ,k!5e2q̄2uk2 j 2zu1Q~k2 j 2z!Q~y2k!

3@e2q̄2(2y2z2k2 j )2e2q̄2(k2 j 2z)#

1Q~ j 1z2k!Q~y2 j 2z!@e2q̄2(2y2z2k2 j )

2e2q̄2( j 2k1z)#1Q~k2 j 1z!Q~ j 2z1y2N!

3@e2q̄2(k1 j 2z12y22N)2e2q̄2(k2 j 1z)#

1Q~ j 2k2z!Q~k2N1y!

3@e2q̄2(k1 j 2z12y22N)2e2q̄2( j 2k2z)#. ~7.15!

Here the last two contributions arise from the last two ter
in Eq. ~4.8!, which a priori involve the distribution function

Q~ j .2 j ,!dnm ,nmax(N,t)dnj ,n( j ,t).

Interchange of the chain ends transforms this distribution
Pmax,j

(T) (nm ,2nj ;t) @Eq. ~3.20!# and implies that we have to
take j .5N2y and j (t)5 j 2z in the corresponding contri
butions toF(y,z; j ,k).

By construction, our form ofS(q,t; j ,k,N) obeys the ini-
tial condition ~7.10!. To derive Eq.~7.9!, we apply the op-
erator

D5
N

p l̄ s
2r0

]

]t
2

]2

] j 2
~7.16!
06150
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to the integral equation~7.12! to find

DS~q,t; j ,k,N!5DS(T)~q,t; j ,k,N!

1
N

p l̄ s
2r0

E
0

N

d j0P* ~ j 0 ,tu0!$e2q̄2u j 02ku2q̄2 j

1e2q̄2uN2 j 02ku2q̄2(N2 j )%

1E
0

t

dt0E
0

N

d j0P* ~ j 0 ,t0u0!

3$e2q̄2u j 02kuDS~q,t2t0 ; j ,0,N!

1e2q̄2uN2 j 02kuDS~q,t2t0 ;N2 j ,0,N!%.

~7.17!

This is an integral equation forDS which has only the trivial
solution

DS~q,t; j ,k,N![0, ~7.18!

provided that the inhomogeneity vanishes. We first consi
the contributionDS(T) and note that in view of Eq.~7.2!, D
can be written as

D5
1

c

]

]c
2

]2

] j 2
,

resulting in

DS(T)5(
n
E

0

N

dyE
y2N

y

dzH S 1

c

]

]c
P̂n~y,z! DF~y,z; j ,k!

2P̂n~y,z!
]2

] j 2
F~y,z; j ,k!J . ~7.19!

F(y,z; j ,k) @Eq. ~7.15!# is a sum of terms that depend onj
andz exclusively via the combinationsj 1z or j 2z, respec-
tively. Thus]2/] j 2 is equivalent to]2/]z2, and partial inte-
gration yields
DS(T)5(
n
E

0

N

dyE
y2N

y

dzF~y,z; j ,k!S 1

c

]

]c
2

]2

]z2D P̂n~y,z!

2(
n
E

0

N

dyH P̂n~y,y!
]

]zU
y

F~y,z; j ,k!2P̂n~y,y2N!
]

]zU
y2N

F~y,z; j ,k!

2F~y,y; j ,k!
]

]zU
y

P̂n~y,z!1F~y,y2N; j ,k!
]

]zU
y2N

P̂n~y,z!J .
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It is easily verified that in this expression the first term va
ishes identically, and after some calculation exploiting re
tions like

f ~z,n!5~2nN2z!expF2
~2nN2z!2

2c2 G[ f ~z12N,n11!,

we find

A2pc3DS(T)5e2q̄2 jC~k!1e2q̄2(N2 j )C~N2k!,
~7.20!

C~k!52N(
n

@4n2f 0~0,n!e2q̄2k2~2n21!2

3 f 0~N,n!e2q̄2(N2k)#

24q̄2c2(
n

n@ f 0~N,n!e2q̄2(N2k)22 f 0~k,n!#

24q̄4c2E
0

N

dy(
n

n f 0~y,n!e2q̄2uk2yu, ~7.21!

where

f 0~y,n!5expF2
~2nN2y!2

2c2 G . ~7.22!

We now turn to the second part of the inhomogeneity
Eq. ~7.17!, and we use Eq.~6.12! together with dc/dt

5p l̄ s
2r0 /(Nc) @cf. Eq. ~7.2!#, to write

A2pc3
N

p l̄ s
2r0

P* ~ j 0 ,tu0!54(
n

nF12
4

c2 S nN1
j 0

2 D 2G
3expF2

2

c2 S nN1
j 0

2 D 2G .

Thus

A2pc3
N

p l̄ s
2r0

E
0

N

d j0P* ~ j 0 ,tu0!$e2q̄2u j 02ku2q̄2 j

1e2q̄2uN2 j 02ku2q̄2(N2 j )%

5e2q̄2 j C̃~k!1e2q̄2(N2 j )C̃~N2k!, ~7.23!

with

C̃~k!54(
n

nE
0

N

d j0F12
~2nN1 j 0!2

c2 G
3expF2

~2nN1 j 0!2

2c2
2q̄2u j 02kuG . ~7.24!

A short calculation shows that indeed

C̃~k!52C~k!. ~7.25!
06150
-
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Thus the inhomogeneity in Eq.~7.17! vanishes and
S(q,t; j ,k,N) obeys the diffusion equation~7.18!.

Checking the boundary conditions~7.11! is an even sim-
pler task. Direct calculation yields

]

] j U
0

S(T)~q,t; j ,k,N!

5E
0

N

dyE
y2N

y

dz(
n

P̂n~y,z!
]

] jU
0

F~y,z; j ,k!

[q̄2S(T)~q,t;0,k,N!, ~7.26!

]

] j
S(T)~q,t; j ,k,N![2q̄2S(T)~q,t;N,k,N!, ~7.27!

and differentiating the integral equation~7.12!, we find

S8~q,t; j ,k,N![
]

] j
S~q,t; j ,k,N!

5
]

] j
S(T)~q,t; j ,k,N!

1E
0

t

dt0E
0

N

d j0P* ~ j 0 ,t0u0!

3$e2q̄2u j 02kuS8~q,t2t0 ; j ,0,N!

2e2q̄2uN2 j 02kuS8~q,t2t0 ,N2 j ,0,N!%.

~7.28!

Now writing

S8~q,t;0,k,N!5q̄2Ŝ1~q,t,k,N!,

S8~q,t;N,k,N!52q̄2Ŝ2~q,t,k,N!, ~7.29!

we find from Eqs.~7.26!–~7.28!,

Ŝ1~q,t,k,N!5S(T)~q,t;0,k,N!1E
0

t

dt0E
0

N

d j0P* ~ j 0 ,t0u0!

3$e2q̄2u j 02kuŜ1~q,t2t0 ;0,N!

1e2q̄2uN2 j 02kuŜ2~q,t2t0,0,N!%,

Ŝ2~q,t,k,N!5S(T)~q,t;N,k,N!1E
0

t

dt0E
0

N

d j0P* ~ j 0 ,t0u0!

3$e2q̄2u j 02kuŜ2~q,t2t0 ;0,N!

1e2q̄2uN2 j 02kuŜ1~q,t2t0,0,N!%. ~7.30!

This is exactly the system of equations obeyed
S(q,t;0,k,N) andS(q,t;N,k,N) @cf. Eq. ~6.3!#. The unique-
ness of the solution together with Eq.~7.29! thus guarantees
that the boundary conditions~7.11! are obeyed.
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We thus have shown that in the limitN→` with t/T3 and
q2Rg

2 fixed, our theory reproduces the results of Doi a
Edwards.

VIII. NUMERICAL EVALUATION AND COMPARISON TO
MONTE CARLO DATA

A. Technicalities of solving the integral equations

As shown by relations like Eqs.~6.19! and ~6.20!, the
natural measure of time in our theory is the parametec
5c(t). It measures the motion of the chain ends, i.e.,
time dependence of tube destruction, and is defined by
~4.25! and ~3.16!. In evaluating the theory, we therefore r
place time by the variable

x5X~ t !5
c~ t,N!

N
5

1

N̂
. ~8.1!

Using Eq.~6.15!, we write the integral equation~6.6! in the
form

S̄E~x!5S̄E
(T)~x!12E

0

xdx8

x8
KES q̄2Nx8,

1

x8
D

3S̄E@X„t~x!2t~x8!…#, ~8.2!

wheret5t(x) is the inverse function tox5X(t). S̄E(x) and
S̄E

(T)(x) denote the scattering functionsSE andSE
(T) , normal-

ized with the static coherent structure function, e.g.,

S̄E~x!5
SE~q,t;M ,N!

Sc~q,t50;M ,M !
. ~8.3!

With corresponding notation, Eqs.~6.4! and ~6.16! yield for
the normalized coherent structure function

S̄c~x!5S̄c
(T)~x!1

4

q̄2E0

xdx8

x8
KcS q̄2Nx8,

1

x8
,

M

x8N
D

3S̄E@X„t~x!2t~x8!…#. ~8.4!

In Eqs.~8.2! and~8.4!, we then transform from variablesx8

to x̂5X„t(x)2t(x8)… to find equations of standard Volterr
form, which are solved by discretizingx,x̂ and iteration. We
note that bothS̄E

(T)(x) and S̄c
(T)(x) for x.2 are negligibly

small, less than 1027, to be compared to the normalizatio
S̄c(0)51. Also the kernelsKE ,Kc exceed 1027 only in the
interval 0.1,x8,2.2. This allows for an accurate evaluatio
simply using computer algebra. The numerical uncertainty
our final results is less than 0.5%. In all our analysis, we u
the same parameter values as in Ref.@9#. Specifically, l̄ s

2r0

51.23, p51/5, and l̄ s52.364. ~We recall that the precise
values ofp and l̄ s in fact are irrelevant for our numerica
results.!
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B. Typical results

We first want to illustrate the magnitude of the differe
contributions to the normalized structure functionS̄c . Figure
6 shows results for two very different values of wave nu
ber:q2Rg

2'0.27 in Fig. 6~a!, andq2Rg
2'53 in Fig. 6~b!. The

thick lines give the full results forS̄c , including end effects
and tube destruction. Long dashes representS̄c

(T) , i.e., the
contribution without complete tube destruction. Short das
represent the~normalized! contribution S̄1 @Eq. ~4.33!#,
which omits all end effects and treats the chain as embed
in an infinitely long tube. The arrows point to the intern
equilibration timeT̂2, defined by Eq.~5.26!,

T̂25
~N11!2

p2
.

Finally, the heavy slashes in the time axes give the repta
time defined as the first moment of the time dependent pr
ability density of complete tube destruction,

T̂35pE
0

`

dt0t0S 2
]

]t0
DP (T)~ t0!. ~8.5!

Here we use Eq.~6.19! for ]P (T)/](t0). For long chains, the
thus defined reptation time tends to the value given in
~7.4!.

FIG. 6. Normalized coherent scattering function in differe

wave number regions as a function of log10( t̂ ). ~a! q250.01,N
5M5157; ~b! q251.0,N5M5317. The thick solid lines give the

full functions S̄c . Long dashes representS̄c
(T) , which in ~b! coin-

cides with S̄c . Short dashes are the results neglecting all end
fects. The dot-dashed line in~a! is the contribution of complete tube
destruction. See the text for further explanation.
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Figure 6~a! shows the typical behavior ofS̄c(q,t,N) for
wave numbers that are too small to resolve the internal st
ture of the tube.S̄c

(T) stays close to 1 up to times of orderT̂3

and then rapidly drops to zero. The contribution of proces
with complete tube destruction@dot-dashed line in Fig. 6~a!#
is very important, and end effects become visible only a
time where also tube destruction plays a role. Note that
cording to Eq.~6.4!, the total structure functionS̄c is a sum
of two independently calculated terms:S̄c

(T) ~long-dashed
line! and the contribution of complete tube destruction~dot-
dashed line!. These terms add up to a smooth curve~thick
solid line!, an observation that demonstrates the consiste
of our approach on the quantitative level. It is only for ve
short chains,N&30, that these two contributions do not qui
match. We trace this back to our approximate calculation
the kernelKc . For such short chains, tube length fluctuatio
and internal relaxation presumably play a role also for
kernels.

The limit of large wave vectors is illustrated with Fig
6~b!. Here configurations where the original tube has be
destroyed, essentially do not contribute to the scattering.
deed, in Fig. 6~b!, the curves forS̄c andS̄c

(T) fall right on top
of each other. However, end effects such as tube length
tuations have a strong influence, as shown by the deviat
among the full line and the dashed line representingS̄1. They
lead to a gradual decrease ofS̄c , starting long before com
plete tube destruction becomes effective.

In the preceding section, we have shown that our the
asymptotically reduces to the primitive chain model of D
and Edwards. To test the range of validity of the asympto
result, we have evaluated our theory for the fairly large va
N5637 of the chain length~corresponding to a Monte Carl
chain of 640 beads, cf. Ref.@9#, Sec. II C!. Figure 7 shows
the results for the normalized coherent structure functionS̄c

as function of log10t̂ for a set of wave vectors:q2Rg
250.1,

1.0, and 10. The dashed lines give the asymptotic re
~2.5!,~2.6!, where we used Eq.~7.8! for td . Obviously, the
time scales do not quite match: even for this long chain,
reptation time does not yet follow theN3 law. A shift of
log10t̂ by 20.1, equivalent to a decrease of the time scale
20%, for smallq, such thatq2Rg

2&1, brings the asymptotic

FIG. 7. Normalized coherent structure functionS̄c for N5637
and the values ofq2Rg

2 as indicated~solid lines!. The dashed lines

denoteS̄DE . Arrow and slash indicateT̂2 or T̂3, respectively.
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results close to the results of our full model. Forq2Rg
2510,

however, even with such a shift, there remains a defin
difference: the result of the full theory initially decreas
faster and approaches the shifted asymptotic curve only
t̂*102T̂2. This is an effect of internal relaxation and tub
length fluctuations. The absence of a visible mismatch in
shape of the curves for smallerq values just implies that with
such small values again the structure of the tube canno
resolved.

To examine more closely the influence of internal rela
ation and tube length fluctuation, we in Figs. 8 and 9 sh
results for the scattering from internal pieces of a chain. F
ure 8 shows results forq50.5 and a subchain of about 8

FIG. 8. Normalized coherent structure functionS̄c of a subchain
of aboutM580 beads in chains of the total lengthN as indicated in
the figure. Wave numberq50.5. Solid line, theory. Data points
result from a simulation of the Evans-Edwards model.

FIG. 9. Results forS̄c ,q50.5,N5317. Theoretical results~solid
lines! for central subchains of lengthsM539, 79, and 159 are com
pared to simulations~dots!. Results for the total chain (M5317)
are also shown.
5-24
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beads, corresponding toq2Rg
2'3.29. The subchain is embed

ded as central piece in chains of different lengths, precis
(N577, total chain!, (N5157,M579), (N5317,M579),
(N5`,M579). This figure illustrates the suppression
end effects with increasingN. The asymptotic resultN5` is
due to internal relaxation only. For finiteN, the curves start
to deviate from the asymptotic form as soon as wiggles c
ated at a chain end have a non-negligible probability to re
the central piece. The characteristic time for this proc
scales with (N2M )2. Figure 9 shows results forq50.5,N
5317, and central pieces of lengthsM5317 toM539. Due
to tube length fluctuations, the normalized scattering fu
tion of the total chain initially decreases faster than the re
for M5159. Tube destruction on the average reaches
subchains at times betweent̂'105.8 (M5159) or t̂
'106.4 (M539), so that for large time regimes, the resu
for the subchains are not affected by tube length fluctuatio
The decrease of the normalized scattering intensity with
creasing length of the subchain rather is due to the fact th
shorter subchain leaves its initial position in the tube earl
i.e., it is due to internal relaxation.

In Figs. 8 and 9, we included results from a simulation
the Evans-Edwards model@17#. This model takes the chai
configuration as a random walk on a cubic lattice and allo
only moves of ‘‘hairpin’’ configurationsr j 112r j5r j 212r j
as internal motion. An illustration for a two-dimensional sy
tem is shown in Fig. 1. We used the same implementatio
the model as in our previous work@9#, to which we refer for
details. In comparing theory and simulations therefore
parameters are fixed by our previous analysis of segm
motion. Since, however, the new simulations lead to be
statistics, we allow for some readjustment of the relat
among t̂ and the Monte Carlo time scale:t̂56.831022tMC

instead oft̂56.0931022tMC taken previously. This yields a
shift of 20.048 of the logarithmic time scale and leaves o
previous results essentially unaffected.

As shown in Fig. 8, our theory in all details reproduc
the time variations of the data, but the data systematically
somewhat below the theoretical curves. This is not due to
approximations that essentially only concern the treatmen
tube length fluctuations. Considering for instance the data
N5317, we note that the deviations from the theory a
strongest fort̂&105, where tube destruction and tube leng
fluctuations are irrelevant and our theory for the internal p
M579 is an exact evaluation of the reptation model. F
thermore, the deviations are fairly independent of the leng
of the end pieces (N2M )/2. This suggests that we see som
~nonuniversal! relaxation of the microstructure. Clearly, pa
ticle hopping, which is the elementary dynamics of the re
tation model, is no faithful representation of the Monte Ca
hairpin dynamics on the microscopic level. The wave vec
uqu50.5 is large enough to resolve such details. Since
dynamic effects of microstructure should saturate at lar
times, this suggests that we should scale down the theore
curves by some factorBR,1. This was done in Fig. 9, wher
BR ranges from 0.981 to 0.990, depending onM. For t̂
*103, theory and data agree excellently. The same leve
agreement can be reached for the data of Fig. 8. We there
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believe that our theory adequately describes the unive
part of the coherent scattering function, including tube len
fluctuations and~universal! internal relaxation.

A more extensive presentation of simulation results, co
paring with the present and previous theories, will be pu
lished elsewhere. Here we only note that we have taken
for values ofuqu ranging from 1.0 to 0.1, and theq depen-
dence found for the initial deviation among theory and sim
lations strongly supports the interpretation as microstruct
effects.

IX. SUMMARY AND CONCLUSIONS

In this work, we have exploited the pure reptation mod
to calculate the coherent structure functionSc(q,t;M ,N) of a
flexible chain moving through an array of impenetrable
pological obstacles. Our analysis is rigorous for a subch
~length M ) in the interior of an infinitely long chain (N
→`). This allows for a detailed comparison with an a
proach where the interior motion of the chain is modeled
one-dimensional Rouse motion along a coiled tube.
found that the latter model starts from unphysical noneq
librium initial conditions, which relax only on the scale o
the Rouse timeT2(M ) of the subchain. This relaxation com
pletely distorts the time dependence ofSc(q,t;M ,N5`) for
times t&T2(M ). Only for times t@T2(M ), this model is
equivalent to the reptation model. If applied to the to
chain, ‘‘local relaxation’’ calculated as Rouse motion in
tube therefore is unphysical. A realistic system may sh
some relaxation that is specific to the microscopic dynam
and which is not contained in the pure reptation model. Ho
ever, our analysis sheds strong doubts on an interpretatio
such nonuniversal effects within the framework of the mo
of a Rouse chain in a tube.

To evaluate the total structure function for all times, w
have derived integral equations that splitSc into a contribu-
tion Sc

(T) of configurations where some part of the initial tub
still exists, and the remainder. The kernel and in particu
the inhomogeneities~like Sc

(T)) of these equations cannot b
calculated rigorously. They involve distribution function
coupling the motion of a given segment to tube renew
which is a non-Markovian process with memory time of t
order of the Rouse timeT2(N). To calculate the functiona
form of these distributions, we used a random walk appro
mation. We thus at each instant of time replaced the co
lated process by an uncorrelated process which as close
possible reproduces the instantaneous distributions of
correlated process. This ‘‘mean hopping rate’’ approximat
introduces functionsc5c(t), a5a( j ,t), and b5b( j ,t),
which appear as parameters in the distribution functions
can be calculated from the microscopic hopping process
spared length in the reptation model. They also have a sim
physical meaning:c(t) measures the average extent of tu
destruction,a( j ,t) describes the coupling of motion of seg
ment j to tube destruction, andb( j ,t) takes care of the inho
mogeneity of the effective segment mobility along the cha
which arises from the fact that the mobile units, i.e., t
wiggles of spared length, can be created and destroyed
at the chain ends.
5-25
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In the limit of long chains and timet@T2, the parameters
a and b tend to 1 irrespective ofj, andc;t1/2. Our theory
then reproduces the results of the ‘‘primitive chain’’ mod
Our proof of this asymptotic result amounts to a derivat
of the primitive chain model from microscopic reptation d
namics. Combined with the analysis of the internal mot
for t!T2, this result allows for a mapping of the microscop
parameters of our reptation model to the more commo
used Rouse-type parameters.

The parameter functionsa( j ,t), b( j ,t), and c(t) ap-
proach their asymptotic behavior only slowly, and it nee
chain lengths of orderN/Ne*300 to find a time region
where the primitive chain model is valid. In particular, f
shorter chains the reptation time, if extracted by fitting t
Doi-Edwards result for the primitive chain model to the lar
time behavior ofSc(q,t,N) in the reptation model, does no
obey the asymptotic power lawT3;N3. As will be shown in
Ref. @14#, it rather exhibits the well known behaviorT3
;Nzeff, with an effective exponentzeff.3. The deviation of
a( j ,t), b( j ,t), and c(t) from their asymptotic primitive
chain behavior incorporates the effect of internal relaxat
and tube length fluctuations. Our numerical evaluation of
full theory illustrates that these effects in general are qu
important. In particular, we find a clear difference among
time variation of scattering from the total chain compared
scattering from internal pieces. The latter are less influen
by tube length fluctuations but are more strongly affected
internal relaxation. This leads to a peculiar behavior
Sc(q,t;M ,N) with varying lengthM of the internal piece, as
shown in Fig. 9. Quite generally, for the total chain (M
5N) it is the tube length fluctuations, that determineSc for
times up tot'10T2.

All our quantitative numerical results are well support
by simulations of pure reptation, exploiting the lattice mod
of Evans and Edwards. In view of the unavoidable appro
mations inherent in the theory, the quantitative agreemen
quite remarkable. It suggests that our mean hopping rate
proximation adequately takes care of the coupling am
internal relaxation, tube length fluctuations, and global cre
A more extensive comparison to Monte Carlo data includ
a numerical parametrization of our analytical results will
published elsewhere@14#.
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APPENDIX A: RANDOM WALK MODEL FOR
DISTRIBUTION FUNCTIONS

1. The functionPmax,0
„T…

„nm,n; t…

As explained in Sec. IV C, we consider a random wa
n8(s) on the integer numbers, with hopping ratep8. The
walk starts atn8(0)50 and ends atn8(t)5n. It is restricted
to the interval@nm2N811,nm#, with absorbing boundary
conditions. To simplify the notation, we shift the interval b
N82nm to
06150
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I5@1,N8#, ~A1!

with the starting point of the walkn8(0)5N82nm , and the
endpoint n8(t)5n1N82nm . The hopping matrix of the
walk takes the form

Ŵ~N8! j , j 85~122p8!d j j 81p8~d j , j 8111d j 8, j 21!,

j , j 8PI. ~A2!

P max,0
(T) (nm ,n;t) gives the weight of the walk under the con

straint thatn8(s)5nm is attained for at least onesP@0,t#. It
is easily found as

P max,0
(T) ~nm ,n;t !5QS nm2

unu1n

2 D
3QS n2unu

2
2nm1N821D

3$„Ŵt~N8!…11nm2n,11nm
2~12dnm,0!

3~Ŵt~N821!!nm2n,nm
%. ~A3!

Ŵt(N8) can be written as

~Ŵt~N8!! j , j 85
2

N811
(
k51

N’

sin
pk j

N811
sin

pk j 8

N811

3S 124p8 sin2
pk

2~N811!
D t

. ~A4!

For t@1, the last factor can be replaced b
exp$2p8t@p2k2/(N811)2#%, and a little calculation yields

P max,0
(T) ~nm ,n,t !'QS nm2

unu1n

2 DQS n2unu
2

2nm1N821D
3H 1

N811
(
k51

`

e2p8t[p2k2/(N811)2]

3Fcos
pkn

N811
2cos

pk~2nm122n!

N811
G

2
1

N8
(
k51

`

e2p8t(p2k2/N82)

3Fcos
pkn

N8
2cos

pk~2nm2n!

N8
G J . ~A5!

In extending the sums to infinity, we neglect terms of ord
exp(2p2p8t).

Now we note thatP max,0
(T) rapidly decreases fort.T3. As

mentioned in Sec. III B, the effective hopping rate fort
;T3@T2 behaves asp8;1/N;1/N8, and as a consequenc
the argument of the exponential in Eq.~A5! takes the form
2const k2t/T3. Thus P max,0

(T) yields a relevant contribution
only for smaller times:t&T3, and for treating this time
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range, it is preferable to replace the summations in Eq.~A5!
by their Poisson transform. This yields

P max,0
(T) ~nm ,n;t !5QS nm1

unu1n

2 DQS n2unu
2

2nm1N821D
3

1

A4pp8t
(

n52`

1` H expH 2
1

p8t
S nN81

n

2D 2J
3FexpH 2

2n

p8t
S nN81

n

2D2
n2

p8t
J 21G

2expH 2
1

p8t
S nN81nm2

n

2D 2J
3FexpH 2

2n12

p8t
S nN81nm2

n

2D
2

~n11!2

p8t
J 21G J . ~A6!

Now the Gaussian prefactors of the square brackets allow
an essential contribution only forp8t*N82, and in this re-
gion, the square brackets can be replaced by the linear
proximation

expF2
2n

p8t
S nN81

n

2D2
n2

p8t
G21

'2
2n

p8t
S nN81

n

2DexpF2
2n12

p8t
S nN81nm2

n

2D
2

~n11!2

p8t
G21

'2
2~n11!

p8t
S nN81nm2

n

2D .

Equation~4.20! from Sec. IV C is the result, which is correc
to leading order in 1/N8. The neglect of 1/N8 corrections is
consistent with treating segment indices as continuous.

2. The functionP* „ j 0 ,t0z0…

By definition, P* ( j 0 ,t0u0) gives the probability that the
initial tube is destroyed completely at time stept0, with j 0
being the last point, occupied by chain end 0~see Sec. VI A!.
In the random walk model, this probability is given by th
weight of a walk starting atn8(0)50 and ending atn8(t0)
5 j 085 j 0 / l s . The point j 08 is reached att5t0 for the first
time, but the pointj 082N811 is attained for somesP@0,t0

21#. The walk is restricted to the interval@ j 082N811,j 08#.
Shifting the interval byN82 j 08 , we can express this weigh
as
06150
or

p-

P* ~ j 0 ,t0u0!5p8$@Ŵt021~N821!#N821,N82 j
08

2@Ŵt021~N822!#N822,N82 j
0821%, ~A7!

where the prefactorp8 gives the probability of the last step
leading fromN821 to N8 ~in the shifted walk!. Using the
explicit expression~A4! for Ŵt and exploitingt5t021@1,
we find

P* ~ j 0 ,t0u0!5
p8

N8
(
k51

` S cos
pk~ j 0821!

N8

2cos
pk~ j 0811!

N8
D e2p8(t021)(p2k2/N82)

2
p8

N821
(
k51

` S cos
pk~ j 0821!

N821

2cos
pk~ j 0811!

N821
D e2p8(t021)[p2k2/(N821)2]

~A8!

correct up to exponentially small terms@cf. Eq. ~A5!#. The
Poisson transform yields

P* ~ j 0 ,t0u0!5
p8

A4pp8~ t021!

3 (
n52`

1`

expF2
1

p8~ t021!
S nN81

j 08

2 D 2G
3H expF 1

p8~ t021!
S nN81

j 08

2
2

1

4D G
2expF 21

p8~ t021!
S nN81

j 08

2
1

1

4D G
2expF 1

p8~ t021!
H 2nS nN81

j 08

2
2

1

2D 1nN8

1
j 08

2
2

1

4
2n2J G1expF 1

p8~ t021!
S 2nS nN8

1
j 08

2
1

1

2D 2nN82
j 08

2
2

1

4
2n2D G J . ~A9!

As in Eq. ~A6!, we can expand in the square brackets, ke
ing the first nonvanishing terms which here are of seco
order. Identifying nowN85N/ l̄ s and j 085 j 0 / l̄ s , Eq. ~6.11!
in Sec. VI C results.
5-27
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APPENDIX B: EXPRESSION FOR P j
„T…

„nj ; t…

According to Eqs.~4.28! and~4.30!, P j
(T)(nj ;t) can be determined by integratingP max,j

(T) overnm ~or y, equivalently!. This
integral can be carried through analytically to yield

P j
(n)~z,a!5expS 2

~z22anN̂!2

2
D H 2~22a2!n erfcS az1a2nN̂

Aa2
D 2S ~22a2!n1

1

2D erfcS az1a2nN̂1N̂

Aa2
D 2S ~22a2!n2

1

2D
3erfcS az1a2nN̂2N̂

Aa2
D 1na~z22naN̂!F2~az1a2nN̂! erfcS az1a2nN̂

Aa2
D 2~az1a2nN̂1N̂!

3erfcS az1a2nN̂1N̂

Aa2
D 2~az1a2nN̂2N̂! erfcS az1a2nN̂2N̂

Aa2
D G

2Aa2

p
na~z22naN̂!F2 expS 2

~az1a2nN̂!2

a2
D 2expS 2

~az1a2nN̂1N̂!2

a2
D 2expS 2

~az1a2nN̂2N̂!2

a2
D G J ,

~B1!
ta
h
t

e

ua

ru
ni
dy
tte

-

o
om-
ing
with a252(12a2).

APPENDIX C: MODELING A ROUSE CHAIN IN A
COILED TUBE

The model describes the internal dynamics of the rep
ing chain as that of a one-dimensional Rouse chain, stretc
so as to span the contour length of the tube. The poten
energy takes the form

V
kBT

5
1

4l 2 (
j 51

N

~xj2xj 21!22
h

l
~xN2x0!, ~C1!

where thexj , j 50, . . . ,N are the bead positions,l measures
the mean segment size, andh/ l is the stretching force acting
on the end beads. The average extension of the chain is
ily calculated as

L5^xN2x0&52lhN. ~C2!

The dynamics of the chain is given by a Langevin eq
tion

d

dt
xj52g0

]

]xj

V
kBT

1j j . ~C3!

The fluctuating forcej j is Gaussian distributed,

P@j j~ t !#5N 21 expF2
1

4g0
E

2`

1`

dtj j
2~ t !G . ~C4!

It is a standard exercise to calculate the dynamical st
ture functions. Indeed, for this system of coupled harmo
oscillators, the stretching force does not influence the
namics but changes the static prefactor only. For the sca
ing from a pair (j ,k) of beads, one finds
06150
t-
ed
ial

as-

-

c-
c
-
r-

S(1d)~p,t; j ,k!5^eip[xj (t)2xk(0)]&5e2iplh( j 2k)e2p2D jk(t),
~C5!

where

D jk~ t !5
g0utu
N11

1 l 2u j 2ku

1
2g0

N11 (
k51

N

cosS pk
j 1 1

2

N11
D cosS pk

k1 1
2

N11
D

3
12e2vkutu

vk
, ~C6!

vk52
g0

l 2
sin2

pk

2~N11!
'

g0

2l 2
p2

k2

~N11!2
. ~C7!

Using the approximate form ofvk , we neglect some expo
nentially small microstructure effects.

In the analysis of Sec. V, we need this result for tw
segments deep inside a very long chain, for times small c
pared to the Rouse relaxation time of the total chain. Writ
j 5N/21 j̃ ,k5N/21 k̃ and taking the limit N→`, with
g0t/ l 2@1 fixed, one finds

D jk~ t !5 l 2u j̃ 2 k̃u1 lA2g0tgS u j̃ 2 k̃u l

A2g0t
D , ~C8!

where

g~z!5
1

Ap
e2z2

2z erfcz. ~C9!
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Now assume that the chain is embedded in a coiled tu
consisting ofN/Ne segments of fixed lengthl T . The contour
length of the tube equals the length of the stretched cha

l T

N

Ne
5L52lhN. ~C10!

The end-to-end distance of the tubeRe
25 l T

2(N/Ne) must
match the end-to-end distance of the physical chain.
potential energy of the latter is given by the thre
dimensional version of Eq.~C1! in the absence of the stretch
ing force, which results inRe

256l 2N. Thus
ai

nc

06150
e,

,

e
-

l T
2

l 2
56Ne , ~C11!

and Eq.~C10! yields

2h5A 6

Ne
. ~C12!

To calculate the scattering from segmentsj and k of the
stretched one-dimensional Rouse chain embedded in
tube, we write
S(R)~q,t; j ,k!5^eiq•[ r j (t)2rk(0)]&Tube5E
2`

1`

dx^eiq•[ r j (t)2rk(0)]d„xj~ t !2xk~0!2x…&Tube

5E
2`

1`

dx^eiq•[ r j (t)2rk(0)]&uxj (t)2xk(0)5x^d„xj~ t !2xk~0!2x…&. ~C13!
-

e

ve

the

e,

s the

t.
Here the first factor is to be calculated under the constr
that the pointsr j (t) and r k(0) have distancex measured
along the tube. It is thus given by the static correlation fu
tion of a chain ofx/ l T segments of fixed lengthl T ,

^eiq•[ r j (t)2rk(0)]&uxj (t)2xk(0)5x5e2(q2/6)l Tuxu. ~C14!

The second factor in Eq.~C13! is the~one-dimensional! Fou-
rier transform ofS(1d) @Eq. ~C5!#,

^d~xj~ t !2xk~0!2x!&

5E
2`

1` dp

2p
e2 ipxS(1d)~p,t; j ,k!

5@4pD jk~ t !#21/2expF2
@x22hl~ j 2k!#2

4D jk~ t ! G .
~C15!

Substituting Eqs.~C14! and ~C15! into Eq. ~C13!, we can
carry out the integral to find

S(R)~q,t; j ,k!5
1

2
eQ2

$e2DQ erfc~Q1D!

1e22DQ erfc~Q2D!%, ~C16!

Q5q2lANe

6
D jk~ t !, ~C17!
nt

-
D5

l ~ j 2k!

2ANe

6
D jk~ t !

. ~C18!

If we take forD jk(t) the result~C8!, the variablesQ andD

reduce toQ̃ and D̃ given in Eq.~5.15!, and the result~C16!
becomes identical to the expression~5.14!.

A final remark on de Gennes’ approximation@12# may be
appropriate. The derivation starts from Eq.~C5! with D jk
taken from Eq.~C8!. Aiming directly at the coherent struc
ture function, one integrates this expression overj andk. If
we ignore end effects, this yields

1

NE d jdkS(1d)~p,t; j ,k!

'E
0

`

dsexpF2p2l 2s2p2lA2g0tgS sl

A2g0t
D G

3~e2iplhs1e22iplhs!,

wheres5u j 2ku. To evaluate this integral analytically, on
expands exp@2p2lA2g0tg(sl/A2g0t)# up to first order. The
remaining steps closely follow our derivation given abo
and result in the form~2.12! of the ‘‘local’’ contribution to
the coherent structure function. It should be noted that
expansion is valid only forp2lA2g0t!1. The analysis sup-
poses thatt is small compared to the Rouse relaxation tim
and in this time regime,A2g0t is of the order of the mean
square distance moved by a segment along the tube. Thu
condition p2lA2g0t'p2^(xj (t)2xj (0))2&!1 implies that
the wave numberp cannot resolve the motion of a segmen
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