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Abstract

Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure.
An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies
demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the
amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations
of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise
correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active
decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system)
and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback
statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting
correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies
population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is
explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of
coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory
networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in
the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train
correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input
correlations is not a result of the mere existence of correlations between excitatory (E) and inhibitory (I) neurons, but a
consequence of a particular structure of correlations among the three possible pairings (EE, EI, II).

Citation: Tetzlaff T, Helias M, Einevoll GT, Diesmann M (2012) Decorrelation of Neural-Network Activity by Inhibitory Feedback. PLoS Comput Biol 8(8): e1002596.
doi:10.1371/journal.pcbi.1002596

Editor: Nicolas Brunel, Université Paris Descartes, France
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Introduction

Neurons generate signals by weighting and combining input

spike trains from presynaptic neuron populations. The number of

possible signals which can be read out this way from a given spike-

train ensemble is maximal if these spike trains span an orthogonal

basis, i.e. if they are uncorrelated [1]. If they are correlated, the

amount of information which can be encoded in the spatio-

temporal structure of these spike trains is limited. In addition,

correlations impair the ability of readout neurons to decode

information reliably in the presence of noise. This is often

discussed in the context of rate coding: for N uncorrelated spike

trains, the signal-to-noise ratio of the compound spike-count signal

can be enhanced by increasing the population size N . In the

presence of correlations, however, the signal-to-noise ratio is

bounded [2,3]. The same reasoning holds for any other linear

combination of spike trains, also for those where exact spike timing

matters (for example for the coding scheme presented in [4]).

Thus, the robustness of neuronal responses against noise critically

depends on the level of correlated activity within the presynaptic

neuron population.

Several studies suggested that correlated neural activity could be

beneficial for information processing: Spike-train correlations can

modulate the gain of postsynaptic neurons and thereby constitute

a gating mechanism (for a review, see [4]). Coherent spiking

activity might serve as a means to bind elementary representations

into more complex objects [5,6]. Information represented by

correlated firing can be reliably sustained and propagated through

feedforward subnetworks (‘synfire chains’; [7,8]). Whether corre-

lated firing has to be considered favorable or not largely depends

on the underlying hypothesis, the type of correlation (e.g. the time

scale or the affected frequency band) or which subpopulations of

neurons are involved. Most ideas suggesting a functional benefit of

correlated activity rely on the existence of an asynchronous

‘ground state’. Spontaneously emerging correlations, i.e. correla-

tions which are not triggered by internal or external events, would

impose a serious challenge to many of these hypotheses.

Functionally relevant synfire activity, for example, cannot be
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guaranteed in the presence of correlated background input from

the embedding network [9]. It is therefore–from several perspec-

tives–important to understand the origin of uncorrelated activity in

neural networks.

It has recently been shown that spike trains of neighboring

cortical neurons can indeed be uncorrelated [10]. Similar results

have been obtained in several theoretical studies [11–17]. From an

anatomical point of view, this observation is puzzling: in general,

neurons in finite networks share a certain fraction of their

presynaptic sources. In particular for neighboring neurons, the

overlap between presynaptic neuron populations is expected to be

substantial. This feedforward picture suggests that such presynap-

tic overlap gives rise to correlated synaptic input and, in turn, to

correlated response spike trains.

A number of theoretical studies showed that shared-input

correlations are only weakly transferred to the output side as a

consequence of the nonlinearity of the spike-generation dynamics

[15,18–21]. Unreliable spike transmission due to synaptic failure

can further suppress the correlation gain [22]. In [9], we

demonstrated that spike-train correlations in finite-size recurrent

networks are even smaller than predicted by the low correlation

gain of pairs of neurons with nonlinear spike-generation dynamics.

We concluded that this suppression of correlations must be a result

of the recurrent network dynamics. In this article, we compare

correlations observed in feedforward networks to correlations

measured in systems with an intact feedback loop. We refer to the

reduction of correlations in the presence of feedback as

‘‘decorrelation’’. Different mechanisms underlying such a dynam-

ical decorrelation have been suggested in the recent past.

Asynchronous states in recurrent neural networks are often

attributed to chaotic dynamics [23,24]. In fact, networks of

nonlinear units with random connectivity and balanced excitation

and inhibition typically exhibit chaos [11,25]. The high sensitivity

to noise may however question the functional relevance of such

systems ([26,27]; cf., however, [28]). [29] and [27] demonstrated

that asynchronous irregular firing can also emerge in networks

with stable dynamics. Employing an analytical framework of

correlations in recurrent networks of binary neurons [30], the

balance of excitation and inhibition has recently been proposed as

another decorrelation mechanism [17]: In large networks,

fluctuations of excitation and inhibition are in phase. Positive

correlations between excitatory and inhibitory input spike trains

lead to a negative component in the net input correlation which

can compensate positive correlations caused by shared input.

In the present study, we demonstrate that dynamical decorrela-

tion is a fundamental phenomenon in recurrent systems with

negative feedback. We show that negative feedback alone is

sufficient to efficiently suppress correlations. Even in purely

inhibitory networks, shared-input correlations are compensated

by feedback. A balance of excitation and inhibition is thus not

required. The underlying mechanism can be understood by means

of a simple linear model. This simplifies the theory and helps to

gain intuition, but it also confirms that low correlations can

emerge in recurrent networks with stable, non-chaotic dynamics.

The suppression of pairwise spike-train correlations by inhib-

itory feedback is reflected in a reduction of population-rate

fluctuations. The main effect described in this article can therefore

be understood by studying the dynamics of the macroscopic

population activity. This approach leads to a simple mathematical

description and emphasizes that the described decorrelation

mechanism is a general phenomenon which may occur not only

in neural networks but also in other (biological) systems with

inhibitory feedback. In ‘‘Results: Suppression of popula-
tion-rate fluctuations in LIF networks’’, we first illustrate

the decorrelation effect for random networks of N leaky integrate-

and-fire (LIF) neurons with inhibitory or excitatory-inhibitory

coupling. By means of simulations, we show that low-frequency

spike-train correlations, and, hence, population-rate fluctuations

are substantially smaller than expected given the amount of shared

input. As shown in the subsequent section, the ‘‘Suppression of
population-activity fluctuations by negative feedback’’
can readily be understood in the framework of a simple one-

dimensional linear model with negative feedback. In ‘‘Results:
Population-activity fluctuations in excitatory-inhibitory
networks’’, we extend this to a two-population system with

excitatory-inhibitory coupling. Here, a simple coordinate trans-

form exposes the inherent negative feedback loop as the underlying

cause of the fluctuation suppression in inhibition-dominated

networks. The population-rate models of the inhibitory and the

excitatory-inhibitory network are sufficient to understand the basic

mechanism underlying the decorrelation. They do, however, not

describe how feedback in cortical networks affects the detailed

structure of pairwise correlations. In ‘‘Results: Population
averaged correlations in cortical networks’’, we therefore

compute self-consistent population averaged correlations for a

random network of N linear excitatory and inhibitory neurons. By

determining the parameters of the linear network analytically from

the LIF model, we show that the predictions of the linear model

are—for a wide and realistic range of parameters—in excellent

agreement with the results of the LIF network model. In ‘‘Results:
Effect of feedback manipulations’’, we demonstrate that the

active decorrelation in random LIF networks relies on the feedback

of the (sub)population averaged activity but not on the precise

microscopic structure of the feedback signal. In the ‘‘Discussion’’,
we put the consequences of this work into a broader context and

point out limitations and possible extensions of the presented theory.

The ‘‘Methods’’ contain details on the LIF network model, the

derivation of the linear model from the LIF dynamics and the

derivation of population-rate spectra and population averaged

correlations in the framework of the linear model. This section is

meant as a supplement; the basic ideas and the main results can be

extracted from the ‘‘Results’’.

Author Summary

The spatio-temporal activity pattern generated by a
recurrent neuronal network can provide a rich dynamical
basis which allows readout neurons to generate a variety
of responses by tuning the synaptic weights of their
inputs. The repertoire of possible responses and the
response reliability become maximal if the spike trains of
individual neurons are uncorrelated. Spike-train correla-
tions in cortical networks can indeed be very small, even
for neighboring neurons. This seems to be at odds with
the finding that neighboring neurons receive a consider-
able fraction of inputs from identical presynaptic sources
constituting an inevitable source of correlation. In this
article, we show that inhibitory feedback, abundant in
biological neuronal networks, actively suppresses correla-
tions. The mechanism is generic: It does not depend on
the details of the network nodes and decorrelates
networks composed of excitatory and inhibitory neurons
as well as purely inhibitory networks. For the case of the
leaky integrate-and-fire model, we derive the correlation
structure analytically. The new toolbox of formal lineariza-
tion and a basis transformation exposing the feedback
component is applicable to a range of biological systems.
We confirm our analytical results by direct simulations.

Decorrelation by Inhibitory Feedback
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Results

In a recurrent neural network of size N , each neuron i[½1,N�
receives in general inputs from two different types of sources:

External inputs ji(t) representing the sum of afferents from other

brain areas, and local inputs resulting from the recurrent

connectivity within the network. Depending on their origin,

external inputs ji and jj to different neurons i and j can be

correlated or not. Throughout this manuscript, we ignore

correlations between these external sources, thereby ensuring that

correlations within the network activity arise from the local

connectivity alone and are not imposed by external inputs [17].

The local inputs feed the network’s spiking activity

s(t)~(s1(t), . . . ,sN (t))T back to the network (we refer to spike

train si(t), the i th component of the column vector s(t) [the

superscript ‘‘T’’ denotes the transpose], as a sum over delta-

functions centered at the spike times tk
i : si(t)~

P
k d(t{tk

i ); the

abstract quantity ‘spike train’ can be considered as being derived

from the observable quantity ‘spike count’ nDt
i (t), the number of

spikes occurring in the time interval ½t,tzDt), by taking the limit

Dt?0: si(t)~ limDt?0
1

Dt
nDt

i (t)). The structure and weighting of

this feedback can be described by the network’s connectivity

matrix J (see Fig. 1 A). In a finite network, the local connectivity

typically gives rise to overlapping presynaptic populations: in a

random (Erdös-Rényi) network with connection probability E, for

example, each pair of postsynaptic neurons shares, on average,

E2N presynaptic sources. For a network size of, say, N~104 and a

connection probability E~0:1, this corresponds to a fairly large

number of 100 identical inputs. For other network structures, the

amount of shared input may be smaller or larger. Due to this

presynaptic overlap, each pair of neurons receives, to some extent,

correlated input (even if the external inputs are uncorrelated). One

might therefore expect that the network responses s1(t), . . . ,sN (t)
are correlated as well. In this article, we show that, in the presence

of negative feedback, the effect of shared input caused by the

structure of the network is compensated by its recurrent dynamics.

Suppression of population-rate fluctuations in LIF
networks

To illustrate the effect of shared input and its suppression by the

recurrent dynamics, we compare the spike response s(t)~

(s1(t), . . . ,sN (t))T of a recurrent random network (feedback scenario;

Fig. 1 A,C,E) of N LIF neurons to the case where the feedback is cut

and replaced by a spike-train ensemble q(t)~(q1(t), . . . ,qN (t))T,

modeled by N independent realizations of a stationary Poisson

point process (feedforward scenario; Fig. 1 B,D,F). The rate of this

Poisson process is identical to the time and population averaged

firing rate in the intact recurrent system. In both the feedback and

the feedforward case, the (local) presynaptic spike trains are fed to

the postsynaptic population according to the same connectivity

matrix J . Therefore, not only the in-degrees and the synaptic

weights but also the shared-input statistics are exactly identical.

For realistic size N and connectivity E, asynchronous states of

random neural networks [12,31] exhibit spike-train correlations

which are small but not zero (compare raster displays in Fig. 1 C

and D; see also [15]). Although the presynaptic spike trains are, by

construction, independent in the feedforward case (Fig. 1 D), the

resulting response correlations, and, hence, the population-rate

fluctuations, are substantially stronger than those observed in the

feedback scenario (compare Fig. 1 F and E). In other words: A

theory which is exclusively based on the amount of shared input

but neglects the details of the presynaptic spike-train statistics can

significantly overestimate correlations and population-rate fluctu-

ations in recurrent neural networks.

The same effect can be observed in LIF networks with both

purely inhibitory and mixed excitatory-inhibitory coupling (Fig. 2).

To demonstrate this quantitatively, we focus on the fluctuations of

the population averaged activity s(t)~N{1
PN

i~1 si(t). Its power-

spectrum (or auto-correlation, in the time domain)

CSS(v) ~jS(v)j2~j s(t)½ � vð Þj2

~
1

N2

XN

i~1

Ai(v)z
XN

i~1,j=i

Cij(v)

" #
ð1Þ

is determined both by the power-spectra (auto-correlations)

Ai(v)~DSi(v)D2 of the individual spike trains and the cross-spectra

(cross-correlations) Cij(v)~Si(v)Sj(v)� (i=j) of pairs of spike

trains (throughout the article, we use capital letters to represent

quantities in frequency [Fourier] space; Sk(v)~ sk(t)½ � vð Þ~Ð
dt sk(t)e{ivt represents the Fourier transform of the spike train

sk(t)). We observe that the spike-train power-spectra Ai(v) (and

auto-correlations) are barely distinguishable in the feedback and in

the feedforward case (not shown here; the main features of the

spike-train auto-correlation are determined by the average single-

neuron firing rate and the refractory mechanism; both are

identical in the feedback and the feedforward scenario). The

differences in the population-rate spectra CSS(v) are therefore

essentially due to differences in the spike-train cross-spectra Cij(v).

In other words, the fluctuations in the population activity serve as

a measure of pairwise spike-train correlations [32]: small (large)

population averaged spike-train correlations are accompanied by

small (large) fluctuations in the population rate (see lower panels in

Fig. 1 C–F). The power-spectra CSS(v) of the population

averaged activity reveal a feedback-induced suppression of the

population-rate variance at low frequencies up to several tens of

Hertz. For the examples shown in Fig. 2, this suppression spans

more than three orders of magnitude for the inhibitory and more

than one order of magnitude for the excitatory-inhibitory network.

The suppression of low-frequency fluctuations does not critically

depend on the details of the network model. As shown in Fig. 2, it

can, for example, be observed for both networks with zero rise-

time synapses (d-shaped synaptic currents) and short delays and for

networks with delayed low-pass filtering synapses (a-shaped

synaptic currents). In the latter case, the suppression of fluctuations

is slightly more restricted to lower frequencies (v10 Hz). Here, the

fluctuation suppression is however similarly pronounced as in

networks with instantaneous synapses.

In Fig. 2 C,D, the power-spectra of the population activity

converge to the mean firing rate at high frequencies. This indicates

that the spike trains are uncorrelated on short time scales. For

instantaneous d-synapses, neurons exhibit an immediate response

to excitatory input spikes [33,34]. This fast response causes spike-

train correlations on short time scales. Hence, the compound

power at high frequencies is increased. In a recurrent system, this

effect is amplified by reverberating simultaneous excitatory spikes.

Therefore, the high-frequency power of the compound activity is

larger in the feedback case (Fig. 2 B). Note that this high-frequency

effect is absent in networks with more realistic low-pass filtering

synapses (Fig. 2 C,D) and in purely inhibitory networks (Fig. 2 A).

Synaptic delays and slow synapses can promote oscillatory

modes in certain frequency bands [12,31], thereby leading to

peaks in the population-rate spectra in the feedback scenario

which exceed the power in the feedforward case (see peaks at

*25 Hz in Fig. 2 C,D). Note that, in the feedforward case, the

Decorrelation by Inhibitory Feedback
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local input was replaced by a stationary Poisson process, whereas

in the recurrent network (feedback case) the presynaptic spike

trains exhibit oscillatory modes. By replacing the feedback by an

inhomogeneous Poisson process with a time dependent intensity

which is identical to the population rate in the recurrent network,

we found that these oscillatory modes are neither suppressed nor

amplified by the recurrent dynamics, i.e. the peaks in the resulting

power-spectra have the same amplitude in the feedback and in the

feedforward case (data not shown here). At low frequencies,

however, the results are identical to those obtained by replacing

the feedback by a homogeneous Poisson process (i.e. to those

shown in Fig. 2; see ‘‘Results: Effect of feedback manipu-
lations’’). In the present study, we mainly focus on these low-

frequency effects.

The observation that the suppression of low-frequency fluctu-

ations is particularly pronounced in networks with purely

inhibitory coupling indicates that inhibitory feedback may play a

key role for the underlying mechanism. In the following

subsection, we demonstrate by means of a one-dimensional linear

population model that, indeed, negative feedback alone leads to an

efficient fluctuation suppression.

Suppression of population-activity fluctuations by
negative feedback

Average pairwise correlations can be extracted from the

spectrum (1) of the compound activity, provided the single spike-

train statistics (auto-correlations) is known (see previous section).

As the single spike-train statistics is identical in the feedback and in

the feedforward scenario, the mechanism underlying the decorr-

elation in recurrent networks can be understood by studying the

dynamics of the population averaged activity. In this and in the

next subsection, we consider the linearized dynamics of random

Figure 1. Spiking activity in excitatory-inhibitory LIF networks with intact (left column; feedback scenario) and opened feedback
loop (right column; feedforward scenario). A,B: Network sketches for the feedback (A) and feedforward scenario (B). C,D: Spiking activity (top
panels) and population averaged firing rate (bottom panels) of the local presynaptic populations. E,F: Response spiking activity (top panels) and
population averaged response rate (bottom panels). In the top panels of C–F, each pixel depicts the number of spikes (gray coded) of a
subpopulation of 250 neurons in a 10 ms time interval. In both the feedback and the feedforward scenario, the neuron population f1, . . . ,Ng is driven

by the same realization x(t)~(j1(t), . . . ,jN (t))T of an uncorrelated white-noise ensemble; local input is fed to the population through the same
connectivity matrix J . The in-degrees, the synaptic weights and the shared-input statistics are thus exactly identical in the two scenarios. In the

feedback case (A), local presynaptic spike-trains are provided by the network’s response s(t)~(s1(t), . . . ,sN (t))T, i.e. the pre- (C) and postsynaptic
spike-train ensembles (E) are identical. In the feedforward scenario (B), the local presynaptic spike-train population is replaced by an ensemble of N
independent realizations q(t)~(q1(t), . . . ,qN (t)) of a Poisson point process (D). Its rate is identical to the time- and population-averaged firing rate in
the feedback case. See Table 1 and Table 2 for details on network models and parameters.
doi:10.1371/journal.pcbi.1002596.g001
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networks composed of homogeneous subpopulations of LIF

neurons. The high-dimensional dynamics of such systems can be

reduced to low-dimensional models describing the dynamics of the

compound activity (for details, see ‘‘Methods: Linearized
network model’’). Note that this reduction is exact for networks

with homogeneous out-degree (number of outgoing connections).

For the networks studied here (random networks with homoge-

neous in-degree), it serves as a sufficient approximation (in a

network of size N where each connection is randomly and

independently realized with probability E [Erdös-Rényi graph], the

[binomial] in- and out-degree distributions become very narrow

for large N [relative to the mean in/out-degree]; both in- and out-

degree are therefore approximately constant across the population

of neurons). In this subsection, we first study networks with purely

inhibitory coupling. In ‘‘Results: Population-activity fluctu-
ations in excitatory-inhibitory networks’’, we investigate

the effect of mixed excitatory-inhibitory connectivity.

Consider a random network of N identical neurons with

connection probability E. Each neuron i~1, . . . ,N receives

K~EN randomly chosen inputs from the local network with

synaptic weights {J . In addition, the neurons are driven by

external uncorrelated Gaussian white noise ji(t) with amplitude g,

i.e. Et ji(t)½ �~0 and Et ji(t)½ �jj(tzt)~dijg
2d(t). For small input

fluctuations, the network dynamics can be linearized. This

linearization is based on the averaged response of a single neuron

to an incoming spike and describes the activity of an individual

neuron i by an abstract fluctuating quantity ri(t) which is defined

such that within the linear approximation its auto- and cross-

correlations fulfill the same linearized equation as the spiking

model in the low-frequency limit. Consequently, also the low-

frequency fluctuations of the population spike rate are captured

correctly by the reduced model up to linear order. This approach

is equivalent to the treatment of finite-size fluctuations in spiking

networks (see, e.g., [31]). For details, see ‘‘Methods: Linearized
network model’’. For large N, the population averaged activity

r(t)~Ei ri(t)½ �~N{1
PN

i~1 ri(t) can hence be described by a one-

dimensional linear system

r(t)~(½{�wwrzx� � h)(t) ð2Þ

with linear kernel h(t), effective coupling strength �ww~Kw and the

population averaged noise x(t)~Ei xi½ �(t) (see ‘‘Methods:
Linearized network model’’ and Fig. 3 B). The coupling

strength �ww represents the integrated linear response of the neuron

population to a small perturbation in the input rate of a single

presynaptic neuron. For a population of LIF neurons, its relation

to the synaptic weight J (PSP amplitude) is derived in ‘‘Methods:
Linearized network model’’ and ‘‘Methods: Response

Figure 2. Suppression of low-frequency fluctuations in recurrent LIF networks with purely inhibitory (A, C) and mixed excitatory-
inhibitory coupling (B, D) for instantaneous synapses with delay d~0:1 ms (A, B) and low-pass synapses with d~1 ms (C, D). Power-
spectra NCSS of population rates s(t) for the feedback (black) and the feedforward case (gray; cf. Fig. 1). See Table 1 and Table 2 for details on

network models and parameters. In C and D, local synaptic inputs are modeled as currents Ii(t)~
P

j Jij

P
l psc(t{t

j
l{d) with a-function shaped

kernel psc(t)~ett{1
s exp({t=ts)H(t) with time constant ts~10 ms (H(:) denotes Heaviside function). (Excitatory) Synaptic weights are set to J~1 pA

(see Table 1 for details). Simulation time T~100 s. Single-trial spectra smoothed by moving average (frame size 1 Hz).
doi:10.1371/journal.pcbi.1002596.g002

Decorrelation by Inhibitory Feedback

PLOS Computational Biology | www.ploscompbiol.org 5 August 2012 | Volume 8 | Issue 8 | e1002596



kernel of the LIF model’’. The normalized kernel h(t) (withÐ?
0

dt h(t)~1) captures the time course of the linear response. It is

determined by the single-neuron properties (e.g. the spike-

initiation dynamics [35,36]), the properties of the synapses (e.g.

synaptic weights and time constants [37,38]) and the properties of

the input (e.g. excitatory vs. inhibitory input [39]). For many real

and model neurons, the linear population-rate response exhibits

low-pass characteristics [13,34–46]. For illustration (Fig. 3), we

consider a 1st-order low-pass filter, i.e. an exponential impulse

response h(t)~t{1 exp({t=t)H(t) with time constant t (cutoff

frequency fc~(2pt){1; see Fig. 3 A, light gray curve in E). The

results of our analysis are however independent of the choice of the

kernel h(t). The auto-correlation Et x(t)x(tzt)½ �~�rr2d(t) of the

external noise is parametrized by the effective noise amplitude

�rr~r=
ffiffiffiffiffi
N
p

.

Given the simplified description (2), the suppression of response

fluctuations by negative feedback can be understood intuitively:

Consider first the case where the neurons in the local network are

unconnected (Fig. 3 A; no feedback, �ww~0). Here, the response r(t)
(Fig. 3 A3) is simply a low-pass filtered version of the external input

x(t) (Fig. 3 A1), resulting in an exponentially decaying response

auto-correlation (Fig. 3 D; light gray curve) and a drop in the

response power-spectrum at the cutoff frequency fc (Fig. 3 E). At

low frequencies, r(t) and x(t) are in phase; they are correlated. In

the presence of negative feedback (Fig. 3 B), the local input {�wwr(t)
(Fig. 3 B2) and the low-frequency components of the external input

x(t) (Fig. 3 B1) are anticorrelated. They partly cancel out, thereby

reducing the response fluctuations r(t) (Fig. 3 B3). The auto-

correlation function and the power-spectrum are suppressed (Fig. 3

D,E; black curves). Due to the low-pass characteristics of the

system, mainly the low-frequency components of the external drive

Figure 3. Partial canceling of fluctuations in a linear system by inhibitory feedback. Response r(t) of a linear system with impulse response
h(t) (1st-order low-pass, cutoff frequency 100 Hz) to Gaussian white noise input x(t) with amplitude �rr~1 for three local-input scenarios. A (light
gray): No feedback (local input q(t)~0). B (black): Negative feedback (q(t)~r(t)) with strength �ww~5. The fluctuations of the weighted local input
{�wwq(t) (B2) are anticorrelated to the external drive x(t) (B1). C (dark gray): Feedback in B is replaced by uncorrelated feedforward input q(t) with the

same auto-statistics as the response r(t) in B3 . The local input q(t)~F{1 DR(v)Deij(v)
� �

tð Þ is constructed by assigning a random phase j(v) to each
Fourier component R(v)~F r(t)½ � vð Þ of the response in B3 . Fluctuations in C2 and C1 are uncorrelated. A, B, C: Network sketches. A1, B1 , C1 : External
input x(t). A2 , B2 , C2 : Weighted local input {�wwq(t). A3 , B3 , C3 : Responses r(t). D, E: Response auto-correlation functions (D) and power-spectra (E) for
the three cases shown in A,B,C (same gray coding as in A,B,C; inset in D: normalized auto-correlations).
doi:10.1371/journal.pcbi.1002596.g003
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x(t) are transferred to the output side and, in turn, become

available for the feedback signal. Therefore, the canceling of input

fluctuations and the resulting suppression of response fluctuations

are most efficient at low frequencies. Consequently, the auto-

correlation function is sharpened (see inset in Fig. 3 D). The cutoff

frequency of the system is increased (Fig. 3 E; black curve). This

effect of negative feedback is very general and well known in the

engineering literature. It is employed in the design of technical

devices, like, e.g., amplifiers [47]. As the zero-frequency power is

identical to the integrated auto-correlation function, the suppres-

sion of low-frequency fluctuations is accompanied by a reduction

in the auto-correlation area (Fig. 3 D; black curve). Note that the

suppression of fluctuations in the feedback case is not merely a

result of the additional inhibitory noise source provided by the

local input, but follows from the precise temporal alignment of the

local and the external input. To illustrate this, let’s consider the

case where the feedback channel is replaced by a feedforward

input q(t) (Fig. 3 C) which has the same auto-statistics as the

response r(t) in the feedback case (Fig. 3 B3) but is uncorrelated to

the external drive x(t). In this case, external input fluctuations

(Fig. 3 C1) are not canceled by the local input {�wwq(t) (Fig. 3 C2).

Instead, the local feedforward input acts as an additional noise

source which leads to an increase in the response fluctuations

(Fig. 3 C3). The response auto-correlation and power-spectrum

(Fig. 3 D,E; dark gray curves) are increased. Compared to the

unconnected case (Fig. 3 E; light gray curve), the cutoff frequency

remains unchanged.

The feedback induced suppression of response fluctuations can

be quantified by comparing the response power-spectra

CRR(v)~Ex DR(v)D2
� �

~
�rr2DH(v)D2

D1z�wwH(v)D2
ð3Þ

and

C~RR~RR(v)~Ex D~RR(v)D2
� �

~DH(v)D2(�ww2CRR(v)z�rr2) ð4Þ

in the feedback (Fig. 3 B) and the feedforward case (Fig. 3 C),

respectively (see ‘‘Methods: Population-activity spectrum

of the linear inhibitory network’’). Here, R(v) and ~RR(v)
denote the Fourier transforms of the response fluctuations in the

feedback and the feedforward scenario, respectively, H(v) the

transfer function (Fourier transform of the filter kernel h(t)) of the

neuron population, and Ex½� the average across noise realizations.

We use the power ratio

a(v)~
CRR(v)

C~RR~RR(v)
~

1

�ww2DH(v)D2zD1z�wwH(v)D2
ð5Þ

as a measure of the relative fluctuation suppression caused by

feedback. For low frequencies (v?0) and strong effective coupling

D�wwD~DKwD&1, the power ratio (5) decays as �ww{2 (see Fig. 4 A): the

suppression of population-rate fluctuations is promoted by strong

negative feedback. In line with the observations in ‘‘Results:
Suppression of population-rate fluctuations in LIF
networks’’, this suppression is restricted to low frequencies; for

high frequencies (v??, i.e. H(v)?0), the power ratio a(v)
approaches 1. Note that the power ratio (5) is independent of the

amplitude �rr of the population averaged external input x(t).
Therefore, even if we dropped the assumption of the external

inputs xi(t) being uncorrelated, i.e. if Et xi(t)xj(tzt)
� �

=0 for

i=j, the power ratio (5) remained the same. For correlated

external input, the power �rr of the population average x(t) is

different from r=
ffiffiffiffiffi
N
p

. The suppression factor a(v), however, is

not affected by this. Moreover, it is straightforward to show that

the power ratio (5) is, in fact, independent of the shape of the

external-noise spectrum CXX (v)~Ex DX (v)D2
� �

. The same result

(5) is obtained for any type of external input (e.g. colored noise or

oscillating inputs).

For low frequencies, the transfer function H(v) approaches

unity (limv?0 H(v)~1); the exact shape of the kernel h(t)
becomes irrelevant. In particular, the cutoff frequency (or time

constant) of a low-pass kernel has no effect on the zero-frequency

power (integral correlation) and the zero-frequency power ratio

a(0) (Fig. 4). Therefore, the suppression of low-frequency

fluctuations does not critically depend on the exact choice of the

neuron, synapse or input model. The same reasoning applies to

synaptic delays: Replacing the kernel h(t) by a delayed kernel

h(t{d) leads to an additional phase factor e{ivd in the transfer

function H(v). For sufficiently small frequencies (long time scales),

this factor can be neglected (limv?0 e{ivd~1).

For networks with purely inhibitory feedback, the absolute

power (3) of the population rate decreases monotonously with

increasing coupling strength �ww. As we will demonstrate in

‘‘Results: Population-activity fluctuations in excitatory-
inhibitory networks’’ and ‘‘Results: Population averaged
correlations in cortical networks’’, this is qualitatively

different in networks with mixed excitatory and inhibitory

coupling �wwE~�www0 and �wwI~{�gg�wwv0, respectively: here, the

fluctuations of the compound activity increase with �ww. The power

ratio a(v), however, still decreases with �ww.

Population-activity fluctuations in excitatory-inhibitory
networks

In the foregoing subsection, we have shown that negative

feedback alone can efficiently suppress population-rate fluctuations

and, hence, spike-train correlations. So far, it is unclear whether

the same reasoning applies to networks with mixed excitatory and

inhibitory coupling. To clarify this, we now consider a random

network composed of a homogeneous excitatory and inhibitory

subpopulation E and I of size NE~DED and NI~DI D~cNE,

respectively. Each neuron receives K~ENE excitatory and

cK~ENI inhibitory inputs from E and I with synaptic weights

ww0 and {gwv0, respectively. In addition, the neurons are

driven by external Gaussian white noise. As demonstrated in

‘‘Methods: Linearized network model’’, linearization and

averaging across subpopulations leads to a two-dimensional system

r(t)~(½Wrzx� � h)(t) ð6Þ

describing the linearized dynamics of the subpopulation averaged

activity r(t)~(rE(t),rI(t))
T. Here, x(t)~(xE(t),xI(t))

T denotes the

subpopulation averaged external uncorrelated white-noise input

with correlation functions Ex,t xp(t),xq(tzt)
� �

~�rr2
pdpqd(t)

(�rrp~r=
ffiffiffiffiffiffi
Np

p
, p,q[fE,Ig), and h(t) a normalized linear kernel

with
Ð?

0
dt h(t)~1. The excitatory and inhibitory subpopulations

are coupled through an effective connectivity matrix

W~�ww
1 {�gg

1 {�gg

� �
ð7Þ

with effective weight �ww~Kww0 and balance parameter

�gg~cgw0.
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The two-dimensional system (6)/(7) represents a recurrent

system with both positive and negative feedback connections (Fig. 5

A). By introducing new coordinates

rz(t)~(rE(t)zrI(t))=
ffiffiffi
2
p

, r{(t)~(rE(t){rI(t))=
ffiffiffi
2
p

ð8Þ

and xz(t)~(xE(t)zxI(t))=
ffiffiffi
2
p

, x{(t)~(xE(t){xI(t))=
ffiffiffi
2
p

, we

obtain an equivalent representation of (6)/(7),

rz(t)

r{(t)

� �
~ S

rz

r{

� �
z

xz

x{

� �� �
� h

� �
(t), ð9Þ

describing the dynamics of the sum and difference activity rz(t)
and r{(t), respectively, i.e. the in- and anti-phase components of

the excitatory and inhibitory subpopulations (see [48–50]). The

new coupling matrix

S~
{wz wFF

0 0

� �
ð10Þ

reveals that the sum mode rz(t) is subject to self-feedback

(S11~{wz~�ww(1{�gg)) and receives feedforward input from the

difference mode r{(t) (S12~wFF~�ww(1z�gg)). All remaining

connections are absent (S21~S22~0) in the new representation

(8) (see Fig. 5 B). The correlation functions of the external noise in

the new coordinates are given by Ex,t xp(t),xq(tzt)
� �

~�rr2
pqd(t)

with �rrpq~r2=NE c{1dpqz(1{c{1)=2
	 


(p,q[fz,{g).
The feedforward coupling is positive (wFFw0): an excitation

surplus (r{(t)w0) will excite all neurons in the network, an

excitation deficit (r{(t)v0) will lead to global inhibition. In

inhibition dominated regimes with �gg~cgw1, the self-feedback of

the sum activity rz(t) is effectively negative ({wzv0). The

dynamics of the sum rate in inhibition-dominated excitatory-

inhibitory networks is therefore qualitatively similar to the

dynamics in purely inhibitory networks (‘‘Results: Suppression
of population-activity fluctuations by negative feed-
back’’). As shown below, the negative feedback loop exposed

by the transform (8) leads to an efficient relative suppression of

population-rate fluctuations (if compared to the feedforward case).

Mathematically, the coordinate transform (8) corresponds to a

Schur decomposition of the dynamics: Any recurrent system of type (6)

(with arbitrary coupling matrix W ) can be transformed to a system

with a triangular coupling matrix (see, e.g., [50]). The resulting

coupling between the different Schur modes can be ordered so

that there are only connections from modes with lower index to

modes with the same or larger index. In this sense, the resulting

system has been termed ‘feedforward’ [50]. The original coupling

matrix W is typically not normal, i.e. WTW=WWT. Its

eigenvectors do not form an orthogonal basis. By performing a

Gram-Schmidt orthonormalization of the eigenvectors, however,

one can obtain a (normalized) orthogonal basis, a Schur basis. Our

new coordinates (8) correspond to the amplitudes (the time

evolution) of two orthogonal Schur modes.

The spectra CRERE
(v), CRIRI

(v), CRERI
(v) and CRzRz

(v) of

the subpopulation averaged rates rE, rI and the sum mode rz,

respectively, are derived in ‘‘Methods: Population-activity
spectra of the linear excitatory-inhibitory network’’. In

contrast to the purely inhibitory network (see ‘‘Results:
Suppression of population-activity fluctuations by neg-
ative feedback’’), the population-rate fluctuations of the

excitatory-inhibitory network increase monotonously with increas-

ing coupling strength �ww. For strong coupling, CRzRz
(v)

approaches

lim
�ww??

CRzRz (v)~DH(v)D2r2 1zc{1

2NE

w2
FF

w2
z

ð11Þ

from below with wFF=wz~(�ggz1)=(�gg{1). Close to the critical

point (�gg^1), the rate fluctuations become very large; (11) diverges.

Increasing the amount of inhibition by increasing �gg, however,

leads to a suppression of these fluctuations. In the limit �gg??,

CRzRz (v) and (11) approach the spectrum lim�ww?0 CRzRz~

DH D2r2(1zc{1)=(2NE) of the unconnected network. For strong

coupling (�ww&1), the ratio CRERE
(v)=CRIRI

(v) approaches �gg2: the

fluctuations of the population averaged excitatory firing rate

exceed those of the inhibitory population by a factor �gg2

(independently of H(v) and v).

Similarly to the strategy we followed in the previous subsections,

we will now compare the population-rate fluctuations of the

Figure 4. Suppression of low-frequency (LF) population-rate fluctuations in linearized homogeneous random networks with purely
inhibitory (A) and mixed excitatory-inhibitory coupling (B). Dependence of the zero-frequency power ratio a(0) on the effective coupling
strength �ww (solid curves: full solutions; dashed lines: strong-coupling approximations). The power ratio a(0) represents the ratio between the low-
frequency population-rate power in the recurrent networks (A: Fig. 3 B; B: Fig. 5 A,B) and in networks where the feedback channels are replaced by
uncorrelated feedforward input (A: Fig. 3 C; B, black: Fig. 5 C,D; B, gray: Fig. 5 D9). Dotted curves in B depict power ratio of the sum modes rz and ~rrz

(see text). B: Balance factor �gg~1:5.
doi:10.1371/journal.pcbi.1002596.g004
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feedback system (6), or equivalently (9), to the case where the

feedback channels are replaced by feedforward input with

identical auto-statistics. A straight-forward implementation of this

is illustrated in Fig. 5 C: Here, the excitatory and inhibitory

feedback channels RE and RI are replaced by uncorrelated

feedforward inputs QE and QI, respectively. The Schur represen-

tation of this scenario is depicted in Fig. 5 D. According to (6), the

Fourier transforms of the response fluctuations of this system read

~RRE(v)

~RRI(v)

 !
~H(v) W

QE(v)

QI(v)

� �
z

XE(v)

XI(v)

� �� �
: ð12Þ

With ~RRz~(~RREz~RRI)=
ffiffiffi
2
p

, and using CQEQE
~CRERE

,

CQIQI
~CRIRI

, CQEQI
~CQEXE

~CQEXI
~CQIXE

~CQIXI
~0,

we can express the spectrum C~RRz ~RRz
(v) of the sum activity in

the feedforward case in terms of the spectra CRERE
(v) and

CRIRI
(v) of the feedback system (see eq. (55)). For strong coupling

(�ww&1), the zero-frequency component (H(0)~1) becomes

C~RRz ~RRz
(0)^�ww2r2 1zc{1

NE

4�gg2

(�gg{1)2
: ð13Þ

Thus, for strong coupling, the zero-frequency power ratio

az(0)~
CRzRz (0)

C~RRz ~RRz
(0)

^
(�ggz1)2

8�ww2�gg2
ð14Þ

reveals a relative suppression of the population-rate fluctuations in

the feedback system which is proportional to 1=�ww2 (see Fig. 4 B;

black dashed line). The power ratio az(0) for arbitrary weights �ww

is depicted in Fig. 4 B (black dotted curve). For a network at the

transition point �gg~1, (14) equals 1=(2�ww2). Increasing the level of

inhibition by increasing �gg leads to a decrease in the power ratio: in

the limit �gg??, (14) approaches 1=(8�ww2) monotonously.

Above, we suggested that the negative self-feedback of the sum

mode Rz, weighted by {wz (Fig. 5 B), is responsible for the

fluctuation suppression in the recurrent excitatory-inhibitory

system. Here, we test this by considering the case where this

feedback loop is opened and replaced by uncorrelated feedforward

input Qz, weighted by {wz, while the feedforward input from

the difference mode R{, weighted by wFF, is left intact (see Fig. 5

D9). As before, we assume that the auto-statistics of Qz is identical

to the auto-statistics of Rz as obtained in the feedback case, i.e.

CQzQz
(v)~CRzRz

(v). According to the Schur representation of

the population dynamics (9)/(10), the Fourier transform of the sum

mode of this modified system is given by

~RRz(v)~H(v) {wzQz(v)zwFF
~RR{(v)zXz(v)

	 

: ð15Þ

With C~RRz ~RRz
(v) given in (54) and CRzRz (v), we obtain the

power ratio

a0z(v)~
CRzRz (v)

C~RRz ~RRz
(v)

~
1

w2
zDH(v)D2zD1zwzH(v)D2

: ð16Þ

Its zero-frequency component a0z(0) is shown in Fig. 4 B (gray

dotted curve). For strong coupling, the power ratio decays as

1=(2w2
z) (gray dashed line in Fig. 4 B). Thus, the (relative) power

in the recurrent system is reduced by strengthening the negative

self-feedback loop, i.e. by increasing wz.

Figure 5. Sketch of the 2D (excitatory-inhibitory) model for the feedback (A,B) and the feedforward scenario (C,D) in normal (A,C)
and Schur-basis representation (B,D). A: Original 2D recurrent system. B: Schur-basis representation of the system shown in A. C: Feedforward
scenario: Excitatory and inhibitory feedback connections of the original network (A) are replaced by feedforward input from populations with rates QE,
QI , respectively. D: Schur-basis representation of the system shown in C. D9: Alternative feedforward scenario: Here, the feedforward channel (weight
wFF) of the original system in Schur basis (B) remains intact. Only the inhibitory feedback (weight {wz) is replaced by feedforward input Qz.
doi:10.1371/journal.pcbi.1002596.g005
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So far, we have presented results for the subpopulation averaged

firing rates rE(t) and rI(t) and the sum mode rz(t). The spectrum

of the compound rate r(t)~N{1
PN

i~1 ri(t)~N{1½NErE(t)z

NIrI(t)�, i.e. the activity averaged across the entire population, reads

CRR(v)~N{2 N2
ECRERE

(v)zN2
I CRIRI

(v)z
�

NENI½CRERI
(v)zCRERI

(v)��
�
:

ð17Þ

In the feedforward scenario depicted in Fig. 5 C, the spectrum of the

compound rate ~RR~H(�wwQEz�ww�ggQIzX ) (with X~

N{1
PN

i~1 Xi) is given by

C~RR~RR(v)~DH(v)D2 �ww2CRERE
z�ww2�gg2CRIRI

zr2=N
� �

: ð18Þ

For strong coupling, the corresponding low-frequency power ratio

a(0)~CRR(0)=C~RR~RR(0) (black solid curve in Fig. 4 B) exhibits

qualitatively the same decrease !�ww{2 as the sum mode.

To summarize the results of this subsection: the population

dynamics of a recurrent network with mixed excitatory and

inhibitory coupling can be mapped to a two-dimensional system

describing the dynamics of the sum and the difference of the

excitatory and inhibitory subpopulation activities. This equivalent

representation uncovers that, in inhibition dominated networks

(�ggw1), the sum activity is subject to negative self-feedback. Thus,

the dynamics of the sum activity in excitatory-inhibitory networks

is qualitatively similar to the population dynamics of purely

inhibitory networks (see ‘‘Results: Suppression of popula-
tion-activity fluctuations by negative feedback’’). Indeed,

the comparison of the compound power-spectra of the intact

recurrent network and networks where the feedback channels are

replaced by feedforward input reveals that the (effective) negative

feedback in excitatory-inhibitory networks leads to an efficient

suppression of population-rate fluctuations.

Population averaged correlations in cortical networks
The results presented in the previous subsections describe the

fluctuations of the compound activity. Pairwise correlations

cij(t)~Et’ �ssi(tzt’)�ssj(t’)
� �

between the (centralized) spike trains

�ssi(t)~si(t){Et’ si(t’)½ � are outside the scope of such a description.

In this subsection, we consider the same excitatory-inhibitory

network as in ‘‘Results: Population-activity fluctuations in
excitatory-inhibitory networks’’ and present a theory for the

population averaged spike-train cross-correlations. In general, this is

a hard problem. To understand the structure of cross-correlations, it

is however sufficient to derive a relationship between the cross- and

auto-covariances in the network, because the latter can, to good

approximation, be understood in mean-field theory. The integral of

the auto-covariance function of spiking LIF neurons can be

calculated by Fokker-Planck formalism [12,31,51]. To determine

the relation between the cross-covariance and the auto-covariance,

we replace the spiking dynamics by a reduced linear model with

covariances obeying, to linear order, the same relation. We present

the full derivation in ‘‘Methods: Linearized network model’’.
There, we first derive an approximate linear relation between the

auto- and cross-covariance functions a(t) and c(t), respectively, of

the LIF network. A direct solution of this equation is difficult. In the

second step, we therefore show that there exists a linear stochastic

system with activity u and correlations au(t) and cu(t) fulfilling the

same equation as the original LIF model. This reduced model can be

solved in the frequency domain by standard Fourier methods. Its

solution allows us, by construction, to determine the relation between

the integral cross-covariances C(0) and the integral auto-covariances

A(0) up to linear order.

As we are interested in the covariances averaged over many

pairs of neurons, we average the resulting set of N linear self-

consistency equations (56) for the covariance matrix in the

frequency domain C(v) over statistically identical pairs of neurons

and many realizations of the random connectivity (see ‘‘Meth-
ods: Population averaged correlations in the linear EI
network’’). This yields a four-dimensional linear system (76)

describing the population averaged variances AE and AI of the

excitatory and inhibitory subpopulations, and the covariances

CE E and CI I for unconnected excitatory-excitatory and

inhibitory-inhibitory neuron pairs, respectively (note that we use

the terms ‘‘variance’’ and ‘‘covariance’’ to describe the integral of

the auto- and cross-correlation function, respectively; in many

other studies, they refer to the zero-lag correlation functions

instead). The dependence of the variances and covariances on the

coupling strength �ww, obtained by numerically solving (76), is shown

in Fig. 6. We observe that the variances AE and AI of excitatory

and inhibitory neurons are barely distinguishable (Fig. 6 A). With

the approximation A : ~AE~AI, explicit expressions can be

obtained for the covariances (thick dashed curves Fig. 6 E):

CEE=II~
1

(1{�ww(1{�gg))2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
I

Cin
shared

z
1

1{�ww(1{�gg)|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
II

2�wwA

1

NE
for EE

{�gg

NI
for II

8>><
>>:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

III

,

CEI~
1

2
(CEEzCII)

with Cin
shared~�ww2 1

NE
z

�gg2

NI

� �
A:

ð19Þ

The deviations from the full solutions (thin solid curves in Fig. 6 E),

i.e. for AE=AI, are small. In the reduced model, both the external

input and the spiking of individual neurons contribute to an

effective noise. As the fluctuations in the reduced model depend

linearly on the amplitude r of this noise, the variances A and

covariances Cpq (p,q[fE,Ig) can be expressed in units of the noise

variance r2. Consequently, the correlation coefficients Cpq=A are

independent of r2 (see Fig. 6).

The analytical form (19) of the result shows that the correlations

are smaller than expected given the amount of shared input a pair

of neurons receives: The quantity Cin
shared in the first line is the

contribution of shared input to the covariance. For strong coupling

�ww&1, the prefactor I causes a suppression of this contribution. Its

structure is typical for a feedback system, similar to the solution (3)

of the one-population or the solution (52) of the two-population

model. The term �ww(1{�gg) in the denominator represents the

negative feedback of the compound rate. The prefactor II in the

second line of (19) is again due to the feedback and suppresses the

contribution of the factor III, which represents the effect of direct

connections between neurons.

Our results are consistent with a previous study of the decorrelation

mechanism: In [17], the authors considered how correlations scale

with the size N of the network where the synaptic weights are chosen

as J!1=
ffiffiffiffiffi
N
p

. As a result, the covariance Cin
shared in (19) caused by
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shared input is independent of the network size, while the feedback

�ww(1{�gg)!EN(1{�gg) JzO(J2)
	 


scales—to leading order—as
ffiffiffiffiffi
N
p

(see (45)). Consequently, the first line in (19) scales as 1=N . The same

scaling holds for the second line in (19), explaining the decay of

correlations as 1=N found in [17].

The first line in (19) is identical for any pair of neurons. The

second line is positive for a pair of excitatory neurons and negative

for a pair of inhibitory neurons. In other words, excitatory neurons

are more correlated than inhibitory ones. Together with the third

line in (19), this reveals a characteristic correlation structure:

Figure 6. Dependence of population averaged correlations and population-rate fluctuations on the effective coupling �ww~Kw in a
linearized homogeneous network with excitatory-inhibitory coupling. A: Spike-train variances AE (black) and AI (gray) of excitatory and
inhibitory neurons. B: Spike-train covariances CEE (black solid), CEI (dark gray solid) and CII (light gray solid) for excitatory-excitatory, excitatory-

inhibitory and inhibitory-inhibitory neuron pairs in the recurrent network, respectively, and shared-input contribution Cin
shared (black dotted curve;

‘feedforward case’). C: Decomposition of the total input covariance Cin (light gray) into shared-input covariance Cin
shared (black) and weighted spike-train

covariance Cin
corr (dark gray). Covariances in A, B and C are given in units of the noise variance r2 . D: Input-correlation coefficient Cin=Ain in the recurrent

network (black solid curve). In the feedforward case, the input-correlation coefficient is identical to the network connectivity E (horizontal dotted line). E:
Spike-train correlation coefficients CEE=AE (black), CEI=

ffiffiffiffiffiffiffiffiffiffiffiffi
AEAI

p
(dark gray) and CII=AI (solid light gray curve) for excitatory-excitatory, excitatory-

inhibitory and inhibitory-inhibitory neuron pairs, respectively. Thick dashed curves represent approximate solutions assuming AE~AI. F: Low-
frequency (LF) power ratios a (black), aE (dark gray), aI (solid light gray) for the population rate r(t) and the excitatory and inhibitory subpopulation rates
rE(t) and rI(t), respectively. The LF power ratio represents the ratio between the LF spectra in the recurrent network and for the case where the feedback
channels are replaced by feedforward input with CEI~0 (cf. Fig. 5 C). Thick dashed curves in F show power ratios obtained by assuming that the auto-
correlations are identical in the feedback and the feedforward scenario (see main text). Vertical dotted lines mark the stability limit of the linear model
(see ‘‘Methods: Linearized network model’’). A–F: K~1000, E~0:1, c~1=4, g~6, �gg~cg~3=2, N~K(1zc)=E~12500.
doi:10.1371/journal.pcbi.1002596.g006
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CEEwCEIwCII (Fig. 6 B,E). For strong coupling �ww&1, the

difference between the excitatory and inhibitory covariance is

CEE{CII^
2

�gg{1
(

1

NE
z

�gg

NI
)A. The difference decreases as the

level �gg of inhibition is increased, i.e. the further the network is in the

inhibition dominated regime, away from the critical point �gg~1.

To understand the suppression of shared-input correlations in

recurrent excitatory-inhibitory networks, consider the correlation

between the local inputs Ik=l~½Wr�k=l of a pair of neurons k, l. The

input-correlation coefficient Cin=Ain~Cov Ik,Il½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ik½ �Var Il½ �

p
can be expressed in terms of the averaged spike-train covariances:

Cin ~Cov Ik,Il½ �Cin
sharedzCin

corr

Ain ~Var Ik½ �E{1 �ww2 1

NE
z

�gg2

NI

� �
AzCin

corr

with Cin
corr~�ww2(CEE{2�ggCEIz�gg2CII)

ð20Þ

(see ‘‘Methods: Population averaged correlations in the

linear EI network’’: The input covariance Cin equals the average

quantity Cxy,B given in (67), the input variance Ain is given by (63) as

Ax,B). The term Cin
shared represents the contribution due to the spike-

train variances of the shared presynaptic neurons (see (19)). This

contribution is always positive (provided the network architecture is

consistent with Dale’s law; see [15]). In a purely feedforward

scenario with uncorrelated presynaptic sources, Cin
shared is the only

contribution to the input covariance of postsynaptic neurons. The

resulting response correlation for this feedforward case is much larger

than in the feedback system (Fig. 6 B, black dotted curve). The

correlation coefficient between inputs to a pair of neurons in the

feedforward case is identical to the network connectivity E (horizontal

dotted curve in Fig. 6 D; see [15]). In an inhibition dominated

recurrent network, spike-train correlations between pairs of different

source neurons contribute the additional term Cin
corr, which is

negative and of similar absolute value as the shared-input contribu-

tion Cin
shared. Thus, the two terms Cin

shared and Cin
corr partly cancel each

other (see Fig. 6 C). In consequence, the resulting input correlation

coefficient Cin
�

Ain is smaller than E (see Fig. 6 D; here: E~0:1).

The correlations in a purely inhibitory network can be obtained

from (19) by replacing NE?N, taking into account the negative

sign of w in �ww~{Kw and setting g~0 and c~0:

C~ {1z
1

(1z�ww)2

� �
A

N
: ð21Þ

For finite coupling strength �www0, this expression is negative. The

contributions of shared input and spike-train correlations to the

input correlation are given by Cin
shared~�ww2 A

N
w0 and Cin

corr~�ww2C,

respectively (see (19) and (20)). Using (21), we can directly verify

that Cin
corrv0, because pairwise correlations C are negative,

leading to a partial cancellation Cin
sharedzCin

corr~�ww2 1

(1z�ww)2

A

N
:

the right hand side is smaller in magnitude by a factor of ^
1

�ww2

compared to each individual contribution. Hence, as in the

network with excitation and inhibition, shared-input correlations

are partly canceled by the contribution due to presynaptic pairwise

spike-train correlations. In the feedforward scenario with zero

presynaptic spike-train correlations, in contrast, the response

correlations are determined by shared input alone and are

therefore increased. The suppression of shared-input correlations

in the feedback case is what we call ‘decorrelation’ in the current

work. In purely inhibitory networks, this decorrelation is caused by

weakly negative pairwise correlations (21). For sufficiently strong

negative feedback, correlations are smaller in absolute value as

compared to the feedforward case. The absolute value of these

anti-correlations is bounded by A=N.

The similarity in the results obtained for purely inhibitory

networks and excitatory-inhibitory networks demonstrates that the

suppression of pairwise correlations and population-activity

fluctuations is a generic phenomenon in systems with negative

feedback. It does not rely on an internal balance between

excitation and inhibition.

As discussed in ‘‘Results: Suppression of population-rate
fluctuations in LIF networks’’, the suppression of correlations

in the recurrent network is accompanied by a reduction of

population-activity fluctuations. With the population averaged

correlations (19), the power (1) of the population activity r(t) reads

CRR~
1

N2
NEAEzNIAIzNE(NE{1)CEEz½

NI(NI{1)CIIz2NENICEI�:
ð22Þ

In ‘‘Results: Population-activity fluctuations in excitato-
ry-inhibitory networks’’, we showed that the population-

activity fluctuations are amplified if the local input in the recurrent

system is replaced by feedforward input from independent

excitatory and inhibitory populations (see Fig. 5 C). This

manipulation corresponds to a neglect of correlations CEI between

excitatory and inhibitory neurons. All remaining correlations (AE,

AI, CEE, CII) are preserved. With the resulting response auto- and

cross-correlations ~AA and ~CC given by (84), the power (1) of the

population activity becomes

C~RR~RR~
1

N
~AAz 1{

1

N

� �
~CC : ð23Þ

For large effective coupling �ww, the power ratio a~CRR=C~RR~RR

decays as 1=�ww2 (black curve in Fig. 6 F). Note that the power ratio

a derived here is indistinguishable from the one we obtained in the

framework of the population model in ‘‘Results: Population-
activity fluctuations in excitatory-inhibitory networks’’
(black solid curve in Fig. 4 B). Although the derivation of the

macroscopic model in ‘‘Results: Population-activity fluctu-
ations in excitatory-inhibitory networks’’ is different from

the one leading to the population averaged correlations described

here, the two models are consistent: They describe one and the

same system and lead to identical power ratios.

The fluctuation suppression is not only observed at the level of the

entire network, i.e. for the population activity r(t), but also for each

individual subpopulation E and I , i.e. for the subpopulation

averaged activities rE(t) and rI(t). The derivation of the corre-

sponding power ratios aE and aI is analog to the one described

above. As a result of the correlation structure CEEwCII in the

feedback system (see Fig. 6 B), the power of the inhibitory population

activity is smaller than the power of the excitatory population

activity. In consequence, aEwaI (gray curves in Fig. 6 F).

In (22) and (23), the auto-correlations are scaled by 1=N , while

the cross-correlations enter with a prefactor of order unity. For

large N, one may therefore expect that the suppression of

population-activity fluctuations is essentially mediated by pairwise

correlations. In the recurrent system, however, the cross-correla-

tions Cxy (x,y[fE,Ig) are of order A=N (see Fig. 6 and (19)). It is

therefore a priori not clear whether the fluctuation suppression is

Decorrelation by Inhibitory Feedback

PLOS Computational Biology | www.ploscompbiol.org 12 August 2012 | Volume 8 | Issue 8 | e1002596



indeed dominated by pairwise correlations. In our framework, one

can explicitly show that the auto-correlation is irrelevant:

Replacing the auto-correlation ~AA in (23) by the average auto-

correlation (NEAEzNIAI)=N of the intact feedback system has

no visible effect on the resulting power ratio (dashed curves in

Fig. 6 F). The difference in the spectra of the population activities

CRR and C~RR~RR is therefore essentially caused by the cross-

correlations.

The absolute population-activity fluctuations in purely inhibitory

and in excitatory-inhibitory networks show a qualitatively different

dependence on the synaptic coupling �ww, in agreement with the

previous sections. In networks with excitation and inhibition, the

correlation coefficient increases with increasing synaptic coupling

(see Fig. 6 E). Hence, the population-activity fluctuations grow with

increasing coupling strength. In purely inhibitory networks, in

contrast, the pairwise spike-train correlation decreases monoto-

nously with increasing magnitude of the coupling strength �ww, see

(21). In consequence, the population-activity fluctuations decrease.

The underlying reason is that, in the inhibitory network, the power

of the population activity is directly proportional to the covariance

of the input currents, which is actively suppressed, as shown above.

For excitatory-inhibitory networks, these two quantities are not

proportional (compare (20) and (1)) due to the different synaptic

weights appearing in the input covariance.

To compare our theory to simulations of spiking LIF networks,

we need to determine the effect of a synaptic input on the response

activity of the neuron model. To this end, we employ the Fokker-

Planck theory of the LIF model (see ‘‘Methods: Response
kernel of the LIF model’’). In this context, the steady state of

the recurrent network is characterized by the mean m and the

standard deviation s of the total synaptic input. Both m and s
depend on the steady-state firing rate in the network. The steady-

state firing rate can be determined in a self-consistent manner [12]

as the fixed point of the firing rate approximation (42). The

approximation predicts the firing rate to sufficient accuracy of

about +1 s{1 (see Fig. 7 A). We then obtain an analytical

expression of the low-frequency transfer which relates the

fluctuation nj(t)~�nnzEd(t) of a synaptic input to neuron i to the

fluctuation of neuron i’s response firing rate to linear order, so thatÐ?
0

dni(t) dt~Ew(Jij). This relates the postsynaptic potential Jij in

the LIF model to the effective linear coupling wij~w(Jij) in our

linear theory. The functional relation w(J) can be derived in

analytical form by linearization of (42) about the steady-state

working point. Note that w(J) depends on m and s and, hence, on

the steady-state firing rate in the network. The derivation outlined

in ‘‘Methods: Response kernel of the LIF model’’
constitutes an extension of earlier work [21,33] to quadratic order

in J . The results agree well with those obtained by direct

simulation for a large range of synaptic amplitudes (see Fig. 8).

Fig. 7 B compares the population averaged correlation coeffi-

cients C=A obtained from the linear reduced model, see (19), and

simulations of LIF networks. Note that the absolute value of the

noise amplitude r in the reduced model does not influence the

correlation coefficient C=A, as both quantities C and A depend

linearly on r2. Theory and simulation agree well for synaptic

weights up to J&1 mV. For larger synaptic amplitudes, the

approximation of the effective linear transfer for a single neuron

obtained from the Fokker-Planck theory deviates from its actual

value (see Fig. 8 B). Fig. 7 C shows that the cancellation of the input

covariance in the LIF network is well explained by the theory.

Previous work [17] suggested that positive correlations between

excitatory and inhibitory inputs lead to a negative component in

the input correlation which, in turn, suppresses shared-input

correlations. The mere existence of positive correlations between

excitatory and inhibitory inputs is however not sufficient. To

explain the effect, it is necessary to take the particular correlation

structure CEEwCEIwCII into account. To illustrate this, consider

the case where the correlation structure is destroyed by replacing

all pairwise correlations in the input spike-train ensemble by the

overall population average C~(NECEEzNICII)=(NEzNI)w0
(homogenization of correlations). The resulting response correla-

tions (upper gray curve in Fig. 7 B) are derived in ‘‘Methods:
Population averaged correlations in the linear EI
network’’, eq. (86). In simulations of LIF networks, we study

the effect of homogenized spike-train correlations by first

recording the activity of the intact recurrent network, randomly

reassigning the neuron type (E or I) to each recorded spike train,

and feeding this activity into a second population of neurons.

Compared to the intact recurrent network, the response correla-

tions are significantly larger (Fig. 7 B). The contribution of

homogenized spike-train correlations to the input covariance Cin

(see (20)) is given by Cin
corr,hom~�ww2(1{�gg)2C§0. For positive

spike-train correlations Cw0, this contribution is greater or equal

zero (zero for �gg~1). Hence, it cannot compensate the (positive)

shared-input contribution Cin
shared (see Fig. 7 C). In consequence,

input correlations, output correlations and, in turn, population-

rate fluctuations (Fig. 7 D) cannot be suppressed by homogeneous

positive correlations in the input spike-train ensemble. Canceling of

shared-input correlations requires either negative spike-train corre-

lations (as in purely inhibitory networks) or a heterogeneity in

correlations across different pairs of neurons (e.g. CEEwCEIwCII).

Effect of feedback manipulations
In the previous subsections, we quantified the suppression of

population-rate fluctuations in recurrent networks by comparing

the activity in the intact recurrent system (feedback scenario) to the

case where the feedback is replaced by feedforward input with

some predefined statistics (feedforward scenario). We particularly

studied the effect of neglecting the auto-statistics of the compound

feedback, (the structure of) correlations within the feedback

ensemble and/or correlations between the feedback and the

external input. In all cases, we observed a significant amplification

of population-activity fluctuations in the feedforward scenario. In

this subsection, we further investigate the role of different types of

feedback manipulations by means of simulations of LIF networks

with excitatory-inhibitory coupling. To this end, we record the

spiking activity of the recurrent network (feedback case), apply

different types of manipulations to this activity (described in detail

below) and feed this modified activity into a second population of

identical (unconnected) neurons (feedforward case). As before, the

connectivity structure (in-degrees, shared-input structure, synaptic

weights) is exactly identical in the feedback and the feedforward

case.

In ‘‘Methods: Linearized network model’’, we show that

the low-frequency fluctuations of the population rate s(t) of the

spiking model are captured by the reduced model r(t) presented in

the previous subsections. To verify that the theory based on

excitatory and inhibitory population rates is indeed sufficient to

explain the decorrelation mechanism, we first consider the case

where the sender identities of the presynaptic spike train are

randomly shuffled. Fig. 9 A shows the power-spectrum of the

population activity recorded in the original network (FB) as well as

the spectra obtained after shuffling spike-train identities within the

excitatory and inhibitory subpopulations separately (Shuff2D), or

across the entire network (Shuff1D). As shuffling of neuron

identities does not change the population rates, all three
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compound spectra are identical. Fig. 9 B shows the response

power-spectra of the neuron population receiving the shuffled

spike trains. Shuffling within the subpopulations (Shuff2D)

preserves the population-specific fluctuations and average corre-

lations. The effect on the response fluctuations is negligible

(compare black and light gray curves in Fig. 9 B). In particular, the

power of low-frequency fluctuations remains unchanged (Fig. 9 C).

This result confirms that population models which take excitatory

and inhibitory activity separately into account are sufficient to

explain the observations. Shuffling of spike-train identities across

subpopulations (Shuff1D), in contrast, causes an increase in the

population fluctuations by about one order of magnitude (Fig. 9

B,C; dark gray). This outcome is in agreement with the result

obtained by homogenizing pairwise correlations (see Fig. 7) and

demonstrates that the excitatory and inhibitory subpopulation

rates have to be conserved to explain the observed fluctuation

suppression.

The shuffling experiments and the results of the linear model in

the previous subsections suggest that the precise temporal structure

of the population averaged activities within homogeneous subpopu-

lations is essential for the suppression of population-rate fluctua-

tions. Preserving the exact structure of individual spike trains is not

required. This is confirmed by simulation experiments where new

sender identities were randomly reassigned for each individual

presynaptic spike (rather than for each spike train; data not

shown). This operation destroys the structure of individual spike

trains but preserves the compound activities. The results are

similar to those reported here.

So far, it is unclear how sensitive the fluctuation-suppression

mechanism is to perturbations of the temporal structure of the

population rates. To address this question, we replaced the

excitatory and inhibitory spike trains in the feedback ensemble by

independent realizations of inhomogeneous Poisson processes

(PoissI) with intensities given by the measured excitatory and

inhibitory population rates sE(t) and sI(t) of the recurrent

network, respectively. Note that the compound rates of a single

realization of this new spike-train ensemble are similar but not

identical to the original population rates sE(t), sI(t) (in each time

window ½tzDt), the resulting spike count is a random number

drawn from a Poisson distribution with mean and variance

Figure 7. Comparison between predictions of the linear theory (thick gray curves) and direct simulation of the LIF-network model
(symbols and thin lines). Dependence of the spike-train and population-rate statistics on the synaptic weight J (PSP amplitude) in a recurrent
excitatory-inhibitory network (‘feedback system’, ‘FB’) and in a population of unconnected neurons receiving randomized feedforward input
(‘feedforward system’, ‘FF’) from neurons in the recurrent network. Average presynaptic firing rates and shared-input structure are identical in the two
systems. In the FF case, the average correlations between presynaptic spike-trains are homogenized (i.e. CEE~CEI~CII) as a result of the random
reassignment of presynaptic neuron types. The mapping of the LIF dynamics to the linear reduced dynamics (‘‘Methods: Response kernel of the
LIF model’’) relates the PSP amplitude J to the effective coupling strength w(J) by (45), as shown in Fig. 8 B. A: Average firing rates n0 in the FB
(black up-triangles: excitatory neurons; gray down-triangles: inhibitory neurons) and in the FF system (open circles). Analytical prediction (??) (gray
curve). B: Spike-train correlation coefficients CEE=AE (black up-triangles), CEI=

ffiffiffiffiffiffiffiffiffiffiffiffi
AEAI

p
(gray squares) and CII=AI (gray down-triangles) for excitatory-

excitatory, excitatory-inhibitory, and inhibitory-inhibitory neuron pairs, respectively, in the FB system. Analytical prediction (19) (gray curves). Spike-

train correlation coefficient ~CC=~AA (open circles) in the FF system with homogenized presynaptic spike-train correlations. Analytical prediction (86)

(underlying gray curve). C: Shared-input (Cin
shared; black up-triangles) and spike-correlation contribution Cin

corr (FB: gray down-triangles; FF: open circles)

to the input correlation Cin (normalized by
ffiffiffiffiffiffiffiffiffiffiffiffi
AEAI

p
). Analytical predictions (20). D: Low-frequency (LF) power ratio of the compound activity. Vertical

dotted lines in A–D mark the stability limit of the linear model (see ‘‘Methods: Linearized network model’’). N~12500, K~1000, c~1=4, g~6.
Size of postsynaptic population in the FF case: M~2000. Simulation time: T~100 s.
doi:10.1371/journal.pcbi.1002596.g007
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proportional to sE(t) and sI(t), respectively). Although the

compound spectrum of the resulting local input is barely

distinguishable from the compound spectrum of the intact recurrent

system (Fig. 9 D; black and dark gray curves), the response spectra

are very different: replacing the feedback ensemble by inhomoge-

neous Poisson processes leads to a substantial amplification of low-

frequency fluctuations (Fig. 9 E; compare black and dark gray

curves). The effect is as strong as if the temporal structure of the

population rates was completely ignored, i.e. if the feedback

channels were replaced by realizations of homogeneous Poisson

processes with constant rates (PoissH; light gray curves in Fig. 9

D,E). This result indicates that the precise temporal structure of the

population rates is essential and that even small deviations can

significantly weaken the fluctuation-suppression mechanism. The

Figure 8. Linear response and relation between synaptic weight J and effective coupling strength w. A: Firing-rate deflection wikh(t) of a
LIF neuron caused by an incoming spike event of postsynaptic amplitude Jik~0:6 mV. B: Integral wik~wik

Ð?
0 h(t) dt of the firing rate deflection

shown in A as a function of the postsynaptic amplitude Jik (simulation: black dots; analytical approximation (45) : gray curve). The neuron receives
constant synaptic background input with J~0:1 mV, g~4, and rates nE~5960 1

s
, nI~1190 1

s
resulting in a first and second moment (42) �mmi~12 mV

and �ssi~5 mV. Simulation results are obtained by averaging over 1000 trials of 10 s duration each with 25000 input impulses on average. For further
parameters of the neuron model, see Table 1 and Table 2.
doi:10.1371/journal.pcbi.1002596.g008

Figure 9. Amplification of population-rate fluctuations by different types of feedback manipulations in a random network of
excitatory and inhibitory LIF neurons (simulation results). Top row (A–C): Unperturbed feedback (FB; black), shuffling of spike-train senders
across entire network (Shuff1D; dark gray) and within each subpopulation (E,I) separately (Shuff2D; light gray). Bottom row (D–F): Unperturbed
feedback (FB; black), replacement of spike trains by realizations of inhomogeneous (PoissI; dark gray) and homogeneous Poisson processes (PoissH;
light gray). In the PoissI (PoissH) case, the (time averaged) subpopulation rates are approximately preserved. A, D: Compound power-spectra CQQ of
input spike-train ensembles. B, E: Power-spectra C~RR~RR of population-response rates. C, F: Low-frequency (LF; 1–20 Hz) power ratio a (increase in LF
power relative to the unperturbed case [FB]; logarithmic scaling). Note that in A, the compound-input spectra (FB, Shuff1D, Shuff2D) are identical. In
D, the input spectra for the intact recurrent network (FB) and the inhomogeneous-Poisson case (PoissI) are barely distinguishable. See Table 1 and
Table 2 for details on the network model and parameters. Simulation time T~100 s. Single-trial spectra smoothed by moving average (frame size
1 Hz).
doi:10.1371/journal.pcbi.1002596.g009
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results of the Poisson experiments can be understood by considering

the effect of the additional noise caused by the stochastic realization

of individual spikes. Considering the auto-correlation, a Poisson

spike-train ensemble with rate profile n(t) is equivalent to a sum of

the rate profile and a noise term resulting from the stochastic

(Poissonian) realization of spikes, q(t)~n(t)1z
ffiffiffiffiffi
n0
p

z(t). Here, z(t)

denotes a Gaussian white noise with auto-correlation

Et z(t)z(tzs)½ �~1d(s) and n0~Et n(t)½ � the mean firing rate. The

response fluctuations of the population driven by the rate modulated

Poisson activity are, to linear approximation, given by
~RR~H(WQzX). Inserting Q, we obtain an additional noise term

n0DH D2WWT in the spectrum C ~RR~RR~~RR~RR� which explains the

increase in power compared to the spectrum CRR of the recurrent

network. As a generalization of the Poisson model, one may replace

the noise amplitude
ffiffiffiffiffi
n0
p

by some arbitrary prefactor g. In

simulation experiments, we observed a gradual amplification of

the population-rate fluctuations with increasing noise amplitude g
(data not shown).

Discussion

We have shown that negative feedback in recurrent neural

networks actively suppresses low-frequency fluctuations of the

population activity and pairwise correlations. This mechanism

allows neurons to fire more independently than expected given the

amount of shared presynaptic input. We demonstrated that

manipulations of the feedback statistics, e.g. replacing feedback

by uncorrelated feedforward input, can lead to a significant

amplification of response correlations and population-rate fluctu-

ations.

The suppression of correlations and population-rate fluctuations

by feedback can be observed in networks with both purely

inhibitory and mixed excitatory-inhibitory coupling. In purely

inhibitory networks, the effect can be understood by studying the

role of the effective negative feedback experienced by the

compound activity. In networks of excitatory and inhibitory

neurons, a change of coordinates, technically a Schur decompo-

sition, exposes the underlying feedback structure: the sum of the

excitatory and inhibitory activity couples negatively to itself if the

network is in an inhibition dominated regime (which is required

for its stability; see, e.g., [12). This negative feedback suppresses

fluctuations in a similar way as in purely inhibitory networks. The

fluctuation suppression becomes more efficient the further the

network is brought into the inhibition dominated regime, away

from the critical point of equal recurrent excitation and inhibition

(�gg~1). Having identified negative feedback as the underlying

cause of small fluctuations and correlations, we can rule out

previous explanations based on a balance between (correlated)

excitation and inhibition [17]. We presented a self-consistent

theory for the average pairwise spike-train correlations which

illuminates that the suppression of population-rate fluctuations and

the suppression of pairwise correlations are two expressions of the

same effect: as the single spike-train auto-covariance is the same in

the feedforward and the feedback case, the suppression of

population-rate fluctuations implies smaller correlations. Our

theory enables us to identify the cancellation of input correlations

as a hallmark of small spike-train correlations.

In previous studies, shared presynaptic input has often been

considered a main source of correlation in recurrent networks (e.g.

[15,52]). Recently [17], suspected that correlations between

excitatory and inhibitory neurons and the fast tracking of external

input by the excitatory and the inhibitory population are

responsible for an active decorrelation. We have demonstrated

here that the mere fact that excitatory and inhibitory neurons are

correlated is not sufficient to suppress shared-input correlations.

Rather, we find that the spike-train correlation structure in

networks of excitatory and inhibitory networks arranges such that

their overall contribution to the covariance between the summed

inputs to a pair of neurons becomes negative, canceling partly the

effect of shared inputs. This cancellation becomes more precise the

stronger the negative compound feedback Kw(1{cg) is. In

homogeneous networks where excitatory and inhibitory neurons

receive statistically identical input, the particular structure of

correlations is CEEwCEIwCII. It can further be shown that this

structure of correlations is preserved in the limit of large networks

N?? (K=N~const:). For non-homogeneous synaptic connec-

tivity, if the synaptic amplitudes depend on the type of the target

neuron (i.e. JEE=JIE or JEI=JII), the structure of correlations

may be different. Still, the correlation structure arranges such that

shared input correlation is effectively suppressed. Formally, this

can be seen from a self-consistency equation similar to our

equation (80).

The study by [17] has shown that correlations are suppressed in

the limit of infinitely large networks of binary neurons receiving

randomly drawn inputs from a common external population. Its

argument rests on the insight that the population-activity

fluctuations in a recurrent balanced network follow the fluctua-

tions of the external common population. An elegant scaling

consideration for infinitely large networks N?? with vanishing

synaptic efficacy !1=
ffiffiffiffiffi
N
p

shows that this fast tracking becomes

perfect in the limit. This allows to determine the zero-lag pairwise

correlations caused by the external input. The analysis methods

and the recurrent networks presented here differ in several respects

from these previous results: We study networks of a finite number

of spiking model neurons. The neurons receive uncorrelated

external input, so that correlations are due to the local recurrent

connectivity among neurons, not due to tracking of the common

external input [17]. Moreover, we consider homogeneous

connectivity where synaptic weights depend only on the type of

the presynaptic neuron (as, e.g., in [12]), resulting in a correlation

structure CEEwCEIwCII. For such connectivity, networks of

binary neurons with uncorrelated external input exhibit qualita-

tively the same correlation structure as reported here (results not

shown).

In purely inhibitory networks, the decorrelation occurs in an

analog manner as in excitatory-inhibitory networks. As only a

single population of neurons is available here, population averaged

spike-train correlations CII are negative. This negative contribu-

tion compensates the positive contribution of shared input.

The structure of integrated spike-train covariances in networks

constitutes an experimentally testable prediction. Note, however,

that the prediction (19) obtained in the current work rests on two

simplifying assumptions: identical internal dynamics of excitatory

and inhibitory neurons and homogeneous connectivity (i.e.

JEE~JIE, JEI~JII; see ‘‘Results: Population-activity fluc-
tuations in excitatory-inhibitory networks’’). For such

networks, the structure of correlations is given by CEEwCEIwCII.

Further, the relation between subthreshold membrane-potential

fluctuations and spike responses is the same for both neuron types.

Consequently, the above correlation structure can be observed not

only at the level of spike trains but also for membrane potentials,

provided the assumptions hold true. A recent experimental study

[53] reports neuron-type specific cross-correlation functions in the

barrel cortex of behaving mice, both for spike trains and

membrane potentials. It is however difficult to assess the integral

correlations from the published data. A direct test of our

predictions requires either a reanalysis of the data or a theory

predicting the entire correlation functions. The raw (unnorma-
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lized) II and EI spike-train correlations in [53] are much more

pronounced than the EE correlations (Fig. 6 in [53]). This seems to

be in contradiction to our results. Note, however, that the firing

rates of excitatory and inhibitory neurons are very different in

[53]. In our study, in contrast, the average firing rates of excitatory

and inhibitory neurons are identical as a consequence of the

assumed network homogeneity. Future theoretical work is needed

to generalize our model to networks with heterogeneous firing

rates and non-homogeneous connectivity. Recent results on the

dependence of the correlation structure on the connectivity may

prove useful in this endeavor [54–56].

Correlations in spike-train ensembles play a crucial role for the

en- and decoding of information. A set of uncorrelated spike trains

provides a rich dynamical basis which allows readout neurons to

generate a variety of responses by tuning the strength and filter

properties of their synapses [1]

In the presence of correlations, the number of possible readout

signals is limited. Moreover, spike-train correlations impair the

precision of such readout signals in the presence of noise. Consider,

for example, a linear combination y(t)~
PN

i~1 (si � hi)(t) of N
presynaptic spike trains with arbitrary (linear) filter kernels hi(t) (e.g.

synaptic filters). In a realistic scenario, the individual spike trains

si(t) typically vary across trials [3,57]. To understand how robust

the resulting readout signal y(t) is against this spike-train variability,

let’s consider the variability of its Fourier transform Y (v)~

F y(t)½ � vð Þ~
PN

i~1 Si(v)Hi(v). Assuming homogeneous spike-

train statistics,

S(v) : ~ESi (v)½ �(Vi) (mean)

V (v) : ~E DSi(v){S(v)D2
� �

(Vi) (variance)

C(v) : ~E Si(v){S(v)ð Þ Sj(v){S(v)
	 
�� �

(Vi,j=i) (covariance)

, ð24Þ

the (squared) signal-to-noise ratio of the readout signal Y (v) is given

by

SN2(v) : ~
EY vð Þ Y vð Þ½ �
�� ��2

E Y vð Þ{E Y vð Þ½ �j j2
h i

~
jSj2j �HH1j2

N{1(1{k)V �HH2zkV j �HH1j2
:

ð25Þ

Here, E . . .½ � denotes the average across the ensemble of spike-train

realizations, k(v)~C(v)=V (v) the spike-train coherence, and the

coefficients �HH1 : ~Ei Hi½ � and �HH2 : ~Ei DHi D2
� �

the 1st- and 2nd-

order filter statistics. For uncorrelated spike trains, i.e. k(v)~0, and

S(v)=0, the signal-to-noise ratio SN2 grows unbounded with the

population size N. Thus, even for noisy spike trains (Vw0), the

compound signal y(t) can be highly reliable if the population size N
is sufficiently large. In the presence of correlations, k(v)=0,

however, SN2 converges towards a constant value k{1DSD2V{1 as

N grows. Even for large populations, the readout signal remains

prone to noise. These findings constitute a generalization of the

results reported for population-rate coding, i.e. sums of unweighted

spike counts (see, e.g., [2,3]). The above arguments illustrate that the

same reasoning applies to coding schemes which are based on the

spatio-temporal structure of spike patterns.

In a previous study [9], we demonstrated that active decorrela-

tion in recurrent networks is a necessary prerequisite for a

controlled propagation of synchronous volleys of spikes in

embedded feedforward subnetworks (‘synfire chains’; Fig. 10): A

synfire chain receiving background input from a finite population

of independent Poisson sources amplifies the resulting shared-

input correlations, thereby leading to spontaneous synchronization

within the chain (Fig. 10 B). A distinction between these spurious

synchronous events and those triggered by an external stimulus is

impossible. The synfire chain loses its asynchronous ground state

[58]. A synfire chain receiving background inputs from a recurrent

network, in contrast, is much more robust. Here, shared-input

correlations are actively suppressed by the recurrent-network

dynamics. Synchronous events can be triggered by external stimuli

in a controlled manner (Fig. 10 A). Apart from the spontaneous

synchronization illustrated in Fig. 10, decorrelation by inhibition

might solve another problem arising in embedded synfire

structures: In the presence of feedback connections between the

synfire chain and the embedding background network, synchro-

nous spike volleys can excite (high-frequency) oscillatory modes in

the background network which, in turn, interfere with the synfire

dynamics and prevent a robust propagation of synchronous

activity within the chain (‘synfire explosion’; see [59,60]). The

decorrelation mechanism we refer to in our work is efficient only at

low frequencies. It cannot prevent the build-up of these

oscillations. [61] demonstrated that the ‘synfire explosion’ can be

suppressed by adding inhibitory neurons to each synfire layer

(‘shadow inhibition’) which diffusely project to neurons in the

embedding network, thereby weakening the impact of synfire

activity on the embedding network.

In the present work we focus on the integral of the correlation

function, nurtured by our interest in the low-frequency fluctua-

tions. An analog treatment can however easily be performed for

the zero-lag correlations. In contrast to infinite networks with

sparse connectivity (N??, K~const), in the case of finite

networks, pairs of neurons must be distinguished according to

whether they are synaptically connected or not in order to arrive at

a self-consistent theory for the averaged correlations. Providing

explicit expressions for correlations between connected and

unconnected neurons, the current work provides the tools to

relate experimentally observed spiking correlations to the under-

lying synaptic connectivity.

The quantification of pairwise correlations is a necessary

prerequisite to understand how correlation sensitive synaptic

plasticity rules, like spike-timing dependent plasticity [62], interact

with the recurrent network dynamics [63]. Existing theories

quantifying correlations employ stochastic neuron models and are

limited to purely excitatory networks [63–65]. Here, we provide

an analytical equivalence relation between a reduced linear model

and spiking integrate-and-fire neurons describing fluctuations

correctly up to linear order. A formally similar approach has

been employed earlier to study delayed cumulative inhibition in

spiking networks [66]. We show that the correlations observed in

recurrent networks in the asynchronous irregular regime are

quantitatively captured for realistic synaptic coupling with

postsynaptic potentials of up to about 1 mV. The success of this

approach can be explained by the linearization of the neural

threshold units by the afferent noise experienced in the asynchro-

nous regime. For linear neural dynamics, the second-order

description of fluctuations is closed [67]. We exploit this finding

by applying perturbation theory to the Fokker-Planck description

of the integrate-and-fire neuron to obtain the linear input-output

transfer at low frequencies [33], thereby determining the effective

coupling in our linear model.

The scope of the theory presented in the current work is limited

mainly by three assumptions. The first is the use of a linear theory

which exhibits an instability as soon as a single eigenvalue of the

effective connectivity matrix assumes a positive real part. This

ultimately happens when increasing the synaptic coupling
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strength, because the eigenvalues of the random connectivity

matrix are located in a circle centered in the left half of the

complex plain with a radius given by the square root of the

variance of the matrix elements [68,69]. Nonlinearities, like those

imposed by strictly positive firing rates, prevent such unbounded

growth (or decay) by saturation. For nonlinear rate models with

sigmoidal transfer functions it has been shown that the activity of

recurrent random networks of such units makes a transition to

chaos at the point where the linearized dynamics would loose

stability [70]. However, this point of transition is sharp only in the

limit of infinitely large networks. From the population averaged

firing rate and the pairwise correlations averaged over pairs of

neurons considered in Fig. 7 we cannot conclude whether or not a

transition to chaos occurs in the spiking network. In simulations

and in the linearized reduced model, we could however observe

that the distribution of pairwise correlations broadens when

approaching the point of instability. Future work needs to examine

this question in detail, e.g. by considering measures related to the

Lyapunov exponent. Recently developed semi-analytical theories

accounting for nonlinear neural features [71] may be helpful to

answer this question. The second limiting factor of the current

theory is the use of a perturbative approach to quantify the

response of the integrate-and-fire model. Although the steady-state

firing rate of the network is found as the fixed point of the

nonlinear self-consistency equation, the response to a synaptic

fluctuation is determined up to linear order in the amplitude of the

afferent rate fluctuation, which is only valid for sufficiently small

fluctuations. For larger input fluctuations, nonlinear contributions

to the neural response can become more important [33]. Also for

strong synaptic coupling, deviations from our theory are to be

expected. Thirdly, the employment of Fokker-Planck theory to

determine the steady-state firing rate and the response to incoming

fluctuations assumes uncorrelated presynaptic firing with Poisson

statistics and synaptic amplitudes which are vanishingly small

compared to the distance between reset and threshold. For larger

synaptic amplitudes, the Fokker-Planck theory becomes approx-

imate and deviations are expected [33,34,72,73]. This can be

observed in Fig. 7 A, showing a deviation between the self-

consistent firing rate and the analytical prediction at about

J^1 mV. In this work, we obtained a sufficiently precise self-

consistent approximation of the correlation coefficient C=A by

relating the random recurrent network of spiking neurons in the

asynchronous irregular state to a reduced linear model which

obeys the same relation between C and A up to linear order. This

reduced linear model, however, does not predict the absolute

values of the variance A and covariance C. The variance A of the

LIF model, for example, is dominated by nonlinear effects, such as

the reset mechanism after each action potential. Previous work

[12,31] has shown that the single spike-train statistics can be

approximated in the diffusion approximation if the recurrent firing

rate in the network is determined by mean-field theory. One may

therefore extend our approach and determine the integral auto-

correlation function as A~nF with the Fano factor F (see [51]).

For a renewal process and long observation times, the Fano factor

is given by F~CV2 [74,75]. The coefficient of variation CV can

be obtained from the diffusion approximation of the membrane-

potential dynamics (App. A.1 in [12). The covariance C can then

be determined by (19). Another possibility is the use of a

refractory-density approach [76,77].

The spike-train correlation as a function of the time lag is an

experimentally accessible measure. Future theoretical work should

therefore also focus on the temporal structure of correlations in

recurrent networks, going beyond zero-lag correlations [15,17]

and the integral measures studied in the current work. This would

allow to compare the theoretical predictions to direct experimental

observations in a more detailed manner. Moreover, the relative

spike timing between pairs of neurons is a decisive property for

Hebbian learning [78] in recurrent networks, as implemented by

spike timing-dependent plasticity [62], and suspected to play a role

for synapse formation and elimination [79].

The simulation experiments performed in this work revealed

that the suppression of correlations is vulnerable to certain types of

manipulations of the feedback loop. One particular biological

source of additional variability in the feedback loop is probabilistic

vesicle release at synapses [80]. In feedforward networks, such

unreliable synaptic transmission has been shown to decrease the

Figure 10. Recurrent network dynamics stabilizes dynamics of embedded synfire chains. Spiking activity in a synfire chain (L~10 layers,
layer width b~50) receiving background input from an excitatory-inhibitory network (A, cf. Fig. 1 C) or from a finite pool of excitatory and inhibitory
Poisson processes (B, cf. Fig. 1 D). Average input firing rates, in-degrees and amount of shared input are identical in both cases. Neurons of the first
synfire layer (neuron ids 1,:::,b) are stimulated by current pulses at times t~500 and 1000 ms. Each neuron in layer k[½2,L� receives inputs from all b
neurons in the preceding layer k{1 (synaptic weights Jsfc~0:8 mV, spike transmission delays dsfc~2 ms), and K{b and cK excitatory and inhibitory
background inputs, respectively, randomly drawn from the presynaptic populations. Neurons in the first layer k~1 receive K and cK excitatory and
inhibitory background inputs, respectively. Note that there is no feedback from the synfire chain to the embedding network. See Table 2 for network
parameters.
doi:10.1371/journal.pcbi.1002596.g010
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transmission of correlations by pairs of neurons [22]. Stochastic

synaptic release is very similar to the replacement of the

population activity in the feedback branch by a rate modulated

Poisson processes that conserves the population rate. In these

simulations we observed an increase of correlations due to the

additional noise caused by the stochastic Poisson realization.

Future work should investigate more carefully which of the two

opposing effects of probabilistic release on correlations dominates

in recurrent networks.

The results of our study do not only shed light on the

decorrelation of spiking activity in recurrent neural networks. They

also demonstrate that a standard modeling approach in theoretical

neuroscience is problematic: When studying the dynamics of a local

neural network (e.g. a ‘‘cortical column’’), it is a common strategy to

replace external inputs to this neural population P by spike-train

ensembles with some predefined statistics, e.g. by stationary Poisson

processes. Most neural systems, however, exhibit a high degree of

recurrence. Nonlocal input to the population P, i.e. input from

other brain areas, therefore has to be expected to be shaped by the

activity within P. The omission of these feedback loops can lead to

qualitatively wrong predictions of the population statistics. The

analytical results for the correlation structure of recurrent networks

presented in this study provide the means to a more realistic

specification of such external activity.

Methods

LIF network model
In the present study, we consider two types of sparsely connected

random networks: networks with purely inhibitory coupling (‘‘I

networks’’) and networks with both excitatory and inhibitory

interactions (‘‘EI networks’’). To illustrate the main findings of this

study and to test the predictions of the linear model described in

‘‘Methods: Linearized network model’’, both architectures

were implemented as networks of leaky integrate-and-fire (LIF)

neurons. The model details and parameters are reported in Table 1

and Table 2, respectively. All network simulations were carried out

with NEST (www.nest-initiative.org, [81]).

Linearized network model
In this section we show how the dynamics of the spiking network

can be reduced to an effective linear model with fluctuations

fulfilling, by construction, the same relationship as the original

system up to linear order. We first outline the conceptual steps of

this reduction, and then provide the formal derivation.

We make use of the observation that the effect of a single

synaptic impulse on the output activity of a neuron is typically

small. Writing the response spike train of a neuron as a functional

of the history of all incoming impulses therefore allows us to

perform a linearization with respect to each of the afferent spike

trains. Formally, this corresponds to a Volterra expansion up to

linear order, the generalization of a Taylor series to functionals. In

‘‘Methods: Response kernel of the LIF model’’, we

perform this linearization explicitly for the example of the LIF

model. This determines how the linear response kernel depends on

the parameters of the LIF model. The linear dependence on the

input leads to an approximate convolution equation (31) linearly

connecting the auto- and the cross-correlation functions in the

network. As this equation is complicated to solve directly, we

introduce a reduced linear model (35) obeying the same

convolution equation. The reduced linear model can be solved

by standard Fourier methods and yields an explicit form for the

covariance matrix in the frequency domain (37). The diagonal and

off-diagonal elements of the N~NEzNI dimensional covariance

matrix C(v) in (56) correspond to the power-spectra of individual

neurons and the cross-spectra of individual neuron pairs,

respectively. As, in this linear approximation, both the auto- and

the cross-covariances are proportional to the variance of the

driving noise, the resulting correlation coefficients are independent

of the noise amplitude (see ‘‘Methods: Population averaged
correlations in the linear EI network’’). As shown in

‘‘Results: Suppression of population-activity fluctua-
tions by negative feedback’’ and ‘‘Results: Population-
activity fluctuations in excitatory-inhibitory networks’’,
the suppression of fluctuations in recurrent networks is most

pronounced at low frequencies. It is therefore sufficient to restrict

the discussion to the zero-frequency limit v?0. Note that the

zero-frequency variances and covariances correspond to the

integrals of the auto- and cross-correlation functions in the time

domain. In this limit, we may combine the two different sources of

fluctuations caused by the spiking of the neurons and by external

input to the network into a single source of white noise with

variance r2 (see (39)).

In general, the spiking activity si(t) of neuron i at time t is

determined by the entire history fs(t
0
)Dt
0
vtg of the activity of all

neurons s~(s1, . . . ,sN ) in the network up to time t. Formally, this

dependence can be expressed by a functional

si(t)~Gi
t½s(t0)�: ð26Þ

The subscript t in Gi
t indicates that t0vt (causality). In the following,

we use the abbreviation Gi
t½s�:Gi

t½s(t0)�. The effect of a single

synaptic input on the state of a neuron is typically small. We

therefore approximate the influence of an incoming spike train on

the activity of the target neuron up to linear order. The sensitivity of

neuron i’s activity to the input from neuron k can be expressed by

the functional derivative of Gi
t with respect to input spike train sk:

dGi
t½s(t0)�

dsk(t00)
~ lim

E?0

1

E
Gi

t½s(t0)zEd(t0{t00)ek�{Gi
t½s(t0)�

	 

: ð27Þ

It represents the response of the functional to a single d-shaped

perturbation in input channel k at time t00, normalized by the

perturbation amplitude E. In (27), ek~(0, . . . ,0,1,0, . . . ,0) denotes

the unity vector with elements ekk
~1 and eki

~0 for all i=k. By

introducing the vector

sk̂k(t)~(s1(t), . . . ,sk{1(t),0,skz1(t), . . . ,sN (t)) of spike trains with

the k-th component set to zero, Gi
t½s� can be approximated by

Gi
t½s�^

XN

k~1

ðt

{?

dGi
t½sk̂k�

dsk(t00)
sk(t00)dt00: ð28Þ

Eq. (28) is a Volterra expansion up to linear order, the formal

extension of a Taylor expansion of a function of N variables to a

functional, truncated after the linear term. With the linearized

dynamics (28), the pairwise spike-train cross-correlation function

between two neurons i and j=i is given by

cij(t)~Ssi(tzt)~ssj(t)Ts

~SGi
tzt½s�~ssj(t)Ts

~
XN

k~1

ðtzt

{?
S

dGi
tzt½sk̂k�

dsk(t
00
)

Ssk(t00)~ssj(t)Tsk
Ts\sk

dt00 (Vtw0):

ð29Þ
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Note that (29) is valid only for positive time lags tw0, because for

tv0 a possible causal influence of si on sj is not expressed by the

functional. Here, S:Ts denotes the average across the ensemble of

realizations of spike trains in the stationary state of the network (e.g.

the ensemble resulting from different initial conditions), and

~ss(t)~s(t){SsTs the centralized (zero mean) spike train. In the last
line in (29), the average S:Ts~SS:Tsk

Ts\sk
is split into the average

S:Ts\sk
across all realizations of spike trains excluding sk and the

average S:Tsk
across all realizations of sk. Note that the latter does

not affect the functional derivative because it is, by construction,

Table 1. LIF network: Model overview.

A Model summary

Populations one (inhibitory network) or two (excitatory-inhibitory network)

Connectivity random, fixed in-degrees

Neuron leaky integrate-and-fire (LIF)

Synapse current based, delta-shaped postsyn. currents with constant amplitudes

Input uncorrelated Gaussian white noise currents

B Populations

Inhibitory network

Name Elements Size

I LIF N~K=E

Excitatory-inhibitory network

Name Elements Size

E LIF NE~K=E

I LIF NI~cNE~cK=E

C Connectivity

Inhibitory network

Source Target Pattern

I I random convergent K?1, delay d , weight {J

Excitatory-inhibitory network

Source Target Pattern

E E random convergent K?1, delay d , weight J

E I random convergent K?1, delay d , weight J

I E random convergent cK?1, delay d , weight {gJ

I I random convergent cK?1, delay d , weight {gJ

D Neuron

Type Leaky integrate-and-fire (LIF, [86])

Description Dynamics of membrane potential Vi(t) (i[½1,N�):

- Spike emission at times ti
k with Vi(t

i
k)§h

- Subthreshold dynamics:

- tm
_VV i~{VizRmIi(t) if Vk : t=[(ti

k ,ti
kztref �

- Reset + refractoriness: Vi(t)~Vreset if Vk : t[(ti
k ,ti

kztref �

Exact integration [87] with temporal resolution dt

Initial membrane-potential distribution at t~0: uniform between 0 and h

E Synapse

Type Current synapse with d-shaped postsyn. currents (PSCs)

Description Input current of neuron i: Ii(t)~Cm

P
j Jij

P
l d(t{t

j
l{d)zIi,ext(t)

Static synaptic weights Jij (see Connectivity)

F Input

Type uncorrelated Gaussian white noise RmIi,ext(t)~mextz
ffiffiffiffiffiffi
tm
p

ji(t) (for i[½1,N�)

Description mean mext~RmEt Ii,ext(t)½ �, auto-correlation R2
mEt Ii,ext(t)Ij,ext(tzt)

� �
~m2

extzg2tmdijd(t)

in discrete time t[fn:dtDn[Ng, j(n:dt) piecewise constant within time interval dt, value drawn independently for each

time point from a normal distribution with zero mean and standard deviation 1=
ffiffiffiffiffi
dt
p

doi:10.1371/journal.pcbi.1002596.t001
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independent of the actual realization of sk. A consistent approxi-

mation up to linear order is equivalent to the assumption that for all

j the linear dependence of the functional on sj is completely

contained in the respective derivative with respect to sj (28).

Dependencies beyond linear order include higher-order derivatives

and are neglected in this approximation. This is equivalent to

neglecting the dependence of
dGi

tzt½sk̂k
�

dsk (t
00

)
on sj for any j=k. Hence, we

can average the inner term over sk and sj separately. In the

stationary state, this correlation can only depend on t
00
{t and

equals the auto- or the cross-correlation function:

Ssk(t
00
)~ssj(t)Tsk ,sj

~
ak(t

00
{t) for k~j

ckj(t
00
{t) for k=j:

(

The pairwise spike-train correlation function is therefore given by

cij(t)~
XN

k~1

ðtzt

{?
dt
00 dGi

tzt½sk̂k�
dsk(t

00
) s

ak(t
00
{t) for k~j

ckj(t
00
{t) for k=j

(
(Vtw0),

where we used the fact that Sf ½sk̂k�Ts\sk
~Sf ½sk̂k�Ts for any functional

f that does not depend on sk. The average of the functional

derivative has the intuitive meaning of a response kernel with

respect to a d-shaped perturbation of input sk at time t00. Averaged

over the realizations of the stationary network activity this response

can only depend on the relative time tzt{t00. In a homogeneous

random network, the input statistics (number of synaptic inputs and

synaptic weights) and the parameters of the internal dynamics are

identical for each cell, so that the temporal shape h(t) of the

response kernel can be assumed to be the same for all neurons. The

synaptic coupling strength from neuron k to neuron i determines

the prefactor wik:

wikh(tzt{t
00
):S

dGi
tzt½sk̂k�

dsk(t
00
)

Ts: ð30Þ

In this notation, the linear equation connecting the auto-correla-

tions ak and the cross-correlations cij takes the form

cij(t)~
XN

k~1

wik

ðt

{?
dth(t{t)

ak(t) for k~j

ckj(t) for k=j

�
(Vtw0): ð31Þ

Eq. (31) can be solved numerically or by means of Wiener-Hopf

theory taking the symmetry cij(t)~cji({t) into account [82].

Table 2. LIF network: Parameters (default values).

A Connectivity

Name Value Description

K 1250 (inhibitory network) in-degree

1000 (E-I network) excitatory in-degree

E 0:1 network connectivity

c~NI=NE 1=4 (E-I network) relative size of inhibitory subpopulation

B Neuron

Name Value Description

Rm 80 MV membrane resistance

tm 20 ms membrane time constant

tref 2 ms refractory period

Vreset 0 mV reset potential

h 15 mV spike threshold

C Synapse

Name Value Description

J 0:2 mV EPSP amplitude

g 6 (E-I network) relative IPSP amplitude

d 0:1 ms synaptic delay

D Input

Name Value Description

mext 1:5h mean external GWN input

g 0:3h SD of external GWN input

E Simulation

Name Value Description

T 100 s10 or simulation time

dt 0:1 ms time resolution

doi:10.1371/journal.pcbi.1002596.t002
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Our aim is to find a simpler model which is equivalent to the

LIF dynamics in the sense that it fulfills the same equation (31).

Let’s u(t) denote the vector of dynamic variables of this reduced

model. Analog to the original model, we define the cross-

correlation for i=j and tw0 as

cu
ij(t)~Sui(tzt)~uuj(t)Tu

~SLi
tzt½u�~uuj(t)Tu:

ð32Þ

The simplest functional Li
t½u� consistent with equation (31) is linear

in u. Since we require equivalence only with respect to the

ensemble averaged quantities, i.e. cu
ij(t)~cij(t), the reduced

activity and therefore Li
t½u� can contain a stochastic element

which would disappear after averaging. The linear functional

ui(t)~Li
t½u�~

XN

k~1

wik

ðt

{?
h(t{t0)uk(t0)dt0zzi(t) ð33Þ

with a pairwise uncorrelated, centralized white noise zi(t)

(Szi(tzt)zk(t)Tz~r2
zdijd(t)) fulfills the requirement, since for

tw0 and i=j

cu
ij(t)~Sui(tzt)~uuj(t)Tz~

XN

k~1

wik

ðtzt

{?
h(tzt{t0)

Suk(t0)~uuj(t)Tz dt0zSzi(tzt)~uuj(t)Tz|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
~0

~
XN

k~1

wik

ðt

{?
dth(t{t)

au
k(t) for k~j

cu
kj(t) for k=j

(
:

This equation has the same form as (31), so both models, within

the linear approximation, exhibit an identical relationship between

the auto- and cross-covariances. The physical meaning of the noise

z(t) is the variance caused by the spiking of the neurons. The auto-

correlation function of a spike train of rate n has a d-peak of weight

n. The reduced model (33) exhibits such a d-peak if we set r2
z~n.

A related approach has been pursued before (see Sec. 3.5 in [31])

to determine the auto-correlation of the population averaged firing

rate. This similarity will be discussed in detail below.

So far, we considered a network without external drive, i.e. all

spike trains s(t) originated from within the network. If the network

is driven by external input, each neuron receives, in addition,

synaptic input yi from neurons outside the network. We assume

uncorrelated external drive Syi(tzt)Tyj(t)T~r2
ydijd(t). In the

reduced model, this input constitutes a separate source of noise:

ui(t)~Li
t½u,y�~

XN

k~1

wik(uk � h)z(yi � hiy)zzi(t): ð34Þ

Here, (f � g)(t)~
Ð t

{? dt’f (t’)g(t{t’) denotes the convolution

and hiy(t) the response kernel with respect to an external input.

For simplicity, let’s assume that the shape of these kernels is

identical for all pairs of pre- and postsynaptic sources, i.e.

hix(t)~h(t). If we further absorb the synaptic amplitude of the

external drive in the strength of the noise ry, the linearized

dynamics (34) can be written in matrix notation

u(t)~(½Wuzy� � h)(t)zz(t) ð35Þ

with W~fwijg. The reduced model (35) can be solved directly by

means of Fourier transform:

U(v)~½1{WH(v)�{1
(H(v)Y(v)zZ(v)): ð36Þ

The full covariance matrix follows by averaging over the sources of

noise Z and Y as

Cu(v)~SU(v)UT ({v)TZ,Y

~(r2
zzDH(v)D2r2

y)½1{WH(v)�{1½1{WT H({v)�{1:
ð37Þ

The diagonal elements of Cu represent the auto-covariances, the

off-diagonal elements the cross-covariances. Both are proportional

to the driving noise r2
zzDH(v)D2r2

y. This is consistent with (31)

which is a linear relationship between the cross- and auto-

covariances.

For networks which can be decomposed into homogeneous

subpopulations, the N dimensional system (35) can be further

simplified by population averaging. Consider, for example, a

homogeneous random network with purely inhibitory coupling.

Assume that the neurons are randomly connected with probability

E and coupling strength {wv0. The average number of in/

outputs per neuron (in/out-degree) is thus given by K~EN. By

introducing the population averaged external input y(t)~Ei yi(t)½ �,
the averaged spiking noise z(t)~Ei zi(t)½ �, and the effective

coupling strength �ww~Kw, the dynamics of the population

averaged activity becomes

u(t)~Ei ui(t)½ �~
X

j

Ei wij

� �
ujzEi yi½ �

" #
� h

 !
(t)z

Ei zi(t)½ �~(½{�wwuzy� � h)(t)zz(t) :

ð38Þ

Here we assumed that Ei wij

� �
is independent of the presynaptic

neuron j and can be replaced by {Ew~{�ww=N. Note that this

replacement is exact for networks with homogeneous out-degree,

i.e. if the number of outgoing connections is identical for each

neuron j. For large random networks with binomially distributed

out-degrees (e.g. Erdös-Rényi networks or random networks with

constant in-degree), (38) serves as an approximation.

To relate our approach to the treatment of finite-size

fluctuations in [31], consider the population-averaged dynamics

(38) of a single population with mean firing rate n. We set r2
z~n

for all single neuron noises zi in order for the reduced model’s

auto-covariances to reproduce the d-peak of the spiking dynamics.

In the population averaged dynamics, this leads to the variance of

the noise z(t) given by Sz(tzt)z(t)T~
1

N
r2

zd(t)~
n

N
d(t). This

agrees with the variance of the population rate in [31]. Therefore,

the dynamics of the population averaged quantity u in (38) agrees

with the earlier definition of a population averaged firing rate

s(t)~
1

N

X
i
si(t) for the spiking network [31].

In equation (38), two distinct sources of noise appear: The noise

due to external uncorrelated activity y and the noise z which is

required to obtain the d-peak of the auto-correlation functions of

the reduced model. The qualitative results of ‘‘Results:
Suppression of population-activity fluctuations by neg-
ative feedback’’ and ‘‘Results: Population-activity fluc-
tuations in excitatory-inhibitory networks’’, however can

be understood with an even simpler model. As we are mainly

concerned with the low-frequency fluctuations, we only need a
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model with the same limit v?0. As we normalized the kernel so

that H(0)~1 we can combine both sources of noise and require

X (0):Y (0)zZ(0) in (36) in the zero frequency limit. Hence, in

‘‘Results: Suppression of population-activity fluctua-
tions by negative feedback’’ and ‘‘Results: Population-
activity fluctuations in excitatory-inhibitory networks’’,
we consider the model

r(t)~(½{Wrzx� � h)(t) ð39Þ

with a pairwise uncorrelated centralized white noise

Ex xi(tzt)xj(t)
� �

~r2dijd(t) to explain the suppression of fluctu-

ations at low frequencies.

As a second example, consider a random network composed of

an excitatory and an inhibitory subpopulation E and I with

population sizes NE~DED and NI~DI D~cNE, respectively. Assume

that each neuron receives excitatory and inhibitory inputs from E
and I with coupling strengths ww0 and {gwv0, respectively, and

probability E, such that the average excitatory and inhibitory in/out-

degrees are given by K~EN and cK , respectively. The dynamics of

the subpopulation averaged activities u(t)~(uE(t),uI(t))
T is given

by (35) with subpopulation averaged noise y(t)~(yE(t),yI(t))
T and

z(t)~(zE(t),zI(t))
T and effective coupling

W~�ww
1 {�gg

1 {�gg

� �
: ð40Þ

Here, �ww~Kw denotes the effective coupling strength, �gg~cg the

effective balance parameter and yE=I(t)~Ei[E=I yi(t)½ � and

zE=I(t)~Ei[E=I zi(t)½ � the (sub)population averaged external and

spiking sources of noise, respectively. Again, the reduction of the N-

dimensional linear dynamics to the two-dimensional dynamics (40)

is exact if the out-degrees are constant within each subpopulation.

As before, both sources of noise can be combined into a single

source of noise, if we are only interested in the low-frequency

behavior of the model, leading to the dynamics (39) with the

effective coupling (40).

The linear theory is only valid in the domain of its stability,

which is determined by the eigenvalue spectrum of the effective

coupling matrix W . For random coupling matrices, the eigenval-

ues are located within a circle with a radius equal to the square

root of the variance of the matrix entries [69]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var wij

� �q
~w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NE(1{E)(1zcg2)

p
. Writing the effective dynam-

ics for the exponential kernel as a differential equation

t Lr
Lt

~(W{1)rzx(t), the eigenvalues of the right hand side

matrix W{1 are confined to a circle centered at {1 in the

complex plain with radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var wij

� �q
. Given Var wij

� �
w1,

eigenvalues might exist which have a positive real part, leading

to unstable dynamics. This condition is indicated by the vertical

dotted lines in Fig. 6 A–F and Fig. 7 B–D near J~2:8 mV.

Beyond this line, the linear model predicts an explosive growth of

fluctuations. In the LIF-network model, an unbounded growth is

avoided by the nonlinearities of the single-neuron dynamics.

Response kernel of the LIF model
We now perform the formal linearization (30) for a network of

N LIF neurons i~1, . . . ,N. A similar approach has been

employed in previous studies to understand the population

dynamics in these networks [12,31]. We consider the inputP
j Jijsj(t) received by neuron i from the local network, where sj

denotes the spike train of the neuron j projecting to neuron i with

synaptic weight Jij . Given the time dependent firing rate nj(t) of

each afferent, and assuming small correlations and small synaptic

weights, the total input to neuron i can be replaced by a Gaussian

white noise with mean mi(t) and variance s2
i (t),

mi(t)~tm

X
j

Jijnj(t)

s2
i (t)~tm

X
j

J2
ijnj(t),

ð41Þ

where j sums over all synaptic inputs. Jij[fJ,{gJg denotes the

amplitude of the postsynaptic potential evoked by synapse j?i. tm is

the membrane time constant of the model. In the stationary state, the

firing rate of each afferent is well described by the constant time

average �nnj~Et nj

� �
. The working point at which we perform the

linearization of the neural response (30) is then given by analog

equations as (41), resulting in a constant mean �mmi~tm

P
j Jij�nnj and

variance �ss2
i ~tm

P
j J2

ij�nnj . If the amplitude of each postsynaptic

potential is small compared to the distance of the membrane potential

to threshold, the dynamics of the LIF model can be approximated by

a diffusion process, employing Fokker-Planck theory [83]. The

stationary firing rate of the neuron is then given by [12,31,84]

�nn{1
i (�mmi,�ssi)~trefz

ffiffiffi
p
p

tm(F (yh,i){F(yr,i))

with

F (y)~

ðy

f (y) dy f (y)~ey2
(erf(y)z1)

yh,i~
h{�mmi

�ssi

yr,i~
Vreset{�mmi

�ssi

,

ð42Þ

with the reset voltage Vreset, the threshold voltage h and the refractory

time tref . In homogeneous random networks, the stationary rate

(Fig. 7 A) is the same for all neurons. It is determined in a self-

consistent manner [12] as the fixed point of (42). The stationary mean

�mmi and variance �ss2
i are determined by the stationary rate. To

determine the kernel (30) we need to consider how a d-shaped

deflection in the input to this neuron at time point t
0

affects its output

up to linear order in the amplitude of the fluctuation. In the stationary

state, we may set t
0
~0. It is therefore sufficient to focus on the effect

of a single fluctuation

sk(t)~ad(t): ð43Þ

We therefore ask how the density of spikes per time ni(t)~SGi
t½s�Ts\sk

of neuron i, averaged over different realizations of the remaining

inputs to neuron i, changes in response to the fluctuation (43) of the

presynaptic neuron k in the limit of vanishing amplitude a. This

kernel wikh (30) is identical to the impulse response of the neuron and

can directly be measured in simulation by trial averaging over many

responses to the given d-deflection (43) in the input (see Fig. 8 A). For

the theory of low-frequency fluctuations, we only need the integral of

the kernel, also known as the DC susceptibility,

wik~wik

ð?
0

h(t) dt

~ lim
a?0

�nni(�mmizdmi,�ssizdsi){�nni(�mmi,�ssi)

a

~
L�nni

L�mmi

tmJikz
L�nni

L�ssi

tm

2�ssi

J2
ikzO(a2):

ð44Þ
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The second equality follows from the equivalence of the integral of

the impulse response and the step response in linear approximation

[21,33]. Following from [41], both mean and variance are perturbed

as dmi~atmJik and ds2
i ~atmJ2

ik in response to a step a in the

afferent rate nj . Moreover, we used the chain rule dsi~
1

2�ssi

ds2
i . The

variation of the afferent firing rate hence co-modulates the mean and

the variance and both modulations need to be taken into account to

derive the neural response [31]. Although the finite amplitude of

postsynaptic potentials has an effect on the response properties

[33,34], the integral response is rather insensitive to the granularity of

the noise [33]. We therefore employ the diffusion approximation to

linearize the dynamics of the LIF neuron around its working point

characterized by the mean �mmi and the variance �ss2
i of the total synaptic

input. In (44), we evaluate the partial derivatives of �nni with respect to

�mmi and �ss2
i using (42). First, observe that by chain rule

L�nni

L�mmi

~

{�nn2
i

L�nn{1
i

L�mmi
. We then again make use of the chain rule

L�nn{1
i

L�mmi

~

L�nn{1
i

Lyh,i

Lyh,i

L�mmi

z
L�nn{1

i

Lyr,i

Lyr,i

L�mmi

. Analog expressions hold for the derivative

with respect to �ssi. The first derivative yields
L�nn{1

i

Lyh,i

~
ffiffiffi
p
p

tmf (yh,i), the

one with respect to yr,i follows analogously, but with a negative sign.

We further observe that
LyA

L�mmi

~
{1

�ssi

and
LyA

L�ssi

~
{yA

�ssi

with

yA[fyr,i,yh,ig. Taken together, we obtain the explicit result for (44)

wik~(�nnitm)2
ffiffiffi
p
p Jik

�ssi

f (yh,i)(1z
Jik

2�ssi

yh,i){f (yr,i)(1z
Jik

2�ssi

yr,i)

� �
:ð45Þ

Note that the modulation of mi results in a contribution to wik that is

linear in Jik, whereas the modulation of si causes a quadratic

dependence on Jik. This expression therefore presents an extension to

the integral response presented in [21,85]. Fig. 8 B shows the

comparison of the analytical expression (45) and direct simulation.

The agreement is good over a large range of synaptic amplitudes

Jik[½{4,4�mV in the case of constant background noise caused by

small synaptic amplitudes (here 0:1 mV for excitation and {0:4 mV
for inhibition). For background noise caused by stronger impulses, the

deviations are expected to grow [33].

Population-activity spectra in the linear model: feedback
vs. feedforward scenario

The recurrent linear neural dynamics defined in the previous

section is conveniently solved in the Fourier domain. The driving

external Gaussian white noise X is mapped to the response

R(v)~T(v)X(v) by means of the transfer matrix T(v).

According to (39), it is given by T(v)~H(v) 1{H(v)Wð Þ{1
.

The covariance matrix in the frequency domain, the spectral

matrix, thus reads

CRR(v)~Ex R(v)R(v)�½ �~T(v)r21T(v)� , ð46Þ

where we used Ex XX �½ �~r21 and the expectation operator Ex½�
represents an average over noise realizations. To identify the effect

of recurrence on the network dynamics, we replace the local

feedback input by a feedforward input Q with spectral matrix

CQQ. The resulting response firing rate is given by

~RR~H(WQzX). Assuming that the feedforward input Q is

uncorrelated to the external noise source X (CQX ~0) yields a

response spectrum

C ~RR~RR~Ex
~RR~RR�
� �

~DH D2 WCQQW�zr21
	 


: ð47Þ

Population-activity spectrum of the linear inhibitory
network

In the Fourier domain, the solution of the mean-field dynamics

(38) of the inhibitory network is R(v)~H(v)X (v)=(1z�wwH(v)).
The power-spectrum CRR(v)~Ex R(v)R(v)�½ � hence becomes

CRR(v)~
DH(v)D2

D1z�wwH(v)D2
r2, ð48Þ

using the spectrum of the noise Ex X (v)X (v)�½ �~r2.

We compare this power-spectrum to the case where the

feedback loop is opened, i.e. where the recurrent input is replaced

by feedforward input with unchanged auto-statistics CQQ(v)~
CRR(v), but which is uncorrelated to the external input

CQX (v)~0. The resulting power-spectrum is given by (47) as

C~RR~RR~DH D2 �ww2CRRzr2
	 


.

Population-activity spectra of the linear excitatory-
inhibitory network

In a homogeneous random network of excitatory and inhibitory

neurons, the population averaged activity (40) can be solved in the

Schur basis (9) introduced in ‘‘Results: Population-activity
fluctuations in excitatory-inhibitory networks’’

Rz(v)~H(v)
H(v)wFFX{(v)zXz(v)

1zH(v)wz

R{(v)~H(v)X{(v),

ð49Þ

with wz~{�ww(1{�gg) and wFF~�ww(1z�gg). The power of the

population rate therefore is

CRzRz (v) ~
r2DH(v)D2

2NE

: DH(v)wFFz1D2zc{1DH(v)wFF{1D2

D1zH(v)wzD2

CR{R{ (v) ~
r2DH(v)D2

2NE
(1zc{1) :

ð50Þ

The fluctuations of the excitatory and the inhibitory population

follow as

RE=I(v)~
1ffiffiffi
2
p H(v)

1zH(v)wz

Xz(v)

z
1ffiffiffi
2
p H(v)wFF

1zH(v)wz

+1

� �
H(v)X{(v):

ð51Þ

So the power-spectra are

CRERE
(v) ~

DH(v)D2r2

NE

: D1z�ww�ggH(v)D2zc{1(�ww�gg)2DH(v)D2

D1zH(v)wzD2

CRIRI
(v) ~

DH(v)D2r2

NE

: �ww2DH(v)D2zc{1D1{�wwH(v)D2

D1zH(v)wzD2

CRERI
(v) ~

DH(v)D2r2

NE

:�ww
�ww�gg(1zc{1)DH(v)D2zH�(v){�ggc{1H(v)

D1zH(v)wzD2
:

ð52Þ

Replacing the recurrent input of the sum activity Rz by activity

Qz with the same auto-statistics, but which is uncorrelated to the

remaining input into Rz (Fig. 5 D9) results in the fluctuations
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~RRz(v)~H(v) {wzQz(v)zwFF
~RR{(v)zXz(v)

	 

,

~RR{(v)~H(v)X{(v) :
ð53Þ

The power-spectrum of the sum activity therefore becomes

C~RRz ~RRz
(v)~jH(v)j2 w2

zCRzRzz
r2

2NE
jH(v)wFFz1j2
��

zc{1jH(v)wFF{1j2
�i
:

ð54Þ

If, alternatively, the excitatory and the inhibitory feedback terms

RE and RI are replaced by uncorrelated feedforward input QE and

QI with power-spectra CRERE
and CRIRI

(Fig. 5 C,D), the spectrum

of the sum activity reads

C~RRz ~RRz
(v)

~jH(v)j2 2�ww2 CRERE
(v)z�gg2CRIRI

(v)
� �

z
r2

2NE
(1zc{1)

� �
:
ð55Þ

The limit (14) for inhibition dominated networks with �ggw1 can be

obtained from this and the former expressions by taking H(0)~1
and assuming strong coupling �ww&1.

Population averaged correlations in the linear EI network
In this subsection, we derive a self-consistency equation for the

covariances in a recurrent network. We start from (37) (we drop

the superscript u of Cu for brevity) multiply by 1{WH(v) from

left and its transpose from right to obtain

C(v)~H(v)WC(v)zC(v)H({v)WT

{DH(v)D2WC(v)WT z1(DH(v)D2r2
yzr2

z):
ð56Þ

We assume a recurrent network of NE excitatory and NI

inhibitory neurons, in which each neuron receives K excitatory

inputs of weight w and cK inhibitory inputs of weight {gw drawn

randomly from the presynaptic pool of neurons. To obtain a

theory for the variances and covariances at zero frequency (with

H(0)~1) we may abbreviate r2
z (0)zDH(0)D2r2

y(0) by r2(0). For a

population averaged theory, we need to replace in (56) the

variances Ai of an individual neuron by the population average

and replace the covariance Cij for a given pair of neurons (i,j) by

the average over pairs that are statistically equivalent to (i,j). For a

pair (i,j) of neurons we will show that the set of equivalent pairs

depends on the current realization of the connectivity since

unconnected pairs are not equivalent to connected ones.

Therefore it is necessary to first average the covariance matrix

over statistically equivalent neuron pairs given a fixed connectivity

and to subsequently average over all possible realizations of the

connectivity. The latter will be denoted as EW ½�. For compactness

of the notation, first we perform the averaging for the general case,

where neuron i belongs to population x and neuron j to

population y. We denote by X , Y the sets of neuron indices

belonging to populations x and y, respectively. Subsequently

replacing x and y by all possible combinations x,y[fE,Ig, we

obtain the averaged self-consistency equations for the network. We

denote the number of incoming connections to a neuron of type x
from the population of neurons of type y as Kxy and the strength of

a synaptic coupling as wxy. Rewriting the self-consistency equation

(56) explicitly with indices yields

C ij~
X

k

wikCkjz
X

k

wjkCik{
X
k,l

wikCklwjlzr2dij : ð57Þ

The last equation shows that for a connected pair (i,j) of neurons

(wij=0 or wji=0) either of the first two sums contains a

contribution wijCjj or wjiCii proportional to the variance of the

projecting neuron. We therefore need to perform the averaging

separately for connected and for unconnected pairs of neurons.

We use the notation

Cx/y~EW
1

Npairs,x/y

X
i[X ,j[Y,i/j

Cij

" #
ð58Þ

for the average covariance over pairs of neurons of types

x,y[fE,Ig with a connection from neuron j[Y to neuron i[X ,

where Npairs,x/y is the number neuron pairs connected in this

way. An arrow to the right, i?j, denotes a connection from

neuron i to neuron j. Note that we use the same letter C for the

population averaged covariances and for the covariances of

individual pairs. The distinction can be made by the indices:

i,j,k,l throughout indexes a single neuron, u,v,x,y,z identifies one

of the populations fE,Ig. We denote the covariance averaged over

unconnected pairs as

Cx y~EW
1

Npairs,x y

X
i[X ,j[Y,i j

Cij

2
4

3
5 : ð59Þ

We further use

Ax~EW
1

Nx

X
i[X

Cii

" #
ð60Þ

for the integrated variance averaged over all neurons of type x.

Connected and the unconnected averaged covariances differ by

the term proportional to the variance of the projecting neuron, as

mentioned above

Cx/y~Cx yzwxyAy

Cx?y~Cx yzwyxAx:
ð61Þ

As a consequence, we can express all quantities in terms of the

averaged variance (60) and the covariance averaged over

unconnected pairs (59). We now proceed to average the integrated

variance over population x. Since there are no self-connections in

the network, we do not need to distinguish two cases here.

Replacing Cii on the right hand side of (60), the first term of (57)

contributes

Ax,A~EW
1

Nx

X
i[X

X
k[E_I

wikCki

" #

~EW

1

Nx

X
i[X

X
k[E

wikCkiz
X
k[I

wikCki

 !" #

~
X

z[fE,Ig
KxzwxzCz?x~

X
z[fE,Ig

Kxzwxz(Cz xzwxzAz):

ð62Þ
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From the second to the third step we used that the sum over k (l)

yields non-zero contributions only if neuron k (l) connects to neuron

i. This happens in KxE (KxI) cases with the coupling weight wxE (wxI).

Therefore the covariance averaged over connected pairs appears on

the right hand side. In the last line we used the relation (61) to express

the connected covariance in terms of the variance and the covariance

over unconnected pairs. The second term in (60) is identical because

of the symmetry Cik~Cki. Up to here, the structure of the network

only entered in terms of the in-degree of the neurons. The

contribution of the third term follows from a similar calculation

EW
1

Nx

X
i[X

X
k,l[E_I

wikCklwil

" #

~EW
1

Nx

X
i[X

X
k=l[E_I

wikCklwilz
X

k[E_I
w2

ikCkk

 !" #

~
X

u,v[fE,Ig
KxuKxvwxuwxv

Kwu

Nu

(Cv/u{Cv u)z

�

Kuv

Nv

(Cv?u{Cv u)zCv u

�
z

X
z[fE,Ig

Kxzw2
xzAz

~
X

u,v[fE,Ig
KxuKxvwxuwxvCvuz

X
z[fE,Ig

Kxzw2
xzAz :

ð63Þ

From the second to the third step we assumed that among the

KxzKxw pairs of neurons k[Z,l[W projecting to neuron i, the

fraction
Kwz

Nz

has a connection k?l. These pairs contribute with the

connected covariance. The connections in opposite direction

contribute the other term of similar structure. We ignore multiple

and reciprocal connections here, assuming the connection probability

is low. We introduce the shorthand Cxy for the covariance averaged

over all neuron pairs including connected and unconnected pairs

Cxy~Cx yzwxy

Kxy

Ny

Ayzwyx

Kyx

Nx

Ax: ð64Þ

This is the covariance which is observed on average when picking a

pair of neurons of type x and y randomly. In this step, beyond the in-

degree, the structure of the network entered through the expected

number of connections between two populations. Taken all three

terms together, we arrive at

Ax~r2z
X

z[fE,Ig
Kxzwxz(2Cz xzwxzAz){Cxx,corr

Cxy,corr ~
def

X
u,v[fE,Ig

KxuKyvwxuwyvCuv:
ð65Þ

The averaged covariances follow by similar calculations. Here we

only need to calculate the average over unconnected pairs (i,j) given

by (59), because the connected covariance follows from (61). The first

sum in (57) contributes

Cxy,A ~
def

EW
1

Npairs,x y

X
i[X ,j[Y,i=j,i j

X
k[E_I

wikCkj

2
4

3
5

~
X

z[fE,Ig
KxzwxzCzy,

ð66Þ

where due to the absence of a direct connection between i and j, the

term linear in the coupling and proportional to the variance is absent.

From the symmetry Ckl~Clk it follows that the second term

corresponds to an exchange of x and y in the last expression. The

third sum in (57) follows from an analog calculation as before

Cxy,B ~
def

EW
1

Npairs,x y

X
i[X ,j[Y,i=j,i j

X
k,l[E_I

wikCklwjl

2
4

3
5

~
X

z[fE,Ig
wxzwyz

KxzKyz

Nz

AzzCxy,corr:

ð67Þ

In summary, the contributions from (66) and (67) together result in

the self-consistency equation for the covariance

Cx y~Cxy,AzCyx,A{Cxy,B : ð68Þ

We now simplify the expressions by assuming that the in-degree of a

neuron and the incoming synaptic amplitudes do not depend on the

type of the neuron, i.e. that excitatory and inhibitory neurons receive

statistically the same input. Formally this means that we need to

replace Kxy by Ky, the number of incoming connections from

population y and wxy by wy, the coupling strength of a projection

from a neuron of type y. The covariance Cx y then has two distinct

contributions, Cxy,sep that depends on the type of neurons x,y, and

Ccom that does not. In particular Cxy,B and Cxy,corr do not depend on

x,y and we omit their subscripts in the following. The variances fulfill

Ax~Ax,sepzAcomzr2

Ax,sep~
X

u[fE,Ig
2KuwuCu x

Acom~
X

u[fE,Ig
Kuw2

uAu{Ccorr,

ð69Þ

the covariances satisfy

Cx y~Cxy,sepzCcom

Cxy,sep~
X

u[fE,Ig
Kuwu

Kx

Nx

wxAxz
Ky

Ny

wyAyzCu yzCu x

� �

Ccom~
X

u[fE,Ig

K2
u

Nu

w2
uAu{Ccorr

Ccorr~
X

u,v[fE,Ig
2Kvwv

K2
u

Nu

w2
uAuzKuKvwuwvCu v :

ð70Þ

The disjoint part Cxy,sep determines the difference between the

covariances for pairs of neurons of different type. Using the

parameters KE~K , KI~cK , wE~w, wI~{gw, the explicit form is

CEE,sep~2Kw2(1{cg)
K

NE
AEz2KwCE E{2cgKwCE I

CII,sep~{2Kgw2(1{cg)
cK

NI

AIz2cgKwCI Iz2KwCE I

CEI,sep~
1

2
(CEE,sepzCII,sep) :

ð71Þ

Therefore, also the covariances in the network obey the relation
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CE EzCI I~2CE I, ð72Þ
i.e. the mixed covariance can be eliminated and is given by the

arithmetic mean of the covariances between neurons of same type. In

matrix representation with the vector Q~(AE ,AI ,CE E,CI I), the

self-consistency equation is

Mdis~

Kw

0 0 2{cg {cg

0 0 1 1{2cg

2w(1{cg)
K

NE

0 2{cg {cg

0 {2gw(1{cg) cK
NI

1 1{2cg

0
BBBBBBB@

1
CCCCCCCA
ð73Þ

Mcom~(Kw)2

1

K

g2c

K
0 0

1

K

g2c

K
0 0

1

NE

(gc)2

NI

0 0

1

NE

(gc)2

NI
0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

{MFF ð74Þ

MFF~(Kw)2(1{cg)

2
Kw

NE

2(cg)2 Kw

NI

1 {cg

2
Kw

NE
2(cg)2 Kw

NI
1 {cg

2
Kw

NE
2(cg)2 Kw

NI
1 {cg

2
Kw

NE

2(cg)2 Kw

NI

1 {cg

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: ð75Þ

The self consistent covariance can then be obtained by solving the

system of linear equations

(I{Mdis{Mcom)Q~r2(1,1,0,0)T : ð76Þ

The numerical solution shows that the variances for excitatory and

inhibitory neurons are approximately the same, as depicted in Fig. 6

A. In the following we therefore assume AE~AI~A and then solve

(76) for the covariances. With the abbreviation G~
1

NE
z

(cg)2

NI

 !
,

the third and fourth line yields the equation for the covariances

CE E=I I~(Kw)2A G(1{2Kw(1{cg))z2(1{cg)

1

NE
for EE

{cg

NI
for II

8>>>><
>>>>:

2
66664

3
77775

zKw(CE E{cgCI I)(1{Kw(1{cg))

zKw(1{cg)
CE E for EE

CI I for II

(
ð77Þ

The structure of the equation suggests to introduce the linear

combination m~CEE{cgCII which satisfies

m~(Kw)2(1{cg)G(3{2Kw(1{cg))A

zKw(1{cg)(2{Kw(1{cg))m

m~(Kw)2G(1{cg)
3{2Kw(1{cg)

(1{Kw(1{cg))2
A :

ð78Þ

We solve (77) for CE E and CI I and insert (78) for m to obtain the

covariances as

CE E=I I~

(Kw)2A G
1{2Kw(1{cg)

1{Kw(1{cg)
z2

1{cg

1{Kw(1{cg)

1

NE

for EE

{cg

NI
for II

8>><
>>:

2
664

3
775

zKwm~G
(Kw)2

(1{Kw(1{cg))2
A

z2
Kw(1{cg)

1{Kw(1{cg)
A

Kw

NE

for EE

{Kcwg

NI
for II

8>><
>>: :

ð79Þ

The covariance Cx y between unconnected neurons can be related

to the covariance between the incoming currents this pair of neurons

receives. Expressing the self-consistency (68) in terms of the

covariances averaged over connected and unconnected pairs (64)

uncovers the connection

Cx y~
X

z[fE,Ig
Kzwz CzxzCzy

	 


{
X

z[fE,Ig
w2

z

K2
z

Nz

Az{
X

u,v[fE,Ig
KuKvwuwvCuv

~Kw CExzCEy{cg CIxzCIy

	 
� �
{(Kw)2 1

NE
AEz

(cg)2

NI
AIzCEE{2cgCEIz(cg)2CII

" #
:

ð80Þ

This self-consistency equation yields the argument, why the shared-

input correlation Cin
shared (19) cancels the contribution Cin

corr (20) due

to spike-train correlations in the covariance to the input currents (see

Fig. 6 C,D). Rewriting (80) in terms of these quantities results in

Cx y

Kw
{ CExzCEy{cg(CIxzCIy)
� �

~Kw Cin
shared=(Kw)2zCin

corr=(Kw)2
� �

:

ð81Þ

If a self-consistent solution with small correlation DCx yD,DCxyDvE
exists, the right hand side of (81) must be of the same order of

magnitude. The right hand side of this equation has a prefactor Kw
which typically is &1 (for the parameters in Fig. 6, Kw becomes

larger than 1 for ww10{3). The first term in the bracket is

proportional to the contribution of shared input, the second term is

due to correlations among pairs of different neurons. Each of these

terms is of order E. Due to the prefactor Kw, however, the sum of the

two terms needs to be of order E=(Kw) to fulfill the equation. Hence,

the terms must have different signs to cause the mutual cancellation.
(77)
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To illustrate how the correlation structure is affected by

feedback, let us now consider the case where the feedback activity

is perturbed (‘‘feedforward scenario’’). We start from (47) and,

again, only consider the fluctuations at zero frequency,

C ~RR~RR(0)~WCQQWTz1r2 : ð82Þ

First, we consider a manipulation that preserves the single-

neuron statistics AE, AI and the pairwise correlations CEE, CII

within each subpopulation, but neglects correlations CEI between

excitatory and inhibitory neurons. Formally, this corresponds to

the block diagonal correlation matrix

CQQ ij~
dijAEz(1{dij)CEE i,j[E
dijAIz(1{dij)CII i,j[I :

�
ð83Þ

Here, we have replaced the individual entries of the correlation

matrix by the corresponding subpopulation averaged correlations.

The calculation of the response auto- and cross-correlation ~AA and
~CC is similar as for the expressions (63) and (67), with the difference

that terms containing CEI are absent:

~AA ~Kw2 AEzcg2AI

	 

zczr2

~CC ~(Kw)2 AE
NE

z(cg)2 AI
NI

� �
zc

with c~(Kw)2 CEEz(cg)2CII

	 

:

ð84Þ

As an alternative type of feedback manipulation, we assume

that all correlations are equal, irrespective of the neuron type. To

this end, we replace all spike correlations by the population aver-

age C~(N2
ECEEzN2

I CIIz2NENICEI)=(NEzNI)
2~(NECEEz

NICII)=(NEzNI). Thus, the covariance matrix reads

CQQ ij~dijAz(1{dij)C: ð85Þ

The calculation follows the one leading to the expressions (63) and

(67) and results in

~AA~w2K(1zcg2)Az(wK)2(1{cg)2Czr2

~CC~w2K2 1

NE
z

(cg)2

NI

 !
Az(wK)2(1{cg)2C :

ð86Þ
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