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Abstract. The shapes and alignment of elastic vesicles similar to red blood
cells (RBCs) in cylindrical capillary flow are investigated by mesoscopic
hydrodynamic simulations. We study the collective flow behavior of many RBCs,
where the capillary diameter is comparable to the diameter of the RBCs. Two
essential control parameters are the RBC volume fraction (the tube hematocrit,
H T), and the suspension flow velocity. Depending on HT, flow velocity and
capillary radius, the RBC suspension exhibits a disordered phase and two distinct
ordered phases, consisting of a single file of parachute-shaped cells and a
zigzag arrangement of slipper-shaped cells, respectively. We argue that thermal
fluctuations, included in the simulation method, coupled to hydrodynamic flows
are important contributors to the RBC morphology. We examine the changes
to the phase structures when the capillary diameter and the material properties
(bending rigidity κ and stretching modulus µ) of the model RBCs are varied,
constructing phase diagrams for each case. We focus on capillary diameters,
which range from about 1.0 to about 1.4 times the RBC long diameter. For
the smallest capillary diameter, the single-file arrangement dominates; for the
largest diameter, the ordered zigzag arrangement begins to loose its stability and
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alternates with an asymmetric structure with two lanes of differently oriented
cells. In simulations with long capillaries, the coexistence of different phases
can be observed.

S Online supplementary data available from stacks.iop.org/NJP/14/085026/
mmedia
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1. Introduction

Human blood is composed of red blood cells (RBCs) at about 45% volume fraction, white blood
cells at about 1% volume fraction and blood plasma. The blood plasma is rich in biological
components such as lipids, enzymes and platelets. In the absence of significant shear flow
gradients, RBCs form aggregates called rouleaux where the RBCs loosely adhere to each other
like a stack of coins [1, 2]. This formation depends on the presence of fibrinogen in the cell
membrane and globulin in the plasma. Subjected to sufficiently large shear gradients, the RBC
rouleaux in a flow break-up and disperse into their constituent RBCs [3].

The goal of our numerical investigation is to elucidate the structures and arrangements
of RBCs in flow through narrow cylindrical capillaries that arise from the coupling between
the RBC deformability, hydrodynamics under flow and thermal fluctuations that induce RBC
membrane undulations. Since we want to focus on the interplay of RBC deformation and
hydrodynamics, we neglect any direct attractive interactions; this corresponds to sufficiently
large flow rates, or to washed RBCs in Ringer’s solution, where globulin is absent [4].

In blood flows with no significant shear gradients, human RBCs have a biconcave-disc
shape with a maximum diameter and thickness of about 7.6 and 2 µm, respectively [1]. The
RBC membrane consists of a lipid bilayer supported by an attached spectrin network that acts
as a cytoskeleton. The bilayer resistance to bending is controlled by the curvature elasticity with
a bending rigidity κ; the spectrin’s resistance to a shear strain is characterized by the in-plane
shear elasticity with shear modulus µ. At thermal equilibrium, the discocyte shape of an RBC
can be predicted theoretically by minimizing the membrane’s bending and stretching energy
subject to the constraints of fixed surface area and volume. Under flowing conditions, however,
the shapes and arrangements adopted by many RBCs is determined by the competition between
these mechanical properties and the external hydrodynamic flow forces arising from the blood
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plasma. RBCs are easily deformable and have a large surface-to-volume ratio. The spectrin
network enables an RBC to remain intact while changing its shape in blood flow through narrow
capillaries with diameters as small as 2 µm. The material properties of the RBC membrane
affect its deformability and its ability to flow; many blood diseases, such as diabetes mellitus
and sickle cell anemia, lead to a reduction of the RBC deformability and in turn to an increased
flow resistance.

As the diameters of micro-vessels in the vasculature or of glass tubes in microfluidic
devices are decreased from about 0.3 mm to 10 µm, two related hydrodynamic effects occur
in blood flow, the Fahraeus [5] and Fahraeus–Linqvist [6] effects. These effects result from lift
forces that cause the RBCs to migrate away from the capillary wall towards regions of lower
shear rate near the capillary center [7–11], leaving a plasma skimming layer free of RBCs near
the wall. As the diameter of the capillary decreases, the ratio of the cross-sectional area of this
layer to the cross-sectional area of the central core, which contains RBCs, increases; therefore,
the discharge hematocrit, HD, which is higher than the tube hematocrit, HT, increases, and the
apparent (or effective) viscosity of blood decreases. Here, the hematocrit is the ratio of the total
RBC volume to the volume of the whole blood suspension. However, if the diameter of the
vessels is decreased further, below 10 µm, the apparent viscosity begins to increase again (the
inverse Fahraeus–Linqvist effect); our study deals with this regime.

Early theoretical models, the axial train or stacked-coin model [12, 13], reproduced this
effect, expressing it in terms of the parameter Rcore/Rcap, the ratio of the core diameter to
the vessel diameter. Later theoretical studies examined the effects of cell spacing and shape
in narrow capillaries where Rcore/Rcap ' 1. The Stokes equation was solved for the fluid
flow about a periodic (equally spaced) array of cells [13–17], modeled as rigid objects. The
relative apparent viscosity (relative to a fluid free of cells) increases with increasing HT and
decreasing capillary radius Rcap, where Rcore/Rcap ' 1; in addition, the additional pressure
drop per cell becomes independent of the cell-to-cell distance once this distance exceeds the
vessel diameter, i.e. the cells become ‘hydrodynamically independent’ or ‘isolated’ [17]. The
reason is that confinement screens the long-range hydrodynamic interactions between immersed
cells or colloids, effectively reducing the interaction range to the diameter of the confining
vessel [18, 19]. Optical microscopy experiments on single RBCs [20–23] and fluid vesicles
(giant unilamellar vesicles) [24] have demonstrated that cells deform into slipper and parachute
shapes in capillary flow.

Theoretical efforts have explored the shape changes of a single file of RBCs in
narrow capillaries where Rcore/Rcap ' 1. These studies include the application of lubrication
approximations [25–27] and boundary integral methods [28–30] to deformable models of RBCs.
Several mesoscale simulation techniques have been developed recently which are particularly
suitable to investigate the capillary flow of many RBCs [11, 31–40].

In our simulations, the RBC membrane is modeled as a set of vertices connected by two
separate triangulated networks of bonds [33, 41, 42]: a fluid, dynamic network and an elastic,
fixed network that model the RBC fluid bilayer and cytoskeleton, respectively. The dynamics
of the fluid is modeled by an explicit particle-based simulation technique called multi-particle
collision (MPC) dynamics [43–45], or specifically (since there are several versions) stochastic
rotation dynamics [46–49]. Further details about our method are given in section 2. This
membrane model and hydrodynamics simulation technique have already been used to study
the shape transitions of an ‘isolated’ fluid vesicle and an ‘isolated’ RBC in a capillary flow [33]
where Rcore/Rcap ' 1; the dependence of these transitions on the membrane material properties
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has been quantified. With increasing flow velocity, the transition from a discocyte to a parachute
shape was found to occur abruptly at a critical flow velocity, not gradually as in earlier studies
based on the boundary integral method [13, 30]. This difference in results can be attributed
to the symmetry breaking for the discocyte state in [33], unlike in the earlier studies [13, 30]
where a symmetric, coaxial RBC orientation was imposed. Recently, we have generalized the
MPC approach to treat many model RBCs; we investigated the hydrodynamically mediated
clustering of parachute-shaped RBCs at high flow velocities and low hematocrits [36, 37]. The
results corroborate optical microscopy experiments [22, 50] which showed that RBCs, moving
in single-file in capillary flow, can form clusters which are distinct from the rouleaux described
above. Unlike a rouleaux, there are no direct contacts between any two RBCs in these clusters,
and the RBCs are not discocytes.

In this paper, we consider in more detail the flow-induced morphology of dense RBC
suspensions with high HT & 0.2, in narrow capillaries with diameters in the range 8.1–10.4 µm,
i.e. with diameters slightly larger than the RBC diameter. In our previous study of capillary
blood flow [36], we have focused on six RBCs in a capillary with Rcap/R0 = 1.4, where
R0 =

√
S/4π is the effective radius of RBCs defined by its surface area S. The aim of the present

investigation is to obtain a more detailed understanding of the RBC dynamics, in particular its
dependence on capillary radius and membrane elasticity.

Recently, there has been an impressive body of work examining the structure and flow
behavior of many RBCs (or deformable particles) under flow in channels whose dimensions
are considerably larger than the maximum RBC diameter [31, 32, 34, 35, 38–40, 51, 52]. These
simulation studies involve many hundred RBCs, sometimes in structured channels with choking
points and bifurcations [31, 32]. In contrast, we are interested in suspension with several RBCs
per simulation cylinder (with periodic boundary conditions in the flow direction). We map out
the structure and phase behavior with variations in the flow velocity, hematocrit HT, capillary
diameter and membrane material properties, κ and µ.

This paper is organized as follows. In section 2, we outline our simulation method and
membrane model. Results are given in section 3. First, we explain the dynamics of a single
RBC in a cylinder with periodic boundary condition in section 3.1. Next, we construct a phase
diagram for one choice of capillary diameter in section 3.2, then we observe changes to this
initial diagram and associated phase behavior given first changes in the capillary diameter in
sections 3.2 and 3.3, then changes in the membrane material parameters in section 3.4. We
conclude with a summary and discussion in section 4.

2. Red blood cell (RBC) model and mesoscale hydrodynamics technique

The membrane of each RBC is modeled as a collection of Nmb = 500 vertices of mass mmb,
interconnected by two triangular networks of bonds [53, 54]: a fixed network whose bonds
are harmonic springs, and a dynamically triangulated network whose bonds undergo ‘flips’
[55, 56]. The elastic, fixed network models the spectrin cytoskeleton of a real RBC, while
the fluid, dynamic network models the viscous lipid bilayer. The spring constant, kel of a
harmonic bond generates a shear modulus, µ =

√
3kel. In the fluid network, the fluctuations

and shape changes of the membrane are controlled by the Helfrich curvature energy [57]
with a bending rigidity, κ , set in most simulations to κ = κ0 = 20kBT ; here kB and T are the
Boltzmann constant and temperature, respectively. The membrane vertices have an excluded
volume interaction, where neighboring vertices, whether bonded or not, experience a repulsion
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Table 1. List of symbols and abbreviations used in the text.

Abbreviation

Pc Aligned-parachute phase
S Zigzag-slipper phase
D Disordered-discocyte phase
Al Asymmetric-lane phase

LRBC Capillary length per RBC
Rcap Capillary radius
R0 Effective radius of RBCs defined by its surface area
HT Tube hematocrit
ρm Fluid mass density
g Driving force for fluid flow
vm Mean flow velocity in capillary
L∗

RBC = LRBC/R0 Capillary length per RBC, in units of effective RBC radius
R∗

cap = Rcap/R0 Capillary radius, in units of effective RBC radius
g∗

= ρmgR4
0/κ0 Rescaled driving force

κ Membrane bending rigidity
µ Membrane shear modulus
γ = 4µR2

0/κ Föppl–von Kármán number

such that the minimum distance between any two vertices is lmin = 0.67a on the same RBC, with
the MPC lattice constant a introduced below. The maximum bond length of the fluid network
is lmax = 1.33a. In addition, global volume and local area constraint potentials are added that
ultimately keep the volume and global area of the membrane fixed at V = 450a3 and S = 407a2.
The reduced volume of a given RBC is then V ∗

= V/(4π R3
0/3), where R0 =

√
S/4π = 5.7a.

For this volume, the stable shape of a fluid vesicle (without an elastic network) at thermal
equilibrium is a biconcave discocyte. In terms of this effective RBC radius, the shear modulus µ

of the elastic vesicle (RBC) is set in most simulations to µR2
0/kBT = 110, but two variations are

considered in section 3.4. RBCs have a surface area of about 140 µm2, which gives an effective
RBC radius R0 = 3.3 µm. A list of these and other symbols and abbreviations is provided in
table 1.

The fluid is modeled by Ns point particles of mass ms where ms = mmb/10. The motion
of these particles is governed by MPC dynamics [44–47], which was designed to describe
hydrodynamic flows on mesoscopic length scales. This dynamics consists of a series of two
alternating steps: a free streaming step with time step h = 1tCD where the fluid particles do
not interact with one another, followed by a collision step where the fluid particles exchange
momentum. In the collision step, the fluid particles are first sorted into the cells of a cubic
lattice with lattice constant a; then, for particles in a given collision box, the particle velocities
relative to the center-of-mass velocity of the collision box, are rotated by an angle π/2 about a
randomly chosen axis. During a collision, the momentum and kinetic energy of all particles in
a collision box are conserved; consequently, MPC dynamics describes the hydrodynamic flows
in a Newtonian fluid. Thermostats are added to extract heat generated by shear gradients in the
flow.
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In MPC simulations, length and time are typically scaled according to x̂ = x/a and
t̂ = t

√
kBT/(msa2) so that the mean free path, l = h

√
kBT/ms , is l/a = ĥ in reduced units.

Given a MPC time step of ĥ = 0.025 and a fluid mass density of ρm = 10ms/a3 (on average 10
fluid particles per collision box), the shear viscosity of the fluid is η0 = 20.1

√
mskBT /a2; we

set this viscosity to be the same inside and outside of the RBC. The MPC time step is chosen
to produce a Schmidt number, Sc (the ratio between momentum and mass transport), consistent
with liquids like water where Sc ∼ 102–103. The membrane dynamics is integrated in time using
a molecular dynamics (MD) algorithm; we employ a shorter time step than 1tCD, specifically
1tMD = 1tCD/20 = 0.00125a

√
ms/kBT .

Simulations are performed with a single (nRBC = 1) and many (nRBC = 2–6) RBCs in a
cylindrical capillary with various simulation box (i.e. cylinder) lengths, L z; periodic boundary
conditions are employed along the flow (z) direction. In reporting our results, we scale all
lengths by the RBC effective radius R0, energy by 8πκ0 and time by τ = η0 R3

0/κ0, the bending
energy and the relaxation time of a nearly spherical fluid vesicle with a bending rigidity
κ0 = 20kBT , respectively. To mimic the pressure-driven flow typically employed in experiments
on capillary flow with a pressure difference between an inlet and an outlet reservoir, the
flow in our simulations is driven by a uniform ‘gravitational’ force in the z direction [49],
∇z P = −ρmg, which in our reduced units is g∗

= ρmgR4
0/κ0. The advantage of such a driving

force is the minimization of density gradients in the MPC fluid. The mean flow velocity is
vm = ρmgR2

cap/8g0 = (5kBT R2
cap/2η0 R4

0)g
∗ in the absence of RBCs.

The MPC fluid particles interact with the capillary walls via a ‘bounce-back’ rule—where
fluid particle velocities are inverted upon collision with the walls—that produces no-slip
boundary conditions [48]. Similarly, the fluid particles interact with the membranes via a
bounce-back rule that scatters fluid particles off the membrane triangles (fluid network), thereby
also preventing the fluid from the exterior of the membrane penetrating into the interior and
vice versa. In addition, the membrane vertices interact with the fluid in the MPC collision step,
where the vertices in a given collision box are treated just like the fluid particles (except for
their different mass). The membrane vertices of different RBCs interact with one another via
an excluded volume potential, where the minimum distance between vertices on two different
vesicles is lmin = 0.77a. This minimum distance is larger than that between two vertices on the
same membrane (lmin = 0.67a) to prevent interpenetration of two neighboring RBCs.

More details of the model and simulation technique can be found in [33, 41, 42, 45].

3. Results

The structure and spatial correlations of an RBC suspension depend on the flow velocity,
the hematocrit HT, the capillary radius Rcap and the membrane elasticity. We will examine
the RBC structure and arrangements in a capillary with a diameter of R∗

cap = Rcap/R0 = 1.23
or R∗

cap = 1.4 in sections 3.1 and 3.2, where the number of RBCs per simulation cylinder,
nRBC, is set to nRBC = 1 and 6, respectively. The hematocrit is varied by changing the tube
length (per RBC) L∗

RBC = L∗

z/nRBC (where L∗

z = L z/R0). The spatial correlations for these
two capillary radii are found to be not substantially different. The RBC arrangement becomes
different in wider capillaries, as will be discussed in section 3.3 for R∗

cap = 1.58. For real RBCs,
the three radii R∗

cap = 1.23, 1.4 and 1.58 correspond to capillary diameters of 8.1, 9.2 and
10.4 µm, respectively. In sections 3.1–3.3, the bending rigidity and shear modulus are set to
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κ = κ0 = 20kBT and µR2
0/kBT = 110, respectively. Results for the changes to this structure due

to a variation of the membrane material parameters κ and µ will be presented in section 3.4.

3.1. Periodic RBC arrays in narrow capillaries with R∗

cap = 1.4

First, we briefly review simulation results for the dynamics of a regular array of RBCs in a
microcapillary of radius R∗

cap = 1.4, which have been obtained in [36, 37] from simulations of a
single RBC (nRBC = 1) in a cylinder with periodic boundary conditions. At low flow velocities,
corresponding to g∗ . 8, RBCs assume a discocyte shape. The interactions with neighboring
cells (periodic images) imposed by the periodic boundary conditions force the RBC to adopt a
tilted orientation with respect to the direction of flow [37]. At higher flow velocities, the RBC
adopts a parachute shape when the hematocrit is sufficiently low; however, as HT increases
(and L∗

RBC decreases), the RBC gradually transforms from a parachute shape into a shallow
‘bowl’ shape at a critical value of HT ' 0.18, corresponding to L∗

z ' 2.2, which is slightly
less than the cylinder diameter [37]. The average maximum radial distance, 〈r∗

max〉, of the
RBC membrane from the capillary axis increases, and the average mean curvature at the front
of the parachute/bowl decreases with increasing HT. The critical distance L∗

z ' 2.2 indicates
approximately where the shape of an RBC ceases to be hydrodynamically independent from its
neighbors with decreasing cell-to-cell distance. This result is consistent with earlier solutions of
the Stokes equation for a line of equally spaced and axisymmetrically located rigid spheroids,
cylinders and discocytes in a cylindrical tube [13–17].

3.2. RBC structures and correlations in narrow capillaries with R∗

cap = 1.4 and 1.23

Hydrodynamic interactions between cells do not only affect their shapes, but also their
spatial arrangements. In order to investigate the latter effect, several cells are needed in the
simulation box. Therefore, we now consider six RBCs (nRBC = 6) in a tube with periodic
boundary conditions. The length of the simulation cylinder is varied from L∗

RBC = 0.8 to 1.8.
Figure 1 shows phase diagrams with several different flow phases; simulation snapshots of
the corresponding RBC shapes and arrangements are displayed in figure 2. We first present
the structure and flow behavior for R∗

cap = 1.4, and discuss the similarities and differences for
R∗

cap = 1.23 at the end of this section.
At low densities and low flow rates, a disordered-discocyte phase, D, appears. In this phase,

no long-range correlations in the orientation of discocytes exist, although transient clusters are
observed, in which the orientations of the discocytes are correlated; there are no direct contacts
between the membranes of neighboring RBCs.

As expected, in faster flows with g∗ above a critical value g∗
= 13 (for R∗

cap = 1.4), the
RBCs exist as a line of equally spaced parachutes, the aligned-parachute phase, Pc. Interestingly,
at higher hematocrits of HT & 0.4, corresponding to relatively low L∗

RBC = 0.8–1.2, the RBCs
arrange as slippers into two parallel interdigitated rows [36], denoted the S phase: the centers
of mass of two consecutive RBCs, each one in a different row, are displaced from one another
by L∗

RBC. If the suspension of RBCs at L∗

RBC < 1.2 is initially prepared in a Pc conformation
(by replicating the final fluid and membrane configurations of a simulation with nRBC = 1 at the
same HT and g∗), then the suspension at some later moment in time spontaneously reorders into
an S conformation. This reordering is triggered by an off-axis deviation in the position of one
RBC as a result of thermal fluctuations. When this RBC moves radially off axis, it slows down
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Figure 1. Phase diagram of RBC arrangements as a function of average RBC
separation L∗

RBC = L∗/nRBC and flow velocity, proportional to g∗. (Top panel)
Channels with diameter R∗

cap = 1.4. (Bottom panel) Channels with R∗

cap = 1.23.
At points marked by red filled circles, the zigzag-slipper (S) phase exists, at
green squares the aligned-parachute (Pc) (or shallow bowl) phase, and at blue
stars the disordered-discocyte (D) phase. At the pink open circles, the suspension
exists in either an S or a Pc conformation, depending on the initial simulation
configuration.

and simultaneously deforms into a slipper shape; the subsequent RBC behind flow speeds up
and then is pushed in the opposite radial direction. This sequence of events then repeats itself
with the other RBCs farther back in the flow.

The different RBC shapes can be distinguished by a shape parameter, the asphericity, which
quantifies the deviation from a spherical shape. It is defined as [42, 58]

α =
(λ1 − λ2)

2 + (λ2 − λ3)
2 + (λ3 − λ1)

2

2(λ1 + λ2 + λ3)2
, (1)

where λ1 6 λ2 6 λ3 are the eigenvalues of the gyration tensor; this implies α = 0 and α ' 0.18
for a sphere and a discocyte, respectively. The average asphericity, 〈α〉, is shown in figure 3 for
L∗

RBC = 1.75 and nRBC = 6. A sudden transition in shape would be reflected by a sudden drop
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Figure 2. Simulation snapshots of the three RBC phases observed in a simulation
cylinder with R∗

cap = 1.4 containing nves = 6 RBCs. (Top) Disordered-discocyte
(D) phase (L∗

RBC = 1.22, g∗
= 5.19). (Middle) Aligned-parachute (Pc) phase

(L∗

RBC = 1.22, g∗
= 20.7). (Bottom) Zigzag-slipper (S) phase (L∗

RBC = 1.05,
g∗

= 20.7).

in 〈α〉 with increasing g∗; the gradual and monotonic decrease of 〈α〉 for nRBC = 6 signals the
absence of such a transition, qualitatively consistent with the nRBC = 1 results. However, the
fluctuations in RBC shape, measured by the standard deviation, r(a) = 〈a2

〉 − 〈a〉
2, display a

pronounced peak at g∗
' 11 (see figure 3).

The orientational order of the RBCs can be characterized by the orientational order
parameter,

S =
1
2

[
3 (cos θz)

2
− 1

]
. (2)

Here θz is the angle between the eigenvector of the RBC gyration tensor with the smallest
eigenvalue and the z-axis. If this eigenvector is parallel or perpendicular to the flow direction,
then S = 1 or −1/2, respectively. Figure 3 shows that at L∗

RBC = 1.75, S is a monotonically
and gradually increasing function of g∗, with mainly perpendicular orientation of RBC in the
disordered phase. The disordered phase at low g∗ . 11 is characterized by large orientational
fluctuations, which are quantified by the standard deviation, σ(S); the fluctuations decrease with
increasing g∗ once g∗ & 12, i.e. in the Pc region of the phase diagram.

The pressure drop is the difference between the pressures required to maintain the fluid
with RBCs and the original Poiseuille fluid with no RBCs at a particular mean flow velocity vm.
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Figure 3. Asphericity α and orientational order parameter S for a simulation
cylinder with R∗

cap = 1.4 containing nves = 6 RBCs with average distance L∗

RBC =

1.75 (open triangles, right-hand-side axis). Fluctuations (standard deviations, σ )
of α and S are also shown (full circles, left-hand-side axis).

Across a section of capillary of length L z, the pressure drop per RBC is given by

1Pdrp R2
cap

η0vm R0
=

8(v0 − vm)L z

nRBCvm R0
, (3)

where v0 is the mean flow velocity in a capillary with no RBCs that is generated by the same
uniform pressure gradient, g∗. Figure 4 shows for HT = 0.37 (L∗

RBC = 1.05), that the pressure
drop per RBC in simulations with nRBC = 1—which generate axisymmetric bowl-shaped RBCs
(similar to those in the Pc phase)—is less than 1Pdrp in simulations with nRBC = 6, which
generate S conformations; in addition, the internal energy of a slipper-shaped RBC is larger than
of a bowl-shaped RBC. Thus, the system favors an evolution towards the S phase at sufficiently
high HT, although the S phase creates a larger resistance to flow than the Pc phase, and RBCs
in the S phase have a higher internal energy than the RBCs in Pc phase.

We consider next the sensitivity of our results to finite-size effects. At L∗

RBC = 1.05, the
S-phase occurs if the number of RBCs in the simulation box is even, nRBC = 2, 4 or 6. For
nRBC = 5, the S-phase conformation can still be recognized, but now contains a defect, see
figure 5. Two interdigitated rows each with two slipper-shaped RBCs are found; however, the
fifth RBC acts as a defect with its center of mass near the capillary axis. For nRBC = 3, the
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Figure 4. Energy U and pressure drop 1P∗

drp per RBC in a capillary with
R∗

cap = 1.4, and nves = 1 (Pc) and nves = 6 (S) RBCs per simulation cylinder.
The reduced pressure drop is 1P∗

drp = 1Pdrp R2
cap/(η0vm R0). Energies for the

fluid membrane and the elastic network of an RBC (denoted by ‘fl’ and ‘el’,
respectively) are displayed. The figure for the pressure drop also includes data
for the Pc and S phases for R∗

cap = 1.23 (triangles).

Figure 5. Snapshots of RBC conformations with nRBC = 3 and 5 at g∗
= 15.9 and

L∗

RBC = 1.05. (Left) ‘Sliding’ conformation. (Middle) ‘Jammed’ conformation.
(Right) Zigzag-slipper conformation of four RBCs, with the additional RBC, to
the right, acting as a defect.

suspension adopts two possible conformations, a ‘sliding’ conformation where two RBCs are
pressed up against the capillary walls while the remaining RBC, centered about the capillary
axis, slides between them, and a ‘jammed’ conformation where the middle RBC cannot pass
its two neighboring RBCs. Figure 6 shows that the pressure drop per RBC converges to a
value independent of nRBC for nRBC ' 6; therefore, we conclude that to examine the structural
correlations of the suspension, the considered number of RBCs is appropriate for this channel
diameter.

Spatial pair correlations along the z direction between two RBCs are characterized by the
axial pair distribution function, G(z∗

nb), of RBC centers of mass,

G(z∗

nb) =
1

nRBCρB

〈
nRBC∑
i=1

nRBC∑
j 6=i

δ(z∗

nb − z∗

i j)

〉
t

, (4)

where z∗

i j = |z∗

i − z∗

j | (z∗

i being the z coordinate of the center of mass of RBC i) and density
ρB = (nRBC − 1)/L∗

z . We employ a discretized d-function with d(znb) = 1/1z if znb is within
the interval [−1z/2, 1z/2], and 0 otherwise (in the numerical analysis, we use 1z∗

= 0.03).
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Figure 6. Pressure drop 1P∗

drp per RBC as a function of system size for R∗

cap =

1.4. The number of RBCs per simulation cylinder, nRBC, is varied keeping the
length of the average RBC separation, L∗

RBC, fixed.

In equation (4), the time average is denoted by 〈. . .〉t . This function is proportional to the
conditional probability of finding the center of mass of an RBC a distance z∗

nb away from the
center of mass of a given, tagged RBC. Results are shown in figure 7. In both S and Pc phases,
simulations with nRBC = 6 show pronounced peaks in G(z∗

nb), evenly spaced at a distance
L∗

RBC apart; G(z∗

nb) nearly vanishes at znb = 0 and between two peaks. Corresponding data for
nRBC = 3, 5 show smaller peaks in G(znb), indicating a less ordered structure, in agreement
with the snapshots of figure 5. By comparison, for the D phase, the peaks in G(z∗

nb) are not as
pronounced as in the S and Pc phases, and G(z∗

nb) does not vanish at any znb.
The Pc and S phases can also be distinguished by comparing distributions of the radial

position, R, of an RBC center of mass,

P(R∗) =
1

ρ2D
b (2π R∗)

〈
nRBC∑
i=1

δ(R∗

i − R∗)

〉
t

, (5)

where ρ2D
b = nRBC/(π R∗2

cap), and δ(R∗) = 1/1R if R∗ is within the interval [−1R/2, 1R/2]
and 0 otherwise. Figure 7 shows that in the S phase, P(R∗) has a peak away from R∗

= 0 and
essentially vanishes at R∗

= 0, while the Pc and D phases display a strong peak at R∗
= 0.

The phase structure for the more narrow capillary, R∗

cap = 1.23, closely resembles the
structure for R∗

cap = 1.4 (see figure 1). For R∗

cap = 1.23, the suspension still exists in a D, Pc or S
phases depending on L∗

RBC and g∗. However, if the suspension is prepared initially in an aligned-
parachute (Pc) conformation by replicating the steady-state fluid and membrane configurations
from a nRBC = 1 simulation at L∗

RBC 6 1.4, then the Pc conformation can remain intact for a
substantial duration of time before eventually reordering into an S conformation, particularly
at L∗

RBC = 1.4. In other words, the suspension appears more stable against thermal fluctuations,
which could trigger a structural change, at R∗

cap = 1.23 than at 1.4. The RBC energies in the
S and the Pc phases at R∗

cap = 1.23 are almost identical to these energies (shear elastic and
bending) at R∗

cap = 1.4, but the pressure drops, reflecting the resistance to flow, are much higher
at R∗

cap = 1.23, see figure 4.
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Figure 7. Spatial pair correlation functions, G(z∗

nb), along the z direction and
distributions of the radial position, R∗, of the RBC center of mass away from the
capillary axis, P(R∗), for R∗

cap = 1.4, L∗

RBC = 1.05 and g∗
= 15.9. The number

of RBCs per simulation cylinder is varied from nRBC = 3 to 6 keeping L∗

RBC
fixed. For comparison, the curves associated with the disordered-discocyte (solid
black line) and aligned-parachute (dotted black line) phases are included for
L∗

RBC = 1.23 and nRBC = 6, where the z∗

nb coordinates of G(z∗

nb) have been
rescaled as z∗

nb → z∗

nb × 1.05/1.23.

3.3. RBC structures and correlations in wider capillaries with R∗

cap = 1.58

The phase diagram as a function of flow velocity g∗ and capillary length, L∗

RBC, obtained from
simulations with nRBC = 6, is shown in figure 8. The comparison of the phase diagrams for
different R∗

cap, figures 1 and 8, indicates that the transition from the D to the Pc phase at low
hematocrit shifts to larger g∗ and thus larger flow velocities with increasing R∗

cap at a given L∗

RBC
(i.e. fixed line density of RBCs), as expected from simulations at low hematocrit in [37].

The arrangement of RBCs for R∗

cap = 1.58 at high hematocrit (low L∗

RBC) is not as well
defined as in the more narrow capillaries (R∗

cap = 1.4 and 1.23). In the high-hematocrit region
of the phase diagram, where the S phase appears in the narrower capillaries, the suspension
alternates in time between the interlocked state of the zigzag-slipper (S) phase and a disordered
state with no immediately discernible structure, i.e. no significant long-range spatial and
orientational correlations. Note that this region extends to lower HT-values for larger R∗

cap,
compare figures 1 and 8. At the highest hematocrit examined (HT = 0.37), the S conformation
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Figure 8. Phase diagram for capillary radius R∗

cap = 1.58, with nRBC = 6 RBCs
in the simulation cylinder. At points labeled by blue stars and green squares,
the suspension exists in the disordered-discocyte (D) phase and the aligned-
parachute (Pc) phase, respectively. At the pink open circles the suspension
alternates in time between the zigzag-slipper (S) state and a disordered state.
At the black open circles the suspension alternates between an asymmetric-
lane (Al) state and a disordered state. At points labeled by overlapping open
pink and black circles, the suspension alternates between the S, Al and
disordered states. The transformations between Pc and S states and between
S and Al states are shown in movies 1 and 2, respectively (available from
stacks.iop.org/NJP/14/085026/mmedia).

Figure 9. Snapshot of RBC configurations when the suspension is in the
asymmetric-lane (Al) state, for the capillary with the largest considered diameter,
R∗

cap = 1.58, at L∗

RBC = 0.88 and g∗
= 18.5.

does not occur, but rather an asymmetric-lane (Al) conformation consisting of two parallel
rows: one with four slipper-shaped RBCs, and the other with two discocyte-shaped RBCs
(see figure 9); the suspension alternates between this ordered Al state and a disordered state.
Figure 10 shows examples of the disordered state. The dynamics of the transformations between
different phases in the high-Hematocrit region of the phase diagram of figure 8 is shown in
movies 1 and 2 (available from stacks.iop.org/NJP/14/085026/mmedia). Here, movie S1 shows
the transformation from the Pc to the S state and vice versa, movie S2 the transformation from
the S state to the Al state and vice versa.
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Figure 10. Snapshots of disordered RBC configurations for (a), (b) g∗
= 13.2

and (c) g∗
= 18.5 at L∗

RBC = 1.05 and R∗

cap = 1.58.

To characterize the ‘mixed state’ with its alternating assembly and disassembly of ordered
rows of RBCs at low L∗

RBC, we calculate spatial correlation functions and radial distributions.
Figure 11 shows G(z∗

nb) and P(R∗) at five points in the phase diagram, in the range L∗

RBC =

1.05–1.4, and g∗
= 13.2–18.5. In all cases, G(z∗

nb) has peaks located at integer multiples of
L∗

RBC. These peaks are not as pronounced as those observed for the S phase in figure 7 for R∗

cap =

1.4 (with nRBC = 6), and there is no z∗

nb where G(z∗

nb) nearly vanishes. The reason is that the
peaks are broadened by the intermittent presence of the disordered state. In the radial distribution
function P(R∗), see figure 11, configurations in the disordered state mainly contribute to the
peak located at R∗

= 0, while configurations in the interlocked S state contribute to the off-
center peak at R∗

' 0.4–0.6.
At L∗

RBC = 1.05, the peaks in G(z∗

nb) and the off-center peak in P(R∗) all decrease in
magnitude with increasing g∗ (see figure 11), which implies that the suspension assumes an
ordered, off-axis state less frequently as g∗ increases. This result is confirmed by an estimation
of the percentage of the total simulation time in which all RBCs are found with their centers
of mass at a radial distance greater than ε∗

R = 0.35 (a value corresponding to the minimum of
P(R∗) in figure 11) from the capillary axis, which yields about 44, 24 and 18% at g∗

= 13.2,
15.9 and 18.5 respectively.

When R∗ > ε∗

R for all RBCs, we define the times for which the suspension exists in either
the S or Al conformation as follows. We let Nnb be the maximum number of neighbors j to

New Journal of Physics 14 (2012) 085026 (http://www.njp.org/)

http://www.njp.org/


16

Figure 11. Spatial pair correlation functions, G(z∗

nb), and distributions of the
RBC center-of-mass radial positions, P(R∗), for a capillary with radius R∗

cap =

1.58. For the state points considered, labeled by (L∗

RBC, g∗), the suspensions
alternate in time between the ordered S state and a disordered state.

a given RBC i that are a distance rxy =

√
(x∗

i j)
2 + (y∗

i j)
2 > ε∗

xy away from i (where [xi , yi , z j ]

are the coordinates of the center-of-mass position vector of an RBC). If Nnb = 3 or 4, then
the suspension exists in an S or an Al conformation, respectively. We set ε∗

xy = 0.88. At
L∗

RBC = 1.05 and g∗
= 13.2, the suspension spends 93 and 6% of the time in the S and the

Al states, respectively; however, it spends 83 and 15% at g∗
= 15.9, and 72 and 27% at

g∗
= 18.5. Thus, the suspension is found much more often in the S state than in the Al state

for L∗

RBC = 1.05, but the probability of the Al state increases with increasing g∗.
The suspension also becomes more disordered as the hematocrit decreases and L∗

RBC
increases for fixed g∗

= 13.2; at L∗

RBC = 1.23 and 1.4, the suspension spends 38 and 26% of
the time, respectively, in the S state and never occurs in the Al state.

In the mixed-state region, the displacement of RBCs from the center of the capillary
increases with decreasing L∗

RBC at fixed g∗; figure 11 shows this trend at g∗
= 13.2. As the

suspension is squeezed, there is an increased chance of finding three RBCs in a ‘stack’ whose
axis is on average perpendicular to the flow direction; the existence of such stacks implies
G(z∗

nb ' 0) > 0 (see figure 10(c)).
Figure 12 shows orientational distributions and correlation functions at the same five points

in the mixed-state region of the phase diagram, figure 8, discussed above. Let ui be the unit
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Figure 12. Orientational correlation functions, Guu(z∗

nb), and angular/
orientational distributions, p(θ), for capillary radius R∗

cap = 1.58. For the state
points (L∗

RBC, g∗) considered, the suspensions alternates between the S state and
a disordered state. ûi is a unit vector giving the RBC alignment with respect to
the capillary axis.

eigenvector corresponding to the smallest eigenvalue of the gyration tensor of the i th RBC,
where |ui | = 1; this vector can point ‘away’ or ‘towards’ the capillary axis. We choose the
‘towards’ orientation, i.e. r xy

i · ui < 0, where rxy
i = (xi − xo, yi − yo, 0) is the radial vector from

the center (xo, yo) of the cylinder, to uniquely define the orientation of ui and thereby

Guu(z
∗

nb) =
1

nRBCρB

〈
nRBC∑
i=1

nRBC∑
j 6=i

ui · u jδ(z
∗

nb − z∗

i j)

〉
t

. (6)

Here, ui and u j are orientation vectors of two neighboring RBCs. For the orientational
distribution, the angle θ is defined by θ = arccos(|ui z|) where ui z is the z-component of ui .
The angle distribution P(θ), displays two trends, see figure 12. At fixed g∗, as the average
RBC distance L∗

RBC decreases, the RBC orientation vectors rotate towards the capillary axis,
becoming more parallel with this axis; when the suspension exists in the S state, the deformation
of the slipper-shaped RBCs increases as L∗

RBC decreases. At fixed L∗

RBC, the suspension becomes
more disordered with increasing g∗; as a result, the distribution P(θ) at L∗

RBC = 1.05 broadens.
For the suspension in the S state, the orientational correlation function, Guu(z∗

nb),
exhibits oscillation with a period of 2L∗

RBC starting at z∗

nb = L∗

RBC as shown in figure 12.
The first minimum (negative value) and maximum (positive value) appear at z∗

nb ' 1.2 and
2.4, respectively. As with G(z∗

nb) and P(θ), at fixed L∗

RBC the maxima in Guu(z∗

nb) become
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less pronounced with increasing g∗, reflecting a decrease of order in the interlocked zigzag
conformations with increasing g∗, compare figure 12.

By the analysis of these correlation and distribution functions, the various arrangements of
RBCs in our microchannels can be clearly distinguished.

3.4. Variation of membrane material parameters, for R∗

cap = 1.4

We now return to the original capillary with a diameter of R∗

cap = 1.4 and examine the changes
to the phase structure that occur when the values of the membrane material parameters, κ and
µ, are changed. In sections 3.2 and 3.3, κ and µ were set to κ0/kBT = 20 and µ0 R2

0/kBT = 110
giving a Föppl–von Kármán number of γ0 = 4µ0 R2

0/κ0 = 22. Phase diagrams for (κ, µ) =

(0.5κ0, 4µ0) with γ = 8γ0 = 176, and (κ, µ) = (2κ0, 4µ0) with γ = 2γ0 = 44, are shown in
figure 13.

For the cells with a smaller bending rigidity and γ = 8γ0 (top panel of figure 13), the
phase structure in the region, where the S phase occurs in figure 1, is less well defined or more
loose compared to the S phase for (κ0, µ0). For 1.0. L∗

RBC . 1.2, the suspension alternates in
time between a disordered state and an ordered S state, consisting of an interlocked zigzag of
slipper-shaped RBCs. The transitions between these two states are seen during a simulation run.
The deformation of the RBCs away from a discocyte shape becomes weaker with decreasing
g∗, so that at the lowest g∗ considered the zigzag-slipper conformations are replaced by zigzag-
discocyte conformations. At the lowest L∗

RBC and sufficiently high g∗, the suspension also spends
time in an Al state (see figure 9), alternating in time between the disordered, S, and Al states.
Stacked conformations also appear, like for the wider capillary with R∗

cap = 1.58 discussed in
section 3.3.

In an earlier study [33], the critical velocity, where an ‘isolated’ discocyte undergoes a
shape transition from a discocyte to a parachute with increasing g∗, was found to increase
with increasing bending and shear elastic rigidity of the RBC membrane. The bottom panel
of figure 13, where both moduli, κ and µ, are larger compared to those in figure 1, displays
the same qualitative behavior; the transition from the disordered-discocyte phase to the aligned
parachute phase is shifted to higher g∗ compared to this critical g∗ in figure 1. In addition,
only the ordered zigzag state is found for g∗ . 22 and L∗

RBC . 1.15 below the transition line.
However, at g∗ & 22, the suspension is observed to alternate between an ordered, zigzag-slipper
state and a disordered state. The RBCs in the interlocked zigzag conformations are discocytes
at g∗ . 22, and become slippers at higher g∗.

As discussed above, the change of the membrane properties not only shifts the phase
boundaries but also yields qualitative changes on the phase behavior. Some changes such as
the existence of the Al phase are similar to the results of the variation of Rcap. However, others
such as discocytes with interlocked zigzag arrangement are not observed in the variation of
Rcap. The changes of the membrane properties and the capillary radius Rcap modify the RBC
deformation and hydrodynamic confinement effects, since the stability of each deformed shape
depends on the membrane properties.

The pressure drop of suspensions of RBCs with different membrane parameters are
displayed and compared in figure 14. For the suspension with a larger bending and shear rigidity,
and γ = 2γ0, the resistance to flow, measured by the pressure drop, is higher than this drop for
the suspensions with γ0 and 8γ0. In addition, the pressure drop for the suspension with bending
rigidity κ0 and Föppl–von Kármán number γ0 is almost the same as for the suspension with
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Figure 13. Phase diagrams for R∗

cap = 1.4 with nRBC = 6, for membrane material
parameters different from those pertaining to figure 1. (Top) γ = 8γ0 with
(κ, µ) = (0.5κ0, 4µ0). (Bottom) γ = 2γ0 with (κ, µ) = (2κ0, 4µ0). Symbols
indicate points where the disordered-discocyte (blue stars), aligned-parachute
(green squares) and zigzag-slipper phases (red circles) exist. At points labeled
by pink open circles, the suspension can exist in a disordered state or the S state.
For 8γ0, the black open circles show points where the S, the disordered, and
the asymmetric-lane (Al) states coexist. For 2γ0, the suspension can also exist at
times in the Pc state at the pink points where L∗

RBC = 1.23.

the reduced bending rigidity κ0/2 and 8γ0; increasing the shear modulus by a factor of 4 is
compensated by decreasing the bending rigidity by a factor of 2. Such a compensation is not
unexpected qualitatively, because for Föppl–von Kármán numbers of about 100, bending and
stretching energies are comparable, as shown for icosahedral shells in [59].

4. Summary and discussion

Using a mesoscopic simulation technique, which includes hydrodynamics and thermal
fluctuations, we have explored the alignment and shape changes of a dense suspension of
RBC-like vesicles—of discocyte shape with bending and stretching energies—in microcapillary
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Figure 14. Comparison of pressure drop per RBC as a function of flow velocity
at R∗

cap = 1.4 and L∗

RBC = 1.05 for different values of the membrane elastic
parameters; from simulation with nRBC = 6 RBCs in the simulation cylinder.
γ0 is the Föppl–von Kármán number for the original choice of parameters in
sections 3.2 and 3.3. A similar trend is observed for L∗

RBC = 0.88 (data not
shown).

flows. Three phases were observed, depending on the hematocrit HT, the cylinder diameter and
the flow velocity. At relatively low HT, a disordered-discocyte (D) phase is found at low flow
velocities; at velocities above a critical velocity an aligned-parachute (Pc) phase emerges. The
transition between these phases is characterized not only by the change in RBC shape, but also
by the spatial and orientational alignment of successive RBCs.

The zigzag-slipper (S) phase, predicted by our many-RBC simulations at high HT [36],
was unexpected given the results of single-RBC simulations, which show a phase of coherently
tilted discocytes at low flow velocities which deform gradually with increasing flow velocity
into an aligned arrangement of axisymmetric RBCs shaped as shallow bowls or parachutes
depending on the HT. However, earlier experiments on the flow of suspensions of human blood
cells through narrow glass capillaries (with diameters in the range of 5–10 µm) did exhibit this
phase (or ‘zipper flow’) for a particular range of tube hematocrits [60]. When we prepare the
RBC suspension initially by replicating the steady-state results from the corresponding single
RBC simulations, the suspension, initially in the Pc state, remains in this state for a length
of time before quickly reordering into the S state. We believe that thermal fluctuations can
trigger this structural change which is subsequently amplified by the hydrodynamics. Simple
two-dimensional model studies of pressure-driven flow of a row of discs in a capillary have
shown that the single-file arrangement is indeed unstable to initial periodic perturbations in
the disc positions depending on the initial lateral position of the single-file row relative to the
capillary axis [13, 61, 62]. For unstable motion, the initial, single-file row reordered into two
interlocked rows of rotating discs (the ‘zipper flow’). For RBCs, there is in addition the effect
of a hydrodynamic lift force due to the tank-treading motion in the slipper shape, which pushes
RBCs back to the center. The origin of a critical hematocrit separating the Pc and S phases is
that if an RBC in the Pc phase fluctuates off-axis and slows down, then provided the L∗

RBC is
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Figure 15. Snapshots of RBC configurations for capillary radius R∗

cap = 1.4,
average RBC separation L∗

RBC = 1.22 and driving force g∗
= 21.2. nRBC = 16

RBCs in the simulation cylinder. The membrane elastic parameters are κ0 and
µ0. (Top panel) Coexistence of zigzag-slipper state (left) and aligned-parachute
state (right). (Bottom panel) Homogeneous zigzag-slipper state at earlier and
latter times in the simulation. The dynamical evolution of these transformations
is shown in movie 3 (available from stacks.iop.org/NJP/14/085026/mmedia).

sufficiently large this RBC can recover from this fluctuation, returning to being on-axis without
disturbing other RBCs farther back in the flow.

Real RBCs have a larger bending rigidity and shear modulus than our model RBCs
(approximate values are κ/kBT ' 50 and lR2

0/kBT ' 5000, corresponding to a Föppl–von
Kármán number c ' 400). Therefore, a larger flow velocity is needed for a real RBC to
induce the transformation from a discocyte to a parachute; for a single cell in [33], only
a (linear) extrapolation of the simulation results to the measured values of bending rigidity
and shear modulus produced good agreement with the experimental results. It may therefore
not be too surprising that for typical values of Rcap/R0, the critical value of L∗

RBC for the
S phase determined experimentally for real RBCs in [60] is about three times larger than
the one determined for our suspensions of model RBCs. In Stokes flow and in the absence
of thermal fluctuations, the critical flow velocity is a linear function of the elastic moduli
for a fixed Föppl–von Kármán number—but characteristic distances and shapes should be
unaffected. Therefore, two factors could be responsible for this difference in the critical values
of L∗

RBC. First, the smaller flow velocities in the simulations yield a smaller Péclét number, i.e.
diffusion is more important; this implies that the arrangement of the cells is disordered, and
higher hematocrits are necessary for cells to interact sufficiently strongly. Second, the smaller
Föppl–von Kármán numbers in the simulations imply that the parachute and slipper shapes
are more smoothly rounded; this probably makes them less favorable in flow, and again favors
the parachute phase. Furthermore, since the shear-flow gradients are larger, for an initial Pc
conformation to remain intact a much larger distance is needed between a parachute-shaped
real RBC undergoing an off-axis fluctuation in position and the next real RBC farther back in
the flow.

The Pc state is more stable at lower R∗

cap. At higher R∗

cap, the structure of the suspension
in this region is more ‘loose’; the suspension alternates in time between different states,
making sudden transitions between ordered and disordered arrangements; these disordered
arrangements occur more frequently as the flow velocity increased. This ‘mixed state’ can
also be achieved by decreasing the bending rigidity while keeping the capillary diameter fixed.
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The experiments of [60] also displayed a more disordered arrangement of RBCs at larger
capillary diameters.

Our simulation results have been limited to a relatively small number of cells, usually
containing six RBCs—although some exploratory simulations were performed with less and
more RBCs. The existence of a mixed state in our simulations implies that in much longer
simulation cylinders, containing orders of magnitude more RBCs at the same HT, there can
be ordered and disordered arrangements of RBCs coexisting in different spatial regions at the
same time. A simulation with nRBC = 16 RBCs in the simulation cylinder indeed demonstrates
such a behavior, as can be seen from the configurations displayed in figure 15, as well as
movie 3 (available from stacks.iop.org/NJP/14/085026/mmedia). Here, a region of Pc phase
nucleates in S phase, the two phases coexist for some time, then the Pc phase disappears again.
Furthermore, for state parameters where our simulations yielded the S phase (i.e. where there
were no transitions to other states), it is possible that in much longer simulation cylinders there
can be defects in the interlocked arrangement of slipper shaped RBCs, such as the one illustrated
by five RBCs in the simulation cylinder in figure 5. The existence of the Al state suggests
the possibility of non-interdigitated, non-axisymmetric ordered structures along some spatial
regions in larger-scale suspension simulations. The present work should provide insight and
inspiration for such future studies.
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