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Application of GaAs-based metal-oxide-semiconductor (MOS) structures, as a “high carrier

mobility” alternative to conventional Si MOS transistors, is still hindered due to difficulties in their

preparation with low surface/interface defect states. Here, aluminum oxide as a passivation and

gate insulator was formed by room temperature oxidation of a thin Al layer prepared in situ by

metal-organic chemical vapor deposition. The GaAs-based MOS structures yielded two-times

higher sheet charge density and saturation drain current, i.e., up to 4� 1012 cm�2 and 480 mA/mm,

respectively, than the counterparts without an oxide surface layer. The highest electron mobility in

transistor channel was found to be 6050 cm2/V s. Capacitance measurements, performed in the

range from 1 kHz to 1 MHz, showed their negligible frequency dispersion. All these results indicate

an efficient suppression of the defect states by in situ preparation of the semiconductor structure

and aluminum oxide used as a passivation and gate insulator. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.3701584]

The main interest on GaAs- and InP-based metal-oxide-

semiconductor (MOS) devices with InGaAs channel is

higher carrier mobility than in conventional Si MOSFETs

can be achieved.1 Recent studies show that an application of

suitable gate insulator and passivation allows to suppress the

density of defects, i.e., to prepare InGaAs channel MOS-type

heterostructure field-effect transistors (MOSHFETs) with

suitable performance.2,3 In general, two material components

are essential at the preparation of a MOSFET: the semicon-

ductor material structure and the gate dielectric. For the

preparation of InGaAs channel devices, typically multilay-

ered AlGaAs/InGaAs- and InAlAs/InGaAs-based hetero-

structures grown on GaAs and InP substrate, respectively,

are used. They are prepared by metal-organic chemical vapor

deposition (MOCVD) or molecular-beam epitaxy (MBE). At

the preparation of InGaAs channel MOSHFET devices, a

broad range of gate dielectrics can be applied, e.g.,

“classical” insulators such as SiO2,4 SiN,5 as well as high-j
ZrO2,6 HfAlO,7 and Ga- and Gd-based oxides.2,6,8 However,

Al2O3 seems to be preferable since recently.3,9–11 Gate insu-

lator is commonly used to passivate the device surface too,

i.e., it is deposited on the whole source-drain access region

before the gate contact is processed. Various preparation

methods of the gate oxide/passivation have been investi-

gated, such as thermal oxidation, sputtering, CVD, or atomic

layer deposition (ALD). Mostly, these methods are applied

in the form of an ex situ process, i.e., device structure is con-

tacted with air before an insulator is deposited. Such proce-

dure enables to create uncontrollable high density of

interfacial defect states which cause a degradation of MOS

device performance. Therefore, in situ preparation methods

of semiconductor heterostructure together with a passivation

and gate insulator are investigated since recently. Al2O3 de-

posited by ALD on p-GaAs in a MOCVD system was

reported.12 In situ preparation of GaAs and Al2O3 layers by

MOCVD, in which isopropanol was used as an oxygen

source, was also described.13 Drawback of these methods is

that undesirable water or oxygen containing source needs to

be used. Thus, there are still requirements on an optimization

of GaAs-based MOS structures.

Properties of GaAs-based MOSHFETs, in which passi-

vation and gate insulator was formed by room temperature

oxidation of a thin Al layer deposited in situ by MOCVD,

are reported in this study. Prepared devices show increased

sheet charge density and saturation drain current in compari-

son with the unpassivated HFET counterparts. Mobility of

the channel electrons up to 6050 cm2/V�s was extracted for

the MOSHFETs. Capacitance measurements yielded signifi-

cantly lower frequency dispersion of the MOS devices than

that of the HFETs. All these results underline an effective-

ness and production suitability of used in situ preparation of

GaAs-based MOSHFETs by MOCVD.

The semiconductor material structures were grown on a

semi-insulating GaAs substrate using MOCVD technique.

The In0.23Ga0.77As channel was 10 nm thick and grown on

top of �200 nm GaAs buffer layer. The channel carriers

were achieved by placing a 3� 1012 cm�2 silicon d�doping

into the Al0.3Ga0.7As barrier layer which was separated from

the channel by a 4 nm Al0.3Ga0.7As spacer. The Al0.3Ga0.7As

barrier was capped by a 5 nm thick GaAs layer. Finally, thin

aluminum layer was deposited in situ on top of the GaAs cap

layer in order to prepare MOSHFET device structures. The

Al-oxide layer was formed by inevitable oxidation of the Al

layer at room-temperature. The oxide thickness was �3 nm,

verified by x-ray reflectivity measurements. Schematic

cross-section of the MOS layer structure is shown in Fig. 1.

Structures grown under identical conditions but without Al

layer were prepared for comparison too. The devicea)Electronic mail: elekkord@savba.sk.
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preparation consisted of conventional processing steps known

for GaAs-based devices, i.e., mesa formation, Ni/AuGe/Ni/Au

ohmic contacts annealed at 450 �C, and Ti/Pt/Au gate con-

tacts. The MOSHFETs and HFET counterparts with a gate

length of 2.5lm and a gate width of 50 and 100 lm as well as

fat-FETs (LG¼ 100 lm) and large area capacitors (100� 100

and 200� 200 lm2 gate contact area) were prepared.

Static output measurements on the AlGaAs/InGaAs/

GaAs structures without and with an Al oxide typically

yielded I�V characteristics as shown in Fig. 2(a). The satura-

tion drain current up to 260 mA/mm and 480 mA/mm at

VG¼ 1 V was obtained for the metal-semiconductor (MS)

and MOS structures, respectively (Fig. 2(b)). Higher satura-

tion drain current in the MOS structures can be explained

due to an increase of the sheet charge density ns and/or drift

velocity of carriers vd, as IDS/WG¼ q�ns�vd. This indicates on

high effectiveness of the in situ prepared Al-oxide as a gate

insulator and passivation. The peak extrinsic transconduc-

tance was found to be �120 mS/mm (VG%�1 V) and �150

mS/mm (�2 V) for the MS and MOS structures, respec-

tively. One would expect slightly lower transconductance in

the structures with Al oxide comparing to the counterpart

without Al due to increased barrier-channel separation.

Observed opposite effect might be explained by an enhance-

ment of the effective velocity of the channel electrons in the

MOS structure,14 as gm%CGS�vd and the gate capacitances

for the MS and MOS structures differ very slightly (as

described below).

Typical results of the room temperature C�V measure-

ments performed at 1 kHz and 1 MHz on the structures with

and without Al oxide are shown in Fig. 3. Capacitances at

zero bias are nearly the same for both types of structures.

This follows from large difference of the barrier and oxide

thicknesses (db> dox) as well as high dielectric constant of

used aluminum oxide (e¼ 7�10 for Al2O3 and even 22 for

AlO2).15,16 The capacitance ratio CHFET/CMOSHFET

¼ 1þ (dox/db)�(eb/eox)¼ 1.03�1.07 considering possible

range of the dielectric constant. Unfortunately, exact compo-

sition of the Al-oxide and thus also its dielectric constant is

not known. However, formation of AlO2 should be prefera-

ble for Al oxidation at room-temperature.15

Relatively sharp transition from accumulation to deple-

tion in measured C�V curves shown in Fig. 3 can be

observed for both types of structures. On the other hand,

lower frequency dispersion of the MOS capacitance than that

of the MS one follows from the measured data—the gate

voltage shift at C0/2 for Df¼ 1 kHz�1 MHz is DVG¼ 0.17 V

and 0.5 V for MOS and MS structures, respectively. Fre-

quency dispersion with a hump in C�V curves in the deple-

tion region is often reported on GaAs-based MOS

capacitors.11,13 Such effects are observed in structures with

high density of defect states. This leads us to assume that the

density of trap states should be low in our MOS structures.

Better picture about this statement can be demonstrated by

C�f dependences measured at a constant gate voltage chosen

to be in depletion region, as shown in Fig. 4. Capacitance of

the MS structures, i.e., without Al oxide, decreased signifi-

cantly in the whole frequency range used. On the other hand,

negligible frequency dispersion of the capacitance was

observed for the MOS structures. This is an additional argu-

ment for high effectiveness of the in situ prepared Al-oxide

used as a gate insulator and passivation.

An integration of the C�V curves yielded the sheet charge

density of (3.8�4)� 1012 cm�2 and (2�2.3)� 1012 cm�2

(VG¼ 0 V) for the MOSHFETs and HFETs, respectively.

The drain-source conductivity measurements combined with

the ns�VG data were used to evaluate mobility of the channel

electrons, as le¼ (LG�Gch)/(q�WG�ns). Conductance was

FIG. 1. Schematic cross-section of the MOS layer structure.

FIG. 2. Typical output (left) and transfer (right) characteristics of Al-ox/

AlGaAs/InGaAs/GaAs MOSHFET in comparison with HFET counterpart.

FIG. 3. C�V characteristics of Al-ox/AlGaAs/InGaAs/GaAs MOSHFET

(full marks) and HFET counterpart (open marks) measured at 1 kHz and

1 MHz.
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measured on the fat-FET devices at low drain voltage to

reduce an influence of the source and drain resistances. Typi-

cal MOSHFET and HFET data of the mobility as a function

of the sheet charge density are shown in Fig. 5. Peak values

of the mobility are 6050 and 4220 cm2/V�s for the MOSH-

FET and HFET, respectively. The MOSHFET mobility of

6050 cm2/V�s can be well compared with the highest value

of 6155 cm2/V�s reported on GaAs-based InGaAs channel

MOS devices with GdGa-based oxide.8 However, signifi-

cantly lower mobility down to 4730 cm2/V�s was also

reported for GaAs- and InP-based MOS device structures.9

Experiments related to the trap states evaluation using

frequency dependent conductance measurements are in pro-

gress, and detailed analysis will be reported elsewhere. Pre-

liminary results show that the density of trap states is in the

range of (1.4�6.2)� 1012 cm�2 eV�1, and their time con-

stant is in the range of some microseconds. Similar density

of trap states in the range of 1012 cm�2 eV�1 was reported

recently for Al2O3/GaAs capacitors prepared by MBE.17

Presented results demonstrate high capability of used

device fabrication method in which the GaAs-based semi-

conductor structure and aluminum oxide as a passivation and

gate insulator are prepared in situ by MOCVD. Basic advan-

tages here are two: (1) The semiconductor surface is covered

by an insulator without exposing it to air and (2) undesirable

oxygen containing source does not need to be used at the in
situ preparation. Beside the fact that properties of oxide/

GaAs interface are not fully clear yet, it is believed that an

interface without residual arsenic oxide can be crucial point

to obtain low density of interfacial defect states.13 In our pro-

cedure, the GaAs surface was covered by an Al layer before

native oxide was formed. This is probably the basic reason

for obtained good MOS performance, i.e., an increase of ns

and consequently of IDS about 2�times and low C�f disper-

sion compared with the HFETs. Evaluated high carrier mo-

bility of 6050 cm2/V�s in the InGaAs channel also supports

our conclusion. Here, it should be noted that the highest mo-

bility of 6600 cm2/V�s, reported for InP-based InGaAs chan-

nel MOS devices, was obtained on MBE structures covered

with arsenic cap before transferring to ALD equipment to de-

posit Al-oxide.3 Additional advantage is that the gate oxide

formed from high-j insulator is relatively thin, only �3 nm.

This is required for suitable high-frequency performance.

Exact composition of prepared Al oxide, i.e., if preferably

Al2O3 or AlO2 was created, is not clear yet and needs addi-

tional studies. Finally, it should be mentioned that proposed

in situ preparation method of GaAs-based MOS structures

can be useful for mass production of GaAs MOS devices. On

the other hand, additional studies related to reliability issues,

high frequency performance, and defect states evaluation

need to be made in the future.
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FIG. 4. Capacitance vs frequency for Al-ox/AlGaAs/InGaAs/GaAs MOSH-

FET (full marks) and HFET counterpart (open marks). Note that the gate

voltage was chosen to be in the depletion region.

FIG. 5. Carrier mobility vs sheet charge density for Al-ox/AlGaAs/InGaAs/

GaAs MOSHFET (full marks) and HFET counterpart (open marks).
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