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Abstract

A new numerical method to solve the downdating problem (and variants thereof), namely
removing the effect of some observations from the generalized least squares (GLS) estimator
of the general linear model (GLM) after it has been estimated, is extensively investigated. It
is verified that the solution of the downdated least squares problem can be obtained from the
estimation of an equivalent GLM, where the original model is updated with the imaginary
deleted observations. This updated GLM has a non positive definite dispersion matrix which
comprises complex covariance values and it is proved herein to yield the same normal equations
as the downdated model. Additionally, the problem of deleting observations from the seemingly
unrelated regressions model is addressed, demonstrating the direct applicability of this method
to other multivariate linear models. The algorithms which implement the novel downdating
method utilize efficiently the previous computations from the estimation of the original model.
As a result, the computational cost is significantly reduced. This shows the great usability
potential of the downdating method in computationally intensive problems. The downdating
algorithms have been applied to real and synthetic data to illustrate their efficiency.

Keywords: downdating, generalized least squares, singular dispersion matrix, seemingly unrelated
regressions, updating

1 Introduction

The re-estimation of a model is often required in several applications when changes are incor-
porated into the data (Chambers, 1971; Chavas, 1982; Rader and Steinhardt, 1986; Björck, 1996;
Belsley et al., 2004; Yanev and Kontoghiorghes, 2009). Observations often have to be deleted from
a model in order to remove the effect of this data from the least squares solution. In many time
series problems, for example, as data arrive sequentially, old data are deleted and new data are added
creating a moving (rolling) window of the data (Clark and McCracken, 2009; Pesaran and Pick, 2011;
Rossi and Inoue, 2012; Pesaran et al., 2013). Similarly in statistics, a series of least squares prob-
lems is often needs to be solved when observations in a data set are identified as outliers, faulty or
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can be influential in the estimation of the model and regression diagnostics are performed (Cook,
1977; Christensen et al., 1992; Preisser and Qaqish, 1996; Belsley et al., 2004; Haslett and Dillane,
2004; Preisser and Perin, 2007; Zhu et al., 2012). However, in the case of large-scale linear models
which are intractable to implement, it is not advantageous to perform all computations afresh espe-
cially when the procedure of deleting and/or adding observations is executed sequentially. Instead,
computationally attractive and numerically accurate sequential methods are preferable.

The problem of removing the effect of some observations from the least squares solution, herein
referred to as the downdating problem, has been previously considered for the ordinary linear model
(Golub, 1969; Chambers, 1971; Gragg et al., 1979; Rader and Steinhardt, 1986; Elden and Park,
1994; Björck, 1996; Golub and Van Loan, 1996; Yanev and Kontoghiorghes, 2008). Formulae which
provide the change in the generalized least squares (GLS) estimator when observations are removed
for deletion diagnostics were proposed (Martin, 1992; Bhimasankaram et al., 1995; Haslett, 1999;
Jammalamadaka and Sengupta, 1999, 2007). These techniques are theoretically sound. However, they
rely heavily on matrix inverses which are numerically unstable and expensive to compute. Hence, these
methods cannot be employed to solve computationally demanding estimation problems. Additionally,
when the dispersion matrix is singular, generalized inverses impose restrictions in deriving the best
linear unbiased estimator (BLUE) of the model (Zyskind, 1967; Zyskind and Martin, 1969; Kourouklis
and Paige, 1981).

Herein, the downdating of the general linear model (GLM) is thoroughly investigated. A novel
numerical method to estimate the GLM after deleting observations is introduced. The proposed
method updates the original model with the imaginary deleted observations, resulting in an updated
GLM with a non positive definite dispersion matrix. It has been proved theoretically that the proposed
model yields the GLS estimator that would be derived if the downdated model -the model with the
remaining observations after the deletion- is estimated afresh. In contrast with existing methods, the
new downdating method is based on strategies which are numerically and computationally efficient
and they are shown to yield the BLUE of the GLM. That is, the proposed model is processed within
the context of generalized linear least squares where the inversion of a matrix is postponed until the
last step of the procedure. Additionally, the computational cost is reduced by utilizing efficiently
previous computations from the estimation of the original model and by employing hyperbolic and
unitary transformations. This method solves the downdating problem of the GLM even when the
dispersion matrix is singular.

Moreover, within the framework of the sliding window method in time series analysis and the
k-fold cross validation procedures, a method for the simultaneous addition and deletion of data has
also been considered (Pollock, 2003; Yanev and Kontoghiorghes, 2009). In addition, the problem of
deleting observations from the seemingly unrelated regressions (SUR) model has also been explored
and various cases have been examined. The SUR model is a system of regression equations which
takes into account contemporaneous correlation (Zellner, 1962). It is a special case of the GLM where
the data have Kronecker structure. The SUR model has many applications in time series analysis
problems (Kmenta and Gilbert, 1970; Judge et al., 1985; Chib and Greenberg, 1995; Smith and Kohn,
2000; Griffiths and Valenzuela, 2006) and is also applied in studies for the analysis of longitudinal
data (Verbyla and Venables, 1988; Rochon, 1996; Shieh, 2000). The computational efficiency of the
proposed downdating algorithms has been investigated using real and synthetic data.

Consider the general linear model (GLM)
y = Xβ + ε, ε ∼

(
0, σ2Ω

)
, (1.1)

where y ∈ <M is the dependent vector, X ∈ <M×K , M > K is the exogenous data matrix with full
column rank, β ∈ <K is the vector of parameters to be estimated and ε ∈ <M is the error term with
zero mean and positive definite variance covariance matrix σ2Ω (Rao, 2002). As shown in Aitken
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(1934), the BLUE, say β̂, for β is given by

β̂ =
(
XTΩ−1X

)−1
XTΩ−1y. (1.2)

This is the generalized least squares (GLS) solution of argminβ ‖C−1 (y −Xβ)‖2
, where Ω = CCT

is the Cholesky decomposition and ‖·‖ denotes the Euclidean norm. However, the solution of the
latter becomes computationally expensive and can be unstable when Ω is ill-conditioned (Paige, 1978,
1979; Kourouklis and Paige, 1981).

The downdating of the GLM can be defined as estimating the GLM after a number of observations
is deleted. In particular, let y,X and ε in (1.1) be partitioned as follows

y =

(
y1

y2

)
, X =

(
X1

X2

)
, ε =

(
ε1

ε2

)
, (1.3)

where X1 ∈ <M1×K , X2 ∈ <M2×K , M = M1 + M2 and y, ε are partitioned accordingly. Then, the
variance covariance matrix Ω in (1.1) and its upper triangular Cholesky factor C, i.e. Ω = CCT ,
(Kontoghiorghes, 2000) are partitioned respectively as

Ω =

(
Ω11 Ω12

Ω21 Ω22

)
and C =

(
C11 C12

0 C22

)
. (1.4)

Here Ω11 and Ω22 are the dispersion matrices of the first M1 and the remaining M2 observations, so
that C22 is the upper triangular Cholesky factor of Ω22, i.e. Ω22 = C22C

T
22.

Next, consider estimating the downdated GLM (DGLM)
y2 = X2β2 + ε2, ε2 ∼

(
0, σ2Ω22

)
, (1.5)

after (1.1) has been estimated. Without loss of generality it is assumed that the first M1 observations
are deleted and also that M2 > K, with X2 being full column rank. Thus the downdated GLS

estimator is given by β̂2 =
(
XT

2 Ω−1
22X2

)−1
XT

2 Ω−1
22y2 which is the solution of the GLS problem

argminβ2

∥∥C−1
22 (y2 −X2β2)

∥∥2
.

In the next section a new method that solves the downdating problem of the GLM is presented.
Within this framework, the downdating of the GLM when the dispersion matrix Ω is singular and also
the simultaneous addition and deletion of data are discussed. The problem of deleting observations
from the SUR model is investigated in section 3. Section 4 discusses the computational results.
Finally, conclusions and future work are presented in section 5.

2 Downdating the General Linear Model

An alternative approach for the estimation of the downdated observations GLM (1.5) is to estimate
an updated GLM where the observations added offset those that should be deleted. The main
difficulty when deleting observations from a GLM is that a block of columns and a block of rows
must be deleted from the dispersion matrix, so that the variance of the deleted observations and
the covariances related to the deleted observations no longer affect the solution of the least squares
problem. The aim here is to derive an equivalent model to the DGLM in (1.5) that will yield the
same estimator but will utilize previous computations that have been obtained when estimating the
original model (1.1).

For an ordinary linear model (OLM) the downdated least squares estimator is obtained if the
model is updated with the imaginary deleted observations (Golub and Van Loan, 1996; Yanev and
Kontoghiorghes, 2008). That is, consider the models (1.1) and (1.5) with Ω = IM , Ω22 = IM2 where
their ordinary least squares solution is given by β̂OLS = R−1ỹ and β̂2OLS

= R−1
2 ỹ2. Here R and R2

emanate from the QR decompositions (QRD)
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QT
(
X y

)
=

(
R ỹ
0 ŷ

)
and QT

2

(
X2 y2

)
=

(
R2 ỹ2

0 ŷ2

)
.

Then, R2 can also be obtained by forming the hyperbolic QR decomposition (HQRD)

Q̃H

(
ıX1 ıy1

R ỹ

)
=

(
0 ıy̌2

R2 ỹ2

)
, (2.1)

where ı2 = −1 and (·)H denotes the conjugate transpose of a matrix.
Now consider premultiplying the GLM (1.1) with C−1 in order to transform it to an OLM. From

the partitioning of C in (1.4), it follows (see Björck (1996)) that

C−1 =

(
C−1

11 −C−1
11 C12C

−1
22

0 C−1
22

)
.

Thus, the transformed GLM (TGLM) is given by(
C−1

11 y1 −C−1
11 C12C

−1
22 y2

C−1
22 y2

)
=

(
C−1

11 X1 −C−1
11 C12C

−1
22 X2

C−1
22 X2

)
β +

(
C−1

11 ε1 −C−1
11 C12C

−1
22 ε2

C−1
22 ε2

)
(2.2)

or conformably written as(
y̆1

y̆2

)
=

(
X̆1

X̆2

)
β +

(
ε̆1

ε̆2

)
,

(
ε̆1

ε̆2

)
∼
(

0, σ2

(
IM1 0
0 IM2

))
. (2.3)

Observe from (2.2) that on deleting the first M1 observations from the GLM (1.1), the resulting model
is equivalent to that obtained by deleting the first M1 observations from the TGLM (2.3).

Next, consider the modelıy̆1

y̆1

y̆2

 =

ıX̆1

X̆1

X̆2

β2 +

ıε̆1

ε̆1

ε̆2

 ,

ıε̆1

ε̆1

ε̆2

 ∼
0, σ2

−IM1 0 0
0 IM1 0
0 0 IM2

 (2.4)

which has the GLS solution

β̂2 =


ıX̆1

X̆1

X̆2

H−IM1 0 0
0 IM1 0
0 0 IM2

ıX̆1

X̆1

X̆2




−1ıX̆1

X̆1

X̆2

H−IM1 0 0
0 IM1 0
0 0 IM2

ıy̆1

y̆1

y̆2


=
(
X̆T

2 X̆2

)−1

X̆T
2 y̆2

=
(
XT

2 C
−T
22 C

−1
22 X2

)−1
XT

2 C
−T
22 C

−1
22 y2

=
(
XT

2 Ω−1
22X2

)−1
XT

2 Ω−1
22 y2

on using y̆2 = C−1
22 y2 and X̆2 = C−1

22 X2 from (2.2). The latter is the GLS solution of the downdated
GLM (1.5).

The OLM model in (2.4) is written as

C−1
d

(
ıy1

y

)
= C−1

d

(
ıX1

X

)
β2 +C−1

d

(
ıε1

ε

)
,

where

C−1
d =

C−1
11 0 −ıC−1

11 C12C
−1
22

0 C−1
11 −C−1

11 C12C
−1
22

0 0 C−1
22

 =

C11 0 ıC12

0 C11 C12

0 0 C22

−1

.

Thus (2.4) is equivalent to the GLM, updated with the imaginary deleted observations, given by
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(
ıy1

y

)
=

(
ıX1

X

)
β2 +

(
ıε1

ε

)
,

(
ıε1
ε

)
∼
(
0, σ2Ωd

)
. (2.5)

Here the variance covariance matrix Ωd is given by

Ωd =

(
Ω33 ıVd

−ıV T
d Ω

)
= CdΨC

H
d , Cd =

(
C11 ıC̃12

0 C

)
, (2.6)

where C̃12 = (0 C12) and Ψ is the signature matrix

Ψ = diag (−IM1 , IM) =

(
−IM1 0

0 IM

)
. (2.7)

Thus Ω33 = C12C
T
12 − C11C

T
11 and Vd =

(
C12C

T
12 C12C

T
22

)
. Observe that the normal equations of

(2.5) give the GLS estimator of the DGLM (1.5), that is,

β̂2 =

((
ıX1

X

)H (
Ω33 ıVd

−ıV T
d Ω

)−1(
ıX1

X

))−1(
ıX1

X

)H (
Ω33 ıVd

−ıV T
d Ω

)−1(
ıy1

y

)
=
(
XT

2 Ω−1
22X2

)−1
XT

2 Ω−1
22 y2.

This implies that the updated GLM (2.5) is equivalent to the downdated GLM (1.5).

2.1 The Generalized Linear Least Squares Approach

The GLS estimator of the GLM (1.1) is the solution of the generalized linear least squares problem
(GLLSP)

argmin
v,β

‖v‖2 subject to y = Xβ +Cv, (2.8)

where Ω = CCT , C is the upper triangular Cholesky factor and v ∼ (0, σ2IM) is defined to give
ε = Cv (Paige, 1978, 1979; Kourouklis and Paige, 1981). In order to solve the GLLSP (2.8), let the
computation of the generalized QR decomposition (GQRD) of X and C be given by

QT
(
X y

)
=

(
R ỹ
0 ŷ

)
K
M −K, with Q =

( K M −K
Q1 Q2

)
(2.9a)

(
QTC

)
P = U =

(
U11 U12

0 U22

)
K
M −K, (2.9b)

where R and U are upper triangular, non singular matrices and Q,P ∈ <M×M are orthogonal
matrices. The GLLSP (2.8) is then equivalent to

argmin
ṽ,v̂,β

∥∥∥∥(ṽv̂
)∥∥∥∥2

subject to

(
ỹ
ŷ

)
=

(
R
0

)
β +

(
U11 U12

0 U22

)(
ṽ
v̂

)
, (2.10)

where P Tv =
(
ṽT v̂T

)
. The second part of the partitioned constraint in (2.10) gives v̂ = U−1

22 ŷ.

Setting ṽ = 0, the estimator is obtained by solving the triangular system β̂ = R−1 (ỹ −U12v̂).
This implies that the GLS solution of the updated GLM (2.5) can be obtained from the GLLSP

argmin
v1,v,β2

∥∥∥∥(ıv1

v

)∥∥∥∥
h

subject to

(
ıy1

y

)
=

(
ıX1

X

)
β2 +

(
C11 ıC̃12

0 C

)(
ıv1

v

)
, (2.11)

where ‖x‖h = xHΦx is the hyperbolic norm of a complex column vector x (Rader and Steinhardt,
1986). It is assumed that the solution of the GLLSP (2.8) as well as the matrices X and R in (2.9a)
are available. Utilizing the GQRD (2.9), yields
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argmin
v1,ṽ,v̂,β2

∥∥∥∥∥∥
ıv1

ṽ
v̂

∥∥∥∥∥∥
h

subject to

ıy1

ỹ
ŷ

 =

ıX1

R
0

β2 +

C11 ıCA ıCB

0 U11 U12

0 0 U22

ıv1

ṽ
v̂

 , (2.12)

where (CA CB) = C̃12P . In (2.10), v̂ = U−1
22 ŷ and thus (2.12) is reduced to

argmin
v1,ṽ,β2

∥∥∥∥(ıv1

ṽ

)∥∥∥∥
h

subject to

(
ıỹ1

˜̃y

)
=

(
ıX1

R

)
β2 +

(
C11 ıCA

0 U11

)(
ıv1

ṽ

)
, (2.13)

where ˜̃y = ỹ −U12v̂ and ỹ1 = y1 −CBv̂. For the solution of (2.13) consider the HQRD

Q̃H

(
ıX1 ıỹ1

R ˜̃y

)
=

(
0 ıẑ
R2 z̃

)
M1

K
(2.14)

and the product

Q̃H

(
C11 ıCA

0 U11

)
=

(
D11 ıD12

ıD21 D22

)
. (2.15)

Here Q̃ is a (M1 + K) × (M1 + K) hypernormal matrix with respect to the signature matrix
diag (−IM1 , IK) and is defined as the product of K hyperbolic Householder transformations (Rader
and Steinhardt, 1986). The efficient computation of the HQRD has been studied and a block strat-
egy which is based on the compact form of the hyperbolic matrices has been proposed (Yanev and
Kontoghiorghes, 2008).

Now, premultiplying the constraints of (2.13) by Q̃H yields

argmin
v1,ṽ,β2

∥∥∥∥(ıv1

ṽ

)∥∥∥∥
h

subject to

(
ıẑ
z̃

)
=

(
0
R2

)
β2 +

(
D11 ıD12

ıD21 D22

)(
ıv1

ṽ

)
. (2.16)

For the solution of (2.16), let the RQ decomposition (RQD) of (ıD11 D12) be given by(
D11 ıD12

)
P̃ =

(
Ũ11 0

)
,(

ıD21 D22

)
P̃ =

(
ıŨ21 Ũ22

)
and

P̃H

(
ıv1

ṽ

)
=

(
ıˆ̄v
˜̄v

)
,

where Ũ11 ∈ <M1×M1 is a non singular, upper triangular matrix and P̃ ∈ =(K+M1)×(K+M1) is a unitary
matrix and is defined as the product of M1 Householder transformations. Thus the GLLSP (2.16) is
written as

argmin
ˆ̄v,˜̄v,β2

∥∥∥∥(ıˆ̄v˜̄v
)∥∥∥∥

h

subject to

(
ıẑ
z̃

)
=

(
0
R2

)
β2 +

(
Ũ11 0

ıŨ21 Ũ22

)(
ıˆ̄v
˜̄v

)
. (2.17)

From the constraints in (2.17) it follows that ˆ̄v = Ũ−1
11 ẑ. Setting ˜̄v = 0, the estimator is obtained by

the solution of the triangular system R2β̂2 = z̃ + Ũ21 ˆ̄v. The downdating strategy is summarized in
Algorithm 2.1.

In many cases, it is possible that the variance covariance matrix is singular (Zyskind and Martin,
1969; Judge et al., 1985; Deaton, 1986; Bai and Shi, 2011; Holly et al., 2011). Therefore, consider
downdating the GLM (1.1) by deleting the first M1 observations when Ω is singular, in which case the
GLS estimator in (1.2) does not exist, and let rank(Ω) = m < M . The GLLSP (2.8) gives the BLUE
of the GLM where now C ∈ <M×m and v ∼ (0, σ2Im) (Kourouklis and Paige, 1981). In this case for
the solution of the GLLSP (2.8), the QRD (2.9a) and the complete QRD of QT

2C are required, that
is,

GT
(
QT

2C
)
P̄ =

(
0 S22

0 0

)
, (2.18)
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Algorithm 2.1: Estimating the DGLM (2.5) after solving (2.8) using the GQRD (2.9)

1. Let ˜̃y,R,U11,P and v̂ from the solution of the GLLSP (2.8).
2. Compute

(
CA CB

)
= C̃12P .

3. Compute ỹ1 = y1 −CBv̂ where v̂ is given by v̂ = U−1
22 ŷ.

4. Compute the HQRD (2.14) and the product in (2.15).
5. Compute the RQD

(
D11 ıD12

)
P̃ =

(
Ũ11 0

)
.

6. Compute the product
(
ıD21 D22

)
P̃ =

(
ıŨ21 Ũ22

)
.

7. Solve the triangular system R2β̂2 = z̃ + Ũ21 ˆ̄v for β̂2.

where S22 ∈ <q×q is upper triangular and non singular, q = rank(QT
2C), G ∈ <(M−K)×(M−K) and

P̄ ∈ <m×m are orthogonal. Now if GT ŷ =
(
ŷT1 ŷT2

)T
and QT

1CP̄ = (S11 S12), then the GLLSP is
equivalent to

argmin
ũ,û,β

∥∥∥∥(ũû
)∥∥∥∥2

subject to

 ỹŷ1

ŷ2

 =

R0
0

β +

S11 S12

0 S22

0 0

(ũ
û

)
, (2.19)

where P̄ Tv =
(
ũT ûT

)T
. It follows that ŷ2 = 0, otherwise the model is inconsistent, û = S−1

22 ŷ1,

and the BLUE is β̂ = R−1 (ỹ − S12û).
For the downdating problem, assume that the estimator for β has already been obtained from the

solution of the GLLSP as it is formulated in (2.19). The partitioning in (1.3) and (1.4) for y,X, ε
and Ω will be used, but now C is partitioned as

C =

(
B11 B12

0 B22

)
,

so that B11 ∈ <M1×m1 , B22 = C22 ∈ <M2×m2 and m1 + m2 = m. The downdating of the GLM
(1.1) with singular Ω, after previous computation have been efficiently utilized, is obtained from the
solution of the GLLSP

argmin
u1,ũ,β2

∥∥∥∥(ıu1

ũ

)∥∥∥∥
h

subject to

(
ıỹ1

˜̃y

)
=

(
ıX1

R

)
β2 +

(
B11 ıB1

0 S11

)(
ıu1

ũ

)
,

where (B1 B2) = (0 B12) P̄ , P̄ is the orthogonal matrix from the complete QRD (2.18), ˜̃y =
ỹ − S12û and ỹ1 = y1 − B2û. The solution of the latter GLLSP is analogous to that of (2.13)
(Hadjiantoni, 2015).

Often, the deletion of observations (from a model) is accompanied by the addition of new obser-
vations. Consider the GLM (1.1) and assume that the first M1 observations will be deleted while Mu

new observations become available. Let the new observations, added to the GLM (1.1), be denoted
by

yu = Xuβu + εu, εu ∼
(
0, σ2Ωuu

)
where yu, εu ∈ <Mu and Xu ∈ <Mu×K . It is assumed that εu and ε are correlated. The GLM to be
estimated is given by(

yu
y2

)
=

(
Xu

X2

)
β̃ +

(
εu
ε2

)
,

(
εu
ε2

)
∼
(

0, σ2

(
Ωuu Ωu2

Ω2u Ω22

))
. (2.20)

Suppose that the GLM (1.1) has been estimated. The problem of estimating (2.20) is equivalent to
estimate an updated GLM where the new observations are added and those to be excluded from the
model are removed. Consider the up-downdated GLM (UDGLM) where the first M1 observations of
the GLM (1.1) are deleted and the Mu new observations are added, namely
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ıy1

yu
y

 =

ıX1

Xu

X

 β̃ +

ıε1

εu
ε

 ,

ıε1

εu
ε

 ∼ (0, σ2Ω̃
)
. (2.21)

Here Ω̃ is given by

Ω̃ =

C11 0 ıC̃12

0 Cuu C̃u2

0 0 C

 Φ̂

C11 0 ıC̃12

0 Cuu C̃u2

0 0 C

H

,

where C̃12 = (0 C12), C̃u2 = (0 Cu2) and Φ̂ = diag (−IM1 , IMu+M). The normal equations of the
UDGLM (2.21) confirm that the GLS solution is the same as the one obtained from the GLM (2.20).
The UDGLM (2.21) is then formulated to the equivalent GLLSP which is solved in a way similar to
(2.11) (Hadjiantoni, 2015).

3 Seemingly Unrelated Regressions Model

The seemingly unrelated regressions (SUR) model is a special case of the GLM (1.1) and is defined
as

yi = Xiβi + ei, i = 1, . . . , G,

or in compact form as 
y1

y2
...
yG

 =


X1

X2

. . .

XG



β1

β2
...
βG

+


e1

e2
...
eG


or

vec (Y ) =
(
⊕Gi=1Xi

)
β + vec(E), (3.1)

where yi ∈ <M are the response vectors, Xi ∈ <M×ki are the exogenous matrices with full column
rank, βi ∈ <ki are the vectors of parameters to be estimated and ei ∈ <M are the disturbance
vectors (Zellner, 1962; Telser, 1964; Srivastava and Dwivedi, 1979; Srivastava and Giles, 1987). For
the error terms we have that E (ei) = 0, E(eie

T
i ) = σiiIM , E(eie

T
j ) = σijIM , that is, the distur-

bances are contemporaneously correlated across regressions. Therefore, Y = (y1 . . . yG), ⊕Gi=1Xi =

diag (X1 . . . XG) where ⊕ stands for direct sum, β =
(
βT1 . . . βTG

)T
, E = (e1 . . . eG) and vec is

the column stack operator. The disturbance term vec(E) ∼ (0,Σ⊗ IM) where Σ = [σij] ∈ <G×G is
a symmetric positive definite matrix and ⊗ denotes the Kronecker product. Note that ⊕Gi=1 will be
abbreviated by ⊕i for notational convenience and {·} will be used to denote a set of vectors. The
numerical and computational strategies for modifying the SUR model after adding observations have
been previously investigated (Kontoghiorghes and Clarke, 1995; Foschi and Kontoghiorghes, 2002;
Foschi et al., 2003). That is, the GLLSP (2.8) now corresponds to

argmin
V ,β

‖V ‖2
F subject to vec(Y ) = (⊕iXi)β + (C ⊗ IM) vec(V ), (3.2)

where Σ = CCT , C is the upper triangular Cholesky factor, V ∼ (0, IGM) is defined to give
E = V CT and ‖·‖F denotes the Frobenius norm (Kontoghiorghes, 2000). For the solution of the
GLLSP (3.2), the GQRD of ⊕iXi and C ⊗ IM , used in the solution of the latter, is given by

QT
(
⊕iXi

)
=

(
⊕iRi

0

)
K
GM −K, (3.3a)
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QT (C ⊗ IM)P =

(
U11 U12

0 U22

)
K
GM −K, (3.3b)

where Ri ∈ <ki×ki is the upper triangular factor of the QRD of Xi, namely

QT
i

(
Xi yi

)
=

(
Ri ỹi
0 ŷi

)
ki
M − ki

,

Q ∈ <GM×GM ,Qi ∈ <M×M are orthogonal and K =
∑G

i=1 ki. The GLLSP (3.2) is then equivalent to

argmin
ṽi,v̂i,β

G∑
i=1

(
‖ṽi‖2 + ‖v̂i‖2) subject to

(
vec ({ỹi})
vec ({ŷi})

)
=

(
⊕iRi

0

)
β +

(
U11 U12

0 U22

)(
vec ({ṽi})
vec ({v̂i})

)
,

(3.4)

where P Tvec(V ) =
(
vec ({ṽi})T vec ({v̂i})T

)T
. The second constraint in (3.4) gives vec ({v̂i}) =

U−1
22 vec ({ŷi}); vec ({ṽi}) is set to zero in order to minimize the argument in (3.4), and the estimator

is obtained from the solution of the triangular system (⊕iRi) β̂ = vec ({ỹi})−U12vec ({v̂i}).

3.1 Downdating the SUR Model

The problem of deleting observations from the SUR model is now considered. Assume that an
equal number of observations, say the last d observations, are removed from every regression and let
yi, Xi and ei in (3.1) be partitioned as

yi =

(
y∗
i

y
(d)
i

)
, Xi =

(
X∗

i

X
(d)
i

)
, ei =

(
e∗i
e

(d)
i

)
,

where X∗
i ∈ <M

∗×ki , X
(d)
i ∈ <d×ki for i = 1, . . . , G and M = M∗ + d. Note that the observations in

the SUR model can be reordered and thus (3.1) is expressed in the equivalent form:(
vec (Y ∗)
vec(Y (d))

)
=

(
⊕iX∗

i

⊕iX(d)
i

)
β +

(
vec(E∗)

vec(E(d))

)
,

(
vec(E∗)

vec(E(d))

)
∼
(

0,

(
Σ⊗ IM∗ 0

0 Σ⊗ Id

))
. (3.5)

The downdated SUR (DSUR) model to be estimated is then given by
y∗
i = X∗

i β
∗
i + e∗i , e

∗
i ∼ (0, σiiIM∗) , i = 1, . . . , G

or by the equivalent compact form
vec(Y ∗) = (⊕iX∗

i )β∗ + vec(E∗), vec(E∗) ∼ (0,Σ⊗ IM∗) . (3.6)

Analogous to the method for the downdating of the GLM, the DSUR model (3.6) is equivalent to(
vec (Y )

vec(ıY (d))

)
=

(
⊕iXi

⊕iıX(d)
i

)
β∗ +

(
vec(E)

vec(ıE(d))

)
,

(
vec(E)

vec(ıE(d))

)
∼
(

0,

(
Σ⊗ IM 0

0 Σ⊗ (−Id)

))
.

Now using the partitioning in (3.5) for (3.1) and following the same procedure as for the down-
dating of the GLM (see section 2), it can be shown that the latter gives the same GLS solution
as the DSUR model (3.6). Furthermore its GLS solution can be obtained from the solution of the
corresponding GLLSP, namely

argmin
V ,V (d),β∗

‖V ‖2
F −

∥∥V (d)
∥∥2

F
subject to

(
vec (Y )

vec(ıY (d))

)
=

(
⊕iXi

⊕iıX(d)
i

)
β∗ +

(
C ⊗ IM 0

0 C ⊗ Id

)(
vec(V )

vec(ıV (d))

)
,

(3.7)
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where C is the upper triangular Cholesky factor such that Σ = CCT as in (3.2). Using the GQRD
(3.3) the latter GLLSP becomes

argmin
ṽi,v̂i,V (d),β∗

G∑
i=1

(
‖ṽi‖2 + ‖v̂i‖2)− ∥∥V (d)

∥∥2

F
subject to

vec ({ỹi})
vec ({ŷi})
vec(ıY (d))

 =

 ⊕iRi

0

⊕iıX(d)
i

β∗ +

U11 U12 0
0 U22 0
0 0 C ⊗ Id

vec ({ṽi})
vec ({v̂i})
vec(ıV (d))


which reduces to the equivalent GLLSP

argmin
ṽi,V (d),β∗

G∑
i=1

‖ṽi‖2 −
∥∥V (d)

∥∥2

F
subject to

(
vec
(
{˜̃yi}

)
vec(ıY (d))

)
=

(
⊕iRi

⊕iıX(d)
i

)
β∗ +

(
U11 0
0 C ⊗ Id

)(
vec ({ṽi})
vec
(
ıV (d)

)) .
(3.8)

The solution of (3.8) is obtained by the HQRD

Q̃H

(
⊕iRi

⊕iıX(d)
i

)
=

(
⊕iR∗

i

0

)
K
Gd

(3.9)

and the RQD (
Q̃H

(
U11 0
0 C ⊗ Id

))
P̃ =

(
Ũ11 ıŨ12

0 Ũ22

)
, (3.10)

where Q̃ is a hyperbolic matrix with respect to the signature matrix diag(IK ,−IGd) and P̃ is a
unitary matrix of order IGd + IK , R∗

i , i = 1, . . . , G, are the upper triangular and non singular factors
obtained when the QRD of ⊕iX∗

i is computed, and Ũ22 is an upper triangular and non singular
matrix. Then, the GLLSP (3.8) is equivalent to

argmin
˜̄ui, ˆ̄ui,β∗

G∑
i=1

∥∥∥∥( ˜̄vi
ıˆ̄vi

)∥∥∥∥
h

subject to

(
vec({z̃i})
vec({ıẑi})

)
=

(
⊕iR∗

i

0

)
β∗ +

(
Ũ11 ıŨ12

0 Ũ22

)(
vec({˜̄vi})
vec({ıˆ̄vi})

)
,

where

Q̃H

(
vec
({

˜̃yi
})

vec(ıY (d))

)
=

(
vec ({z̃i})
vec ({ıẑi})

)
and P̃H

(
vec ({ṽi})
ıvec

(
V (d)

)) =

(
vec
(
{˜̄vi}

)
vec
(
{ˆ̄vi}

)) .
The solution of the latter GLLSP is similar to that of the GLLSP (3.4). The same formulation

holds in (3.1) for non singular and singular dispersion matrix Σ. Here, only the estimation of the
SUR model and the DSUR when the dispersion matrix is non singular is presented. The method can
be extended for singular Σ as in the case of the GLM in section 2.1. The steps for the downdating
method of the SUR model are summarized in Algorithm 3.1.

Algorithm 3.1: Estimating the DSUR model (3.6) after solving (3.2) using the GQRD (3.3)

1. Let ˜̃yi,Ri, i = 1, . . . , G and U11 from the solution of the GLLSP (3.2).
2. Compute the HQRD (3.9).
3. Compute the RQD (3.10).
4. Solve the triangular system vec({ẑi}) = Ũ22vec({ˆ̄vi}) for vec({ˆ̄vi}.
5. Solve the triangular system (⊕iR∗

i ) β̂
∗ = vec({z̃i}) + Ũ12vec({ˆ̄vi} for β̂∗.
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3.2 Downdating the Unbalanced SUR Model

Consider the case where an arbitrary number of observations has been deleted from an arbitrary
number of regressions in the SUR model (3.1) which has resulted in the unbalanced SUR (USUR)
model

y̌j = X̌jβ̌j + ěj, j = 1, . . . , G, (3.11)

where X̌j ∈ <tj×kj , y̌j, ěj ∈ <tj , ěj ∼
(
0, σ2

jjItj
)

and E
(
ěiě

T
j

)
= σij(Iti 0ti×(tj−ti)) for ti < tj.

Assume that ti < tj for i < j, i, j = 1, . . . , G and let τ =
∑G

j=1 tj. The estimation of the USUR
model using the method of GLLSP has been previously considered in Foschi and Kontoghiorghes
(2002). Specifically, in order to apply the GLLSP approach for the USUR model in (3.11) the
observations of each regression are partitioned and reordered according to

y̌i =


y̌1i

y̌2i
...
y̌ii


m1

m2
...
mi

, X̌i =


X̌1i

X̌2i
...
X̌ii


m1

m2
...
mi

, ěi =


ě1i

ě2i
...
ěii


m1

m2
...
mi

,

where m1 = t1 and mi = ti − ti−1, i = 2, . . . , G. Now the USUR model (3.11) is reformulated as
vec ({y̌1j})

...
vec ({y̌ij})

...
vec ({y̌Gj})

 =



(
0κ1 ⊕jX̌1j

)
...(

0κi ⊕jX̌ij

)
...(

0κG ⊕jX̌Gj

)

 β̌ +


vec ({ě1j})

...
vec ({ěij})

...
vec ({ěGj})

 , j = i, . . . , G, (3.12)

or in compact form as
y̌ = X̌β̌ + ě,

where κ1 = 0 and κj =
∑j−1

l=1 kl, j = 2, . . . , G . The disturbance term in (3.12) has zero mean
and dispersion matrix Ω̌ which is block diagonal with entries Σi:G,i:G ⊗ Imi

, where Σi:G,i:G is the
(G− i+ 1)× (G− i+ 1) submatrix of Σ starting at position (i, i), i = 1, . . . , G. The corresponding
GLLSP is given by

argmin
v̌,β̌

‖v̌‖2 subject to y̌ = X̌β̌ + Čv̌, (3.13)

where ě = Čv̌ and v̌ ∼ (0, Iτ ). Note that Č is block diagonal with entry to the ith block, the upper
triangular matrix Ci:G,i:G such that Ω̌ = ČČT (Foschi and Kontoghiorghes, 2002). The solution of
the GLLSP (3.13) is obtained from the GQRD of X̌ and Č.

Assume now that further observations are to be deleted from the USUR model (3.11). Let the
y̌i, X̌i and ěi in (3.11) be partitioned as

y̌i =

(
y̌∗
i

y̌
(d)
i

)
, X̌i =

(
X̌∗

i

X̌
(d)
i

)
, ěi =

(
ě∗i
ě

(d)
i

)
, (3.14)

where X̌∗
i ∈ <(ti−di)×ki are the remaining observations in the ith regression and X̌

(d)
i ∈ <di×ki are the

observations to be deleted from the ith regression. Note that di ≥ dj ≥ 0 for i < j, i, j = 1, . . . , G

and let δ =
∑G

i=1 di. Suppose that the system of the deleted observations, as defined by (3.14), has
been reformulated as in (3.12); it is given by

y̌(d) = X̌(d)β̌(d) + ě(d),

where ě(d) has zero mean and dispersion matrix Ω̌(d). Then, the downdating USUR model is equivalent
to the updated USUR model
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(
y̌
ıy̌(d)

)
=

(
X̌
ıX̌(d)

)
β̌∗ +

(
ě
ıě(d)

)
,

(
ě
ıě(d)

)
∼
(

0,

(
Ω̌ 0
0 −Ω̌(d)

))
. (3.15)

The SUR model (3.15) is thus equivalent to the GLLSP

argmin
v̌,v̌(d),β̌∗

∥∥∥∥( v̌
ıv̌(d)

)∥∥∥∥
h

subject to

(
y̌
ıy̌(d)

)
=

(
X̌
ıX̌(d)

)
β̌∗ +

(
Č 0
0 Č(d)

)(
v̌
ıv̌(d)

)
, (3.16)

where v̌(d) ∼ (0, Iδ) is defined such that ě(d) = Č(d)v̌(d), Ω̌(d) = Č(d)
(
Č(d)

)T
. Previous computations

from the solution of (3.13) are utilized. The solution of (3.16) follows analogously to that of (3.7)
and the algorithm for the estimation of (3.15) is similar to Algorithm 3.1.

4 Computational Results

When modifying a model by either deleting and/or adding observations or regressors the main
aim is to utilize previous computations in order to minimize the number of arithmetic operations
and storage locations (Björck, 1996). Therefore, in order to examine the computational efficiency of
Algorithm 2.1 compared to other algorithms that solve the same problem afresh, its computational
complexity has been studied. Moreover, the development of efficient algorithms requires that the
special structure of the matrices be exploited (Yanev and Kontoghiorghes, 2008). Within this context,
a strategy for the efficient execution of Algorithm 2.1 has been developed.

For the analysis and comparison of the computational results, four algorithms, herein referred to
as Alg. 1, Alg. 1b, Alg. 2 and Alg. 2b, have been considered. They are:

Alg. 1: Solves afresh the problem by computing the GQRD (2.9) and solving the triangular
system β̂ = R−1 (ỹ −U12v̂).

Alg. 1b: This is Alg. 1 but using a block recursive strategy.

Alg. 2: This is Algorithm 2.1, which is given in section 2.1.

Alg. 2b: This is Algorithm 2.1 but with the special structure of the matrices in steps 2-5 being
exploited.

The theoretical complexities in terms of flops of the four algorithms have been computed in accordance
with Golub and Van Loan (1996). Their order of complexity is given approximately by 4/3g3K3,
2gM1K

2, 4n2K3 and nK3(5n+ 2g), respectively, where g = M/K and n = M1/K when M1 is large.
In particular, the case where the number of the deleted observations M1 is smaller than the regressors
K and also the instance where M1 is a multiple of K have been examined in detail. Specifically when
M1 < K, Alg. 1 estimates the model by solving the equivalent GLLSP and is compared with Alg. 2
which employs directly the downdating strategy. When M1 = nK, Alg. 1b and Alg. 2b can be
employed. Hence in this case, Alg. 1b is used and its results are compared with Alg. 2b which applies
the same strategy but is based on the proposed downdating method, i.e. Algorithm 2.1. In the case
where M1 < K, the complexity analysis indicates that Alg. 2 is more efficient when M1 < 2/3g2K.
In addition, when M1 = nK, Alg. 2b, performs better when h > n(1 +

√
21)/4, where h = M2/K.

In order to validate further the proposed method, a series of experiments based on synthetic data
have been carried out. Table 1 shows the execution times, in CPU seconds, of the four algorithms
mentioned above for models with the initial number of observations M = 2500, 5000, K = 50, 100 and
for various values of M1. The times presented are the average times after solving the same problem 20
times. The execution times show that Algorithm 2.1 for downdating the GLM outperforms existing
algorithms which solve the same problem afresh. Furthermore, Figure 1 illustrates the computational
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efficiency of the up-downdating strategy, herein referred to as Alg. 3, (see Algorithm 2.2.2 in Had-
jiantoni (2015)), when compared with Alg. 1 which solves the same problem afresh, by presenting the
ratio of the execution times of the two algorithms. In particular, the execution times of models with
initial number of observations M = 2500, 5000 and K = 50, 100, 250, 500 and different values of M1

and Mu have been obtained. It is assumed that the same number of observations has been added and
deleted simultaneously. The results show that Alg. 3 (up-downdating strategy) outperforms existing
algorithms. Observe that the performance of Alg. 3 is significantly higher the smaller is the increment
of the rolling window is and also note that the efficiency decreases as the number of parameters in
the model increases.

Table 1: Execution times in seconds of the downdating algorithms for the GLM

M1 K M2 Alg. 1 Alg. 2×102 Alg. 1

Alg. 2
M1 K M2 Alg. 1b Alg. 2b×102 Alg. 1b

Alg. 2b
afresh recursive afresh recursive

1 50 2499 281 7 4071 200 50 2300 10 20 49
25 50 2495 279 8 3508 500 50 2000 7 54 13
50 50 2450 275 9 2993 1000 50 1500 4 141 3
1 100 2499 305 8 4068 200 100 2300 16 37 43
25 100 2495 280 9 2999 500 100 2000 12 108 11
50 100 2450 271 12 2196 1000 100 1500 7 292 2
1 50 4999 2462 29 8548 500 50 4500 55 88 63
25 50 4995 2387 30 7956 1000 50 4000 41 185 22
50 50 4950 2402 32 7505 1500 50 3500 30 331 9
1 100 4999 2489 30 8423 500 100 4500 76 153 50
25 100 4995 2440 32 7565 1000 100 4000 58 365 16
50 100 4950 2398 35 6764 1500 100 3500 43 686 6

Alg. 1 and Alg. 1b solve the problem afresh (Alg. 1b uses a block recursive strategy).
Alg. 2 is Algorithm 2.1 and Alg. 2b is Algorithm 2.1 but the structure of the matrices is exploited.
The times for Alg. 2 and Alg. 2b have been multiplied by 102.

The computational efficiency of the proposed algorithms for the downdating of the SUR and the
USUR models has also been examined using macroeconomic data applied to a vector autoregressive
(VAR) process. A VAR process yt ∈ <p with q lags is formulated as a SUR model where the dependent
variables are the vectors yt and the explanatory variables, which are the same in all equations, are
given by the matrix (1 yTt−1 . . . yTt−q), and can be efficiently estimated by applying OLS equation
by equation (Lütkepohl, 2007). However in the case where zero coefficient constraints are imposed,
that is a subset VAR model is to be estimated, the method of GLS needs to be applied (Zellner, 1962;
Lütkepohl, 2007).

The data set used here has been originally employed in Lee (1992) and then in Wang (2010). It
consists of monthly data of four variables: real stock returns, real interest rates, industrial production
growth and inflation rates spanning from July 1926 to December 2000. Herein, the most probable
fitted subset VAR model obtained from Wang (2010) in a study for sparse SUR models for the period
January 1947 to December 1987 is used. Within this context, leave-one-out experiments when the
influence of each observation separately is of concern have been executed and also rolling window
estimation for various window sizes has been implemented. For the window estimation of the SUR
model, an up-downdating of the model is performed. For the analysis of the computational results in
the case of the SUR model, the following four algorithms have been considered:
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Figure 1: Computational efficiency (execution times ratio) of Alg. 3 (up-downdating strategy) when compared with
Alg. 1 which solves the same problem afresh. Results for models with M = 2500; 5000, K = 50; 100, 250; 500 and
M1 = Mu = 1; 25; 50; 100; 250; 500; 750; 1000 are presented.

Alg. 4: Solves afresh the problem by computing the GQRD (3.3) and solving the triangular
system (⊕iRi) β̂ = vec ({ỹi})−U12vec ({v̂i}).

Alg. 4b: Solves afresh the problem by applying the method of Foschi and Kontoghiorghes (2002)
for the USUR model after deleting a single observation.

Alg. 5: This is Algorithm 3.1, which is given in section 3.1.

Alg. 5b: This is Algorithm 3.1 which is given in section 3.1 applied for the downdating of the
USUR model as presented in section 3.2.

Alg. 6: This is the extended version of Algorithm 3.1 to simultaneously add and delete obser-
vations from the model similarly to Alg. 2.2.2 in Hadjiantoni (2015).

Table 2 presents the results of the leave-one-out experiments. The performance of the algorithms is
demonstrated using different sample sizes of the data set. Specifically, the case where one observation
is deleted from every regression in the model and also the instance where one observation is deleted
from one of the regressions have been considered. The first case yields M possibilities equal to the
number of observations in each regression of the model whereas the second case gives GM possibilities
that correspond to the number of regressions G times the number of observations M in each regression
of the model. In the second case an USUR model needs to be estimated. In Table 2 the total times
required by Alg. 4 and Alg. 4b and the proposed downdating Alg. 5 and Alg. 5b in order to complete
the leave one out experiments when the model consists of M = 250, 500, 750 observations are reported.
The results show that Alg. 5 and Alg. 5b outperform Alg. 4 and Alg. 4b which solve the same problem
afresh. In addition, Figure 2 demonstrates the computational efficiency of Alg. 6 which implements
the up-downdating method for the window estimation of the SUR model when compared with Alg. 4
which solves the same problem afresh. Particularly, Figure 2 shows the ratio of the execution times
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of the two algorithms when the estimation window is rolling over the data set by h = 1, 3, 6, 12, 24
(months). Note that herein all the algorithms that have been implemented for the SUR and the
USUR model take into account the special sparse structure of the model.

M Alg. 4 Alg. 5×102 Alg. 4

Alg. 5
afresh recursive

250 451 16 2817
500 10769 39 27612
750 59999 60 99998

(a) Panel A: SUR model leave-one-out

M Alg. 4b Alg. 5b×102 Alg. 4b

Alg. 5b
afresh recursive

250 450 101 446
500 10584 272 3891
750 53166 1324 4016

(b) Panel B: USUR model leave-one-out

Table 2: Total execution times in seconds of the algorithms from the leave-one-out experiments. Alg. 4 estimates
the model afresh, Alg. 5 and Alg. 5b are the proposed downdating algorithms for the SUR and the USUR models
respectively. The times for Alg. 5 and Alg. 5b have been multiplied by 102. The algorithms are implemented on a subset
VAR model where the dependent variables are: real stock returns, real interest rates, industrial production growth and
inflation rates for the period 01/1947 to 12/1987. Results are presented where the sample size is M = 250, 500, 750.
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Figure 2: Computational efficiency (execution times ratio) of Alg. 6 when compared with Alg. 4 which solves the same
problem afresh. The algorithms are implemented on a subset VAR model where the dependent variables are: real stock
returns, real interest rates, industrial production growth and inflation rates for the period 01/1947 to 12/1987. Results
when the rolling window size, that is the number of observations added and deleted simultaneously, is h = 1, 3, 6, 12, 24
(months) are presented.

The results show that the proposed methods perform significantly better than existing methods
that solve the same problem afresh. This computational efficiency is due to the fact that when
previous computations are utilized, most operations are performed on matrices of smaller dimensions
than those when the computations are executed afresh. The only computationally expensive operation
in the proposed Algorithm 2.1 is the product in step 2 with theoretical complexity that depends on
the initial number of observations M . However, in the case of the SUR and the USUR models this
step is omitted because of the contemporaneous correlation in these models. That is, in the case
of the SUR and the USUR model, the computational efficiency of the proposed algorithms is even
more impressive and this is because all the operations here depend only on the number of parameters
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-which is usually much smaller than the number of observations in the model- and the number of
deleted observations from the model.

5 Concluding Remarks and Future Work

The numerical solution of the general linear model (GLM) after a block of data is deleted, known
as the downdating problem, has been investigated in depth. The proposed method uses the imaginary
unit to remove the effect of the deleted observations from the generalized least squares (GLS) solu-
tion. The original GLM is updated with the imaginary deleted observations resulting in a variance
covariance matrix which consists of complex covariance values. This updated GLM has been shown
to yield the same normal equations as the downdated model to be estimated. In order to obtain this
updated model, the GLM is transformed initially to the equivalent ordinary linear model (OLM),
which is downdated by using the imaginary unit and by employing a hyperbolic QR decomposition.
Then the downdated OLM is again transformed to give the downdated GLM formulation, i.e. (2.5).

The new method computes the downdated GLS estimator by formulating the updated GLM
as a generalized linear least squares problem. The main computational tool is the generalized QR
decomposition which is realized via hyperbolic Householder and Householder reflections. This new
method provides a solution to the downdating problem even when the dispersion matrix is singular.
The same strategy has been employed in the solution of the GLM when observations are added and
deleted simultaneously. Furthermore, the method has been extended to the solution of the seemingly
unrelated regressions (SUR) and the unbalanced SUR (USUR) models when observations are removed.

The algorithms implement computationally efficient strategies that fully exploit the special struc-
ture of the matrices. Experimental results have been presented and analyzed. It is shown that this
new method (Algorithm 2.1) for downdating the GLM outperforms existing methods which solve the
problem from scratch. Especially when the number of the deleted observations is not very big com-
pared to the remaining observations in the downdating model, then Algorithm 2.1 is computationally
very efficient. The computational efficiency of the new methods for the downdating of the SUR and
the USUR models has been examined using real macroeconomic data by estimating a subset vector
autoregressive model. The results show that the proposed downdating algorithms surpass existing
ones that estimate the models afresh. This, amplifies further the usefulness of such a method in time
series analysis and in econometrics in general. The algorithms have been implemented in R. There-
fore their performance can be optimized if they are implemented using high performance numerical
libraries such as LAPACK and ScaLAPACK (Anderson et al., 1999; Blackford et al., 1997).

Future work will consider the use of the proposed downdating method for the investigation of
influential data in the SUR model when an unequal number of observations is added and deleted
from some of the regressions. Additionally, the application of the downdating method, within the
context of regression diagnostics and cross-validation problems as well as in time series analysis, where
a sequence of least squares problems are solved each time with observations added (new data) and
deleted (old data), merits further investigation. Currently the downdating of the SUR model with
time varying coefficients and autoregressive disturbances and also the downdating of the simultaneous
equations model is under investigation.
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